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We study the thermal transport through a Majorana island connected to multiple external quan-
tum wires. In the presence of a large charging energy, we find that the Wiedemann-Franz law is
nontrivially violated at low temperature, contrarily to what happens for the overscreened Kondo
effect and for nontopological junctions. For three wires, we find that the Lorenz ratio is rescaled by
a universal factor 2/3 and we show that this behavior is due to the presence of localized Majorana
modes on the island.

Majorana fermions and the Wiedemann-Franz
law. Condensed matter realizations of Majorana
fermions have been the object of active and continued
interest during the last decade. Proposed platforms
involve chains of magnetic adatoms, semiconductor-
superconductor heterostructures in one and two dimen-
sions and topological insulator-superconductor hybrid
structures [1–8]. Nonlocal transport, nontrivial braiding
properties and intrinsic topological protection from dis-
order effects have motivated the effort of embedding Ma-
jorana modes in an architecture for topological quantum
computation [9–12]. Experiments have insofar focused
on the measurement of the local density of states and on
the charge transport properties of the Majorana quasi-
particles, which include the detection of the quantized
zero-bias peak and of single-electron transport across a
Coulomb-blockaded island [13–15]. While the existence
of localized subgap states in several platforms has been
confirmed, most experimental observations have not yet
reached a sufficient accuracy or the observed properties
could be otherwise explained, thus, their identification
with Majorana zero modes (MZMs) has not been es-
tablished beyond doubt. The lack of a clear-cut experi-
mental evidence of MZMs calls for a deeper understand-
ing of a broader set of phenomena in superconductor-
semiconductor systems [16–20].
In this work, we study instead the heat transport across
a junction hosting localized MZMs [21, 22], which is
expected to provide a reliable signature of the topo-
logical quasiparticles [23], and look for a violation of
the Wiedemann-Franz law (WFL) due to their pres-
ence. Typically, whenever charge and energy are car-
ried by the same excitation(s), a simple relation holds
between the charge (G) and the thermal (K) conduc-
tance of the system at low temperatures: the WFL
[24–26], stating that the Lorenz ratio L ≡ K

TG assumes

the value L0 =
π2k2B
3e2 ≈ 2.44× 10−8WΩK−2. Electron-

electron scattering or inelastic scattering processes (e.g.,
from electron-phonon interaction) can originate a viola-
tion of the WFL [27, 28]. Yet, the remarkable renormal-

ization of L in interacting quantum wires [29, 30] is ex-
pected to be washed out as soon as the wire is connected
to ideal Fermi liquid reservoirs, as in actual two-point
charge/thermal transport measurement [31, 32]. In addi-
tion, in single-electrons transistors and quantum dots re-
alized at the junction, charging effects and resonant pro-
cesses can determine L 6= L0 [33–35], by a factor which
depends on the regime and the parameters of the model.
However, as soon as the dot enters the Kondo regime, the
emerging electron-electron correlations restore the ideal
value L0 [36, 37]. Even when the impurity is overscreened
in the multi-channel Kondo model, the very fact that
charge and heat are still carried by the same excitation
preserves the WFL [38, 39]. In the specific context of a
multi-lead junction, we show that the MZMs induce mul-
tiparticle resonant Andreev reflection and crossed An-
dreev reflection processes at the Fermi level. Due to the
fact that outgoing (from the junction) particles and holes
move in the same directions, but with opposite charges,
the corresponding contributions to the charge conduc-
tance differ from the one to the thermal conductance,

FIG. 1. The Majorana-Coulomb box: a mesoscopic island
hosting (an even number of) localized Majorana modes is con-
nected to three external quantum wires as represented. At the
far ends of these, external reservoirs control the distribution
of the electrons injected into the junction. The scheme of
this device is independent from the specific platform hosting
Majorana quasiparticles.
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thus inducing a renormalization of L. Based on this ob-
servation, in this paper we relate the violation of the
WFL and the universal renormalization factor acquired
by L to the appearance of the MZMs at the island and to
the peculiar nature of the Topological Kondo fixed point.

The Topological Kondo effect. We consider the
system in figure 1, in which a superconducting island
hosting noninteracting MZM is connected to three quasi-
1d interacting quantum wires. The island is floating,
subject to a constant gate voltage potential Vg, and with
a large charging energy Ec = e2/2C, where C is the total
capacitance of the island. The Majorana modes γa satisfy
γa = γ†a and the Clifford algebra {γa, γb} = 2δab. In the
absence of other degrees of freedom with energy below the
superconducting gap ∆, the fermion number parity of the
island is conserved and, in each parity sector, the MZMs
collectively encode a spin one-half degree of freedom. The
quantum wires are described by the Tomonaga-Luttinger
Hamiltonian

H0 =
u

2

3∑
a=1

`∫
0

dx
[
g (∂xφa)

2
+ g−1 (∂xθa)

2
]
, (1)

with φa being the collective plasmon field of lead-a, θa
its dual, u the plasmon velocity and g the Luttinger pa-
rameter (g = 1 for non-interacting fermions). We set
~ = 1 throughout the paper. The wire length ` works as
a large-distance regulator and we eventually send it to
infinity.

Starting from open boundary conditions on the quan-
tum wires, each of them is connected at one end to one
MZM via the term [40, 41]

Ht = −i
3∑
a=1

taγae
iχΓae

i
√
πφa(0) + h.c. , (2)

where the ta are the corresponding tunneling amplitudes
and the operator e2iχ creates a Cooper pair on the is-
land. When bosonizing multiple wires, the Klein fac-
tors Γa must be introduced [42, 43] in order to ensure
the correct anticommutation relations. Remarkably, it is
possible to define a single complex fermionic degree of
freedom by hybridizing the Klein factors with the local-
ized MZMs, with occupation number sa = iΓaγa = ±1
factored out of the dynamics [44]. As a consequence, the
system admits a purely bosonic description, in contrast
to the ”non-topological” junctions studied in [32, 45].
In the Coulomb-blockaded regime, cotunneling processes
dominate the low-temperature transport. The effective
Hamiltonian describing this physics is H = H0 + HK ,
with [44, 46, 47]

HK = −2JK

3∑
a=1

cos
(√

2πk̂a · ~ξ(0)
)
. (3)

Here JK ∼ t2a/Ec (anisotropy in the JK coupling for dif-
ferent legs is irrelevant under renormalization [44, 47]),

k̂a =
(

cos 4π(a−1)
3 , sin 4π(a−1)

3

)
and the relative fields

are ξ1(x) = φ1(x)−φ2(x)√
2

, ξ2(x) = φ1(x)+φ2(x)−2φ3(x)√
6

. The

boundary interaction (3) emerges in a number of differ-
ent models, such as the planar quantum Brownian mo-
tion in a periodic potential [48], or a junction of three
Bose liquids, or of Josephson junction chains [49, 50]. In
a grounded island, the strong hybridization of the wires
with the MZMs at low temperatures enforces Andreev re-
flection around the Fermi energy [47], i.e., the boundary
condition φa(0) = 0 on each wire. When, instead, the
island is floating as in the TK model, the constraint of
charge conservation implies that the total charge mode∑3
a=1 φa satisfies Neumann boundary conditions at the

origin and Andreev boundary conditions can only be im-
posed on the relative fields ξ1,2. The dominant processes
at low temperatures are correlated crossed Andreev re-
flections among different wires, [44, 47], resulting in the
net transmission of an effective fractionalized 2e/3 charge
[51]. Indeed, for g > 3/4, the system possesses a stable
strong-coupling fixed point (FP), isotropic with respect
to the leg indexes, the ”topological Kondo” (TK) FP.
For 3/4 < g < 1, both weak- and strong-coupling FPs
are stable and a first-order transition in the boundary
coupling strength appears [41]. The charge conductance,
together with the thermodynamic properties, identifies
the TK FP as a non-Fermi liquid [44, 47, 52–54]. The
crossover temperature for g = 1

kBTK ∼ Ece−1/(2ρ0JK), (4)

where ρ0 is the density of states at the Fermi energy, rep-
resents the scale for the onset of the Kondo correlations.

Electric and thermal conductances and WFL
at weak coupling. We connect the quantum wires to
Fermi liquid reservoirs, described by the corresponding
Fermi distributions fa(E) = [1 + e(E−µa)/kBTa ]−1, with
all the temperatures set below TK . We assume that the
reservoirs all have large, though finite, charge and ther-
mal capacitances. Thus, we may change the distribu-
tions of electrons entering the junction from reservoir a
by varying µa and/or Ta by e∆Va and/or ∆Ta around
common reference values µ, T . Setting nonzero biases,
we induce a net charge and heat current flow into the
system, carried by the ballistic Luttinger liquid excita-
tions. Thermal current measurements can be performed
by detecting the temperature gradient across a contact
between the wires and the reservoir, or the rate of change
of the reservoir temperature [25, 55, 56]. The charge and
the thermal currents in lead a, Ie,a, Ih,a, are related to
∆Vb,∆Tb via the respective conductances [25]. Within
linear response, these are defined as

Ga,b =

(
Ie,a
∆Vb

)
∆Tb=0

Ka,b =

(
Ih,a
∆Tb

)
Ie,b=0

(5)

We consider here small variations of the chemical po-
tential around charge neutrality: under these conditions,
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the Seebeck and the Peltier coefficients vanish, due to
particle-hole symmetry.

The conductances (5) are conveniently
computed by means of the chiral fields
2ϕa,R/L(x) = g1/2φa(x)± g−1/2θa(x). The high-
and low-temperature FPs are described by lin-
ear relations between such chiral fields, in
the form ϕa,R(x) =

∑3
b=1 ρa,bϕb,L(−x), with

ρa,b = δa,b for open boundary conditions and
ρa,b = 2

3 − δa,b at the TK FP [32, 57]. Accord-
ingly, we introduce the “unfolded”, left-handed fields
ϕa(x) = ϕa,L(x)H(x) +

∑3
b=1 ρb,aϕb,R(−x)H(−x), with

H(x) being the Heaviside’s step function. The fields
ϕa(x) are continuous across the junction: consistently
with [29, 30], we assume that ϕa(x) is injected from
reservoir a into the corresponding wire at x = ` and
propagates toward the junction by always keeping at
chemical and thermal equilibrium with that reservoir.
In the presence of a voltage bias Va, we rewrite the fixed
point Hamiltonian in terms of the ϕa as

HFP =

3∑
a=1

`∫
−`

dx

{
u (∂xϕa(x))

2
+ e

√
g

π
Va∂xϕa(x)

}
,

(6)
where e

√
g
π∂xϕa(x) is the charge density for the chiral

field ϕa(x). The corresponding charge and thermal cur-
rent densities are

je,a(x) = eu

√
g

π

{
3∑
b=1

ρb,a∂xϕb(−x)− ∂xϕa(x)

}

jh,a(x) = u2

{
(

3∑
b=1

ρb,a∂xϕb(−x))2 − (∂xϕa(x))2

}
.(7)

The effect of the potential is reabsorbed via the shift of
the bosonic field ∂xϕa(x) → ∂xϕa(x) + eVa

u

√
g
π . This

induces a corresponding shift in the current density op-
erators and in their expectation values. From now on, we
consider the system at charge neutrality Va = 0, where
the thermopower vanishes identically due to particle-hole
symmetry. The first non-vanishing off-diagonal contri-
bution to the conductances at weak coupling arises at
second order in JK in (3). Within the linear response
framework [58, 59], we obtain

Ga,b =
6πe2Γ2 (1/g)

Γ (2/g)
J̃2
K (T )

(
1

3
− δa,b

)
, (8)

where the effective dimensionless coupling constant is

J̃K (T ) = JKE
− 1

g
c (2πkBT )

1
g−1

. The heat conductance is
Ka,b = L0Φ(g)Ga,bT , with the Lorenz ratio expressed in
terms of the dimensionless function

Φ(g) =
3Γ (2/g)

gπΓ4 (1/g)

∫
dz dw

w

sinh(πz)
× (9)

|Γ (1/(2g) + i (z − w))|2 |Γ (1/(2g) + iw)|2 ,

FIG. 2. Φ(g) = L/L0 (9) at weak coupling as a function of g
for 0.5 ≤ g ≤ 3. By exact calculation, we find Φ(g = 1) = 1.

in which Γ denotes the Euler’s Gamma function. This
expression is plotted in fig. 2. In the non-interacting
case, or rather, for non-interacting reservoirs g = 1 (see
below), (9) can be computed exactly and the Lorenz ra-
tio shown to be equal to L0. The physical mechanism
behind this relation is the fact that, at weak coupling
J̃K � 1, charge and energy are carried by electrons
that tunnel through the island. This picture ultimately
breaks down at strong coupling, due to the tunneling of
fractional-charge quasiparticles or, equivalently, to the
onset of multiparticle Andreev and crossed Andreev re-
flections [51, 60–62]. While an exact solution of the model
has been provided in [54, 63] for every value of JK , we
are not aware of results concerning the conductance in
intermediate regimes.

Violation of the WFL at strong coupling. We
now show that at the strong-coupling FP the Lorenz ratio
differs from the ideal value by a factor, which is composed
of a universal part and of a simple function of the Lut-
tinger parameter only. Given its purely bosonic descrip-
tion discussed above, the problem at hand can be tackled
within the general framework of [64–66]. Averaging the
shifted current operators (7) we obtain the charge and
the thermal conductance tensors given by

Ga,b =
e2g

2π
{ρa,b − δa,b} , Ka,b =

πk2
BT

6
{[ρa,b]2 − δa,b} ,

(10)
respectively. The tensor structure of the thermal con-
ductance, written in terms of the splitting matrix of the
plasmon excitations, highlights how the energy is divided
between the leads at the low-temperature fixed point. We
obtain the nontrivial result

Ka,b

TGa,b
=
L0

g
{δa,b + ρa,b} =

2

3

L0

g
,∀a, b . (11)

Eq.(11) evidences a remarkable breakdown of the WFL
at temperatures below TK in (4). This is determined
by a combination of the bulk interaction in the leads
[29] and of the onset of multiparticle scattering processes
at the junction. The former effect is nonuniversal (such
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as the Luttinger parameter g) and, more importantly,
it is washed out once we connect the wires to external
Fermi liquid reservoirs, to which the temperature and
voltage biases are applied. To see this, we picture the
reservoirs as a discontinuity in the Luttinger parameter:
g = g(x) = gH(` − x) + gRH(x − `), with gR = 1. In
this setting, the interaction parameter g in (10) must
be substituted with gR. In particular, the ρ matrix is
replaced by [31, 61, 62]

ρ (g)→ (gR − g) I + (gR + g) ρ

(gR + g) I + (gR − g) ρ
= ρ̂ (gR) . (12)

This identity can be directly verified by substituting a
generic form of the ρ matrix satisfying charge conser-
vation [59]. When the reservoirs supply quasiparticles
with a free Fermi distribution, the only corrections to
the Lorenz ratio arise from correlated multiparticle scat-
tering processes at the junction, encoded in the ρ ma-
trix in (10). Moreover, when the junction can be de-
scribed by means of a single-particle scattering matrix,
the charge and the thermal conductance necessarily have
the same tensor structure and the WFL is readily veri-
fied [25, 59]. Hence, the Lorenz ratio (11) can be regarded
as a signature of strong correlations. Corrections to the
conductance tensors at the strongly-coupled FP are dic-
tated by the dimension of the leading irrelevant operator.
The heat conductance receives corrections that scale as
∼ T (8g−3)/3, while corrections to the charge conductance
and the Lorenz ratio (11) scale as ∼ T 2(4g−3)/3.

Let us compare this result with similar ”non-
topological” junctions. For instance, whenever the is-
land is short-circuited and the transport does not involve
MZMs, the analysis falls back to the case of [32]. In [59],
it is shown that no violation of the WFL occurs at low
temperature. It is also important to compare with the
situation in which almost-zero-energy fermionic modes
are present on the island, instead of MZMs. Whenever
the gate voltage is tuned so that a single electron or a
single hole is present in the dots, the problem maps onto
a SU(3) Coqblin-Schrieffer model. In the ground state,
the impurity degree of freedom on the island is exactly
screened by the conduction electrons and the Lorenz ra-
tio is equal to L0, up to corrections that scale as (T/TK)

2

[67, 68].
Discussion. We have found a class of systems in

which the WFL is nontrivially violated, see also [59]. A
value of the Lorenz ratio different from L0 is generically
expected in one and higher dimensions in the presence
of electron-electron interactions [29, 69]. However, while
in one-dimensional systems the effect of the interaction
is fully encoded in the Luttinger parameter g, we have
shown that, when a junction between 1d Tomonaga Lut-
tinger liquids is connected to Fermi liquid reservoirs, at
low enough energies the reservoirs always renormalize the
parameter g back to the noninteracting limit, washing
out the corresponding renormalization of the response

functions and of the Lorenz ratio [31, 32]. Yet, a non-
trivial splitting matrix ρ at the junction can give rise
to a renormalization of the Lorenz ratio (by a univer-
sal factor 2

3 ), despite the junction being made out of ef-
fectively noninteracting leads. Indeed, the interplay be-
tween the Majorana-enforced boundary conditions and
charge conservation implies that the low-temperature
physics is described by the TK boundary conditions, en-
forcing that an injected particle of charge e is equally
”split” into fractional-charge- 2e

3 particles propagating
into the other two wires, and backscattered as a frac-
tional, charge- e3 hole. Particles and holes propagating
in the same/opposite direction give opposite/equal sign
contributions to the charge current and equal/opposite
sign contributions to the thermal current: this originates
the charge-heat separation, witnessed by the breakdown
of the WFL at the TK FP. The emergence of fractional
quasiparticles in this system has been discussed in con-
nection with the shot noise in [60].

No violation of the WFL would be expected at low tem-
peratures in the presence of weak impurity scattering [28]
and in the Kondo regime. While this is not surprising for
the underscreened and the exactly screened Kondo effect,
where the system flows toward a Fermi liquid FP [70], the
WFL is verified also in the multichannel version [38, 39],
even though the Fermi liquid picture breaks down [71–
73]. We instead attribute the value of the Lorenz ratio
found here to the fractionalization of the charge transport
originated by the MZMs [60]. Indeed, while recovering
a stable non-trivial FP typically requires a large interac-
tion in the leads, the emergence of localized degrees of
freedom triggers here a low-temperature evolution of the
system toward a non-trivial FP [21, 23, 74, 75], which
would be otherwise unstable [32]. The renormalization
of the Lorenz ratio by the universal factor 2/3 emerges
as a hallmark of the presence of MZMs at the junction,
independently of the specific platform. A generalization
to multiple wires is discussed in [59]. A violation of the
WFL in related systems has been reported numerically
in [76, 77].

As phonons carry heat, but not charge, they can affect
the measured Lorenz ratio. In a single wire, phonons
generate a quantized heat conductance [78], but the con-
tribution arising from tunneling of phonons in mesoscopic
heterostructures depends on several microscopic details
of the system [79]. In general, it does not have the char-
acteristic tensor structure of (10) and (11), since phonons
are not affected by the charging energy, which allows to
separate their effects from electronic effects. Control of
the heat carried by phonons is currently object of exten-
sive studies [25].

The devices in [80–82] potentially provide a candidate
for observing the (TK) fixed point. For instance, as-
suming an effective coupling in (3) of JK ≈ 0.02meV ,
a density of states ρ0 ∼ D−1

0 and a bandwidth
D0 ∼ Ec ∼ 0.2meV , one obtains a Kondo temperature
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TK ∼ 16mK. The off-diagonal thermal conductance
at T = 1mK is K12 ≈ 3× 104 eV

K s . Another platform
may be provided by the cold-atomic setup proposed in
[83]: for the realized trap, a thermal conductance of
K12 ≈ 3meVK s at T ∼ TK ∼ 10nK is expected. Tempera-
ture control and measurement with the required preci-
sion appears to be within reach of present-day techniques
[35, 55].
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