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Structure of typical states of a disordered Richardson model and many-body localization
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We present a thorough numerical study of the Richardson model with quenched disorder (a fully connected
XX model with longitudinal random fields). We find that for any value of the interaction the eigenstates occupy
an exponential number of sites on the unperturbed Fock space but that single-spin observables do not thermalize,
as tested by a microcanonical version of the Edwards-Anderson order parameter. We therefore do not observe
many-body localization in this model. We find a relation between the inverse participation ratio and the average
Hamming distance between spin configurations covered by a typical eigenstate for which we hypothesize a
remarkably simple form for the thermodynamic limit. We also studied the random process defined by the spread
of a typical eigenstate on configuration space, highlighting several similarities with hopping on percolated
hypercube, a process used to mimic the slow relaxation of spin glasses. A nearby nonintegrable model is also
considered where delocalization is instead observed, although the presence of a phase transition at infinite
temperature is questionable.

DOI: 10.1103/PhysRevB.84.094203 PACS number(s): 72.15.Rn, 02.30.Ik

I. INTRODUCTION

Recently1,2 it has been pointed out that the phenomenon of
Anderson localization (AL),3 usually associated with single-
particle hopping in a random potential, can be present even in
the many-body eigenstates of an interacting quantum system
and manifest itself as a phase transition at finite and even
infinite temperature. This phenomenon has been dubbed many-
body localization (henceforth MBL) and it can be conceived
as an example of AL in configuration space rather than real
space. As the geometry of configuration space for a many-body
system differs substantially from that of a regular lattice in few
dimensions, MBL is thought to have properties distinct from
those of the single-particle AL.

MBL should be responsible, among other things, of the
exact vanishing of the dc conductivity of metals below a critical
temperature1 and of the failure4,5 of the simplest version (and
possibly of all versions) of the quantum adiabatic algorithm6

for the solutions of NP-complete problems; it has also been
studied in disordered Heisenberg spin chains7,8 where the
phase transition has been linked to the infinite-randomness
fixed point. The similarity of some features of MBL to the
glass transition in spin and configurational glasses makes it
the closest to a quantum analog of a glass transition, where the
assumptions of equilibrium statistical mechanics fail.

As we said, in some problems MBL is found in typical
many-body states,9 namely states sampled with uniform dis-
tribution from the spectrum (therefore corresponding to infinite
temperature). These states are difficult to study directly, much
more than the ground states for which many approximations
(DMRG, MPS, etc.) can be devised: Indeed, the only strategy
here seems to be exact diagonalization (as used in Ref. 8, for
example), the exponential complexity of which limits the size
of the systems to less than 20 spins. Alternatively, the study
of correlation functions with time-dependent DMRG was
used, whose failure to converge due to growing entanglement
can signal the onset of delocalization.10 Analytic results
have mainly been obtained by studying the behavior of the
perturbation theory for increasing system sizes.5

In this work we report the results of our numerical study on
the structure of typical states of a fully connected quantum spin
model with quenched disorder (the Richardson model)11–13

that has been introduced as a model of nuclear matter and has
been studied in connection with the finite-size scaling of the
BCS theory of superconductivity. Integrability allows us to
go to sensibly higher spin numbers (N = 50 spins for single
states and we will collect extensive statistics up to N = 40) and
therefore make some educated guesses on the thermodynamic
limit of the system.

We will begin by discussing the method we devised for
the solution of the Bethe ansatz equations (the Richardson
equations), which is at variance with respect to those very
refined ones, used in the study of ground states and low-lying
excited states14,15 (our method will be close in spirit to that
used in Ref. 16, which appeared while this work was being
completed). We will then discuss the observables, since we will
face the problem that the classical observables in localization
studies, the inverse participation ratio (IPR), is computation-
ally heavy (its complexity goes as 2N , although still smaller
than O(23N ) steps required by exact diagonalization). We
devised a Montecarlo method for the measure of IPR and
performed an extensive study of an Edwards-Anderson–like
order parameter q,17 which is related to the average (1,N − 1)
entanglement (the Meyer-Wallach18 entanglement measure)
and to the average Hamming distance L, between states
in the computational basis whose superposition forms the
eigenstate. As we show, q is related to the long-time spin
relaxation and therefore thermalization is not achieved as long
as q > 0.

We also observe that for the Richardson model, q is in one-
to-one correspondence with the IPR I (but the relation differs
from what found for the disordered Heisenberg model).19 We
find for the thermodynamic limit of q the deceptively simple
expression as a function of the hopping g, q = (1 + g)−1,
which implies in the same limit for the average Hamming
distance L/N = g

2(1+g) . We will define a local entropy density
s = ln I/2L, for which we find numerically a well-defined
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thermodynamic limit, although the limiting form does not
seem to have the simple character of the previous quantities.

We have also studied the clustering properties of the
eigenstates, and we have not found any presence of clusters
but rather as the hopping g is increased the eigenstates spread
rather uniformly over the configuration space. Neighboring
states in energy have very close values of q but their overlap
(a measure common to spin-glass studies) is close to 0. This
means that clusters can be formed if one takes a superposition
of states in a small energy interval to make a microcanonical
density matrix.

The picture that emerges from this analysis is that there
is no many-body localization-delocalization phase transition
in this model although the states appear delocalized on the
computational basis for any finite g, the average single-spin
observables are always localized.

Finally, we discuss the role of integrability in the previous
predictions and the implications of our findings for more
natural cases where integrability is broken.20

II. THE MODEL AND ITS SOLUTION

The Richardson model11,12 is an XX model (i.e., with no
szsz coupling) of pairwise interacting spins with arbitrary
longitudinal fields

H = − g

N

N∑
α,β=1

s+
α s−

β +
N∑

α=1

hαsz
α, (1)

where sx,y,z are spin- 1
2 representations of SU(2) algebra. This

model can accommodate quenched randomness in the arbitrary
choice of the fields hα .21 We choose a Gaussian distribution for
them, with h = 0,h2 = 1. First, one notices that the total spin
Sz is conserved and we focus on the subspace Sz = 0 that exists
only for even N . The model belongs to the class of models
that are integrable through the algebraic Bethe ansatz (see also
Ref. 22 for a more general discussion), which, in particular,
implies that all the states in the sector Sz = (2M − N )/2 can
be found by applications of M generalized raising operators
on the reference state with all spin down:

|E[w]〉 =
M∏

j=1

B(wj )|↓ . . . ↓〉, (2)

where the roots wj satisfy the system of M coupled Richardson
equations:

∀j=1, . . . ,M :
N

g
+

N∑
α=1

1

wj − hα

−
M∑

k=1,k �=j

2

wj − wk

= 0

(3)

in terms of which the raising operators are

B(w) =
N∑

α=1

s+
α

w − hα

(4)

and the energy of the state is given by

E[w] =
M∑

j=1

wj −
N∑

α=1

hα

2
. (5)

We address the reader to Ref. 23 for an extensive review of the
algebraic aspects of the model and its solution. We mention
only that the integrability of the model is connected to the
presence of N commuting integrals of motion:

τα = N

g
sz
α − 2

∑
β �=α

1

hα − hβ

�sα · �sβ (6)

that are constructed via the algebraic Bethe ansatz in a standard
way. We will use later that:

Trτατβ

2N
= δαβ

[
N2

4g
+ 3

4

∑
γ �=α

1

(hα − hγ )2

]
− 3(1 − δαβ)

4(hα − hβ)2
.

(7)

Since the first term on the right-hand side is of O(N2) and the
second is O(1), the conserved charges become orthogonal in
the thermodynamic limit. As we said, we will focus on Sz = 0
so M = N/2, which means that we have to solve N/2 coupled
nonlinear equations, which is numerically viable provided one
has only a reasonably good initial condition for root-finding
algorithms. A widely used technique is that of considering that
when g → 0 the roots tend to some of the fields hα , and from
Eq. (4) it is clear that such root configurations correspond to
the different choices of sets of M spins that are flipped with
respect to the ground state according to Eq. (2); the choice of
the set can be used to label the state at any g.

When one adiabatically increases g, by moving it of some
small amount and solving Eq. (3) at each step, the roots begin to
depart from their initial h values toward the negative direction.
The ensuing evolution depends on the initial configuration of
roots, but, generally, two of them may collide and form a pair of
complex conjugate solutions; they may also then recombine
and return real. When g → ∞, roots either diverge in the
negative direction or stay trapped within a couple of levels.
The number of roots that eventually diverge is equal to the
total spin S of the state (which is a conserved quantum number
at infinite g). An algorithm that can follow the evolution of the
roots with g has to take into account these changes in the nature
of the solution, where the roots become complex conjugates.
These critical points, for random choices of the h’s, can occur
at particularly close values of g and this can create troubles for
the algorithm.24 The reader may refer to Refs. 14 and 25 and
references therein for further details on the solutions. Extensive
study on critical points has been performed in Ref. 26.

When more than a pair of roots collide in a too-small interval
of g this change of variables may not be sufficiently accurate
and one should think of something else (if one does not want
to reduce the step in the increment of g indefinitely). The most
general change of variables that smooths out the evolution
across critical points is that which goes from the roots wj to
the coefficients ci of the characteristic polynomial p(w), i.e.,
the polynomial whose all and only roots are the wj ’s.

This polynomial is quite interesting in itself as it satisfies a
second-order differential equation whose polynomial solutions
have been classified by Heines and Stjielties.27,28 Following
the evolution of the coefficients ci(g) is a viable alternative
to following the roots but we found out that the best strategy
is a combination of both evolutions. Therefore, we follow the
evolution of the roots, extrapolating the coefficients and using
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them to correct the position of the roots at the next step in
the evolution. In this way we do not implement any change of
variables explicitly and we do not have to track the position
of critical points. This algorithm29 can be used on a desktop
computer to find the roots of typical states with about 50 spins,
although in order to collect extensive statistics we have limited
ourselves to N = 40.

III. ORDER PARAMETERS

A. IPR, entanglement, average Hamming radius of an
eigenstate, and a local entropy

Once obtained the roots one is faced with the task of
studying the state. The quantity characterizing the localiza-
tion/delocalization properties of a state on the basis of the
eigenstates of sz

α, α = 1 . . . N (the computational basis or
configuration space C) is the inverse participation ratio of an
eigenstate |E〉:

I =
⎛
⎝ ∑

s1,...,sN ,
∑

α sα=0

|〈s1, . . . ,sN |E〉|4
⎞
⎠

−1

. (8)

We will see that for all g > 0, ln I ∝ N , i.e., an exponential
number of sites of the hypercube C of spin configurations is
covered; nevertheless, we generally observe that

lim
N→∞

I
( N

N/2

) → 0, (9)

which flags instead a single-particle localized phase, according
to the definition common in AL studies. In fact, the analysis
of single-particle observables will confirm this scenario.

The amplitudes 〈s1, . . . ,sN |E〉 can be calculated as ratio
of determinants of (N/2) × (N/2) matrices (therefore in time
∼N3) once the roots wj are known. It is sufficient to consider
the appropriate limit of the general formulas for the scalar
products as given in Ref. 23. However, the number of terms in
the sum is exponential in N so the calculation of I requires an
exponential number of terms30 and we are limited again to 20
spins or so.

We found two ways around this difficulty: They are
complementary and can be checked one against the other
for consistency. First, we devised a Montecarlo algorithm for
the evaluation of I. Define the probabilities pa = |〈a|E〉|2,
where a ∈ C stands for one of the ( N

N/2 ) allowed classical
configurations of spins which constitute the configuration
space C. We perform a random walk with the probabilities
pa’s, namely start from a random configuration a. The
neighboring configurations are those living within the same
subspace Sz = 0 and differing from a by the exchange of
a pair of opposite spins. We move to a random one of the
(N/2)2 neighboring states, say b, by accepting the move with
probability min(1,pb/pa). This involves only one computation
of pb, which takes time ∼N3. The random walk proceeds in
this way, generating a history of configurations a for which we
can take the average over Montecarlo time of pa . The inverse
of this value gives I.

The intensive quantity is ln I/N , which can then be
averaged over different states and realizations. We observe
that for all g = O(1) the value of ln I ∝ N , testifying then

that each state occupies an exponential number of states in the
configuration space.

The second method is to find another quantity that can
be computed in polynomial time and to link it to I. Since
the average values 〈E|sz

α|E〉 can be expressed again in terms
of determinants they can be calculated efficiently [in O(N3)
time]. Therefore, one is led to consider a microcanonical ver-
sion the Edwards-Anderson (EA) order parameter associated
to a single eigenstate

q(E) = 4

N

N∑
α=1

〈E|sz
α|E〉2, (10)

with this normalization q ∈ [0,1]. The average over eigenstates
is

q = 1

2N

∑
E

q(E). (11)

To get the physical significance of this quantity, following
Ref. 8 we start with a slightly magnetized spin α in an infinite
temperature state:

ρ0 = (
I + εsz

α

)
/2N (12)

with magnetization 〈sz
α〉0 = Tr(ρ0s

z
α) = ε/4 (as s2

z = 1/4).
The same magnetization at large time t in the diagonal
approximation reads〈

sz
α

〉
∞ = lim

t→∞ Tr e−iH tρ0e
iHt sz

α = ε

2N

∑
E

〈E|sz
α|E〉2. (13)

Therefore, averaging over α we obtain the equality with
Eq. (11):

q = 1

N

∑
α

〈
sz
α

〉
∞〈

sz
α

〉
0

, (14)

namely the previously defined EA order parameter is the
average survival fraction of the initial magnetization after very
long times.

We notice two more things19: (i) that q(E) is related to the
average purity of the state (here we use the total Sz = 0)

q(E) = 2

N

∑
α

Tr ρ2
α − 1 (15)

and (ii) that q(E) is related to the average Hamming distance
of the points in configuration space when sampled with the
probability distribution pa relative to state |E:

d(a,b) =
N∑

α=1

(〈a|sz
α|a〉 − 〈b|sz

α|b〉)2

=
N∑

α=1

1 − 4〈a|sz
α|a〉〈b|sz

α|b〉
2

, (16)

and multiplying by pa, pb and summing over a,b we find:

L ≡ 〈d〉 = N

2
(1 − q). (17)

So q is computationally easy and it captures both some
geometric properties of the covering of the configuration space
by an eigenstate and the long-time correlation function for sz.
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0 2 4 6 8 10
0.0
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1.0

g

q

FIG. 1. (Color online) The pointwise extrapolation of the function
q as a function of g. The fit q = 1/(1 + g) is not distinguishable from
the data.

We averaged q over the spectrum (sample over typical states)
and then over realizations (the number of which depends on
the size of the system but it will never be less than 100).

We found this average q as a function of g for g ∈ [0,40] and
N = 16, . . . ,38 and studied the pointwise finite-size scaling
[in the form qN (g) = q(g) + c1(g)/N + c3(g)/N3] to obtain
the thermodynamic limit of q (see Fig. 1). We fit the data
using a ratio of polynomials with the condition that q(0) = 1
and we found that averaging over the state and the realization
of disorder

q = 1 + 3 × 10−8g

1 + 1.003g + 0.009g2
� 1

1 + g
(18)

works in the whole range of data to an error of at most 0.5%.
We therefore conjecture this to be the correct functional form
of the EA order parameter at infinite temperature.

We can now go back to the relationship between the IPR and
q, better expressed as a relation between ln I and L. We notice
a one-to-one correspondence between average values these
two quantities already at the level of second-order perturbation
theory in g starting from a given state with N/2 spins up S↑
and N/2 spins down S↓:

I = 1 + 2g2

N2
A + o(g2), (19)

where we defined a sum over pairs of up and down spins of
the given state:

A =
∑

α∈S↑, β∈S↓

1

(hα − hβ)2
. (20)

Since A is dominated by small denominators, it will be
typically A = O(N4) and therefore from the expression for
IPR we see the perturbative regime is valid for g � 1/N .
With an analogous computation we get

L = 4g2

N2
A + o(g2). (21)

Eliminating g between the two relations and using Eq. (17)
one obtains, independently of the state and of the quenched
randomness (therefore the relation holds also on average),

ln I � L

2
. (22)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

L

ln
I

FIG. 2. (Color online) ln I as a function of the average distance L.
The points areN = 28,30,32 (square, diamond, and circle) averaged
over 100 realizations: the dashed straight line is the second-order
perturbation theory approximation Eq. (22).

So the relation is linear for small g. To see how this relation
is modified at higher values of g we have again to resort to
numerics. From the data it is clear that a strict relation exists
between ln I and L as one can see in Fig. 2.

By using the previous Montecarlo calculation for I we can
plot ln I vs. L, showing that the relation is almost linear. The
degree of nonlinearity is measured by the ratio

s = ln I
2L

, (23)

which can be interpreted as a local entropy.31 In fact, 2L =
N (1 − q) can be interpreted as the number of free spins
(whose value of sz is close to 0) while I is the number
of configurations. If we want 2L spins to be responsible
to I states then each of these spins should account for a
degeneracy of es , from which the interpretation as an entropy
density.

The distribution of L over states and realizations becomes
more and more peaked as N grows, since we observe the
variance δL2 ∝ N . The same occurs to ln I, whose variance
goes ∝ N in the region of g considered. Therefore, the average
value of s becomes typical in the large-N limit.

In the curves of Fig. 3 the entropy s grows from the value of
1/4 = 0.250 predicted by perturbation theory to an asymptotic
value of s = 0.383 ± 0.003.32 This value is not what one
would expect from a uniform superposition over ( N

N/2 ) states,
since in that case L = N/2, ln I � N ln 2, and the familiar
value s = ln 2 = 0.693 is roughly twice as much as we expect.
This leads us to think that the most probable structure of the
delocalized state at increasing g still retains a pair structure.
We can build a toy model of delocalization in the typical
eigenstates by assuming that Nq spins are localized on their
g = 0 values and that the remaining N (1 − q) spins are instead
divided into couples, where couples are formed between
almost resonating spins of opposite orientation. The couples
are in one of the random valence bond states |↑↓〉 ± |↓↑〉
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0 1 2 3 4

0.25

0.30

0.35

0.40

g

s

FIG. 3. (Color online) Local entropy as a function of g. The points
are N = 28,32,36 (square, diamond, and circle), all averaged over
100 realizations. The fit is a (1,1) Pade’ approximation conditioned
to s(0) = 1/4.

which are indeed the two Sz = 0 eigenstates of the two-body
Hamiltonian

H2 = − g

N
(s+

1 s−
2 + s+

2 s−
1 ) + h

(
sz

1 + sz
2

)
, (24)

where we have assumed that h1 � h2 = h. This predicts that

I ∼ 2N(1−q)/2 = 2L (25)

and we should have a constant entropy s = ln(2)/2 = 0.347,
slightly smaller than the observed value at large g and off by
40% at small g. The pair structure of a given eigenstate can be
observed in Fig. 4 where we plot the values of m2

n ≡ 〈E|sz
n|E〉2

for a given eigenstate |E〉, ordering the spins by increasing hn

(so that almost-resonant spins are nearest neighbors). We see
a clear valence-bond like pair correlation in the values of the
squared magnetization.

With the available data, we can discuss issues like the
presence of multiple clusters in the same energy level |E〉.
In fact, by randomly restarting the Montecarlo routine with
the same pa’s if multiple clusters exist, we would expect to
sample them according to their basin of attraction. Moreover,

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

n

m
n2

FIG. 4. Squared magnetizations for increasing g (from white to
black), where the spins are ordered by increasing magnetic field
hn. A consistent number of valence bond pairing is observed as a
good fraction of neighboring spins (e.g., n = 8,9, n = 15,16, and
n = 31,32) have the same speed.

we can rely on analytic results (such as those for q) to compare
the Monte Carlo averages with clusterization and ergodicity
breaking would translate in a difference between these two
results (as the random walk would get stuck in a cluster and
would not explore the whole configuration space). In the region
where we can trust our numerics (g � 0.02), Monte Carlo
averages converge to the analytic results, though a slowdown
of the dynamics is observed (see below).

B. Dynamics of Monte Carlo and other quantities

The Monte Carlo routine that allows for importance
sampling of the distribution pa allows other measures of the
geometry of the state. We can now study the similarities
between the dynamics of importance sampling on pa and
that of random percolation on the hypercube, which has been
proposed as a model of relaxation in a glassy system.31 We
will find that, in both cases, a stretched exponential is the best
fit and that the exponent depends on the coupling constant g.
This, we believe, is a remarkable similarity.

An important quantity in this sense is the time dependence
of the average distance from the starting point. Consider
the Hamming distance H (t) from the starting point H (t) ≡
d(a(t),a(0)), where a(0) represents a classical configuration
of spins and a(t) the one reached after t Monte Carlo steps. For
t � 1, after averaging over many starting points a(0), H (t) is
fit quite accurately by a stretched exponential ansatz of the
form:

H (t) = L
[
1 − e−( t

τ )β ]
, (26)

where L is the average distance introduced before and β is a
new characteristic exponent. Let us consider the behavior of
the exponent β with respect to g, as plotted in Fig. 5. Even if
the results become quite noisy for small g, we can still see that
for small values of g, β stays close to 1, while as g increases,
β decreases, although quite slowly. Instead, for the time scale
τ we find, apart from the monotonic decrease with g, which is
to be expected on general grounds, that, for g � 1, τ ∝ N3/2,
which we propose without explanation.

The small time behavior of H (t) can be used to obtain some
information about the local structure of the state. In particular
we can set

k ≡ H (1)

2
= 4

N2

∑
〈a,b〉

min(pa,pb), (27)

where the last equality follows from the Monte Carlo rate and
the sum is over nearest-neighbor states. This quantity can be
considered as a measure of the local connectivity, that is, the
average fraction of active links.

From Fig. 6, we may deduce two things: one is that the
connectivity stays well below 1 even for large g, confirming,
as we claimed before, that the typical state is never uniformly
spread over the hypercube; the second is that the connectivity
scales with N as N−1 for small g and with N−1/2 for large g

(a fit k = A/Nα shows a continuously decreasing α from 1 to
1/2). Since the number of diverging roots is proportional to
the total spin of the eigenstate at infinite g, and since the more
roots diverge, the more equally distributed the terms of each
creation operator B are, we can argue the state will be better
spread for larger total spin S. As for large N , the total spin of
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FIG. 5. (Color online) (Top) The stretched exponential exponent
β data as a function of g for N = 28,32,36 (square, circle, and
diamond) together with a fit of the form (1 + a1g)/(b0 + b1g + b2g

2).
(Bottom) The time scale τ as a function of g for N = 20,24,28,32
(square, diamond, triangle, and circle). The scaling τ ∝ N3/2 is
evidently good, in particular in the region g > 1.

a typical state will increase only as
√

N and this explains the
depletion of the local connectivity.

C. Some perturbation theory

Let us see what the predictions of perturbation theory are
for our system. Let us start at g = 0 from state a, with energy
Ea . The states at distance 2 from a have energies

	(2) = Eb − Ea = hα − hβ (28)

where the couple (α,β) ∈ S↑ × S↓ defines the spins which
have been flipped up and down in going from a to b. The
typical value of 	(2) is

√
〈(	(2))2〉 = √

2 = O(1); however,
the minimum value is O(N−2) which we write x(2)/N2, where
x(2) = O(1). So the corresponding term in perturbation theory
for the wave function is

Ab = (g/N)

x(2)/N2
= gN

x(2)
. (29)

In this way, we can go on at arbitrary distance 2k to the state
bk , the amplitude thus having k denominators of O(1/N2)

Abk = (gN )k

x(2)x(4) . . . x(2k)
, (30)
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FIG. 6. (Color online) Local connectivity as a function of g.
Different lines corresponds to N = 18 (dashed), 24 (dotted and
dashed), and 30 (solid).

where x are random variables of O(1). For any given a

there are only O(1) neighboring states with 	 ∼ 1/N2, so
the number of such bk states at distance 2k from a is O(1)
from N2k (also the number of relevant paths does not grow as
k!). This can be called a direct or percolating contribution.
However, at distance 4 we already observe another type
of contribution, which one is tempted to dub a tunnelling
contribution, in which, although the final denominator 	(4) =
hα − hβ + hγ − hδ = z(4)/N4, each of the two paths leading
to the minimum hα − hβ � −(hγ − hδ) = y(2) = O(1), where
α,γ ∈ S↑ and β,δ ∈ S↓. Again, this contribution is of order:

Ab = (g/N )

y(2)

(g/N )

z(4)/N4
= (gN )2

y(2)z(4)
, (31)

while the amplitudes corresponding to the distance 2 inter-
mediate steps are O(1/N ). The distribution of x,z can be
found by using the theory of extreme value statistics,33 while
y’s are typical values of field differences and none of these
distributions depend on N . We will stop our analysis of
perturbation theory here, as this would require a separate
work by itself. It is sufficient for us to notice that only the
combination gN appears in all terms of the series so scaling
g to zero like 1/N1+ε for every ε > 0 each term would
go to 0 and the series would trivially converge unless the
series is asymptotic in gN . Notice that an argument based on
a Bethe-lattice approximation for the configuration space C
(see Ref. 34) would give gc ∼ 1/N ln N for the localization
transition.

D. Setup of an exponential IPR

From perturbation theory (and from the Bethe-lattice
approximation result)34 one could argue that, if a phase
transition occurs, it is at g ∼ 1/N (an extra factor 1/ ln N

would not be noticed for our moderately large N ). But does a
phase transition in the geometric properties of the eigenstate
occur?

We first analyze the quantity for which we have more
extensive statistics (because of his polynomial complexity),
L. A phase transition in L would mean that, set γ = gN ,
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FIG. 7. (Color online) The logarithm of the inverse participation
ratio divided by the size for N between 8 and 18, computed exactly
and averaged over states and realizations. This graph shows no hint
of a phase transition at g � 1/N .

there exists a γc > 0 such that for γ < γc, L/N → 0 and for
γ > γc, L/N ∼ (γ − γc)δ where δ is a critical exponent. We
have analyzed our data for g > 0.01 and g < 0.2 and we can
conclude that this is not the behavior observed. The behavior
is more consistent with γc = 0, δ = 1 or with a crossover,
in which the limit L/N when N → ∞ is a smooth function
of g which vanishes at g = 0. The matching with the part of
the curve at finite g is smooth and the limiting behavior is as
described before.

There is the possibility, however, that although L ∼ N

always, we have two phases: ln I ∼ 1 and ln I ∼ N between
which a transition occurs. This could happen if an eigenstate
spread along one (or a few) directions without covering an
exponential number of spin configurations. We have excluded
this by both direct analysis of ln I/N data and by the
observation that the relation between ln I and L remains
valid all the way to small g (small here means g � 1/N). As
ln I/N becomes soon independent of N without any scaling
of g needed (see Fig. 7) we are led to conclude that no phase
transition occurs as the system occupies an exponential number
of sites of the computational basis for any g > 0.

IV. BREAKING OF INTEGRABILITY

By considering the Richardson model essentially as a
hopping process on the hypercube with random site energies
given by the unperturbed energies we have found that the
eigenstates are always covering an exponential number of spin
configurations but, nonetheless, q > 0, meaning thermaliza-
tion is not achieved. To understand better the role played by
integrability, we make use of the Mazur’s inequality for the
long-time T average22,35,36 that in our case takes the form:

lim
T →∞

1

T

∫ T

0
dt

〈
sz
α(0)sz

α(t)
〉
�

N∑
β=1

∣∣〈τβsz
α

〉∣∣2

〈
τ 2
β

〉 , (32)

where 〈.〉 ≡ 1
2N Tr (.).37 Using that

〈
τβsz

α

〉 = N

4g
δαβ (33)
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FIG. 8. (Color online) The comparison between our formula (18)
for q (solid line) and the lower bound coming from the conserved
charges (dashed line). The Mazur inequality is satisfied.

together with Eq. (7), and then summing over α, we get the
lower bound

q � 1

N

∑
α

1

1 + 3g2

N2

∑
β �=α

1

(hα−hβ)2

. (34)

By averaging both sides of the equation with respect to
the fields we obtain, to leading order in large N , the exact
expression:

q � 1 −
√

3πg

∫ ∞

−∞
dxP(x)2e3πP(x)2g2

�(
√

3πP(x)g),

where P(x) is the Gaussian distribution function of the fields
h and � is the complementary error function. A comparison
between Eq. (18) and this bound is in Fig. 8. As this bound is
>0 for any g, this is sufficient to claim that thermalization is
not achieved in our model. We, therefore, see explicitly that
the integrability of the model plays an essential role beyond
providing the methods used for its solution. On can then put on
a more firm ground the claim that if the integrals of motion are
too much local, in the way of Eq. (33), integrability can have
the effect of freezing the expectation values of local quantities.

To further explore this issue, we investigated a very similar
nonintegrable model, in which the hopping coefficients are
not uniformly equal to g as in Eq. (1) but instead N (N − 1)/2
random variables gα,β = g(1 + εηα,β), where ηα,β = ηβ,α =
±1 with probability 1/2. Randomness in the fields is retained.
The Hamiltonian is

H = − g

N

∑
α,β

(1 + εηα,β)s+
α s−

β +
∑

α

hαsz
α, (35)

is no longer integrable and must be solved by exact diagonal-
ization.

We observe a decrease of the value of q (averaged both over
E,η and h) as expected; in particular, for sufficiently large g,
we are confident to say that q → 0 for N → ∞ and the system
becomes ergodic.

For small g, however, the situation is not so clear. The
limit N → ∞ could actually be zero or not; what is clear is
that the N dependence is not settled (compare the upper and
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FIG. 9. (Color online) Averaged microcanonical q for the nonin-
tegrable Hamiltonian Eq. (35) for (top) g = 0.1, ε = 0.4 and (bottom)
g = 4.1,ε = 0.4. The data in the lower panel are fit by a power
law aN−γ with a = 290 and γ � 4. The exponent γ seems to be g

dependent.

lower panel of Fig. 9) for N = 16, the largest system size that
we can attain. This leads to two competing scenarios: In the
first we have ergodicity as soon as ε > 0; in the second, one
could identify a finite gc(ε) such that for g < gc, q > 0 and
for g > gc we have q = 0 in the thermodynamic limit. The
latter would have an MBL transition at the said gc. Much more
extensive numerical work is needed to decide between these
two scenarios. We leave the resolution of this issue for the
future.

V. CONCLUSIONS AND SOME DIRECTIONS FOR
FURTHER WORK

We have performed a numerical study of typical states of
the Richardson model with quenched disorder (an example of
Gaudin magnet and an integrable system). We have found no
evidence of a delocalization phase transition, although typical
eigenstates occupy an exponential number of states in the basis
of sz

α’s for any g > 0.
We have devised a method to calculate the IPR without

summing over exponentially many states and studying its
connections with a microcanonical version of the Edwards-
Anderson order parameter, which measures the fraction of
surviving magnetization at infinite temperature and for long
times. Of this order parameter, we have hypothesized that the
thermodynamic limit at infinite temperature as q = 1/(1 + g).
We were unable to obtain the temperature dependence of this
quantity, as sampling from the Boltzmann distribution is not
straightforward within our framework.

For what concerns the absence of a MBL phase transition
we can point out two peculiarities of our system as responsible
for its absence. One is integrability and the other is the infinite
range of the Hamiltonian. We have therefore studied small-
size systems (up to N = 16 spins) with an extra integrability
breaking term of size ε. We observe a sharp reduction of q,
which in some range of parameters could lead to think to
a phase transition where q = 0 for g > gc(ε). However, it
is possible that in the complementary region [g < gc(ε)] the
decrease with N starts from a value of N impossible to reach
with our limited numerics so we are unable to see that q = 0
for all g as soon as ε > 0. Unfortunately, this dichotomy is
unlikely to be settled with the currently accessible values of N

and in absence of an established scaling theory of MBL.
We point out that the Richardson model is one of a family

of integrable spin systems (generalized Gaudin’s magnets, see
Ref. 38) which can be studied with minor modifications of the
methods introduced in this paper. We leave this too for further
work.
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