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We analyze the charge and thermal transport at a junction of interacting quantum wires close to equilibrium.
Within the framework of Tomonaga-Luttinger liquids, we compute the thermal conductance for a wide class
of boundary conditions and detail the physical processes leading to the breakdown of the Wiedemann-Franz
law at the junction. We show how connecting external reservoirs to the quantum wires affects the conductance
tensors close to the various fixed points of the phase diagram of the junction. We therefore distinguish two types
of violation of the Wiedemann-Franz law: a “trivial” one, independent of the junction dynamics and arising
from the breakdown of the Fermi-liquid picture in the wire, and a junction-related counterpart, arising from
multiparticle scattering processes at the junction.

DOI: 10.1103/PhysRevB.105.035419

I. INTRODUCTION

Junctions of interacting quantum wires (QWs), realized
with both spinless [1–5] or spinful systems [6–8], have con-
tinuously attracted the attention of physicists, in that they can
be regarded as the simplest components of a quantum circuit.
Furthermore, a plethora of unconventional phases can be re-
alized at a pertinently engineered junction, which correspond
to attractive fixed points in the boundary phase diagram of
the system at which Landau’s Fermi liquid paradigm breaks
down. There are indeed various reasons for the emergence of
non-Fermi liquid phases, related to the peculiar nature of the
elementary excitations in effectively one-dimensional inter-
acting electronic systems, to the topology of the junction, or to
the dynamics of localized excitations emerging at the junction
itself. In fact, the low-lying elementary excitations in an inter-
acting fermionic system in one dimension are not particles and
holes, but instead collective bosonic modes, whose dynamics
is encoded in the Tomonaga-Luttinger liquid paradigm [9,10].
The loss of integrity of particle and hole excitations formally
corresponds to the description of tunneling processes at the
junction in terms of operators that are nonlinear functionals of
the Tomonaga-Luttinger liquid fields. The corresponding scal-
ing dimensions continuously depend on the “bulk” interaction
[11,12], which allows for stabilizing, for instance, non-Fermi
liquid phases with, e.g., “fractional” tunneling of excitations
with charge, but without spin, and vice versa [13,14]. Also,
the onset of multiparticle scattering processes [15] gives rise
to non-Fermi liquid stable phases at strong enough values of
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the interaction in three-wire junctions, both in the spinless [2]
as well as in the spinful [6], case.

Stabilizing non-Fermi liquid phases typically requires un
physically high values of the bulk interaction strength, which
gives rise to relevant operators destabilizing the Fermi liquid
phase(s) and, at the same time, stabilizing the non-Fermi liq-
uid ones. Alternatively, at small values of the bulk interaction,
or even in the noninteracting limit, the onset of non-Fermi
liquid phases may be determined by the interaction between
the collective modes of the leads and local degrees of freedom
emerging at the junction.

In particular, due to the high versatility of the Tomonaga-
Luttinger liquid approach in describing one-dimensional
spin chains in the spin-liquid phase [16], as well as one-
dimensional Josephson junction arrays [17,18], or pertinently
engineered cold atom systems [19], (Kondo-like) models of
local magnetic impurities interacting with the collective ex-
citations of the leads have been proposed in junctions of
spin chains [20–23], of one-dimensional Josephson junction
networks [24,25], of cold atom condensates [26]. At vari-
ance, local fermionic degrees of freedom can emerge as Klein
factors, that is, real fermion operators required on imple-
menting the bosonization over a junction with more than two
leads [2,22]. Finally, localized degrees of freedom are clearly
present when the leads are proximity-coupled at one end to a
central island, i.e., a mesoscopic system, either grounded or
floating, with a finite charging energy. The number of degrees
of freedom is typically limited due to the physical size, as in
quantum dots, or by a gapped spectrum, which suppresses
the excitations at low temperatures. A remarkable example
is provided by localized Majorana zero modes (MZMs) in
junctions involving superconducting islands [27–29]. On en-
tangling with the lead degrees of freedom, or with each other,
Klein factors and MZMs trigger the onset of nontrivial phases
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and/or phase transitions in junctions of QWs, for many of
which a full theoretical description is still lacking, or applica-
ble only to leading order in the distance (in parameter space)
from other phases for which there is a complete theoretical
model [2,6,30–33].

An efficient mean to identify the system phases is by look-
ing at the equilibrium charge and energy transport properties
of the system under investigation (see, for instance, [34] for
a review). These are typically not independent of each other:
whenever an electronic system can be adiabatically deformed
into a noninteracting Fermi gas, the ratio between the charge
and the thermal conductance of the system are related by
the Wiedemann-Franz law (WFL). This states that, at tem-
peratures low with respect to the Fermi energy, such ratio is
proportional to the temperature, through a universal constant
L0, dubbed Lorenz number [35]

L0 = π2k2
B

3e2
≈ 2.44 × 10−8 W � K−2. (1)

In practice, the WFL is experimentally well-verified in
metals and semiconductors at room temperature [36], though
interaction effects and inelastic scattering may lead to a renor-
malization of the Lorenz number [37–39]. Also, localized
interactions, e.g., such as in quantum dots, may provide an
analogous renormalization of L0 by a nonuniversal value
[40–42].

It is worth mentioning that the WFL is expected to be satis-
fied when a one-dimensional system is connected to external
Fermi liquid reservoirs [2,43–45]. In the same way, one does
not expect deviations of the Lorenz number from L0 in the
presence of the Kondo effect, in the cotunneling regime of
an interacting quantum dot, due to the emergence of Nozierès
Fermi liquid phase [46–48]. In interacting quantum wires, the
results are analogous [49]. Somewhat surprisingly, the WFL
appears to be valid even in a non-Fermi liquid phase, such
as for the overscreened Kondo fixed point [50–52]. As long as
charge and heat are carried by the same excitations, regardless
of whether they are Landau quasiparticles, or collective modes
of the Tomonaga-Luttinger liquid leads, the Lorenz ratio re-
mains unchanged [53].

A phase (a fixed point) of the junction is uniquely identified
by the local relations between the fields describing the collec-
tive excitations in the wires. Typically, these are recovered by
looking at the (equilibrium) transport properties of the system
(electrical conductance for charged wires, spin conductance
for spin liquids, etc.) [2,30,54]. However, when comparing the
theoretical predictions with the experimental results, in many
cases of physical interest this procedure may be tainted by
spurious effects, that may spoil the interpretation of the mea-
surements. Therefore to unambiguously identify the phases
setting in at junctions of QWs, it becomes important to make
combined measurements of the charge transport properties of
the system and of additional, pertinently chosen, quantities.

In this paper, we investigate the charge and the energy
transport through a junction of N > 2 interacting QWs. In
doing so, we are able to determine under which conditions and
by means of which physical mechanisms the WFL is violated
at the junction. Physically, this takes place when the charge-
carrying excitations are separated from the heat-carrying ones.
Consistently, we show that the WFL is expected to break

down whenever Andreev reflection and/or crossed Andreev
reflection processes take place at the junction, possibly in
combination with the normal reflection and the normal trans-
mission of particles. The coexistence of normal and Andreev
reflection/transmission makes the net charge flowing in one
direction different from the net number of particles flowing in
the same direction, thus leading to a remarkable “charge-heat
separation.” Based on this observation, we go through an anal-
ysis of the charge and transport conductances across a junction
of N QWs, both in the case of noninteracting and of interact-
ing leads. We find that the WFL is violated only if the charge
is not conserved at the junction, which typically requires cou-
pling the QWs to an underneath superconductor. Typically, in
this case, the Lorenz number is rescaled by a nonuniversal
factor, which depends on the microscopic scattering processes
at the central island [55]. Conversely, we show that the WFL
breaks down also with charge conservation holding at the
junction when the low-energy modes of the leads are coupled
to MZMs localized at the central island. The interaction allows
for stabilizing phases characterized by multiparticle normal
and Andreev reflection/transmission processes at the central
island, at a fixed, universal and predictable renormalization
of the Lorenz ratio. Beside being genuine non-Fermi liquid
phases, due to the multiparticle scattering processes being the
only ones that survive in the zero-temperature limit, these
phases feature a remarkable charge-heat separation [56], with
the consequent breakdown of the WFL, in an universal and
predictable way.

Importantly, in order to recover the breakdown of the
WFL in a junction of normal wires, such as the ones stud-
ied in Refs. [2,6], we need to have an extremely strong
bulk interaction in the wire. Alternatively, coupling the
wires with emerging MZMs at the central island can ef-
fectively stabilize the breakdown of the WFL at relatively
small interactions, or even with noninteracting leads [57].
The formalism we develop here, based on the Tomonaga-
Luttinger liquid approach, allows us to make sharp predictions
on the charge and thermal conductance tensors at the low-
temperature fixed point (phase), as well as on their scaling
dependence on the temperature in its vicinity. As an example,
we extend the calculation in Ref. [57] for a junction pro-
viding a realization of the topological Kondo model (TKM)
[27,28,58].

Within our analysis, we also discuss in detail the modifi-
cations induced in the various phases and, more in general,
in the whole topology of the phase diagram, when the junc-
tion is connected (as it is typical, in transport measurements)
to outer, Fermi liquid reservoirs. When the reservoirs are
attached at a (finite) distance � from the junction, at low
enough energies/long enough wavelengths, the system be-
comes sensitive to their presence. Specifically, this implies
that, when considering the equilibrium (dc) charge and ther-
mal conductances, the effects related to the bulk interaction in
the leads, including the renormalization of the Lorenz ratio,
are eventually washed out by the presence of the effectively
noninteracting reservoirs [2,43–45]. Often, in transport mea-
surements, one has to consider the effects of the reservoirs.
Therefore we devote part of our work to disentangle the vio-
lation of the WFL determined by the bulk interaction in the
leads from the one genuinely due to the onset of multiparticle
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(anomalous) scattering processes at the junction. In doing
so, we also argue how the reservoirs affect the scaling of
the corrections to the fixed point values of the conductances
and of the Lorenz ratio and how they may modify the phase
diagram itself. Based on the results of this paper, in Ref. [57],
we conclude that the emergence of MZMs and their action in
inducing the topological Kondo effect becomes the effective
mechanism triggering the (universal) breakdown of the WFL
at the junction and that such phenomenon can be exploited
for detection of the presence of MZMs at the junction. While
standard charge transport experiments cannot presently distin-
guish MZMs from other effects unambiguously [59–63], our
proposal provides a new experimental test, aimed at ruling out
such ambiguities.

The paper is organized as follows. In Sec. II, we derive
the charge conductance tensor and the thermal conductance
tensor at a junction of N one-dimensional, noninteracting,
spinless QWs and we evidence the importance of Andreev
and/or crossed Andreev reflection at the junction, in order for
the WFL to break down.

In Sec. III, we set up the formalism to compute the charge
and the thermal conductance tensor within the Tomonaga-
Luttinger liquid approach. In particular, we trace out a direct
correspondence between the conformal boundary conditions
describing a fixed point in the phase diagram of the junction
and the corresponding charge and heat conductance tensors.

In Sec. IV, we compute the charge and the thermal con-
ductance tensor at various fixed points of a generic N-wire
junction. We evidence the violations of the WFL and discuss
the two mechanisms that originate it.

In Sec. V, we discuss the WFL in a junction of N = 3
QWs [1,2] and in the TKM [27,28,58]. In reviewing the phase
diagram of both systems, we also derive the scaling properties
(with the temperature as scaling parameter) of the conduc-
tance tensors and of the Lorenz ratio close to each fixed point.
We analyze both the disconnected case and the one in which
the junction is connected to external reservoirs.

In Sec. VI, we provide our conclusions and discuss about
possible further developments of our work. In the various
appendices, we provide mathematical details of our work.

II. CHARGE AND THERMAL CONDUCTANCE TENSOR
AT A JUNCTION OF NONINTERACTING

QUANTUM WIRES

We now derive the charge conductance tensor (CCT) and
the heat conductance tensor (HCT) at a junction of N one-
dimensional noninteracting spinless QWs, connected to each
other at x = 0. In the following, we limit our analysis to the
case in which the wires are all equal to each other, though
this implies no loss of generality in our derivation. As we
focus on the equilibrium transport properties of the junction,
we resort to a low-energy long-wavelength expansion around
the Fermi points, so to write the junction Hamiltonian as
H = HFer,0 + HB. With HB we denote the boundary Hamil-
tonian encoding the system dynamics at the junction, while
the “lead” Hamiltonian HFer,0 is given by

HFer,0 = −iv
N∑

j=1

∫ �

0
dx {ψ†

R, j∂xψR, j − ψ
†
L, j∂xψL, j}. (2)

FIG. 1. Sketch of the fermionic N wire junction. Chiral fermions
are shot toward the central island from the external reservoirs, biased
at voltage and temperature Vj, Tj , with j = 1, . . . , N . An incoming
L electron from wire j′(=1 in the figure) (black dot) can be reflected
within the same wire as an electron (“normal reflection,” blue dot),
or reflected within the same wire as a hole (“Andreev reflection,”
red empty dot), or transmitted to wire j( �= j′,=2 in the figure) as an
electron (“normal transmission,” green dot), or, finally, transmitted to
wire j as a hole (“crossed Andreev reflection,” magenta empty dot).

In Eq. (2), we denote with ψR/L, j the chiral fermionic fields
corresponding to the two chiral excitation branches around the
Fermi points, with the subscripts R (L) labeling right-handed
(left-handed) branches and v the Fermi velocity. Also, we
introduce the lead length � as a large-distance regularization.
Eventually, when computing physical quantities, we take the
� → ∞ limit.

To encompass also the case of junctions involving su-
perconductors, we consider all the possible single-particle
scattering processes, which we draw in Fig. 1. Specifically, we
see that an incoming L electron from wire j can be reflected
within the same wire as an electron (“normal reflection”), or
reflected within the same wire as a hole (“Andreev reflec-
tion”), or transmitted to wire j′( �= j) as an electron (“normal
transmission”), or, finally, transmitted to wire j′ as a hole
(“crossed Andreev reflection”). Denoting respectively with
r j′, j′ , a j′, j′ , t j′, j, c j′, j the corresponding scattering amplitudes,
we encode them in the “extended” 2N × 2N S matrix

ψR, j′ (0) =
N∑

j=1

{S j′, jψL, j (0) + S j′, j+Nψ
†
L, j (0)},

ψ
†
R, j′ (0) =

N∑
j=1

{S j′+N, jψL, j (0) + S j′+N, j+Nψ
†
L, j (0)}. (3)

In Eq. (3), we have labeled the (2N × 2N) S matrix so that,
in the matrix elements Sa,b, indices a(b) = 1, . . . , N refer to
particles, indices a(b) = N + 1, . . . , 2N refer to holes. As-
suming, as we do throughout all our paper, that particle-hole
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symmetry holds in our system, we infer that the S matrix
must satisfy the Bogoliubov-de Gennes constraint [33], S† =
KCSKC , with KC = σ x ⊗ IN , where the Pauli matrix σ x acts in
particle-hole space. This implies (assuming j′ = 1, . . . , N)

S j′, j = δ j′, j r j′, j′ + [1 − δ j′, j]t j′, j,

S j′, j+N = δ j′, ja j′, j′ + [1 − δ j′, j]c j′, j,

S j′+N, j = S∗
j′, j+N , S j′+N, j+N = S∗

j′, j . (4)

Going through a similar derivation, we recover the S-
matrix encoding the scattering of an incoming hole from
lead j throughout the wires connected to each other at the
central island (see Appendix A for details). Keeping only the
linearly dispersing low-energy modes, the S matrix elements
in Eqs. (3) become independent of the energy. While such an
approximation does not affect our following derivation, we
refer to Appendix A for a full discussion of the scattering
amplitudes within a lattice fermionic model for the leads,
which allows to retain the full energy dependence of the S
matrix at any step of the derivation of the conductance tensors.

Various proposals have recently been formulated, about
realizing junctions exhibiting either Andreev, or crossed An-
dreev reflection, or both. For instance, it has been pointed out
that Andreev reflection and crossed Andreev reflection can
become relevant processes in junctions realized by depositing
quantum wires on top of a superconducting island with finite
charging energy Ec and Josephson coupling to a supercon-
ductor [27,28,58,64,65]. In this case, Andreev reflection and
crossed Andreev reflection are triggered by the emergence of
localized MZMs [27,28,66], thus giving rise to a remarkable
“topological” Kondo effect. A similar physics is expected
to arise at a junction between several quantum wires, or a
multichannel quantum wire, and a topological superconductor
[31–33]. More generically, Andreev reflection and/or crossed
Andreev reflection can arise at junctions of normal quantum
wires, but at the cost of having a strong electronic interaction
within each wire [2,6]. Finally, we note that nonlocal crossed
Andreev reflection can be in principle recovered across a
finite-size one-dimensional topological superconductor with
long range pairing and/or electron hopping [67,68].

Here, given the extended S matrix at the junction, we
now compute the equilibrium CCT and HCT of a junction
connected to external reservoirs, such as the one we sketch
in Fig. 1. We regard the external reservoirs as noninteracting
Fermi liquids, each one characterized by a voltage bias Vj and
by a temperature Tj . Paraphrasing [69], we describe each of
them by means of the Fermi distribution functions for a single
particlelike eigenmode at energy ε, f (p)

j (ε), and for a holelike

eigenmode at energy ε, f (h)
j (ε). The distribution functions are

respectively given by

f (p)
j (ε) = 1

1 + eβ j (ε−μ−eVj )
,

f (h)
j (ε) = 1

1 + eβ j (ε−μ+eVj )
, (5)

with μ being the common reference (for all the leads) chem-
ical potential and β j = [kB(T + δTj )]−1, with T being the
common reference temperature. Of course, in order for lin-
ear response theory (which we employ in the following) to

apply, we require that |eVj/μ|, |δTj/T | 	 1, ∀ j = 1, . . . , N .
In order to compute the CCT and the HCT, in the following
we look at the average values of the electric current density
operator in lead j, jel, j and of the energy current density
operator in lead j, jth, j . These can be readily recovered by
means of the appropriate continuity equations for the electric
charge density operator and for the energy density operator.
They are given by

jel, j (x, t ) = ev {ψ†
R, jψR, j − ψ

†
L, jψL, j},

jth, j (x, t ) = −iv2 {ψ†
R, j∂xψR, j + ψ

†
L, j∂xψL, j}. (6)

Denoting with Iel, j and with Ith, j the expectation values of
the operators in Eqs.(6), as detailed in Appendix A, we obtain
the CCT and the HCT matrix elements

Gj, j′ = e2

2π
(−δ j, j′ + Tj, j′ − Aj, j′ ),

Kj, j′ = πk2
BT

6
(−δ j, j′ + Tj, j′ + Aj, j′ ), (7)

with Tj, j′ = |t j, j′ |2 if j �= j′, while Tj, j = |r j |2, as well as
Aj, j′ = |c j, j′ |2 if j �= j′, while Aj, j = |a j |2. The thermal cur-
rent obeys the Kirchhoff law [56], from which

N∑
j′=1

{Tj, j′ + Aj, j′ } =
N∑

j′=1

{Tj′, j + Aj′, j} = 1 , (8)

∀ j = 1, . . . , N . This is a direct consequence of the unitarity
of the extended S matrix.

If the charge is conserved at the junction, then Kirchhoff
laws holds for the electric current as well and Aj′, j = 0, ∀ j, j′
necessarily. In a junction of multiple QWs, we modify the
temperature or the electrochemical potential in one of the
reservoirs and measure the charge or heat current that exits
the junction in another wire. Therefore a natural extension of
the definition of Lorenz ratio in our geometry is [56]

L j, j′ = Kj, j′

T Gj, j′
, (9)

and using Eqs.(7), we readily obtain the WFL Kj, j′ =
T L0Gj, j′ , with L0 in Eq. (1). Eq. (9) is defined only when the
denominator is nonzero. In the opposite case, for j, j′ such
that Gj, j′ = 0, the correct result is obtained via perturbation
theory, which will be addressed in Secs. III and V. Instead, if
the junction does not conserve the electric charge, as in the
presence of a grounded superconductor, we do not expect the
Kirchhoff law for the electric current to hold. We therefore
obtain

L j, j′ = Tj, j′ + Aj, j′ − δ j, j′

Tj, j′ − Aj, j′ − δ j, j′
L0. (10)

Let us consider Eq. (10) for j �= j′: we see that, while the
contributions to the thermal conductance by normal transmis-
sion and crossed Andreev reflection have the same sign, the
ones to the electric conductance have opposite sign, which, in
general, implies a Lorenz ratio L > L0 as soon as Aj, j′ > 0.
This is a consequence of the fact that outgoing particles and
holes move in the same directions, but with opposite charges.
Therefore, while the energy currents carried by the two of
them add up, the electric currents get subtracted from each
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other. Similarly, considering the ratios between the diagonal
conductances in Eq. (10), we see that normal reflection and
Andreev reflection both lower the thermal current within lead
j, while the former lowers and the latter increases the electric
current. In conclusion, we have established that, whenever
only single-particle scattering processes take place at the
central island (as it typically happens when, e.g., the leads
are noninteracting) and if the total charge is conserved, no
violation of the WFL can be realized at a junction of N quan-
tum wires. This conclusion can be circumvented by having
a nonzero interaction within the leads and/or by physically
relevant mechanisms, which can stabilize nontrivial phases of
the system characterized by multiparticle scattering processes
at the junction. In order to study a number of system in which
this takes place, we now generalize our derivation to the case
of interacting leads, which requires to resort to the framework
of Abelian bosonization for one-dimensional systems.

III. TRANSPORT AT A JUNCTION OF INTERACTING
QUANTUM WIRES AND CONFORMAL

BOUNDARY CONDITIONS

We now set up the formalism to compute the charge and
the thermal conductance tensor at a junction of interact-
ing ballistic QWs within the Luttinger liquid approach of
Refs. [13,14,37,38]. On one hand, this allows us to account for
a nonzero bulk interaction in the leads, on the other hand, it
enables us to generate boundary conditions different from the
one arising from single-particle scattering discussed in Sec. II.

A. Electric and thermal conductance

Within the Tomonaga-Luttinger liquid approach, the chiral
fermionic operators in each lead are realized as functionals
of the plasmon fields φ j (x), together with their conjugates
θ j (x), satisfying the commutation relations [φ j (x), θ j′ (x′)] =
i
2δ j, j′ε(x − x′), with ε(x − x′) being the sign function, with
all the other commutators being zero. Specifically, they are
represented as the vertex operators

ψR, j (x) =  j ei
√

π [φ j (x)+θ j (x)],

ψL, j (x) =  j ei
√

π [φ j (x)−θ j (x)], (11)

with the Klein factors  j being real fermion operators, satisfy-
ing the algebra { j,  j′ } = 2δ j, j′ , introduced in order to assure
the appropriate anticommutation relations between single
electron annihilation/creation operators acting over different
leads. The dynamics of the lead bosonic fields is encoded in
the Hamiltonian H0,Bos, given by

H0,Bos = u

2

N∑
j=1

∫ �

0
dx [g(∂xφ j (x))2 + g−1(∂xθ j (x))2],

(12)

with u being the collective plasmon velocity and g being
the dimensionless Luttinger parameter (again, for the sake
of simplicity, we assume that all the wires are characterized
by the same parameters g and u. Yet, our derivation can
be readily extended to a junction of Luttinger liquids with
different parameters by a pertinent implementation of, e.g.,
the methods developed in Refs. [6,31]), complemented with

FIG. 2. Sketch of a junction of N interacting quantum wires.
Each wire j is connected to a reservoir, which injects into the
system left-handed modes at voltage bias Vj and at temperature Tj .
The dashed region represents the central island, whose dynamics is
encoded in the matrix ρ, relating the right-handed to the left-handed
chiral modes at x = 0.

the appropriate boundary conditions at the “inner” boundary
x = 0. In terms of the fields φ j and θ j , the charge density and
the charge current operators in lead j, ρel, j (x, t ), jel, j (x, t ), are
given by

ρel, j (x, t ) = e√
π

∂xφ j (x, t ),

jel, j (x, t ) = eug√
π

∂xθ j (x, t ), (13)

and are related to each other via a continuity equation. In the
same way, the energy current jen, j can be defined from the
continuity equation for the Hamiltonian density in (12) as

jen, j (x, t ) = u2∂xφ j (x, t )∂xθ j (x, t ). (14)

The heat current jth, j follows from the above expression
as jth, j = jen, j − Vj jel, j [56]. In fact, at charge neutrality, the
energy and thermal currents yield the same results for the
conductances in the linear response regime.

Working with ballistic QWs, in the following we will see
that the CCT and the HCT are only affected by the scattering
processes at the central island. While our approach is effective
in working out the zero-temperature fixed point properties of
the junction, in general other effects, which we do not consider
here, such as coupling with phonons, may become effective
in determining the finite-temperature transport properties of
our system [70] (see, e.g., Refs. [39,71] for a comprehensive
discussion of several possible physical mechanisms affecting
the thermal transport properties of an electronic system).

In Fig. 2, we provide a sketch of our junction: within a
generalization of the calculation for a single wire discussed in
Refs. [37,38], the QW j is connected to an external reservoir
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that injects chiral left-handed modes, at chemical potential
Vj and temperature Tj . Accordingly, we introduce the chiral
bosonic fields in the lead j, ϕR, j (x), ϕL, j (x): they are related
to the fields φ j (x), θ j (x) in Eq. (12) via the relations

φ j (x) = ϕR, j (x) + ϕL, j (x)√
g

,

θ j (x) = √
g{ϕR, j (x) − ϕL, j (x)}. (15)

We describe the junction by means of pertinent conformal
boundary conditions between the bosonic fields: in particular,
the relation between the R and the L fields is encoded in the
N × N splitting matrix ρ [2,72,73]

ϕR, j (0) =
N∑

j′=1

ρ j, j′ϕL, j′ (0). (16)

By requiring that Eq. (16) is consistent with the canon-
ical commutation relations between the ϕR, j and the ϕL, j

fields, one readily finds that ρ must be an orthogonal matrix.
Typically, relations such as the ones in Eq. (16) hold at a
conformally invariant fixed point of the phase diagram of
the junction, where scale invariance implies that the splitting
matrix does not depend on the momenta.

Using Eq. (16), we define N “unfolded” fields

ϕ j (x) =
{

ϕL, j (x), (0 � x � �)∑N
j′=1 ρ j′, jϕR, j′ (−x), (−� � x < 0)

. (17)

By construction, each field ϕ j (x) is at chemical and ther-
mal equilibrium with the reservoir at voltage bias Vj and at
temperature Tj . Accordingly, at nonzero biases, we rewrite the
lead Hamiltonian in terms of the unfolded fields as H0,Bos =∑N

j=1 H0,Bos, j , with

H0,Bos, j =
∫ �

−�

dx

{
u(∂xϕ j (x))2 + e

√
g

π
Vj∂xϕ j (x)

}
. (18)

Thus, once a generic observable O is expressed in terms of
the fields ϕ j , we compute its thermal average as

〈O〉 = Tr
[
Oe−∑N

j=1 β j H0,Bos, j
]

∏N
j=1 Z j[Vj, β j]

, (19)

with β j = (kBTj )−1 and

Z j[Vj, β j] = Tr[e−β j H0,Bos, j ]. (20)

In terms of the chiral fields the electric and thermal current
operators in lead j are

jel, j (x, t ) = eu

√
g

π

[
∂xϕ j (ut+) −

N∑
j′=1

ρ j′, j∂xϕ j′ (ut−)

]
,

jth, j (x, t ) = −[u∂xϕ j (ut+)]2 +
[

u
N∑

j′=1

ρ j′, j∂xϕ j′ (ut−)

]2

,

(21)

where t± = t ± x/u. The effect of the potential bias can be
reabsorbed in a shift of the fields

∂xϕ̄ j (t±) = ∂xϕ j (t±) ± e

2u

√
g

π
Vj . (22)

Switching to the shifted fields in Eq. (22), it is now
straightforward to implement the formalism of Appendix B,
pertinently generalized to an N QW junction, to compute the
average values of the current operators. Retaining only linear
contributions in the applied biases, we eventually obtain the
electric and thermal conductance tensors,

Gj, j′ = e2g

2π
{ρ j, j′ − δ j, j′ }, (23)

Kj, j′ = πk2
BT

6

{
ρ2

j, j′ − δ j, j′
}
. (24)

In Eqs. (23) and (24), we denote with T the equilibrium,
reference temperature of the reservoirs and, by definition, we
assume that the currents exiting the central island always have
positive sign. Similar equations have been derived in Ref. [74]
in the framework of a Luttinger liquid in a nonequilibrium
steady state. The orthogonality of ρ readily implies the Kirch-
hoff law for the thermal conductance tensor,

∑N
j=1 Kj, j′ =∑N

j′=1 Kj, j′ = 0.
Concerning the results in Eqs. (23) and (24) it is worth

stressing that, throughout the paper, we always assume that
particle-hole symmetry holds at equilibrium, which implies
that the Seebeck and Peltier coefficients vanish. Formally,
this can be traced back to the Z2 symmetry of the bosonic
Hamiltonian Eq. (19), for Vj = 0. More generally, in the
context of a Tomonaga-Luttinger liquid, particle-hole sym-
metry breaking may either be determined by, e.g., bulk cubic
(or higher-order) interactions arising from nonlinear terms in
the fermion dispersion relations, or by local, Sine-Gordon
like interactions [37]. In the former case, symmetry breaking
operators are typically infrared irrelevant and can be safely ne-
glected throughout our derivation. The latter case takes place
for energy-dependent (bare) boundary interaction strengths, a
situation not considered in this work.

Taking the ratio between the thermal conductance and the
electric conductance across any two leads, one has the Lorenz
ratio

L j, j′ = L0

g
(ρ j, j′ + δ j, j′ ). (25)

In writing Eq. (25), it is implied that Gj, j′ �= 0. Instead, when
Gj, j′ = 0 (and consequently Kj, j′ = 0), as it happens, for in-
stance, at the disconnected fixed point of a junction of N
wires discussed in the following, the ratio has to be computed
using the finite-T corrections to the conductances within the
framework of Appendix E.

From Eq. (25), we identify the two factors that renormalize
the Lorenz ratio: a contribution stemming from the interaction
in the QWs, encoded in the Luttinger parameter g [13], and
a term determined by the tensor structure dictated by the
splitting matrix. The former contribution is washed out when
the junction is connected to Fermi liquid reservoirs [2,43–45]
(see Appendix C for an extensive discussion about this point),
while the latter term can lead to a violation of the WFL even
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in the absence of interactions in the QWs. As we are interested
in violations of the WFL stemming from the dynamics at the
junction, in all the examples that we discuss in the following
we attempt to disentangle the two effects and focus onto the
contribution arising from the splitting matrix corresponding to
a given fixed point.

B. The Wiedemann-Franz law in the N = 3 junction

We now perform a comprehensive analysis of the (violation
of) the WFL at the fixed points of a N = 3 junction of QWs.
To do so, we next review the general parametrization of the ρ

matrices describing conformal boundary conditions in an N =
3 junction in bosonic coordinates. Specifically, we first resort
to a purely algebraic classification, without addressing the
issue of the stability of a specific fixed point (FP) [2,5,72,73].
At a second stage, we discuss the phase diagram and the FPs
that describe the low-temperature physics of specific systems
as particular cases of the general results. It is also important
to point out that some FPs of the N = 3 junction, such as
the M-fixed point of Ref. [2], cannot be described in terms
of simple conformal boundary conditions, in bosonic coordi-
nates. However, they admit (in the presence of Fermi liquid
reservoirs) a description in terms of a fermionic scattering
matrix [7], which, as discussed in Sec. II, implies that the
WFL is automatically satisfied.

Let us first assume total charge conservation, i.e., that the
electric current in Eq. (21) satisfies the Kirchhoff’s law at the
junction, as well as the invariance under the Z3 transformation
exchanging the leads with each other. Requiring that ρ is
orthogonal, as it must be in order to preserve the canonical
commutation relations between the bosonic fields, the split-
ting matrix depends only on the Luttinger parameter g and a
real parameter ϑ [2] as

ρ(ϑ ) =
⎛
⎝a(ϑ ) b(ϑ ) c(ϑ )

c(ϑ ) a(ϑ ) b(ϑ )
b(ϑ ) c(ϑ ) a(ϑ )

⎞
⎠ , (26)

with −π < ϑ � π and

a(ϑ ) = 3g2 − 1 + (3g2 + 1) cos(ϑ )

3[1 + g2 + (g2 − 1) cos(ϑ )]
,

b(ϑ ) = 2[1 − cos(ϑ ) + √
3g sin(ϑ )]

3[1 + g2 + (g2 − 1) cos(ϑ )]
,

c(ϑ ) = 2[1 − cos(ϑ ) − √
3g sin(ϑ )]

3[1 + g2 + (g2 − 1) cos(ϑ )]
. (27)

Plugging Eqs. (26) and (27) into Eqs. (23) and (24), we
eventually obtain the CCT, given by [2]

G = e2
[
(1 − 3I)t2

ϑ + √
3gε̂tϑ

]
3π

(
g2 + t2

ϑ

) , (28)

and the HCT given by

K = − 2πk2
BT t2

ϑ

27
(
g2 + t2

ϑ

)2

[(
3g2 − t2

ϑ

)
(1 − 3I) + 2g

√
3ε̂tϑ

]
. (29)

In Eqs. (28) and (29), the various tensors are defined so that
1i, j = 1, Ii, j = δi, j , and ε̂ j,k = ∑

l ε jkl . Also, we have set tϑ =

tan ϑ
2 . Taking the ratio between the entries of the conductance

tensors with the same pair of indices, we obtain the Lorenz
ratio

L j, j′ = 2
3g2δ j, j′ + t2

ϑ + √
3gtϑε j, j′

3
(
g2 + t2

ϑ

) L0. (30)

Our derivation of Eqs. (28) and (29) relies on the existence
of the scale invariant matrix ρ, characterizing a FP in the phase
diagram of the system. Nevertheless, due to the symmetry of
the ρ matrix, a generalization of Eqs. (28) and (29) is expected
to hold even outside of the FPs, provided that Kirchhoff law
for the thermal and for the charge currents holds and that the
boundary interaction Hamiltonian is symmetric under swap-
ping any two leads with each other and exchanging ϑ with
2π − ϑ . In this case, we expect Gj, j′ and Kj, j′ to take the gen-
eral expression A(g, ϑ, D)(1 − 3δ j, j′ ) + B(g, ϑ, D)ε̂ j, j′ , with
A,B being functions of g, ϑ and of a running dimensionful
energy scale D (which in the following we identify with kBT ).

Admitting explicit breaking of Z3-symmetry, while still
requiring charge conservation allows another class of splitting
matrices [73,75], distinct from the one in Eqs. (26) and (27).
In this case, ρB does not depend on g, as it can be readily
checked using the formalism of Appendix C, and its general
form is

ρB =
⎛
⎝b̂(ϑ ) â(ϑ ) ĉ(ϑ )

â(ϑ ) ĉ(ϑ ) b̂(ϑ )
ĉ(ϑ ) b̂(ϑ ) â(ϑ )

⎞
⎠, (31)

with â(ϑ ), b̂(ϑ ), ĉ(ϑ ) obtained from a(ϑ ), b(ϑ ), c(ϑ ), re-
spectively, in Eq. (27) by setting g = 1.1

The conductance tensors are directly obtained from
Eqs.(29) and (30) by means of the replacement j′ → 3 − j′.
Accordingly, we now obtain for the Lorenz ratio

L j, j′ = 1

3
− δ j, j′ + 2

3
cos

[
ϑ + 2π ( j + j′)

3

]
. (32)

An alternative situation of physical interest is the one in
which a “dual” Kirchhoff law holds, in that the total charge
entering/exiting the junction is equal to zero [76]. Physically,
this corresponds to having only Andreev-like scattering pro-
cesses at the central island (regardless of whether they are
single-, or multiparticle), that is, any incoming charge from a
lead exits toward either the same or any other lead, as the same
charge with opposite sign. By swapping the current and the
charge operators with each other (this is equivalent to chang-
ing the sign of the chiral ϕL, j fields, while leaving the one
of the ϕR, j fields unchanged). one obtains the corresponding
splitting matrices [77]

ρA(ϑ ) = −ρ(ϑ ) , (33)

with ρ in Eq. (26), with a similar relation holding for ρB. The
charge conductance takes the form

Gj, j′ = −e2

π

3g2δ j, j′ + t2
ϑ + √

3gtϑε j, j′

3
(
g2 + t2

ϑ

) , (34)

1Our parametrization differs by the one in Ref. [73] by a redefini-
tion θ → π/3 − θ .
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while the heat conductance is still given by Eq. (30). Finally,
the Lorenz ratio is given by

L j, j′ = −2
[
(1 − 3δ j, j′ )t2

ϑ + √
3gε j, j′tϑ

]
3π

(
g2 + t2

ϑ

) L0. (35)

For ϑ = 0, Eqs. (34)–(35) describe the D3 FP (see Sec. IV D
below).

IV. FIXED POINTS OF JUNCTIONS OF N INTERACTING
QUANTUM WIRES

We now apply the formulas of Sec. III to compute the
CCT and the HCT at several fixed points of a junction of
QWs, characterized by conformal boundary conditions such
as the ones in Eq. (16). We work with a junction with a
generic number N > 2 of leads [15,72,73,75], whereas we
eventually address specific examples with N = 3 [2,6,54,77–
81]. Assuming over-all charge conservation at the junction,
generalizing the construction of [2] to the N QW junction, we
introduce the center-of-mass � and the relative fields ξa(x)
(a = 1, . . . , N − 1) [64]⎛

⎜⎜⎝
�(x)
ξ1(x)

...

ξN−1(x)

⎞
⎟⎟⎠ = MN ·

⎛
⎜⎜⎝

φ1(x)
φ2(x)

...

φN (x)

⎞
⎟⎟⎠, (36)

with the orthogonal matrix

MN =

⎛
⎜⎜⎜⎝

1√
N

1√
N

. . . 1√
N

1√
2

− 1√
2

. . . 0
. . . . . . . . . . . .

1√
N (N−1)

1√
N (N−1)

. . . − N−1√
N (N−1)

⎞
⎟⎟⎟⎠ (37)

(and similar ones for the θ j fields). Charge conservation at
the junction implies that ∂x�(0) = 0 [2]. At the disconnected
fixed point (DFP), at which all the QWs are disconnected
from each other, also the {ξa(x)}a obey Neumann boundary
conditions, which is equivalent to Eqs. (38) below.

A simple way for constructing “nontrivial” FPs with
alternative conformal boundary conditions is to trade the
boundary conditions in one or more combinations of fields
from Neumann to Dirichlet. Pertinently imposing the Dirich-
let boundary conditions in the relative channels, it is possible
to construct FPs characterized by multiparticle scattering
processes at the central island. Following the discussion of
Sec. II, we expect these FPs to be good candidates to host a
violation of the WFL.

A. The disconnected junction

The DFP describes disconnected QWs, which is accounted
for by imposing open boundary conditions on the system

ρ j, j′ = δ j, j′ , (38)

which corresponds to setting ϑ = 0 in the right-hand side
of Eq. (27). Accordingly, Gj, j′ = Kj, j′ = 0 for all pairs of
indices. While the result at the fixed point is in itself trivial,
we employ the conditions in Eq. (38) to write boundary per-
turbations to the DFP in Sec. V.

B. The chiral fixed points

In the noninteracting, g = 1 limit, we characterize the chi-
ral FPs χ± by the boundary conditions

ϕR, j (0) = ϕL, j±1(0), ( j + N ≡ j). (39)

The corresponding splitting matrix is ρ j, j′ = δ j, j′±1. Physi-
cally, this corresponds to perfect transmission of a particle
entering from lead j into lead j ± 1, and to zero transmission
amplitude into any other lead. For g �= 1, the splitting matrix
is constructed using the formulas of Appendix C. For N = 3,
one obtains [2]

ρχ± = 2

3 + g2

⎛
⎜⎝− 1−g2

2 1 ± g 1 ∓ g

1 ∓ g − 1−g2

2 1 ± g

1 ± g 1 ∓ g − 1−g2

2

⎞
⎟⎠. (40)

Equations (23) and (24) then yield

Gχ±
j, j′ = e2g

π (3 + g2)
[1 − 3δ j, j′ ± gε j, j′ ], (41)

Kχ±
j, j′ = 2πk2

BT

3(3 + g2)2 [(1 + g2)(1 − 3δ j, j′ ) ± 2gε j, j′ ]. (42)

By inspection, the results in Eqs. (41) and (42) imply a
violation of the WFL for g �= 1, encoded in the (renormalized)
Lorenz ratio

L j, j′ = 2
1 + g2δ j, j′ ± gε j, j′

3 + g2
L0. (43)

Nevertheless the violation is only due to the interaction in the
leads and, as discussed in Appendix C, it disappears when the
junction is connected to Fermi liquid reservoirs. In this case,
ρ̂χ± = (1 ± ε̂ − I)/2 and the conductance tensors are directly
obtained from Eqs. (40) and (41) by setting g = 1. As stated
above, our conclusion applies only provided that the electric
conductance tensor component is different from zero. The
above discussion clearly applies to the χ± FPs of a generic
junction, with any number of leads N and straightforwardly
generalizes to any splitting matrix which represents a permu-
tation, i.e., a matrix which has all vanishing entries, except
for one off-diagonal entry in each row and in each column.
This is the only situation in which the boundary conditions
can be equivalently formulated in fermionic variables, a j′, j =
r j′, j = c j′, j = 0, ∀ j′, j = 1, . . . , N , and t j′, j = δ j′±1, j for the
χ± FPs. Apparently, in this case, the dynamics is described by
single-particle scattering processes only.

For N = 3, the χ± FPs are stable for 1 < g < 3 [2]. At
variance, for N � 4, the χ± FPs are unstable for any value
of g.

C. The DN−1 fixed point

We consider the FP recovered by imposing Dirichlet
boundary conditions onto all the relative fields in Eq. (36),
which we generically dub DN−1. In the N = 3 junction, two
different types of FPs emerge, denoted by DP and DN in
Ref. [2]: they share the same splitting matrix, but differ by
their operator content and have therefore a different range of
stability in the system parameters. Accordingly, while they
have the same FP conductance tensors, the finite-temperature
corrections will be different, as they scale with a power law
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of the temperature, which depends on the dimension of the
leading irrelevant operator.

The corresponding FP splitting matrix is given by [64,65]

ρDN−1 = 2

N
1 − I. (44)

Computing the charge and heat conductance tensors with the
formalism of Sec. III, we obtain

G = e2g

π

(
1

N
1 − I

)
, K = 2πk2

BT

3N

(
1

N
1 − I

)
. (45)

Equation (45) is obtained from Eqs. (28) and (29) by setting
ϑ = π . From Eq. (45), we directly read

L j, j′ = 2

N

π2k2
B

3ge2
. (46)

In Eq. (46), we identify with the factor g−1 the contribu-
tion merely stemming from the bulk interaction in the QWs
(which is washed out once the junction is connected to Fermi
liquid reservoirs—see Appendix C for details) and the factor
2
N due to the multiparticle scattering processes at the central
island. As the renormalization of the Lorenz ratio is present
even when the junction is connected to external Fermi liquid
leads, we conclude that the WFL breaks down at the DN−1

FP, which highlights that the dynamics cannot be described
within the single-particle framework of Sec. II. In fact, it is
directly related to the onset of zero-temperature multiparticle
scattering processes at the central island, consistently with
the results of Ref. [15], where a similar phenomenon was
studied at a resonant, multilead quantum point contact. Given
the ρ matrix in Eq. (44), we may readily identify a scattering
process in which N particles are injected into the central island
from, e.g., lead j. The incoming particles are symmetrically
transmitted into the remaining leads as N − 1 pairs, each of
charge 2e. As charge is conserved, N − 2 holes are Andreev
backscattered into lead j. Alternatively, we may consider a
“dual” process in which, e.g., two particles (total charge 2e)
are injected from each lead j′, with j′ �= j, and a mix of
normal transmission and crossed Andreev reflection yields N
particles and N − 2 holes exiting the central island from lead
j. In Fig. 3, we draw a sketch of the two processes.

Alternatively, we may borrow the second point of view
of Ref. [15] by considering a single-particle “in” state that,
consistently with the picture of Fig. 3, gives rise to “out” states
in the other leads whose charge is, in general, no longer a
multiple of the unit charge (2e/N in our specific model). This
charge fractionalization under scattering at the central island
marks an apparent breakdown of the Fermi liquid picture and
works as a pictorial explanation of the breakdown of the WFL.

We expect that a pertinent renormalization of the Lorenz
ratio also takes place, for N � 4, at reduced symmetry FPs,
such as the DN−2FP, where Dirichlet boundary conditions are
imposed to only N − 2 of the relative fields, while the remain-
ing one obeying Neumann boundary conditions, together with
the center-of-mass field.

D. The DN fixed point

Compared to the DN−1 FP, the DN FP is characterized
by the center-of-mass field � defined in Eq. (36) satisfying

FIG. 3. Sketch of two multiparticle scattering processes taking
place at the D2 FP of the N = 3 junction (for g = 1). Specifically,
(a) three particles (black full dots) are injected into the central island
from lead 1. Two pairs of particles are symmetrically transmitted
into leads 2 and 3 (green full dots) while, consistently with the
total charge conservation, a hole is Andreev backscattered into lead
1 (red open dot). (b) Two particles are injected from leads 2 and
3 (black full dots) and a mix of normal transmission and crossed
Andreev reflection yields an outgoing, multiparticle state within lead
1, consisting of 3 particles (green full dots) and one hole (blue open
dot).

Dirichlet, instead of Neumann, boundary conditions. Cor-
respondingly, the charge conservation breaks down and the
WFL can be violated, even though the corresponding FP
can be fully described in terms of single-particle scattering
processes only. The DN FP is dual (in the sense of the charge-
current duality [77]) of the DFP, thus, the splitting matrix is
given by ρ = −I and describes perfect Andreev reflection in
each lead [64,65]. In the language of Sec. II, Aj, j = 1 ∀ j,
all the other scattering coefficients being zero. This implies
Gj, j′ = e2

π
δ j, j′ and Kj, j′ = 0, ∀ j, j′ = 1, . . . , N . In fact, this

is just what happens, at low enough energies, in a single
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wire coupled to a topological superconductor [31,82,83]. As a
result, Andreev reflection becomes a resonant process at the
FP, with no room left for normal, single-particle backscat-
tering. In general, when considering the heat conductance
through a normal metal-superconductor interface, we find that
it strongly depends on the mechanism of electron transfer
across the interface. Specifically, when single-particle transfer
dominates and, accordingly, the backscattering on the normal
side of the interface is mostly normal, electronic states on the
normal side at energies above the superconducting gap are
depleted, resulting in an effective cooling mechanism of the
metal. At variance, when the coherent two-electron tunneling
becomes the dominant mechanism for charge transfer across
the junction (corresponding to the onset of Andreev reflection
on the normal side), the heat flow is strongly suppressed, due
to the fact that now electrons with all energies, including
those inside the energy gap, are removed from the normal
metal [55]. Accordingly, we expect that the full suppression
of normal backscattering versus Andreev reflection implies a
full suppression of the heat flow through the interface and, in
addition, that this conclusion holds regardless of whether the
superconducting side is topological.

In conclusion, we may regard the DN FP as “trivially” vi-
olating the WFL. The violation is, indeed, just related to the
peculiar subgap physics of the NS interface. For this reason,
in the following, we focus on the charge conserving junction
with N = 3.

V. PHASE DIAGRAM AND TRANSPORT IN
CHARGE-CONSERVING N = 3 JUNCTIONS

As a specific example of realization of the fixed points
described above, we discuss in detail the N = 3 junction of
interacting QWs. Specifically, in the following we focus on
two types of boundary interactions: the direct fermion hop-
ping between lead ends in Refs. [1,2] and the TKM discussed
in Refs. [27,28].

The simplest, nontrivial example is the N = 3 junction dis-
cussed in Refs. [1,2], whose generalization to a generic N (�
4) is presented in Ref. [72]. In such a system, once resorting
to the bosonization framework, in terms of the unfolded chiral
fields defined in Eq. (17), the boundary interaction at the DFP
is given by

HJunc,N = −JK

N∑
k<l=1

kl e
i
√

4π
g [ϕk (0)−ϕl (0)]+iχk,l + H.c., (47)

with JK being the over-all boundary coupling strength and the
χk,l being phases that may enter HJunc,N if, e.g., there is a
magnetic flux piercing the junction itself [2]. The Hamiltonian
in Eq. (47) conserves the total charge, but breaks time reversal
invariance for a generic choice of the phases χk,l . In general,
it is a relevant boundary operator as soon as g > 1.

In the TKM, a superconducting island is present at the
junction, hosting low-energy degrees of freedom in the form
of MZMs, which are in turn tunnel-coupled to the end of
the leads. The superconducting island itself is floating and
characterized by a large charging energy Ec, which ulti-
mately determines the charge conservation at the junction.
The boundary Hamiltonian describing such a system in the

cotunneling regime is

HTK,2 = −2
N∑

k<l=1

Jk,l cos

[√
4π

g
(ϕk (0) − ϕl (0)) + χk,l

]
,

(48)

with Jk,l ∼ 1/Ec. No Majorana fields, nor Klein factors ap-
pear in Eq. (48), due to the “Majorana-Klein hybridization”
[28,32,84], which factors them out of the dynamics. The
boundary term can be regarded as a generalization of the
Kondo model to the SO(N ) symmetry group [27,29,85].
HTK,2 is relevant for g > 1 and marginally relevant for g = 1
[27,28,32,33,86,87]. Anisotropy in the Jk,l are washed out
along the renormalization group (RG) trajectories. Accord-
ingly, without any loss of generality, from now on we assume
Jk,l = JK for every pair of wires.

In a related setting, the superconducting island can be
Josephson-coupled to another superconductor, which breaks
charge conservation at the junction. In this case, the boundary
Hamiltonian is given by [64,65]

HTK,1 = −
N∑

j=1

√
2t j sin

[√
4π

g
ϕ j (0)

]
+ HTK,2, (49)

with t j ∼ EJ , where EJ denotes the Josephson energy. The
first term always triggers a flow toward a FP at which φ j (0) is
pinned to some nonuniversal value, depending on the specific
“bare” values of the boundary interaction strengths [64,65].
In the “phase” regime Ec 	 EJ , the low-temperature FP is
known as SO(N )1 Topological Kondo FP. The first term in
Eq. (49) has scaling dimension (2g)−1 and is therefore rele-
vant as soon as g > 1/2.

We now investigate in detail the various phases with the
corresponding transport properties.

A. The disconnected fixed point

As we discuss in Sec. IV, at the DFP one finds vanishing
conductance tensors. Turning on the boundary interaction, we
perturbatively compute the expectation values of the currents
by employing the Keldysh approach of Appendix E. As a
result, we obtain for the electric and thermal conductance
tensors [57]

Gj, j′ =
6πe22

(
1
g

)
J 2(D)

(2/g)

(
1

3
− δ j, j′

)
, (50)

Kj, j′ =
2π3k2

BT �(g)J 2(D)2
(

1
g

)
(2/g)

(
1

3
− δ j, j′

)
, (51)

with the dimensionless running coupling J (D) =
JK
D0

( D
D0

)−1+ 1
g , D = 2πkBT a scale with the dimension of

an energy, and D0 a high-energy cutoff.
The latter is a relevant large energy scale, such as the

bandwidth of the conduction band or the charging energy of
the floating island in the TKM example in Sec. V B below.
As discussed above, due to the system symmetries, we ex-
pect that Gj, j′ = AG(g, ϑ, D)(1 − 3δ j, j′ ) + BG(g, ϑ, D)ε̂ j, j′

and Kj, j′ = AK (g, ϑ, D)(1 − 3δ j, j′ ) + BK (g, ϑ, D)ε̂ j, j′ . As it
appears from the right-hand side of Eqs. (50) and (51), this is
indeed the case.
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As a consequence, the two conductances have the same
tensor structure, hence, the ratio between any pair of nonzero
entries is

L j, j′ = �(g)L0, (52)

with

�(g) = 3(2/g)

gπ4(1/g)

∫
dzdw

z

sinh(πz)

×
∣∣∣∣
(

1

2g
+ i(z − w)

)


(
1

2g
+ iw

)∣∣∣∣
2

. (53)

As expected, �(g = 1) = 1, which can be shown using the
identity (E19) in Appendix E. When g �= 1 but |g − 1| 	 1,
we may improve the results in Eq. (53) by letting J (D) flow
with the running energy scale kBT according to the appro-
priate RG equations (see Appendix F for details). Within
the perturbative approach to the TKM, the main effect is
the scaling of both Gj,k and Kj,k with the running coupling.
Accordingly, the Lorenz ratio is scale-independent and equal
to L0 for g = 1. An important difference between the TKM
(48) and the N = 3 junction (47) emerges for g = 1, as the
boundary interaction in the N = 3 junction is purely marginal
[2]. In this case, Eqs. (50), (51), and (53) provide the leading
perturbative (in JK ) contributions to the conductance tensors at
a manifold of Fermi liquid fixed point, consistently with the
result �(1) = 1. Conversely, the boundary interaction (48) is
marginally relevant for g = 1: in this case, we cannot rely on
the above results at low temperatures, but we rather need to
assess the stable fixed point encoding the T → 0 behavior of
the junction. To do so, we now go through an extensive review
of the phase diagram of the N = 3 junction and of the TKM.

B. Phase diagram of the N = 3 junction and of the topological
Kondo model

While our derivation allows us to make a sharp prediction
on the value of the Lorenz ratio, in order for the effect to be
robust in a realistic system, the DN−1FP has to be an infrared
attractive RG fixed point. In junctions of normal QWs, this
happens only at rather unphysically large values of the (at-
tractive) interaction strength in the leads [1,2]. The DN−1 FP
also emerges in the phase diagram of the TKM [27,28,64]:
remarkably, it is stable as soon as g > N

2(N−1) [27,28]. This
points toward an intriguing relation between the emergence
of MZMs and the detection of a robust violation of the WFL
as discussed above, so that the latter effect may be used as
an evidence for the presence of MZMs. In order to better
spell out this point, we discuss the case N = 3, for which a
complete classification of the FPs and of the corresponding
conformal boundary conditions is possible [2,88]. We assume
for simplicity χl,l+1 = χ/3, see Eqs. (47) and (48), and −π <

χ � π throughout this section.

1. Direct hopping

The phase diagram of the N = 3 junction with direct hop-
ping between the leads Eq. (47) has been discussed in detail
in Ref. [2]. For g < 1 (repulsive interaction in the leads), the
DFP is infrared (IR) stable. In the absence of interaction,
g = 1, the junction has a manifold of marginally equivalent

FPs, which can be described in terms of the single-particle
S-matrix approach of Sec. II. For 1 < g < 3, the system flows
instead outside of the weakly coupled regime. Any χ �= 0,±π

breaks time-reversal invariance, triggering a nontrivial renor-
malization toward either one (depending on the sign of χ ) of
the chiral FPs of Sec. IV B, which are stable as long as g < 3.
For the sake of our discussion, it is useful to remind that, in the
noninteracting limit, the chiral FPs χ± can be described within
the single-particle S-matrix formalism as well. When χ = 0,
the RG flow points instead toward a time-reversal invariant,
finite coupling FP, dubbed MFP in Ref. [2]. While a full the-
ory of the MFP is still lacking, based on the numerical results
of Refs. [30,54], in the following, we argue that the WFL
is expected to hold at the MFP as well, once the junction is
connected to external reservoirs. For g = 3, two disconnected
FP manifolds emerge, respectively connected to either one
of the chiral FPs, separated from each other by the MFP.
For 3 < g < 9, two IR stable strongly coupled FPs emerge in
the phase diagram, the DP FPs, while the χ±FPs disappear.
The DP FPs are still separated by a time-reversal invariant
FPs M′, analogous to the MFP. Finally, for g > 9, the M′FPs
disappear, as well. Along the time-reversal invariant RG tra-
jectories, the junction flows toward the DN FP. The DP and
the DN FPs are described by the same ρ matrix, that is, ρD2 in
Eq. (44) with N = 3, but differ in their operator content. The
DP FPs are stable for g > 3, the DN FPs are stable for g > 9
[2]. In order to stabilize these FPs, we need a large value of the
Luttinger parameter, corresponding to a very strong attractive
bulk interaction, hard to realize in realistic junctions.

In Fig. 4, we draw the RG trajectories of the N = 3 junc-
tion within the various range of parameters discussed above.
In order to evidence our main conclusions, we highlight as
black/green dots the FPs in the phase diagram at which the
WFL holds/breaks down, when the junction is connected to
external leads, as we discuss in Sec. V C.

2. The topological Kondo model

The RG flow of the TKM has been discussed in
Refs. [27,28], as well as in Refs. [58,89], and the effect of
a nonzero χ has been considered in Refs. [25,90]. Here, we
summarize the corresponding equations in Appendix F. For
a small “bare” coupling J > 0 at the reference scale D0, the
boundary Hamiltonian in Eq. (48) is relevant for g > 1. At the
same time, for χ �= ±π , any nonzero χ renormalizes to zero.
For g � 1, the system flows towards a large-J FP, which cor-
responds to the charge-conserving D2FP. The corresponding
splitting matrix has been determined in Ref. [64] and is given
in Eq. (44) for N = 3. With this knowledge, we can define the
“unfolded,” chiral fields

ϕ̃ j (x) =
{

ϕL, j (x), (0 � x � �)∑3
j′=1[ρD2 ] j′, jϕR, j′ (−x), (−� � x < 0).

(54)

In terms of the fields in Eq. (54), the leading boundary pertur-
bation is given by [58]

H̃TK,2 = −2h
3∑

j=1

cos

[
4
√

πg

3
(2ϕ̃ j − ϕ̃ j+1 − ϕ̃ j−1)

]
, (55)
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FIG. 4. (Top) Sketch of the RG trajectories of the N = 3 junction
in the J − χ plane within the relevant ranges of values of the
Luttinger parameter g. We mark with green dots the FPs where a
violation of the WFL is expected, also when the junction is connected
to Fermi-liquid reservoirs. Specifically, (a) g < 1, only the DFP is
stable and the WFL holds; and (b) 1 < g < 3: depending on the value
of χ at the reference scale, the system flows toward either the M or to
the χ± FPs. In any of these FPs the WFL holds, (c) 3 < g < 9: the DP

FPs become stable and the WFL breaks down; and (d) 9 < g: both
the DP and the DN FPs become stable. In both cases the WFL breaks
down. (Bottom) Pictorial sketch of the FPs relevant to our analysis.
From left to right: the DFP (all the wires are disconnected from each
other), the χ± FPs, and the (fully connected) DN,P FPs.

with ϕ̃ ≡ ϕ j (0) and j + 3 ≡ j. In the formalism of
Appendix E, Eq. (55) corresponds to setting

α2,3
1,2,3 = 2

√
g

3
(−2, 1, 1),

α3,1
1,2,3 = 2

√
g

3
(1,−2, 1),

α1,2
1,2,3 = 2

√
g

3
(1, 1,−2). (56)

The operator in Eq. (55) has scaling dimension 4g
3 . There-

fore the topological Kondo FP for N = 3 is stable as long as
g > 3

4 . Thus we conclude that the DFP is attractive as long
as g < 1 and χ �= ±π , while the topological Kondo FP is
attractive for g > 3

4 and χ �= ±π . At variance, for g � 1 and
χ �= ±π , the system flows toward the topological Kondo FP
described by the splitting matrix ρD2 (44) and with leading
perturbation in Eq. (55). From the analysis of Appendix F, we
conclude that χ does not flow along the fixed lines χ = ±π .
In this case, by explicit investigation one finds that the leading
boundary interaction at the Topological Kondo FP (which we
dub D̂2 in the following) has scaling dimension 4g/9 [25].
In Eq. (F7), we provide the explicit formula for the leading
boundary perturbation: it has, in fact, scaling dimension 4g/9
and is therefore relevant as long as g � 9/4. Accordingly, for

χ = ±π , there is a finite window 1 < g < 9/4 in which both
the DFP and the D2FP are unstable and there appears a stable,
finite coupling fixed point for RG trajectories originating from
both the DFP and the D̂2FP [25]. Analogously to the MFP
of Ref. [2], no complete theory exists for the intermediate-
coupling fixed point and we are so far unable to make a sharp
prediction on the corresponding behavior of the HCT and on
the possible violation of the WFL.

Also in the regime g < 1, we recover the RG fixed lines
χ = 0 and χ = ±π , the former one being attractive, the latter
one repulsive. For 3

4 < g < 1, both the weakly coupled DFP
and the strongly coupled D̂2FP are stable. This implies the
emergence of a repulsive finite-coupling FP in the phase di-
agram, corresponding to a quantum phase transition between
the two of them at J = J̃K = g−1−1

2 , χ = 0 [58].
Finally, we note that, while there is no reason to exclude a

priori the emergence of the χ±FPs in the phase diagram of the
TKM, we are not able to recover them as endpoints of RG tra-
jectories fully lying within the J -χ plane, differently to what
happens in the N = 3 junction of Ref. [2]. Indeed, in order
to get access to the time-reversal breaking FPs, one has to in-
troduce an additional, “chiral” boundary interaction, e.g., the
analog of the boundary interaction discussed in Refs. [91,92]
at a Y junction of critical Heisenberg chains, which we do not
discuss here. To summarize the discussion about the TKM, in
Fig. 5, we draw the RG trajectories for the system for g < 1
in Fig. 5(a) and for g � 1 in Figs. 5(b) and 5(c).

C. Charge and thermal conductance and the Wiedemann-Franz
law in the three-wire junctions

We now review the charge and the thermal conductance at
the “nontrivial” FPs of the N = 3 junction and of the TKM
and briefly discuss the scaling properties of the corresponding
conductance tensors. We begin with the MFP in the N = 3
junction: its emergence was originally inferred from the main
topology of the phase diagram [1,2]. Later on, it was con-
firmed within a combined use of boundary conformal field
theory and numerical density matrix RG approach [30,54],
eventually showing that the corresponding CCT for the junc-
tion connected to external Fermi liquid reservoirs is given by

GM = e2γ

2π
(1 − 3I), (57)

with γ = 4/9, within numerical error bars [30]. Using the RG
approach in fermionic coordinates, in Ref. [7], it was proposed
that the conductance in Eq. (57) is determined by the single-
particle S matrix SM , which describes scattering processes at
the junction connected to the reservoirs, given by

SM = (
2
3 1 − I

)
. (58)

Following the derivation of Sec. II and relating to general
arguments based on the scattering matrix description of the
junction (see, e.g., Ref. [56]), we conclude that the WFL holds
at the MFP.

In general, however, when the junction is not connected
to Fermi liquid reservoirs, we infer from Eqs. (57) and (58)
that we cannot describe the MFP, within the bosonization
framework, in terms of an orthogonal splitting matrix. We may
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0
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(a)

(b)

(c)

χ

FIG. 5. Sketch of the RG trajectories of the TKM in the J -χ
plane for various ranges of values of the Luttinger parameter g. Here
SFP denotes any strong-coupling fixed point. The green dots are the
FPs where the WFL does not hold for the junction connected to Fermi
liquid reservoirs. (a) 3/4 < g < 1. At χ �= ±π , both the DFP (black
dot) and the D2 (dark green square) FPs are stable. The running phase
χ (D) (see Appendix F for details) renormalizes back to the fixed
line χ = 0. For certain values of the bulk interactions, a repulsive,
finite coupling FP appears (open blue dot). (b) 1 � g < 9/4. For
χ (D0) �= ±π , χ (D) again flows toward the χ = 0 fixed line. J (D) is
renormalized to strong coupling: the D2FP is stable and, accordingly,
the WFL breaks down as T → 0. χ = ±π are two fixed lines (in χ ),
along which the DFP and the D̂2 FP are repulsive. The actual stable
phase corresponds to the finite coupling FP represented by the open
blue dot: its actual nature deserves further investigation; (c) 9/4 � g.
Both the D2FP and the D̂2FP become stable, thus, the WFL breaks
down as T → 0, regardless of the initial value of χ .

instead still define a non orthogonal matrix

ρ̃ = 1
3

(
4
3 1 − I

)
, (59)

to describe the linear relations between the chiral elec-
tric current operators at the junction. The formalism of
Appendix C cannot be exploited, as it is based on the pos-
sibility of expressing the currents in bosonic language. The
nonorthogonality of the matrix in Eq. (59), however, implies
that it is not possible to describe the MFP in terms of confor-
mal boundary conditions on the chiral bosonic fields.

In order to capture the main behavior of the junction con-
nected to Fermi liquid reservoirs, we refer to Eqs. (50) and
(51). The conductances both receive corrections proportional
to J (D = 2πkBT ). On connecting the junction to the reser-
voirs, there is a crossover in the scaling properties as soon

as β

2π
∼ �

πu . At lower temperatures, we expect the scaling
behavior for g = gRes = 1: the boundary interaction becomes,
therefore, marginal and can change the S matrix of the junc-
tion. The MFP, as well as the χ±FPs, are just specific points
over the manifold spanned along the above marginal defor-
mation. Accordingly, they can all be equivalently described
in terms of a single-particle S matrix. At each point of that
manifold the WFL holds [56].

At the D2FPs, the WFL is instead violated, with the Lorenz
ratio computed in Eq. (46). Employing the formalism of
Appendix E, we may write the scaling functions for the con-
ductance tensors, as well as for the renormalization factor of
the Lorenz ratio, once we know the leading boundary pertur-
bation allowed by the symmetries of the FP. For the N = 3
junction, it was shown in Ref. [2] that the leading boundary
perturbation corresponds to a linear combination of boundary
operators with scaling dimension �P = g/3 at the DP FPs and
�N = g/9 at the DN FPs.

From scaling arguments and symmetry considerations, we
expect for the conductance tensors in the vicinity of the FPs
the general expressions

G(T ) = G∗ − e2h̃2(2πkBT )

2π
(3I − 1)�el(g),

K(T ) = K∗ − πk2
Bh̃2(2πkBT )T

6
(3I − 1)�th(g), (60)

with the dimensionless effective coupling h̃(D) =
h

D0
( D

D0
)−1+�DP (DN ) and G∗, K∗ the FP conductance tensors

in Eqs. (45). Equations (60), with �el/th(g) = �el/th;DP (DN )(g),
can be readily recovered using the formulas of
Appendix E. According to Eqs. (60), we find a corresponding
renormalization of the Lorenz ratio given by

L(T ) ≈ L0
{

2
3 + [�th(g) − �el(g)]h̃2(2πkBT )

}
. (61)

As expected, when the FP is attractive, the finite-T cor-
rections to the FP conductance tensors, as well as to the
Lorenz ratio, scale to zero as T → 0. When, instead, the FP
is unstable against a finite boundary coupling, we see from
Eqs. (60) and (61) that the perturbative regime breaks down
as soon as h̃(2πkBT ) ∼ 1. Considering the case in which the
junction is connected to the external reservoirs, we expect
that Eqs. (60) and (61) cease to be valid once again at a
scale (2πkBTc)−1 ∼ �

πu . At lower temperatures, h is traded
for the running coupling extracted at the scale Tc and with
�P = 1/3, �N = 1/9. We summarize the phase diagram for
the connected N = 3 junctions in Fig. 6. We see that the sys-
tem always flows back to the fixed point manifold described
in terms of a single-particle S matrix. Therefore we always
recover the WFL at low enough T .

In the RG flow of the TKM, two nontrivial fixed point
appear. At the DFP, for N = 3, the leading boundary per-
turbation is a linear combination of operators with scaling
dimension �D = 4g/3 [27,28,58,93]. At the D̂FP, only
reached along the fixed lines χ = ±π , the leading boundary
perturbation has scaling dimension �D̂ = 4g/9 [93,94]. In the
vicinity of the FPs, the conductance tensors have the form
(60), with h̃ = h( β

2π
)1−�D(D̂) and �el/th;D(D̂)(g) nonuniversal

functions of g. G(T ) and K (T ) flow to their fixed-point value
with a leading, finite-T correction scaling as T 2(�D−1) and
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J

Single−fermion
scattering0

−π

π
χ

0

FIG. 6. Sketch of the RG trajectories in the J -χ plane for the
N = 3 junction connected to Fermi liquid reservoirs. The DP and
the DN FPs (light green dots and dark green squares, respectively)
are both repulsive. The RG trajectories always flow back toward the
fixed manifold each point of which is described in terms of single-
fermion scattering processes. Accordingly, the WFL is expected to be
preserved as T → 0, regardless of the initial values of the junction
parameters.

as T 2�D−1, respectively [57]. The Lorentz ratio is corrected
as in (61), but this time in the connected junction and with
h̃ = h( β

2π
)−

1
3 . In Fig. 7, we summarize the boundary RG

flows of the TKM, to be compared to the one in Fig. 6. The
stable phase is completely different from the one that emerges
in the simple N = 3 connected junction. This is due to the
peculiar scattering dynamics at the junction, tightly related to
the emergence of the MZMs at the central island and to the
hybridization between the MZMs and the Klein factors used
in the bosonization of the leads [32,84], which in turn washes
out the effect of the Klein factors that destabilize the DN−1FP
in a junction of normal wires [2,25,93]. These considerations
eventually lead to the proposal of synoptically looking at the
charge and at the thermal transport properties of the junction,
as an alternative mean to characterize the MZMs at the island
[57].

Before concluding this section, it is worth stressing that,
in the specific context of the Kondo effect, a violation of the
WFL has been evidenced as T is of the order of the Kondo

J

^

D
^−π

π
χ

0 D

0

D

FIG. 7. Sketch of the RG trajectories in the J -χ plane for the
TKM connected to Fermi liquid reservoirs. The D and the D̂ FPs
(dark green squares and light green dots, respectively) are one at-
tractive, the other(s) repulsive. The RG trajectories flow toward the
DFP anywhere, except for χ = ±π . Accordingly, at any χ �= ±π ,
we expect the Wiedemann-Franz to break down as T → 0, regardless
of the initial values of the junction parameters.

temperature TK [48]. As we discuss in Appendix F, in our spe-
cific case, TK is defined as the temperature scale at which the
perturbation theory breaks down and the running couplings
become of order 1 [27,57]. Our result in Eq. (50) is expected
to apply only close to the DFP, for JK (2πkBT ) 	 1, or, equiv-
alently, T � TK . Conversely, our results in Eqs. (45) and (60)
hold near by the strongly coupled FP [57] and are therefore
valid for T 	 TK . For g < 1, instead, the perturbative results
are also reliable for T 	 TK , provided the bare coupling
strength is below the critical value given in Sec. V B 2. In
general, the full scaling curve (as a function of T/TK ) for both
the charge and the thermal conductance has been numerically
derived in Ref. [48], getting two different values for TK from
the two scaling curves. Our result in Eqs. (50) and (51) implies
that G(T ) and K (T )/T scale with the same function of T ,
up to a factor L0. In fact, our perturbative derivation possibly
misses higher-order contributions in J to the right-hand side
of Eqs. (50) and (51) which, in principle, might render the
scaling function associated to G(T ) and to K (T )/T no longer
different by only a factor L0. Yet, while this is likely to affect
the numerical estimate(s) of the Kondo temperature, it is not
expected to spoil our fixed points (and close to the fixed point)
results.

VI. CONCLUSIONS

In this paper, we determined the charge and the thermal
conductance tensors at various fixed points in the phase di-
agram of a junction of N interacting quantum wires. We
showed the direct connection between the onset of Andreev
reflection and/or crossed Andreev reflection processes and
the violation of the Wiedemann-Franz law determined by
the corresponding “charge-heat separation” [38,56,95]. In
the specific case in which the total charge is conserved
at the junction, we have shown that the breakdown of the
Wiedemann-Franz law is directly related to the onset of mul-
tiparticle scattering processes and that it is different from the
“trivial” breakdown determined by interactions. For N = 3
wires, we have explicitly computed the Lorenz ratio for a wide
class of boundary conditions.

Among the possible mechanisms stabilizing a phase with
multiparticle scattering at the central island, we have pointed
out the role of the bulk interaction in the leads and explored
the consequences of the coupling between isolated Majorana
modes at the central island and the low-energy modes in the
leads. We have highlighted that, when connecting the junc-
tion to external, Fermi liquid reservoirs (as fairly common in
transport experiments), the former mechanism is deactivated,
while the latter mechanism remains effective. In this paper
and in [57], we have explored the direct relation between the
breakdown of the Wiedemann-Franz law and the presence of
Majorana zero modes in the junction.

The effectiveness of the combined analysis of the charge
and heat transport properties of a junction of quantum wires to
unveil the relevant physics that sets in at nontrivial fixed points
in the phase diagram of the system suggests extensions of our
approach to, e.g., junctions of quantum spin chains (where the
charge current has to be substituted with a pertinent definition
of the spin current) [20,22,23,85], or to junction of bosonic
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systems [81], such as cold atom condensates [26]. We plan to
go through this topic as a further extension of our work.
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APPENDIX A: LATTICE MODEL FOR A JUNCTION OF N
NONINTERACTING QUANTUM WIRES

In this Appendix, we briefly review the derivation of the
CCT and of the HCT in a lattice model of a junction of
N noninteracting quantum wires. In particular, we assume
that, as the temperature T → 0, only single-particle scatter-
ing processes take place at the central island: we allege a
particle/hole entering from wire j to undergo a normal reflec-
tion within the same wire as a backscattered particle/hole, a
normal transmission to wire j′ ( �= j) as a particle/hole, an An-
dreev reflection within the same wire as a hole/particle, or a
crossed Andreev reflection to wire j′ ( �= j) as a hole/particle.
To account for all these processes, we employ a pertinently
adapted lattice version of the two-component Nambu spinor
formalism of Ref. [96]. Regarding each lead as an �-site lattice
with hopping strength J and chemical potential μ, we write
the lattice lead Hamiltonian as HLat,0 = ∑N

j=1 HLat,0, j , with

HLat,0, j = −J
�−1∑
r=1

[c†
r, jcr+1, j + c†

r+1, jcr, j] − μ

�∑
r=1

c†
j,rc j,r,

(A1)

with cr, j, c†
r, j being single-fermion annihilation/creation op-

erators at site r of lead j. Within our formalism, we write the

wave function for an incoming particle from wire j, evaluated
at site r of wire j′ as[

u( j,p)
r;ε; j′

v
( j,p)
r;ε; j′

]
= δ j, j′ Np

[
e−ikp(r−1) + r j′, j′ (ε)eikp(r−1)

a j′, j′ (ε)e−ikh (r−1)

]

+ [1 − δ j, j′ ] Np

[
t j, j′ (ε)eikp(r−1)

c j, j′ (ε)e−ikh (r−1)

]
, (A2)

with r j, j (ε), a j, j (ε), t j, j′ (ε), c j, j′ (ε) respectively correspond-
ing to the normal reflection amplitude within wire j, to the
Andreev reflection amplitude within wire j, to the normal
transmission amplitude from wire j to wire j′, and to the
crossed Andreev reflection amplitude from wire j to wire j′.
Also, we write the similar wave function for an incoming hole
from lead j as[

u( j,h)
r;ε; j′

v
( j,h)
r;ε; j′

]
= δ j, j′ Nh

[
ã j′, j′ (ε)eikp(r−1)

eikh (r−1) + r̃ j′, j′ (ε)e−ikh (r−1)

]

+ [1 − δ j′, j] Nh

[
c̃ j, j′ (ε)eikp(r−1)

t̃ j, j′ (ε)e−ikh (r−1)

]
, (A3)

with the amplitudes r̃ j, j (ε), ã j, j (ε), t̃ j, j′ (ε) and c̃ j, j′ (ε) having
the same meaning as those in Eq. (A2). The scalars Np,h are
normalization constants and the momenta kp,h are defined as
a function of the energy by the relations ε = −2J cos(kp) −
μ = 2J cos(kh) + μ. Denoting with {cε,p, j, cε,h, j} the single-
fermion annihilation operators in the state corresponding to a
particle/hole entering the central island from lead j at energy
ε, we write the real-space lattice single-fermion operators as

cr, j =
∑
ε>0

N∑
j′=1

∑
u=p,h

{
u( j′,u)

r;ε; j cε,u, j′ + [
v

( j′,u)
r;ε; j

]∗
c†
ε,u, j′

}
. (A4)

Expanding cr, j by retaining only the low-energy, long-
wavelength excitations around the Fermi momenta ±kF =
±arccos(− μ

2J ), we can recast it in the form

cr, j ≈ eikF rψR, j (xr ) + e−ikF rψL, j (xr ), (A5)

with xr = ar and a being the lattice step (which we set to unity
elsewhere in the paper). ψR, j (x), ψL, j (x) are the chiral fields
that we used throughout the derivation of Sec. II, where we
resorted to the continuum variable framework. Here, instead,

we keep using the lattice formalism, in which the current operators in lead j are given by

jel,r, j = −ieJc†
r, jcr+1, j + H.c., (A6)

jth,r, j = iJ2c†
r−1, jcr+1, j + iμJ

2
c†

r, j (cr+1, j − cr−1, j ) + H.c.

In order to compute the average values of the operators in Eqs. (A6), we assume that each lead j is connected to a thermal
reservoir at voltage bias Vj and at temperature Tj = T + δTj . Collecting the contributions all together, we obtain the expectation
value of the electric current

Iel, j = 〈 jel, j (x, t )〉 = e
∑

ε

N∑
j′=1

{
vp[Tj, j′ (ε) − δ j, j′ ] f (p)

j′ (ε) + vpA j, j′ (ε)
[
1 − f (p)

j′ (ε)
]

+ vhÃ j, j′ (ε) f (h)
j′ (ε) + vh[T̃j, j′ (ε) − δ j, j′ ]

[
1 − f (h)

j′ (ε)
]}

, (A7)
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with vp/h = vp/h(ε) = 2J sin(kp/h(ε)). Similarly, the thermal current is

Ith, j = 〈 jth, j (x, t )〉 =
∑

ε

(ε − μ)
N∑

j′=1

{
vp[Tj, j′ (ε) − δ j, j′ ] f (p)

j′ (ε) − vpA j, j′ (ε)
[
1 − f (p)

j′ (ε)
]

+ vhÃ j, j′ (ε) f (h)
j′ (ε) − vh[T̃j, j′ (ε) − δ j, j′ ]

[
1 − f (h)

j′ (ε)
]}

, (A8)

with the scattering coefficients given in Sec. II and the Fermi
distribution functions for particles and holes respectively
given by Eq. (5) in the main text. In the large-� limit, we
trade the sum over the energies for integrals and introduce the
density of states around the Fermi energy ρ0. Linearizing the
Fermi distribution in the voltage and temperature biases

f (p)
j (ε) ≈ f (ε) +

[(ε − μ

kBT 2

)
δTj − eVj

kBT

]
∂ε f (ε − μ),

f (h)
j (ε) ≈ f (ε) +

[(ε − μ

kBT 2

)
δTj + eVj

kBT

]
∂ε f (ε − μ) , (A9)

and employing the unitarity of the extended S matrix, as well
as the Sommerfeld expansion for the resulting integrals at
temperatures kBT 	 μ, we obtain

Iel, j = − e2

2π

N∑
j′=1

[δ j, j′ + Cj, j′ − Tj, j′ ]Vj′ ,

Ith, j = πk2
BT

6

N∑
j′=1

[Cj, j′ + Tj, j′ − δ j, j′ ]δTj′ , (A10)

with the dependence on ε in the scattering coefficients
dropped to mean that all of them are computed at ε = μ. From
Eqs. (A10), cast in the form

Iel, j =
N∑

j′=1

Gj, j′Vj′ , Ith, j =
N∑

j′=1

Kj, j′δTj′ , (A11)

we obtain Eq. (7) in the main text. As a side remark, we point
out that throughout the paper we can safely compute the heat
current by averaging the energy current operator, rather than
the heat itself. Since the two operators differ by

∑N
j=1 VjIel, j ,

we see that it is of second order in the biases Vj, δTj . Thus we
can safely neglect it within linear response theory.

APPENDIX B: ELECTRIC AND THERMAL
CONDUCTANCE FOR A BALLISTIC INTERACTING

SINGLE QUANTUM WIRE

In this Appendix, we review the calculation of the elec-
tric and of the thermal conductance for a single interacting
quantum wire connected to two reservoirs kept at different
voltages and temperatures. Besides reviewing well-known
results [13,14,37,38], we set up our formal approach to com-
puting the CCT and the HCT.

In Fig. 8, we sketch the wire connected to a left-hand
reservoir, which injects into the system right-handed modes
at voltage bias VR and at temperature TR, and to a right-hand
reservoir that injects left-handed modes at voltage bias VL and
at temperature TL. To describe the wire, we employ a minimal

model for the corresponding Hamiltonian in fermionic coor-
dinates, HFer, which is given by

HFer = −iv
∫ �

0
dx{ψ†

R(x)∂xψR(x) − ψ
†
L (x)∂xψL(x)}

+ 2V
∫ �

0
dx ψ

†
R(x)ψR(x)ψ†

L (x)ψL(x), (B1)

with V being the bulk interaction strength. Along the
bosonization approach, we introduce two chiral bosonic fields
ϕR(x, t ) = ϕR(t−) and ϕL(x, t ) = ϕL(t+). Their dynamics is
governed by the Hamiltonian

HBos,0 = u
∫ �

0
dx {(∂xϕR(x))2 + (∂xϕL(x))2}

≡ HBos,0,R + HBos,0,L, (B2)

with the plasmon velocity u = v

√
1 − V 2

v2π2 . The fermion op-
erators are represented via

ψR(x) =  e
√

π
[
( 1√

g +√
g)ϕR (x)+( 1√

g −√
g)ϕL (x)

]
,

ψL(x) =  e
√

π
[
( 1√

g −√
g)ϕR (x)+( 1√

g +√
g)ϕL (x)

]
, (B3)

in which the Klein factors  can be safely discarded, when
bosonizing a single QW. Finally, we rewrite the densities and
the current operators in terms of the chiral fields as

ρel(x, t ) = e

√
g

π
{∂xϕR(x, t ) − ∂xϕL(x, t )},

ρth(x, t ) = u {(∂xϕR(x, t ))2 + (∂xϕL(x, t ))2}, (B4)

and

jel(x, t ) = eu

√
g

π
{∂xϕR(x, t ) + ∂xϕL(x, t )},

jth(x, t ) = u2 {(∂xϕR(x, t ))2 − (∂xϕL(x, t ))2}. (B5)

FIG. 8. Sketch of a single, interacting quantum wire connected
to a left-hand reservoir, which injects into the system right-handed
modes at voltage bias VR and at temperature TR (colored in red), and
to a right-hand reservoir that injects left-handed modes at voltage
bias VL and at temperature TL (colored in blue).
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In order to take into account that modes with opposite
chiralities are “shot in” from the reservoirs at different voltage
bias (which couple with the corresponding charge density op-
erators), we modify the wire Hamiltonian by adding a voltage
dependent “source” term. As a result, we obtain

HBos[VL,VR] = u
∫ �

0
dx {(∂xϕR(x))2 + (∂xϕL(x))2}

− e

√
g

π

∫ �

0
dx {VR∂xϕR(x) − VL∂xϕL(x)}

≡ HBos,L[VL] + HBos,R[VR]. (B6)

Chiral modes are shot in from the reservoirs at different
temperatures, as well. In order to account for the different
temperature of the opposite chirality modes, given a generic
operator O that is a functional of ϕR(x), ϕL(x), we compute
its thermal average 〈O〉 according to

〈O〉 = Tr[Oe−βLHBos,L[VL]−βRHBos,R[VR]]

ZL[VL, βL]ZR[VR, βR]
, (B7)

with βR,L = (kBTR,L )−1 and the partition functions for the
chiral modes being given by

ZL,R[VL,R, βL,R] = Tr[e−βL,RHBos,L,R ]. (B8)

It is customary to define the shifted chiral fields ϕ̄R(x), ϕ̄L(x),
according to

∂xϕ̄R(x) = ∂xϕR(x) − e

2u

√
g

π
VR,

∂xϕ̄L(x) = ∂xϕL(x) + e

2u

√
g

π
VL. (B9)

Taking advantage of the system homogeneity, we compute the
average value of the charge- and of the thermal-current, Ie and
Ih, as

Iel/th = 1

�

∫ �

0
dx 〈 jel/th(x)〉. (B10)

As a result, retaining only linear contributions in the
voltage/temperature bias and using the relation

u2
∫ �

0
dx
〈
(∂xϕ̄L/R(x))2

〉 = 1

u
∂βL/R lnZL,R, (B11)

we obtain

Iel = e2g

2π
(VR − VL ) , Ith = π

12β2
R

− π

12β2
L

. (B12)

Setting �V = VR − VL and TR = T + �T
2 , TR = T − �T

2 , the
charge and the thermal conductance follow directly

G = Iel

�V
= ge2

2π
, K = Ith

�T
= πk2

BT

6
, (B13)

as derived in Ref. [37]. In this paper, it was observed that
Eq. (B13) implies the violation of the WFL, as evidenced by
the renormalization of the Lorenz ratio to L = L0/g. This is
directly related to the peculiar nature of the electronic inter-
action in one-dimensional systems that typically cannot be
accounted for within the Fermi liquid picture. Nevertheless,

we also note that, since the renormalization of L0 is associ-
ated to the interaction-dependent renormalization of G in a
Luttinger liquid, we expect that it is washed out as soon as
the 1d interacting system is connected to external Fermi liquid
reservoirs, in perfect analogy with what happens to the electric
conductance of a Luttinger liquid connected to noninteracting
reservoirs [2,43–45]. In Appendix C, we show that this is
the case. As we discuss in the main text, only at a junction
where multiparticle scattering processes take place even in
the noninteracting limit, one recovers a “genuine” violation of
the WFL, that survives the presence of Fermi liquid reservoirs
attached to the interacting QWs.

APPENDIX C: RENORMALIZATION OF THE
CONDUCTANCE TENSORS AT A JUNCTION OF
LUTTINGER LIQUIDS CONNECTED TO FERMI

LIQUID RESERVOIRS

In this Appendix, we derive the renormalization of the con-
ductance tensor of a junction of interacting QWs connected
to external Fermi liquid reservoirs. For the charge conduc-
tance, this is a well-known effect, due to the fact that, over
long enough length scales and/or at low enough energies, the
collective modes of the Luttinger liquid are determined by
the parameters of the external leads [2,43–45]. We extend the
analysis to the thermal conductance tensor, so to determine the
effects of the Fermi liquid reservoirs directly on the Lorenz
ratio.

Following [2,43–45], we model the reservoirs in terms of a
discontinuity of the Luttinger parameter in each wire at x = �.
Specifically, we set

g(x) =
{

g, 0 < x < �

gRes, � � x
,

u(x) =
{

u, 0 < x < �

uRes, � � x
. (C1)

In the following, we denote with ϕR/L,Res, j and with ϕR/L, j

the chiral bosonic fields within the Fermi liquid reservoirs and
within the interacting QWs, respectively. At the interface at
x = �, the continuity of the fields φ j (x), as well as of the
charge current density operators, implies the linear relations
[6] [

ϕR,Res, j (�)
ϕL,Res, j (�)

]
= m ·

[
ϕR, j (�)
ϕL, j (�)

]
(C2)

between the chiral fields of the system and of the reservoirs at
the contact point. The orthogonal interface transfer matrix m
is given by

m = 1

2
√

ggRes

[
gRes + g gRes − g
gRes − g gRes + g

]
≡
[

mRR mRL

mLR mRR

]
.

(C3)

The reservoirs inject chiral L modes, whose dynamics is
governed by the Luttinger Hamiltonian with parameter gRes.
Having in mind a setup in which the current measurement is
performed via the reservoir j (as in Ref. [57]), we need to
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express the outgoing modes in that reservoir in terms of the
incoming ones (in any reservoir). This task is performed by a
pertinent splitting matrix ρ̂, defined via

ϕR,Res, j

(
t − x

uRes

)
=

3∑
j′=1

ρ̂ j, j′ϕL,Res, j′
(

t + x

uRes

)
. (C4)

Combining the interface transfer matrix Eq. (C3) with the
junction splitting matrix Eq. (16), we obtain

ρ̂ j, j′ =
N∑

j′′=1

[MR] j, j′′
[
M−1

L

]
j′′, j′ , (C5)

with

[MR] j, j′ = mRRρ j, j′ + mRLδ j, j′ ,

[ML] j, j′ = mLRρ j, j′ + mLLδ j, j′ . (C6)

We therefore conclude that the effect of the reservoirs is
taken into account by substituting the splitting matrix ρ with ρ̂

defined in (C5). Substituting the parametrization Eqs. (26) and
(27) for the charge-conserving junction, one checks that, for
the N = 3, Z3 invariant junction, the resulting splitting matrix
is obtained by simply substituting g with gRes in the splitting
matrix of the junction disconnected from the reservoirs, that
is

ρ̂(ϑ ) = ρ(ϑ )|g→gRes
. (C7)

At variance, when charge conservation holds but Z3 symmetry
is broken, Eq. (31), the splitting matrices ρB are independent
of g and of gRes, so one trivially obtains the same result with,
or without, connecting the junction to Fermi liquid reservoirs.

APPENDIX D: GREEN-KELDYSH FUNCTIONS OF BOSONIC OPERATORS

In this Appendix, we review the Keldysh-Green functions involving chiral bosonic vertex operators, in the time, as well as in
the frequency domain. We start with the Keldysh path-ordered correlation function of the chiral fields

g−ν
η1η2; j

(
t1 − t2 + x1 − x2

u

)
= 〈TK ei

√
4πνϕ j,η1 (t1+x1/u;η1 )e−i

√
4πνϕ j,η2 (t2+x2/u;η2 )〉, (D1)

with the Keldysh indices η1,2 = ±1 and TK denoting the ordering operator along the Keldysh path. The Green’s functions are
[97]

g−ν
++, j

(
t + x

u

)
=
{

β j

π
sin

[
π

β j

(
i
(

t + x

u

)
sgn(t ) + τc

)]}−ν

,

g−ν
−+, j

(
t + x

u

)
=
{

β j

π
sin

[
π

β j

(
i
(

t + x

u

)
+ τc

)]}−ν

, (D2)

with g−ν
−η1−η2, j (t + x

u ) = [g−ν
η1η2, j (−t − x

u )] and τc ∼ D−1
0 . Their Fourier transforms

g̃−ν
η1η2, j (ω) =

∫
dt eiωt g−ν

η1η2, j (t ) (D3)

are derived in detail in Ref. [97]. Here we quote the result

g̃−ν
η1η2, j (ω) = c−ν

η1η2, j (ω)d−ν
j (ω), (D4)

with, denoting by (z) the Euler’s  function,

d−ν
j (ω) = β1−ν

j

(2π )1−ν(ν)

∣∣∣∣
(

ν

2
+ i

β jω

2π

)∣∣∣∣
2

, (D5)

c−ν
±±, j (ω) = 2 cosh β jω

2

1 + e±iπν
, c−ν

∓±, j (ω) = e± β j ω

2 . (D6)

Equation (D1) is easily generalized to a multipoint correlation function. In particular, we need the multiple contraction

g{αn}n;N ;−ν

{ηn}n; j ({tn}n) = δ∑
n αn,0

∏
l<m

g−αl αmν
ηl ,ηm; j (tl − tm). (D7)

It is also convenient to define the functions

ξ±, j (ut + x) = π

iβ j
coth

[
π

β j

(
t + x

u
∓ iτc

)]
, (D8)

whose Fourier transforms are

ξ̃±, j (ω) =
∫

dt eiωt ξ±, j (t ) = ± 2πe∓ωτc

1 − e∓β jω
. (D9)
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We compute the correlation functions of chiral fields including insertions of chiral current operators using [97]

g{αn}n,−ν

η,{ηn}n; j

(
t + x

u
; {tn}n

)
=
〈
TK∂xϕ j,η(t + x/u)

N∏
l=1

eiαl
√

4πνϕ j,ηl (tl )

〉

=
√

νπ

2iuβ j

N∑
l=1

αl coth

[
π

β j

(
t − tl + x

u
− iτcσηηl (t − tl )

)]
g{αn}n,−ν

{ηn}n; j (t1 − t2) , (D10)

g{α},−ν

ηη′,{ηn}n; j

(
t + x

u
; t ′ + x′

u
; {tn}n

)
=
〈
TK∂xφ j,η(t + x/u)∂x′φ j,η′ (t ′ + x′/u)

N∏
l=1

eiαl
√

4πνϕ j,ηl (tl )

〉

= −g−ν
{ηl }l ; j ({ti})

N∑
l,l ′=1

αlαl ′νπ

4u2β2
j

coth

[
π

β j

(
t − tl + x

u
− iτcσηηl (t − tl )

)]

× coth

[
π

β j

(
t ′ − tl ′ + x′

u
− iτcση′ηl′ (t − tl ′ )

)]
, (D11)

where

ση1η2 (t1 − t2) = η2θ (t1 − t2) − η1θ (t2 − t1). (D12)

All the fields in the above contractions are in equilibrium with the jth reservoir at temperature β−1
j .

APPENDIX E: GENERAL EXPRESSION FOR THE LEADING CORRECTIONS TO THE FIXED POINT CONDUCTANCE

In this Appendix, we provide a general formula for the leading corrections to the FP conductance tensors of the junction,
given the corresponding leading boundary operator and the splitting matrix Eq. (16). Consistently with our analysis in the main
text, in full generality, we assume that the leading boundary operator is realized as a combination of vertex operators depending
on pertinent linear combinations of the fields ϕ j (0), defined in Eq. (17). Also, we assume full symmetry between the various
channels, which allows us to assume an over-all constant independent of the specific vertex operator. Thus we set

HB = −2h
N∑

k<l=1

cos

[√
4π

N∑
j=1

αk,l
j ϕ j (0)

]
, (E1)

with αk,l
j being a coefficient that explicitly depends on g. For instance, at the DFP, consistently with the boundary interactions of

the junction (47) and of the TKM (48) for N = 3, we set αk,l
j = g− 1

2 {δk, j − δl, j+1}.
In our picture, the external reservoirs inject into the leads left-handed modes biased at a voltage Vj . We account for this by

the shift in Eq. (22), which provides an explicit dependence on time in the leading boundary operator

HB = −2h
N∑

k<l

cos

[√
4π

N∑
j=1

αk,l
j

(
ϕ̄ j (0) + e

√
g

4π
Vjt

)]
. (E2)

The electric current operator takes the form

jel, j (x, t ) = eu

√
g

π

[
∂xϕ̄ j (t+) −

N∑
j′=1

ρ j′, j∂xϕ̄ j (t−)

]
+ e2g

2π

N∑
j′=1

{ρ j, j′ − δ j, j′ }Vj′ . (E3)

We have already shown that, within linear response theory, the FP electric conductance is given by Eq. (23), which is perfectly
consistent with the result in Eq. (E3). Due to the neutrality constraint on the vertex operators, no corrections arise to first order
in the perturbation Eq. (E2). Using the Keldysh formalism up to second order, we obtain the expectation value of the electric and
thermal currents in the form

Iel/th, j = h2
∑
η1,η2

η1η2

∫
dt1dt2

∑
k<l

N∏
j1=1

〈
TK jel/th, j (x, t )e−i

√
4παk,l

j1
ϕ j1 ,η1 (t1 )ei

√
4παk,l

j1
ϕ j1 ,η2 (t2 )〉eie

√
gαk,l

j1
Vj1 (t1−t2 ) + h.c.. (E4)

In Eq. (E4), η1,2 = ±1 label the branch of the Keldysh contour and the current operator lies, by convention, on the upper branch
(η = +).

We assume an homogeneous temperature throughout the system and turn on a potential bias on lead jb �= j. As we work
close to the charge neutrality point, the Seebeck and Peltier coefficients vanish and only an electric current is generated. Using
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Eqs. (E3) and (D10) and their Fourier transforms Eqs. (D9) and (D4), we obtain

Iel, j = eh2√g

4π

N∑
k<l=1

∑
η1,η2=±1

η1η2

N∑
j′=1

ρ j, j′α
k,l
j′

∑
s=±1

s
[
ξ̃η1, j′ (0) − ξ̃η2, j′ (0)

]
g̃−ν

η1η2; j

(
s2e

√
gαk,l

jb
Vjb

)
. (E5)

Here, ν = ∑N
m=1(αk,l

m )2. Finally, retaining only contributions that are linear in the applied biases, we obtain the simple expression

Iel, j = 2πge2h̃2(2πkBT )
2(ν/2)

(ν)

N∑
k<l=1

N∑
j′=1

ρ j, j′α
k,l
j′ αk,l

jb
,

with the dimensionless coupling h̃(D) = h
D0

( D
D0

)−1+ ν
2 .

We now examine the thermal current at charge neutrality Eq. (21). We start again from Eq. (E4) and set Vj = 0 in all leads,
but allow for a different temperature Tj on each lead j = 1, . . . , N .

We then make use of Eqs. (D2) and (D8), as well as of the Fourier transforms (D9), to write the expectation value as Ith, j =
I (A)
th, j + I (B)

th, j , in which

I (A)
th, j = h2

4π

∑
k<l

∑
η1,η2=±1

η1η2

∑
ja, jb

ρ j, jaρ j, jbα
k,l
ja

αk,l
jb

̃{αk,l }
η1,η2

(0)
∫

dω

2π

[
ξ̃η1, ja (ω)ξ̃η1, jb (−ω) + (η1 → η2)

]
, (E6)

I (B)
th, j = h2

4π

∑
k<l

∑
η1,η2=±1

η1η2

∑
ja, jb

ρ j, jaρ j, jbα
k,l
ja

αk,l
jb

∫
dω

2π
̃{αk,l }

η1,η2
(ω)

[
ξ̃η1, ja (ω)ξ̃η2, jb (−ω) + ( ja ↔ jb)

]
. (E7)

The function ̃ originates the contractions of the derivative of the fields ja and jb with the corresponding perturbation at second
order. It is labeled by the coefficients {αk,l

1 , . . . , αk,l
N } and stands for

̃{αk,l }
η1,η2

(t ) =
N∏

m=1

g−(αk,l
m )2

η1η2;m (t ). (E8)

By going along the derivation of Appendix D, it is easy to verify the following identities:

∑
σ=±

ξ̃±, ja (σω)ξ̃±, jb (−σω) = −2π2 cosh (βa−βb)ω
2

sinh βaω

2 sinh βbω

2

, (E9)

∑
η=±

ξ̃η, ja (±ηω)ξ̃−η, jb (∓ηω) =
∑
σ=±

ξ̃+, ja (σω)ξ̃+, jb (−σω) ∓ 2π [ξ̃±, ja (ω) + ξ̃±, jb (ω)], (E10)

with βa = (kBTa)−1. Using Eq. (E9), together with the relation

̃{αk,l }
η1,η2

(ω = 0) = ̃
{αk,l }
−η1,−η2

(ω = 0), (E11)

one concludes that Eq. (E6) is identically zero. In addition to that, we can exploit Eq. (E10) to rewrite Eq. (E7) in the simpler
form

Ith, j = I (B)
th, j = h2

∑
k<l

∑
ja, jb

ρ j, jaρ j, jbα
k,l
ja

αk,l
jb
A{αk,l }

ja
, (E12)

with

A{αk,l }
j =

∫
dω

2π
[̃{αk,l }

−,+ (ω)ξ̃−, j (ω) − ̃
{αk,l }
+,− (ω)ξ̃+, j (ω)]. (E13)

Using the explicit Fourier transforms Eqs. (D4) and (D6), together with (D9) and the symmetry of the system under exchange of
wires, it is possible to more explicitly rewrite the integral Eq. (E13) as

A{αk,l }
j = −

∫
dω1 . . . dωN

sinh
∑

s �= j (β j−βs )ωl

2

sinh β jω j

2

d
−(αkl

j )2

j (ω j − ω1 . . . ω̂ j . . . − ωN )
∏
m �= j

d−(αkl
m )2

m (ωm). (E14)

Here the ˆ symbol denotes omission. It is now easy to verify that the thermal current vanishes in the absence of temperature
gradients, i.e., whenever β1 = . . . = βN = β.
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Focusing on wire j0 (which implies no loss of generality due to the symmetry of the system) and assuming that all the
remaining N − 1 subsystems are in equilibrium at the same temperature 1/β, it is then convenient to define the function

̃{αk,l ; ĵ0}
η1,η2

(t ) =
∏

m �= j0

g̃−(αk,l
m )2

η1η2;m (t ), (E15)

where we have denoted by {α; ĵ0} the set {αk,l}, from which the element αk,l
j0

has been removed. One can invert the Fourier
transform (D4) and see directly from the definition (D2) that

̃
{αk,l ; ĵ0}
∓± (ω) = e± βω

2 d
−∑

m �= j0
(αk,l

m )2

j (ω). (E16)

With the aid of this expression, in the presence of a small temperature bias β → β j0 = β + δβ j0 on lead j0 only, the integral

A{αk,l }
j in Eq. (E13) is conveniently rewritten as

A{αk,l }
j =

∑
η=±

∫
dωdω0

2πη
g̃
−α j0
η,−η(ω0 − ω)̃{αk,l ; ĵ0}

η,−η (ω)ξ̃η, j (ω0) ≈ −δβ j0

∑
η=±

∫
dωdω0

ωd j0 (ω)

sinh βω0

2

d
−∑

m �= j0
(αk,l

m )2

j (ω0 − ω).

Gathering all the contributions, the thermal current response in leg j under a change of temperature in leg j0 takes the form

Ith, j = π2kB

β

∑
k<l

∑
ja, jb

ρ j, jaρ j, jbα
k,l
ja

αk,l
jb

h̃2
(

2π
β

)
δTj0�

{αk,l }
j0


[(

αkl
j0

)2]

[∑

r �= j0
(αkl

r )2
] (E17)

with δTj0 = Tj0 − T and

�
{αk,l }
j0

=
∫

dzdw
w

sinh (πz)

∣∣∣∣∣
((

αk,l
j0

)2

2
+ iw

)


(∑
m �= j0

(
αk,l

m

)2

2
+ i(z − w)

)∣∣∣∣∣
2

. (E18)

With Eqs. (E6) and (E17), one can compute the explicit form of the coefficients entering the leading corrections to the fixed
point value of the CCT and of the HCT. In order to improve the perturbative result, the running coupling strengths may be
inserted instead of the bare ones in front of the right-hand side of Eqs. (E6) and (E17). Within a straightforward generalization of
the formalism we develop here, it is possible to address the case in which the leading boundary operator is made out of a linear
combination of vertex operators with different coefficients. Using the values of αk,l

m from Sec. V A, we obtain the expressions
(50), (51), and (53).

Finally, we quote the identities



(
1

2
+ iz

)


(
1

2
− iz

)
= π

cosh (πz)
,

∫
dz

π

sinh(πz) cosh(π (z − w))
= 2πw

cosh(πw)
,

(z∗) = (z)∗,
∫

dw
w2

cosh2(πw)
= 1

6π
, (E19)

which are used to obtain an explicit expression of the Lorenz ratio in the main text.

APPENDIX F: BOUNDARY RENORMALIZATION OF THE
TOPOLOGICAL KONDO MODEL

In this Appendix, we provide more details about the renor-
malization of the boundary term Eq. (48). To begin with,
we recall that the differences between the running couplings
associated to the Jk,l are systematically washed out along the
RG trajectories [27]. This is encoded in the perturbative RG
equations for the running couplings Jk,l (D) ≡ Jk,l (D)−1+ 1

g .
Within ε expansion, with 0 < ε(= 1 − g−1) 	 1, these are
given by [32,33,86,87]

dJk,l

d ln
(D0

D

) = εJk,l + 2
N∑

a( �=k,l )=1

Jk,aJa,l . (F1)

Based on the above observation, in order to discuss the flow
toward the DN−1 fixed point, we consider the symmetric ver-
sion of Eq. (F1), in which all the J j,k are taken equal to each
other and equal to J , so to recover a single RG equation

dJ
d ln

(D0
D

) = εJ + 2(N − 2)J 2, (F2)

which is solved by

J (D) = εJ0
(D0

D

)ε
ε + 2(N − 2)J0 − 2(N − 2)J0

(D0
D

)ε , (F3)

with J0 = J (D = D0). Identifying the running energy scale
D in Eq. (F3) with (the Boltzmann constant times) the tem-
perature T we see that, due to the relevance of the boundary
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interaction for g � 1, the system crosses over to the strongly
coupled regime at a crossover temperature T∗, determined by
the condition that the denominator of the right-hand side of
Eq. (F3) becomes equal to 0 at D = D∗ = kBT∗. Accordingly,
we obtain

ε−1

{( D0

kBT∗

)ε

− 1

}
= 1

2(N − 2)J0
, (F4)

which, for ε → 0, reduces to the “standard” Kondo result

ln
( D0

kBT∗

)
= 1 + 1

2(N − 2)J0
. (F5)

At scales T � T∗, the system enters the strongly coupled
regime.

In the presence of a nonvanishing phase χ Eq. (48) gener-
alizes to the set of RG equations for the running parameters
J (D), χ (D) given by [25]

dJ
d ln

(D0
D

) = εJ + 2 cos(χ )J 2,

dχ

d ln
(D0

D

) = −2 sin(χ )J . (F6)

Equations (F6) typically emerge when considering the RG
approach to the boundary interaction at a junction of three
bosonic, one-dimensional interacting system. To construct the
splitting matrix ρ, we first minimize the TKM boundary inter-
action Hamiltonian in Eq. (48), rewritten in terms of � and of
the ξa defined in Eq. (36). Then, we impose Dirichlet bound-
ary conditions by pinning ξa(0), ∀a = 1, . . . , N − 1 (note that
� decouples from the boundary interaction, due to the total
charge conservation [2]).

As discussed in Sec. V B, the system possesses two
strong-coupling FPs in certain parameter ranges, when the

boundary potential created by the interaction terms dominates
over the kinetic part of the Hamiltonian. The corresponding
conformal boundary conditions are, therefore, obtained by
imposing Dirichlet boundary conditions at x = 0 on the fields
ξ1(x), ξ2(x) in Eq. (48), which take values lying at the sites of
a triangular/hexagonal lattice. The operator driving the sys-
tem away from a fixed point described by Dirichlet boundary
conditions on the ξa corresponds to a combination of instanton
operators encoding “jumps” between sites of the lattice of the
minima.

The D2 FP, or topological Kondo FP, extensively dis-
cussed in literature, is described by a triangular lattice. The
D̂2 FP, instead, is described by requiring that the values of
(ξ1(0), ξ2(0)) minimizing the boundary potential span a hon-
eycomb lattice (determined by two interpenetrating “rotated”
triangular lattices [25,94]). Due to the reduced distance be-
tween the sites of the lattice of the minima, “short instanton”
operators emerge, with a lower dimension than the boundary
operators at the D2FP. The boundary conditions at the D̂2FP
are the same as at the D2FP, so, we readily conclude that
ρD̂2 = ρD2 . The leading boundary interaction at the D̂2FP is
given by [25,94]

ˆ̃HTK,2 = −2ĥ
3∑

j=1

ei
4
√

πg

3
√

3
(2ϕ̃ j (0)−ϕ̃ j+1(0)−ϕ̃ j−1(0))

τ+ + H.c. (F7)

Following Refs. [25,94], in Eq. (F7), we have introduced an
effective isospin operator �τ . We have done so in order to
take into account that the honeycomb lattice of minima at the
D̂2FP is made out of the interpenetration of two inequivalent
triangular lattices, say A and B. Any short instanton origi-
nating from sublattice A ends into one of the three nearest
neighboring sites of sublattice B, and vice versa. Thus, having
arbitrarily associated the eigenvalue +1 of τz to states living
over sublattice A and the eigenvalue −1 to states living over
sublattice B, we recover the final expression in Eq. (F7).
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