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Abstract. We analyze the finite-temperature scaling of the Lorenz ratio at the topological
Kondo fixed point realized at a junction of three interacting quantum wires connected to a
floating superconducting island. Using the Tomonaga-Luttinger liquid approach to the quantum
wires, we derive the full functional dependence of the finite-temperature correction on the
Luttinger parameter g.

1. Introduction and conclusions
Whenever transport through an electronic system can be described in terms of quasiparticles,
which carry both energy and charge, the ratio between thermal and electric conductance
is linear in the temperature, which is known as the Wiedemann-Franz law (WFL). The
proportionality constant takes an universal value L0, the so called Lorenz number, given by

L0 =
π2k2B
3e2
≈ 2.44× 10−8WΩK−2 [1].

While the WFL is generally well-verified in three-dimensional metals and semiconductors
at room temperature, pairing correlations, impurities and electron-phonon scattering can lead
to important deviations from the predicted Lorenz ratio [2, 3]. In mesoscopic systems, it has
been reported that the interplay of dissipation and approximate conservation laws, as well as
selective transport phenomena also lead to the breakdown of this relation [4, 5, 6]. Finally, a
most notorious violation takes place in one-dimensional Luttinger Liquids, in which the collective
excitations carry a noninteger electric charge and the Lorenz ratio is therefore renormalized by
the inverse Luttinger parameter [7]. As argued above, in order for the WFL to apply, charge
and heat must be carried by the same excitations, hence, it is eventually not surprising that
the WFL still holds in systems such as the overscreened Kondo model [8], which are known to
exhibit non-Fermi liquid correlations at low temperatures/energies [9].

Systems exhibiting phases in which charge and heat transport are “disentangled” from each
other have been identified as strongly coupled boundary fixed points (SFPs) in junctions of
interacting effectively one-dimensional systems, either fermionic [10, 11, 12, 13], or bosonic
[14, 15, 16, 17]. Nevertheless, in order to make an SFP stable at low temperatures/energies, a
strong attractive bulk interaction in each wire is required. It is worth noting that probing
charge and heat transport through the junction typically requires connecting the wires to
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large, noninteracting Fermi liquid like reservoirs, which ultimately neutralizes the effects of
bulk interactions in the Lorenz ratio [18, 19].

A striking possibility of recovering a stable SFP with an expected robust, and universal,
violation of the WFL in a weakly interacting, or even noninteracting (in the bulk) junction of
quantum wires, has been recently put forward in [20, 21]. Specifically, it has been shown that
the WFL breaks down in a robust and predictable way in a junction of N = 3 spinless quantum
wires connected to a superconducting island in its charging regime hosting a set of Majorana
modes (MMs). At low temperatures, such a system enters a non-trivial phase, associated to the
topological Kondo fixed point (TKFP) [22, 23]. The stability of the TKFP is indeed due to the
localized MMs, which eventually turn the residual boundary interaction at the SFP irrelevant
[24, 25]. As a result, the predicted violation of the WFL at the TKFP can be regarded as a
mean to detect the so far pretty elusive emerging MMs. Yet, real measurements are performed
at finite temperature. This requires the knowledge of the leading, finite-T corrections to the
conductances near by the TKFP. In order to compute them, we employ the formalism developed
in [20, 21] and as a result, beside recovering the main temperature dependence, we provide the
explicit corrections of the conductances at the TKFP on the bulk interaction in the leads.

The paper is organized as follows:

• In Section 2 we present our model Hamiltonian and review the results for the charge and
the heat transport at the TKFP.

• In Section 3 we compute the finite-T leading corrections to the conductances and to the
Lorenz ratio close to the TKFP.

2. Model Hamiltonian and charge and heat transport at the strongly coupled
fixed point
Our system consists of three interacting fermionic quantum wires connected to a floating
superconducting island, hosting a set of MMs as the only subgap degrees of freedom. The
island is characterized by the charging energy Ec and by the applied gate voltage Vg. To model
the wires, we use the spinless Luttinger liquid Hamiltonian

H0 =
3∑

a=1

u

2

∫
dx

{
g(∂xφa(x))2 + g−1(∂xθa(x))2

}
, (1)

with {φa} being the bosonic Luttinger liquid plasmon fields and {θa} being their dual fields. The
parameters u and g respectively denote the plasmon velocity and the Luttinger parameter of the
leads, g > 1(< 1) corresponding to an attractive (repulsive) bulk interaction. The ends of the
quantum wires are proximitized to the MMs with tunneling strength t. Calling ρ0 the density
of states around the Fermi energy, we focus on the limit Ec � T, t2ρ0 (Coulomb blockade) and
tune Vg in such a way that the total charge at the island is integer. One can then sum over
the leading cotunneling processes through the junction and recover an effective, purely bosonic
tunneling Hamiltonian HK

HK = −2JK

3∑
a=1

cos
[√
π(φa(0)− φa+1(0))

]
, (φa+3 ≡ φa, JK ∼ t2/Ec) . (2)

The total Hamiltonian H = H0 +HK describes a purely bosonic junction [16, 17] in which, for
g ≤ 3

4 the stable phase corresponds to the “disconnected” fixed point (DFP) while, for g ≥ 1, it

is described by a strongly coupled fixed point, the TKFP. Finally, for 3
4 < g < 1, both the DFP

and the TKFP are stable, so that there is a finite-coupling, repulsive fixed point, encoding the
quantum phase transition between the two stable phases [22, 23]. To compute the fixed point
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charge and the heat conductances, we resort to the splitting matrix approach put forward in [26].
The splitting matrix ρ is defined so that, denoting respectively with φR,a(x) and with φL,a(x)
the right- and the left-handed components of the field φa(x), one has φR,a(0) =

∑3
b=1 ρa,bφL,b(0).

Given ρ and letting Ga,b and Ka,b respectively being the charge and the heat conductance tensor
elements at the junction, one finds [20, 21]

Ga,b =
e2g

2π
{ρa,b − δa,b} , Ka,b =

πk2
BT

6
{ρ2

a,b − δa,b} . (3)

At the DFP one has ρa,b = δa,b, which implies Ga,b = Ka,b = 0 ∀a, b. At variance, at the TKFP

one finds ρa,b = 2
3 − δa,b, which implies Ga,b = e2g

π

{
1
3 − δa,b

}
and Ka,b =

2πk2BT
9

{
1
3 − δa,b

}
.

As a result, taking the (Lorenz) ratio L between the heat and the charge conductance tensor

matrix elements with the same indices, we find L =
Ka,b

TGa,b
= 2

3gL0. We therefore identify a

“bulk” renormalization of L0 by the nonuniversal factor g−1, which is typical of a the WFL in a
spinless Luttinger liquid [27, 28]. As stated above, such an effect disappears once the junction
is connected to Fermi liquid reservoirs. In addition, we see the universal (that is, independent
of the bulk interaction) factor 2

3 . This is purely determined by the junction dynamics and,
in particular, by the onset of multi-particle scattering processes at the TKFP. Probing this
renormalization should provide a remarkable piece of evidence of the presence of localized MMs
at the junction, which are deemed to be the main mechanism stabilizing the TKFP [20, 21, 17].

Typical measurements are performed at low, yet finite, temperature. For this reason, it is
important to derive how the TKFP result for L is modified at finite T , which is the topic we
address next.

3. Finite-T corrections to the Lorenz ratio close to the strongly coupled fixed point
As a reference calculation, we briefly review the derivation of the finite-T corrections at the DFP
in a perturbative expansion in JK [20, 21]. At the DFP, the boundary interaction in Eq.(2) takes
a scaling dimension g−1. Therefore, the corrections will exhibit a nontrivial scaling behavior, as
a function of the running scale T . Specifically, one finds

Ga,b(T ) = (3δa,b − 1)
2πe2Γ2(1/g)

Γ(2/g)
J̃2
K(T ) , Ka,b(T ) = T

Γ(2/g)

πgΓ4(1/g)
Φ(g−1, g−1)L0Ga,b , (4)

with Γ(z) being Euler Γ function and the running coupling J̃K(T ) = JK(2πkBT )−1+g−1
, while

the function Φ(x, y) is

Φ(x, y) =

∫
dzdw

w

sinh(πz)
|Γ(y + iw)|2|Γ(x+ i(z − w))|2 . (5)

In the non-interacting case g = 1, one finds no violation of the WFL even at finite-T .
The TKFP is accessed in the strongly coupled limit JK →∞ in which, in order to minimize

HK , one has to “pin” the field operators entering HK . To do so, we first note that, once resorting
to the center-of-mass and to the relative-field basis, X = 1√

3

∑3
a=1 φa, ϕ1 = 1√

2
{φ1 − φ2},

ϕ2 = 1√
6
{φ1 +φ2−2φ3}, HK only depends on ϕ1(0) and ϕ2(0). Thus, in order to minimize HK ,

one has to pin ϕ1(0), ϕ2(0). Accordingly, the leading boundary operator (LBO) at the TKFP
must necessarely depend only on the relative dual fields, ϑ1(0) = 1√

2
{θ1(0) − θ2(0)} and on

ϑ2(0) = 1√
6
{θ1(0) + θ2(0) − 2θ3(0)} [11, 16]. Specifically, the LBO H̃K is a linear combination

of boundary operators describing instanton “jumps” between the minima of HK [29, 30]

H̃K = −2h cos

[
4
√

2π

3
ϑ2(0)

]
− 2h

∑
α=±1

cos

[
4
√

2π

3

(
−ϑ2(0)

2
+ α

√
3ϑ1(0)

2

)]
, (6)
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h being the corresponding coupling strength. H̃K has scaling dimension d̃K = 4g
3 , which implies

the stability of the TKFP as soon as g > 3
4 . Applying the analysis of [21] to the perturbation

Eq.(6), we obtain

Ga,b(T ) =
e2g

π

{
1−AG(g)h̃2

}(
1

3
− δa,b

)
, Ka,b(T ) =

2πk2
BT

9

{
1−AK(g)h̃2

}(
1

3
− δa,b

)
,

(7)

with AG(g) = 8π2gΓ2
[

4g
3

]
/
(
3Γ
[

8g
3

])
, AK(g) = 16πg

{
5

Φ( 2g
9
, 10g

9 )
Γ[ 4g9 ]Γ[ 20g9 ]

+
Φ( 8g

9
, 4g
9 )

Γ[ 8g9 ]Γ[ 4g9 ]

}
and the

running coupling h̃ = h̃(2πkBT ) = h(2πkBT )−1+ 3g
4 . Eq.(7) is the ultimate result of this paper.

When considering the Lorenz ratio at finite T , L(T ), from Eqs.(7) we obtain

L(T ) =
2

3g
L0

{
1−AL(g)h̃2(2πkBT )

}
, (8)

with AL(g) = AK(g) − AG(g). We conclude that, in proximity of the TKFP, L(T ) takes a
nontrivial dependence on T even in the absence of a bulk interaction in the leads.
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