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Weyl semimetals harbor topological Fermi arc surface states that determine the nontrivial charge current
response to external fields. We study here the quasiparticle decay rate of Fermi arc states arising from their
coupling to acoustic phonons, as well as the phonon-limited conductivity tensor for a clean Weyl semimetal slab.
Using the phonon modes for an isotropic elastic continuum with a deformation potential coupling to electrons,
we determine the temperature dependence of the quasiparticle decay rate, both near and far away from the arc
termination points. By solving the coupled Boltzmann equations for the bulk and arc state distribution functions
in the slab geometry, we show how the linear-response conductivity depends on key parameters such as the
temperature, the chemical potential, the geometric shape of the Fermi arcs, or the slab width. The chiral nature
of Fermi arc states causes an enhancement of the longitudinal conductivity along the chiral direction at low
temperatures, together with a 1/T 2 scaling regime at intermediate temperatures without counterpart for the
conductivity along the perpendicular direction.

DOI: 10.1103/PhysRevB.105.085410

I. INTRODUCTION

Reaching a firm understanding of three-dimensional Weyl
semimetal (WSM) materials represents an important goal of
modern condensed-matter physics [1–7]. WSMs are charac-
terized by a gapped quasiparticle spectrum throughout the
Brillouin zone, with the exception of an even number of
nondegenerate band touchings called Weyl nodes. Due to
the breaking of inversion and/or time-reversal symmetry,
Kramers degeneracy is absent, and relativistic Weyl fermions
represent the relevant low-energy degrees of freedom. The
Weyl nodes act as sources (or sinks) of Berry curvature and
thus can be associated with a topological charge [8]. As a
consequence, many interesting physical effects of topological
origin have been predicted and observed in WSMs. For in-
stance, WSMs allow for striking manifestations of the chiral
Adler-Bell-Jackiw anomaly [9,10], such as a negative magne-
toresistivity in parallel electric and magnetic fields [11–18].
The relativistic low-energy Weyl cone spectrum and the as-
sociated nontrivial response to external electromagnetic fields
[19,20] represent clear hallmarks of Weyl materials.

The gapless bulk Weyl nodes must coexist on general
grounds with gapless and topologically protected Fermi arc
surface states, which connect the projections on the surface
Brillouin zone of different Weyl nodes. These surface states
are chiral, i.e., they have a unidirectional sense of propaga-
tion, and they define open curves as Fermi surface segments
[21–34]. The Fermi arc parts of the Fermi surface seamlessly
merge with the bulk quasiparticle parts at the arc termination
points [6,23,35,36]. Upon approaching the latter points, the

penetration depth of the Fermi arc surface states into the bulk
diverges.

Angle-resolved photoemission spectroscopy (ARPES) and
scanning tunneling microscopy (STM) experiments have con-
firmed the existence of Fermi arc states in various transition
metal compounds such as TaAs, TaP, NbAs, or NbP [4,5,37–
46]. Moreover, for the magnetic WSM material Co3Sn2S2,
Fermi arc states have been observed by ARPES and STM
[47,48]. These surface-sensitive probe techniques have shown
that the geometric shape and the corresponding spin orienta-
tions of a constant-energy arc in the surface Brillouin zone
depend on the specific WSM material. At the same time,
however, Fermi arc surface states are directly responsible for a
plethora of universal (material-independent) phenomena, e.g.,
density-of-states oscillations [49], supercurrent oscillations
[50], unusually quantized semiclassical orbits in a magnetic
field [51,52], or anomalous charge [22,28,53,54] and heat
transport [55,56]. Fermi arc states are also connected to the
anomalous Hall effect in magnetic WSMs [15,35,57]. The
latter has recently been observed experimentally [58–61].

Based on topological arguments, one may expect that arc
states give rise to nondissipative transport phenomena. How-
ever, the gapless nature of WSMs implies that this is a rather
subtle issue. Indeed, if arc and bulk states are connected
by some arc-bulk scattering mechanism, arc transport will
generally be dissipative. Such a mechanism has been identi-
fied in terms of elastic disorder scattering in Ref. [24]; see
also Ref. [62]. We note that Weyl points survive the pres-
ence of weak disorder [63,64], which also implies that arc
states remain well-defined [25,65]. Disorder can arise due to
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FIG. 1. WSM slab geometry. (a) The sample is infinitely ex-
tended along the (y, z) directions, with conserved momentum k‖ =
(ky, kz ), and it has the transverse width L along the x-direction.
Fermi-arc surface states are sketched in the surface Brillouin zone for
α > 0 and constant energy ε > 0. (b) Arc shapes in the (ky, kz ) plane,
see Eq. (2.19), for the surface state at x = −L/2 with constant energy
ε = 0.2kWv and different angles α = 0, 0.4, 0.8, 1.2 (from left to
right). The shaded disks indicate phase space regions where bulk
states are present. They appear slightly elongated in the z-direction
due to the anisotropy of the bulk dispersion relation.

randomly distributed impurities or due to sample inhomo-
geneities [66,67]. However, ultrahigh mobilities have been
reported for WSM materials, e.g., NbP [53], and disorder
could even be eliminated altogether in fully controlled arti-
ficial (metamaterial) WSM realizations [68].

In this work, we study the quasiparticle decay rate of
Fermi arc states and the temperature-dependent conductivity
for a clean (disorder-free) WSM slab, assuming that acoustic
phonons provide the most important electron scattering and
equilibration mechanism. We note that this quasiparticle de-
cay rate also governs the energy transfer between electrons
and phonons [69]. We will not take into account optical
phonons, which have recently been studied both theoretically
[70–75] and experimentally [76–78], but instead we will focus
on acoustic phonons, which dominate at low temperatures.
While we investigate phonon-induced effects on the elec-
tronic properties of WSMs, it is also of significant interest
to study electron-induced effects on phonon observables. For
instance, recent works have addressed the Kohn anomaly
[79–81], quantum oscillations of the sound velocity [82,83]
in WSMs, and the phonon magnetochiral effect, where one
finds a direction-dependent sound velocity in a magnetic field
[84–86]. Future theoretical work could study such phenomena
using the framework presented below.

Let us next describe the structure of this article, along with
a summary of our main results. In Sec. II, we describe our
model. The electronic properties of a WSM are modeled in
terms of a well-known inversion-symmetric two-band model
with broken time-reversal symmetry, featuring just two Weyl
nodes [87]. We consider a slab geometry with finite width
L along the x̂ direction, see Fig. 1, where the Weyl points
are separated by the vector 2kW ẑ in the bulk Brillouin zone,
and the chiral direction is denoted by the unit vector ŷ. In

Sec. II A, we diagonalize the electronic problem with bound-
ary conditions parametrized by a phenomenological angle α

[56]. At fixed energy, we obtain chiral Fermi arc surface states
whose dispersion generally has a curved geometrical shape
in the surface Brillouin zone: For α = 0, one finds straight
arcs, while α → π/2 corresponds to widely open arcs. Next,
in Sec. II B, we specify our model for the phonon Hamil-
tonian based on isotropic elastic continuum theory; see also
Refs. [88–90]. We assume that acoustic phonons couple to
electrons via the deformation potential; see Sec. II C. (Our
theory can also be adapted to other phonon models, e.g., as
obtained from ab initio calculations [91].) We introduce the
relevant Bloch-Grüneisen temperature scales in Sec. II D.

In Sec. III, we apply Boltzmann theory to the case of
phonon-induced transport in the WSM slab geometry of
Fig. 1. In Sec. III A, we present the Boltzmann equations for
the bulk and arc state distribution functions. We focus here on
the linear-response regime, where a linearized version of the
Boltzmann equations is sufficient; see Sec. III B. Since sound
velocities are typically two orders of magnitude below the
Fermi velocity, we also implement a quasielastic approxima-
tion. Finally, in Sec. III C, we discuss the decay rate for bulk
quasiparticles and the applicability conditions for our theory.

In Sec. IV, we address the temperature-dependent decay
rate � of Fermi arc states. This rate receives contributions
from arc-arc scattering, see Sec. IV A, and from arc-bulk
scattering, see Sec. IV B, and it may be observed through the
linewidth of ARPES peaks [92]. We find different temperature
scaling regimes that depend on the position along the arc. At
low temperatures and away from the arc edges, the arc-arc
contribution dominates and yields � ∝ T 3 because arc-bulk
scattering is activated in general. However, the activation en-
ergy for arc-bulk scattering vanishes upon approaching the
arc edges, where we find a low-temperature regime with � ∝
T 5/2.

In Sec. V, we discuss the temperature dependence of the
conductivity tensor. We first provide qualitative arguments
for the longitudinal conductivity along the chiral direction
(σyy), see Sec. V A, and along the perpendicular direction
(σzz), see Sec. V B. We find the same power-law scaling for
both conductivities at very low (σ j j ∝ 1/T 5) and at high
(σ j j ∝ 1/T ) temperatures. However, the chirality of arc states
admits an intermediate regime with σyy ∝ 1/T 2, which has
no counterpart in σzz. We then describe a numerical solution
of the coupled Boltzmann integral equations in Sec. V C.
The corresponding results confirm our qualitative analysis in
Secs. V A and V B. Apart from the temperature dependence
of σ j j , we study the effects of changing the surface parameter
α, the chemical potential μ, or the slab width L.

The paper concludes with an outlook in Sec. VI. Technical
details have been relegated to several Appendixes. Through-
out, the electron charge is denoted by e < 0, and we often set
kB = h̄ = 1.

II. MODEL

In this section, we describe the model employed in our
study. In Sec. II A, we introduce a two-band model for elec-
trons in a WSM slab with only two Weyl nodes [87]. We
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impose boundary conditions that depend on a phenomenolog-
ical angle α quantifying the curvature of topological Fermi
arc states in the surface Brillouin zone [56]. A description of
acoustic phonons using elastic continuum theory [88–90] is
given in Sec. II B. To allow for a theoretical description of
phonon-mediated scattering of arc as well as bulk electron
states, in Secs. II A and II B we give expressions for elec-
tron wave functions and phonon displacement fields in the
bulk of the slab as well as near its surfaces. In Sec. II C,
we discuss electron-phonon coupling in the framework of the
deformation potential, using the wave functions and displace-
ment fields calculated in Secs. II A and II B to construct the
electron-phonon matrix elements. We discuss characteristic
temperatures of our model in Sec. II D.

A. Electronic model and Fermi arc states

We start from a well-known two-band model for a WSM
with only two Weyl nodes [20,24,56,87] separated in the z
direction in reciprocal space. We consider a slab geometry for
which the system is taken as infinitely extended in the y and z
directions; see Fig. 1. We use the notation r = (x, r‖), where
r‖ = (y, z) contains the in-plane coordinates, and we use x̂,
ŷ, and ẑ to denote the unit vectors in the directions of the
coordinate axes. In the same way, the momentum is written
as k = (kx, k‖), where the in-plane momentum k‖ = (ky, kz )
is conserved because of translation symmetry in the y and z
directions. We write k = |k| and k‖ = |k‖|. In the x-direction,
the slab has width L. We choose the origin of the coordinate
system such that the surfaces of the slab are at x = ±L/2.

The electrons are described by the two-band Hamiltonian
[20,24,56,87]

H0(k) = v(σxkx + σyky) + m(kz )σz,

m(kz ) = v

2kW

(
k2

z − k2
W

)
, (2.1)

where kx = −i∂/∂x, σx,y,z are Pauli matrices acting in a com-
bined spin-orbital space, and v is the Fermi velocity. The
time-reversal symmetry-breaking parameter kW > 0 deter-
mines the distance between the two Weyl points in momentum
space, which are at k = (0, 0,±kW) and energy ε = 0. (The
separation between the two Weyl points is assumed to be par-
allel to the sample surfaces.) A lattice model that has Eq. (2.1)
as its low-energy limit was considered in Ref. [36]. One easily
checks that H0 is invariant under inversion I ,

H0(kx, k‖) = σzH0(−kx,−k‖)σz, (2.2)

and under the magnetic twofold rotation symmetry C2xT ,

H0(kx, k‖) = σzH
∗
0 (−kx, k‖)σz. (2.3)

Although these symmetries are not essential for the temper-
ature dependence of the low-temperature conductivity, their
presence helps to simplify our expressions.

At x = ±L/2, we impose boundary conditions for the two-
component spinor |�(r)〉, parametrized by the angles α± [93],

|�(±L/2, r‖)〉 = ±M(α±)|�(±L/2, r‖)〉,
M(α) = σy cos α + σz sin α. (2.4)

Equation (2.4) automatically ensures that the transverse com-
ponent of the charge current vanishes at the slab surfaces.
Inversion symmetry imposes the condition α− = −α+ ≡ α.
Similar boundary conditions have been used before for related
WSM models [24] and for different geometries [56,94,95].
The boundary condition (2.4) is compatible with the magnetic
twofold rotation symmetry (2.3) and forces the pseudospin
for x = ±L/2 to be in the yz-plane, at an angle α± with
the positive (+) or negative (−) y axis. Specifically, setting
α− = −α+ = α, Eq. (2.4) implies that

〈ξ±(α)|�(±L/2)〉 = 0, (2.5)

where

|ξ±(α)〉 =
( ± sin(π/4 + α/2)

−i cos(π/4 + α/2)

)
. (2.6)

1. Bulk states

The bulk spectrum of the Hamiltonian (2.1) is

ε
(b)
k,η=± = η

√
v2

(
k2

x + k2
y

) + m2(kz ). (2.7)

The corresponding bulk eigenstates are1∣∣�(b)
k,η

(r)
〉 = eik·r |ξk,η〉, (2.8)

with the normalized two-component spinors |ξk,η〉

|ξk,η〉 = 1√[
ε

(b)
k,η

+ m(kz )
]2 + v2

(
k2

x + k2
y

)
(

ε
(b)
k,η

+ m(kz )
v(kx + iky)

)
.

(2.9)

The bulk states have velocity

v(b)
η (k) = ∂kε

(b)
k,η

= v2(kxx̂ + kyŷ)

ε
(b)
k,η

+ vkzm(kz )ẑ

kWε
(b)
k,η

. (2.10)

In this work, we consider a positive chemical potential μ

much larger than temperature, so that the negative energies
ε

(b)
k,− can be disregarded; we will drop the index η henceforth.

For energies 0 < ε < vkW/2, which is the range correspond-
ing to well-separated Weyl nodes, the bulk density of states
(DOS) is

nb(ε) = kWε

2π2v2

(√
1 + 2ε

vkW
−

√
1 − 2ε

vkW

)
. (2.11)

With the help of the boundary condition (2.4), we may find
expressions for the bulk eigenstates of H0 near the surfaces
of the slab at x = ±L/2. Labeling the states at the boundary
by the in-plane momentum k‖ and a positive transverse mo-
mentum kx > 0, we write the bulk states near the surface at
x = ±L/2 as the combination of an incident plane wave at

1In this section, for the sake of notational simplicity, we omit
various 2π normalization factors of the plane wave states, which
are fully restored from Sec. III on. Our expressions for the coupling
matrix elements G describing the various scattering processes are not
affected by this notational simplification.
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transverse momentum ±kx and a reflected wave at transverse
momentum ∓kx,∣∣�(b)±

kx,k‖ (r)
〉 = e±ikx (x∓L/2)+ik‖·r‖

∣∣ξ(±kx,k‖ )
〉

− r±
kx,k‖e

∓ikx (x∓L/2)+ik‖·r‖
∣∣ξ(∓kx,k‖ )

〉
, (2.12)

where

r±
kx,k‖ =

〈
ξ±(α)

∣∣ξ(±kx,k‖ )
〉

〈
ξ±(α)

∣∣ξ(∓kx,k‖ )
〉 (2.13)

is the (unitary) reflection amplitude. For kx = 0 (bulk modes
propagating parallel to the surfaces), one has r±

kx,k‖ = 1, while
for ky = m(kz ) = 0 (bulk modes propagating perpendicular to
the interface), one finds r±

kx,k‖ = ie−iα .

2. Fermi arc surface states

In addition to the bulk solutions (2.12), which have real
transverse momentum kx, there are Fermi arc surface states
localized at x = ±L/2 with imaginary kx = iκ±(k‖) [87]. The
corresponding two-component spinor eigenstates decay expo-
nentially away from the respective surface with decay length
κ−1

± (k‖),∣∣�(s)±
k‖ (r)

〉 = √
2κ±(k‖) e±κ±(k‖ )(x∓L/2)+ik‖·r‖ |ξ∓(−α)〉,

(2.14)
where we find

κ±(k‖) = ∓ky sin α − m(kz )

v
cos α. (2.15)

The arc state (2.14) exists only for k‖, for which κ±(k‖) > 0,
and the dispersion relation is given by

ε
(s)±
k‖ = ±vky cos α − m(kz ) sin α. (2.16)

The velocity of the arc states near the surface at x = ±L/2
is locally orthogonal to the constant-energy arc in the surface
Brillouin zone,

v(s)±
‖ (k‖) = ±v cos(α)ŷ − kz

kW
v sin(α)ẑ. (2.17)

In later calculations, we will find it convenient to employ
the variables (ε, kz ) instead of k‖ = (ky, kz ) to parametrize the
arc states at the surface at x = ±L/2. Using Eq. (2.16), we
see that constant-energy arc states form an open curve in the
surface Brillouin zone. The termination points correspond to
an inverse penetration depth κ±(k‖) → 0, so that the arc states
spread over the entire sample, and surface and bulk states
merge [93]. The arc at constant energy ε > 0 extends in the
interval

−k̄W(ε) � kz � k̄W(ε), k̄W(ε) = kW

√
1 − 2ε

vkW
sin α.

(2.18)
If the variables (ε, kz ) are used, the y-component of the mo-
mentum as a function of the energy and kz is given by

k±
y (ε, kz ) = ±ε + m(kz ) sin α

v cos α
, (2.19)

and the inverse decay length becomes

κ±(ε, kz ) = k̄W(ε)2 − k2
z

2kW cos α
. (2.20)

When expressed in terms of the energy, κ± is the same for
both surfaces, so that we may omit the index ± if we use the
variable combination (ε, kz ).

For α = 0, one obtains a straight Fermi arc with −kW �
kz � kW for all ε and k±

y = ±ε/v. Moreover, for ε → 0, we
observe that k̄W(ε) = kW for arbitrary α. Arc shapes in the
surface Brillouin zone for a few characteristic values of (α, ε)
are illustrated in Fig. 1(b). The kz-resolved DOS associated
with Fermi arc states is given by

nFA(ε, kz ) =
∫

dky

2π
δ
(
ε − ε

(s)±
k‖

) = 1

2πv cos α
(2.21)

for −k̄W(ε) < kz < k̄W(ε). The total DOS of the arc states is
obtained by integrating Eq. (2.21) over kz,

nFA(ε) = k̄W(ε)

2π2v cos α
. (2.22)

Equation (2.22) predicts a very large DOS for widely open
Fermi arc curves with α approaching π/2, which arises be-
cause the total arc length diverges in this somewhat artificial
limit.

While the penetration depth diverges when approaching the
arc ends for kz → ±k̄W(ε), the minimal penetration depth oc-
curs at the arc center. For kz = 0, we find κ−1 ≈ (2 cos α)/kW

at small energies; see Eq. (2.20). Throughout, we assume that
kWL � 1, so that Fermi arc states on opposite surfaces have
exponentially small overlap away from the arc termination
points. Large WSM crystals of dimensions up to 1.5 mm
have been reported in the literature [43], corresponding to
kWL ∼ 106 for typical values of kW. This justifies the neglect
of the overlap of the arc states of opposing surfaces.

B. Phonon model

In this work, we study how low-energy quasiparticles in
WSMs, arc states as well as bulk states, are scattered by
acoustic phonons in the slab geometry of Fig. 1(a). Within
the isotropic elastic continuum description, the properties of
acoustic phonons are determined by only two elastic con-
stants, the longitudinal and transverse sound velocities cl and
ct , where ct < cl [88]. The sound velocities cl and ct are typi-
cally much smaller than the Fermi velocity v of the electrons.
For example, for TaAs, one has cl  2 × 103 m/s and a Fermi
velocity v  1.16 × 105 m/s [96], so that cl,t/v ∼ 10−2. We
note that the optical phonon gap in WSMs is typically of order
10 meV. For instance, density functional calculations for the
magnetic WSM material ZrCo2Sn find an optical phonon gap
∼15 meV [97]. Our theory neglects optical phonons and holds
for energies well below this scale.

Quite generally, we may distinguish three types of acous-
tic phonons in the slab geometry: longitudinal bulk phonon
modes of wave vector q = (qx, q‖), for which the displace-
ment field uq is collinear with q; transverse bulk phonon
modes, for which uq is perpendicular to q; and Rayleigh
modes, which are exponentially localized at one of the two
surfaces at x = ±L/2. For each three-dimensional wave vec-
tor q, there are one longitudinal and two transverse bulk
modes with frequencies (l )

q = clq and (t )
q = ct q, respec-

tively; for each in-plane wave vector q‖, there is additionally
one Rayleigh mode at each interface.
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While the full phonon spectrum for an isotropic elastic
continuum in the slab geometry is known [88,90,98], for a
theory of phonon-mediated scattering between bulk electrons,
between arc states, and between arc and bulk states, it is
sufficient to know the phonon modes in the bulk and in the
vicinity of the surfaces at x = ±L/2, respectively. For this
purpose, it suffices to consider an infinite or semi-infinite
geometry, which simplifies calculations considerably. Note
that the same approach was taken in Sec. II A for the electronic
wave functions.

The equation of motion for the displacement field u(r, t ) =
u(r)e−it is

−2u = c2
t ∇2u + (

c2
l − c2

t

)∇(∇ · u). (2.23)

Since the transverse phonon modes have no deformation po-
tential, in the interior of the slab only the longitudinal acoustic
mode couples to the electrons. For a longitudinal mode with
wave vector q, the displacement is in the direction

û(l )(q) = (qxx̂ + q‖)/q. (2.24)

The corresponding displacement field is

u(r) =
∫

dq
eiq·r√

2ρM
(l )
q

[
a(l )

q û(l )(q) + a(l )†
−q û(l )(−q)

]
,

(2.25)
where ρM is the volume mass density and a(l )

q is the annihila-
tion operator for the longitudinal phonon mode.

At the surfaces with x = ±L/2, we apply stress-free
boundary conditions [88],(

c2
l − 2c2

t

)∇ · u = −2c2
t ∂xux,

0 = ∂xuy + ∂yux, (2.26)

0 = ∂xuz + ∂zux.

The boundary conditions are compatible with the inversion
symmetry I and the magnetic twofold rotation symmetry
C2xT . To find the displacement fields in the vicinity of the sur-
faces at x = ±L/2, it is necessary to consider the transverse
phonon modes, too. The reason is that the boundary condition
at x = ±L/2 couples longitudinal and transverse modes. The
transverse modes can be separated into a mode for which the
displacement u is in the plane spanned by x̂ and q̂‖ = q‖/q‖,
and a mode for which u is perpendicular to both x̂ and q̂‖.
The boundary condition at x = ±L/2 only mixes the first
of these two transverse modes with the longitudinal mode.
The displacement of this transverse mode is in the direction
(q‖x̂ − qxq̂‖)/q, and we choose

û(t )(q) = i(q‖x̂ − qxq̂‖)/q (2.27)

so that we have

û(λ)(−q)∗ = −û(λ)(q), λ = l, t . (2.28)

The second transverse phonon mode is a horizontal shear
wave, which is not mixed with the longitudinal mode upon
reflection at the surface. This mode has no associated defor-
mation potential and, hence, need not be discussed further.

Upon reflection from the interface, the in-plane wave vec-
tor q‖ and the frequency  are conserved, but the transverse
wave-vector component qx is not. Specifically, a transverse

mode with transverse wave-vector component ±qx (with qx >

0) incident on the surface at x = ±L/2 is reflected as a su-
perposition of a transverse mode with ∓qx and a longitudinal
mode with transverse wave-vector component

q(l,t )
x ≡ 1

cl

√
q2c2

t − q2
‖c2

l . (2.29)

In the same way, a longitudinal mode with transverse wave-
vector component ±qx incident on the surface at x = ±L/2 is
reflected as a superposition of a longitudinal mode with ∓qx

and a transverse mode with transverse wave-vector compo-
nent

q(t,l )
x ≡ 1

ct

√
q2c2

l − q2
‖c2

t . (2.30)

The normalized displacement field w(λ)±,in
qxq‖ of a mode incident

on the surface at x = ±L/2 with a longitudinal (λ = l) or
transverse (λ = t) polarization contains contributions from
the incident and the reflected waves,

w(λ)±,in
qx,q‖ (x) = e±iqx (x∓L/2)û(λ)(±qx, q‖)

+
∑
λ′

s(λ′,λ)±
qx,q‖ e∓iq(λ′ ,λ)

x (x∓L/2)û(λ′ )( ∓ q(λ′,λ)
x , q‖

)
,

(2.31)

where q(λ,λ)
x = qx. Explicit expressions for the reflection am-

plitudes s± are given in Appendix A. In the same way, one
finds that the normalized displacement field of a phonon re-
flected from the surface at x = ±L/2 in mode λ is

w(λ)±,out
qx,q‖ (x) = e∓iqx (x∓L/2)û(λ)(∓qx, q‖)

+
∑
λ′

s(λ′,λ)±∗
qx,q‖ e±iq(λ′ ,λ)

x (x∓L/2)û(λ′ )( ± q(λ′,λ)
x , q‖

)
.

(2.32)

Since ct < cl , the transverse wave number q(l,t )
x of the lon-

gitudinal mode may be imaginary. If that is the case, the
longitudinal phonon mode decays exponentially away from
the surface at x = ±L/2. Equation (2.31) also holds in this
case, provided the square root with the positive imaginary part
is chosen in Eq. (2.29).

Equation (2.23) also allows for solutions that are exponen-
tially localized at the surfaces at x = ±L/2. These are called
Rayleigh modes, and their frequency is [90,99,100]

(R)
q‖ = cRq‖, (2.33)

where cR < ct . The precise value of the Rayleigh-mode ve-
locity cR depends on the ratio cl/ct [100]. The Rayleigh mode
may be considered as a superposition of longitudinal and
transverse phonon modes with imaginary qx,

q(λ,R)
x = i

q‖
cλ

√
c2
λ − c2

R, λ = l, t . (2.34)

The normalized displacement field for the Rayleigh mode at
the surface at x = ±L/2 then reads

w(R)±
q‖ (x) =

∑
λ′

s(λ′,R)±
q‖ e±|q(λ′ ,R)

x |(x∓L/2)û(λ′ )( ∓ q(λ′,R)
x , q‖

)
,

(2.35)
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where the coefficients s(λ′,R)±
q‖ are determined by the boundary

conditions. The normalization of the displacement field for
the Rayleigh modes is chosen such that

∫
dx|w(R)±

q‖ (x)|2 = 1.
We again refer to Appendix A for detailed expressions for the
coefficients.

Combining contributions from bulk and surface modes, we
may write the displacement field in the vicinity of the interface
at x = ±L/2 as

u(r) =
∑
λ=l,t

∫ ∞

0
dqx

∫
dq‖

eiq‖·r‖√
2ρM

(λ)
q

× [
w(λ)±,in

qx,q‖ (x)a(λ)±,in
qx,q‖ + w(λ)±,out∗

qx,−q‖ (x)a(λ)±,out†
qx,−q‖

]
+

∫
dq‖

eiq‖·r‖√
2ρM

(R)
q‖

[
w(R)±

q‖ (x)a(R)±
q‖

+ w(R)±∗
−q‖ (x)a(R)±†

−q‖

]
, (2.36)

where a(λ)±,in
qx,q‖ and a(λ)±,out

qx,q‖ are the annihilation operators for
a longitudinal (λ = l) or transverse (λ = t) bulk phonon of
in-plane wave vector q‖ and transverse wave-vector compo-
nent ±qx incident on or reflected from the interface at x =
±L/2, respectively, and a(R)±

q‖ is the annihilation operator for
a Rayleigh surface phonon of in-plane wave vector q‖ at the
interface at x = ±L/2.

The phonon model described here captures the essential
physics of phonon-induced scattering in WSMs while allow-
ing for analytical progress. Since WSMs are typically found in
anisotropic materials [43], where also so-called chiral phonon
modes are possible [101] (for experiments on WSMs with
broken inversion symmetry, see Ref. [102]), this model may
be too simple to allow for a detailed quantitative compari-
son with experimental data. However, many low-T transport
phenomena are directly linked to scattering properties of
topological arc states, which are largely independent of the
detailed phonon model.

C. Electron-phonon interaction

Next we address the coupling between electrons and
phonons, where we focus on the electron-phonon interaction
Hamiltonian Hep resulting from the deformation potential.
Other coupling mechanisms or more exotic vibrational modes,
such as chiral phonons [101,103], may also emerge in
low-energy WSM theories. For example, the coupling to
unconventional pseudoscalar phonons can generate a defor-
mation potential that is different for Weyl nodes of opposite
chiralities [70,71]. Furthermore, elastic gauge field inter-
actions (“pseudomagnetic fields”) have been addressed in
Refs. [71,104–108], and piezoelectric interactions can be im-
portant in WSMs with broken inversion symmetry [109]. With
minor modifications, such types of couplings can be included
in our theory; see also Ref. [98]. For definiteness, however,
we focus on the deformation potential, which often gives
the dominant electron-phonon coupling in WSM materials
[69,71,110].

We assume here that the electron-phonon interaction is
diagonal in spin-orbital space and is given by [89,98]

Hep = g0∇ · u(r), (2.37)

with a deformation potential coupling g0 (of dimension en-
ergy). The displacement field u(r) is expressed in terms of
phonon creation and annihilation operators as in Eq. (2.36).
Using Thomas-Fermi theory for a simple estimate [69,111],
one obtains g0 ∼ n/nb(μ), where n is the electron density and
nb(ε) is the bulk DOS; see Eq. (2.11). We therefore expect
large values of g0 for 0 < μ � vkW. However, since g0 is
affected by screening processes, it is difficult to reliably es-
timate its value for realistic materials. Strong electron-phonon
couplings have recently been reported for the type-II WSM
material WP2 [78].

For phonon-mediated scattering of electrons in the inte-
rior of the slab, there is a contribution from longitudinal
phonons only. Upon substitution of Eqs. (2.8) and (2.25) into
Eq. (2.37), we find that the matrix element for scattering
between bulk states |�(b)

k 〉 is of the form [26]〈
�

(b)
k′

∣∣Hep

∣∣�(b)
k

〉 = G (bbl )
k′,k

(
a(l )

q − a(l )†
−q

)
(2.38)

with q = k′ − k. The bulk-bulk amplitudes Gk,k′ are

G (bbl )
k′,k = i

g0

√


(l )
q

cl
√

2ρM
〈ξk′ |ξk〉. (2.39)

We note in passing that the factor 〈ξk′ |ξk〉 in Eq. (2.39) is
characteristic for Weyl fermions and causes a suppression
of intranode backscattering. Since this factor is absent for
conventional fermions, the bulk-bulk decay rate is reduced by
a factor 1/2 in the Weyl case; see Eq. (3.27) below.

Taking the phonon modes to be in thermal equilibrium at
temperature T , according to Fermi’s golden rule, the corre-
sponding bulk-bulk transition rate is

W (bb)
k′,k = 2π

∣∣G (bbl )
k′,k

∣∣2{
nB

(
(l )

q

)
δ
(
ε

(b)
k′ − ε

(b)
k − (l )

q

)
+ [

nB
(
(l )

q

) + 1
]
δ
(
ε

(b)
k′ − ε

(b)
k + (l )

q

)}
, (2.40)

where nB() is the Planck function (Bose-Einstein function at
zero chemical potential).

To obtain the matrix elements for scattering between arc
states, or between arc and bulk states, at the surface at x =
±L/2, we substitute Eqs. (2.12) and (2.14) for the electronic
states and Eqs. (2.36) for the displacement field. This gives
arc-bulk interaction matrix elements of the form〈

�
(b)±
k′

x,k
′
‖

∣∣Hep

∣∣�(s)±
k‖

〉
=

∑
λ=l,t

∫ ∞

0
dqxG (bsλ)±

k′,k‖,qx

(
a(λ)±,in

qx,q‖ − a(λ)±,out†
qx,−q‖

)

+ G (bsR)±
k′,k‖

(
a(R)±

q‖ − a(R)±†
−q‖

)
(2.41)

with q‖ = k′
‖ − k‖. Because Hep is local, there is no direct

phonon-induced scattering between arc states at different sur-
faces. Of course, electrons may transition between different
surfaces via intermediate bulk states. Such processes are ac-
counted for in the Boltzmann theory that will be developed
in Sec. III. Detailed expressions for the arc-arc amplitudes
G (ss)± and the arc-bulk amplitudes G (sb)± and G (bs)± are given
in Appendix B, where we also specify the matrix elements of
Hep for bulk-arc and arc-arc scattering.

The arc-arc, arc-bulk, and bulk-arc transition rates have
contributions from scattering mediated by longitudinal bulk,
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transverse bulk, and Rayleigh phonons. In particular, the arc-
bulk transition rate has the form

W (bs)±
k′,k‖ = 2π

∑
λ=l,t

∫ ∞

0

dqx

2π

∣∣G (bsλ)±
k′,k‖,qx

∣∣2

×{
nB

(
(λ)

q

)
δ
(
ε

(b)
k′ − ε

(s)±
k‖ − (λ)

q

)
+ [

nB
(
(λ)

q

) + 1
]
δ
(
ε

(b)
k′ − ε

(s)±
k‖ + (λ)

q

)}
+2π

∣∣G (bsR)±
k′,k‖

∣∣2{
nB

(
(R)

q‖

)
δ
(
ε

(b)
k′ − ε

(s)±
k‖ − (R)

q‖

)
+[

nB
(
(R)

q‖

) + 1
]
δ
(
ε

(b)
k′ − ε

(s)±
k‖ + (R)

q‖

)}
, (2.42)

where q‖ = k′
‖ − k‖ and q = (qx, q‖). Expressions for the

bulk-arc and arc-arc transition rates are given in Appendix B.

D. Characteristic temperatures

For conventional electron-phonon coupled systems, the
crossover temperature separating the low- and high-T regimes
is the Bloch-Grüneisen temperature TBG = 2cphkF , where
cph is the sound velocity and kF is the Fermi momentum
[112]. Only phonons with momentum q ∼ 2kF can effi-
ciently backscatter electrons. The frequency of such phonons
is ∼2cphkF . Clearly, for T � TBG, such processes are rare
events, while they proliferate for T � TBG.

For the WSM model considered in this paper, it is useful to
introduce an “effective Bloch-Grüneisen” crossover tempera-
ture as

kBTBG = cl kW. (2.43)

The rationale behind Eq. (2.43) is that momentum exchange
for arc-arc scattering and for scattering between the Weyl
cones is naturally limited by q � kW, since 2kW is the distance
between the Weyl points and the “length” of the Fermi arcs in
reciprocal space. For T � TBG, phonons with q � kW domi-
nate the phonon-induced scattering. For arc states, scattering
is then local in reciprocal space. For bulk states, the two Weyl
points are effectively decoupled if T � TBG.

In practice, TBG can depend weakly on other parameters,
e.g., the angle α, the chemical potential μ, or the relevant
phonon mode. We disregard such details here and use the
longitudinal sound velocity cl to define the effective Bloch-
Grüneisen temperature. (Note that the various phonon mode
velocities differ by factors of order 1, which is not relevant
for the definition of a crossover scale.) To give an estimate,
for the WSM material TaAs, the closest pair of Weyl nodes
is separated by kW ≈ 0.1π/a0, with the lattice constant a0 
3.4 × 10−10 m [43]. Using cl ≈ 2 × 103 m/s [96,113], we
obtain TBG ≈ 13 K.

For bulk quasiparticles, there is a second characteristic
temperature for intranode scattering processes, which is the
conventional Bloch-Grüneisen temperature corresponding to
the radius μ/v of the Fermi surface at each Weyl node,

kBT (b)
BG = 2clμ/v. (2.44)

We observe that for 0 < μ � vkW, an intermediate tempera-
ture regime opens up,

T (b)
BG � T � TBG, (2.45)

where the phonon-induced internode backscattering of bulk
quasiparticles is frozen out, but backscattering processes
within a given Weyl node can proliferate at the same time.

III. BOLTZMANN THEORY

We now describe the Boltzmann approach [111] for the
calculation of phonon-induced electronic transport observ-
ables in a clean WSM slab, using the model discussed in
Sec. II. The applicability of the Boltzmann equation requires
that the slab width L � v/μ is much larger than the elec-
tron wavelength and that L � cl/T is much larger than the
thermal phonon wavelength. We consider a chemical potential
T � μ � kWv, so that the two Fermi surfaces at the two Weyl
nodes are well separated in reciprocal space. This condition
automatically ensures that the slab width is much larger than
the typical transverse width of the arc states.

We consider the linear response of the system to a ho-
mogeneous electric field E‖ = Eyŷ + Ezẑ applied parallel to
the surface; see Fig. 1(a). Along the transverse direction, the
current must vanish (Jx = 0) such that the induced transverse
gradient of the electrochemical potential will be implicitly
determined by Ey,z. The relation between the in-plane elec-
trical field E‖ and the in-plane current density J‖ defines the
conductivity tensor, J‖ = σ̂E‖. The resistivity tensor is then
given by ρ̂ = σ̂−1.

In Sec. III A, we discuss the Boltzmann equations for a
WSM slab in a uniform in-plane electric field, using the
transition rates for phonon-induced scattering from Sec. II C.
Since we study only the linear transport regime in this work,
it is sufficient to linearize the distribution functions and the
collision integrals with respect to the applied electric field;
see Sec. III B. In addition, the smallness of the ratio between
sound and Fermi velocities allows us to employ a quasielastic
approximation such that the linearized Boltzmann equations
can be solved for each electron energy ε separately. Con-
ditions for the validity of the Boltzmann approach and the
various approximations used are discussed in Sec. III C.

A. Boltzmann equation

The Boltzmann equation describes the dynamics and the
spatial variations of the distribution functions f (b)

k (r, t ) and
f (s)±
k‖ (r‖, t ) of bulk electrons and arc states. For the case of a

time-independent homogeneous in-plane electric field E‖, the
distribution functions are independent of r‖ and t . Moreover,
we assume that the typical time for bulk-arc scattering is large
in comparison to the transit time across the width of the slab,
so that the bulk distribution function is also independent of the
transverse coordinate x. (The precise conditions are discussed
in Sec. III C.) With these simplifications, the Boltzmann equa-
tion takes the form

eE‖ · ∂k f (b)
k = I (bb)

k + 1

L

∑
±

I (sb)±
k , (3.1)

eE‖ · ∂k‖ f (s)±
k‖ = I (ss)±

k‖ + I (bs)±
k‖ , (3.2)

where I (bb), I (sb)±, I (bs)±, and I (ss)± are the collision inte-
grals for bulk-bulk, bulk-arc, arc-bulk, and arc-arc scattering,
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respectively.2 The factor 1/L in Eq. (3.1) arises from a proper
consideration of the normalization of bulk and surface elec-
tron states. Specular reflection at the surfaces of the slab at
x = ±L/2 implies the conditions

f (b)
(kx,k‖ ) = f (b)

(−kx,k‖ ), (3.3)

consistent with the form (2.12) of the bulk states at the sample
surfaces. We will use Eq. (3.3) to restrict consideration of the
bulk distribution function f (b)

k to positive values of kx.
The collision integrals are then expressed in terms of the

transition rates discussed in Sec. II C. For the bulk-bulk and
arc-bulk collision integrals, we have

I (bb)
k =

∫ ∞

−∞

dk′
x

2π

∫ dk′
‖

(2π )2

{
W (bb)

k,k′ f (b)
k′

(
1 − f (b)

k

)
−W (bb)

k′,k f (b)
k

(
1 − f (b)

k′
)}

,

I (bs)±
k‖ =

∫ ∞

0

dk′
x

2π

∫ dk′
‖

(2π )2

{
W (sb)±

k‖,k′ f (b)
k′

(
1 − f (s)±

k‖

)
−W (bs)±

k′,k‖ f (s)±
k‖

(
1 − f (b)

k′
)}

. (3.4)

The transition rates W (bb) and W (bs) are given in Eqs. (2.40)
and (2.42), respectively. The transition rate W (sb) is given in
Eq. (B10), and the collision integrals for bulk-arc and arc-arc
scattering can be found in Appendix C. Our expressions for
the transition rates ensure that these collision integrals vanish
identically in thermal equilibrium.

Next we observe that the in-plane current density

J‖ = J(b)
‖ +

∑
±

J(s)±
‖ (3.5)

has contributions from the bulk and from the current carried
by the arc states,

J(b)
‖ = eL

∫
dk

(2π )3
v(b)

‖ (k) f (b)
k , (3.6)

J(s)±
‖ = e

∫
dk‖

(2π )2
v(s)±

‖ (k‖) f (s)±
k‖ . (3.7)

Here v(b)
‖ (k) is the in-plane velocity of bulk states, see

Eq. (2.10), and v(s)±
‖ (k‖) is the velocity of the arc states at the

surface at x = ±L/2, see Eq. (2.17). The factor L in Eq. (3.6)
arises because we consider two-dimensional current densities,
so the bulk current density is actually integrated over x, which
produces the factor L. The transverse response to the applied
field is characterized by the difference eV⊥ of the chemical
potentials for the surface states at the surfaces at x = L/2 and
x = −L/2,

eV⊥ =
∫

dk‖
(2π )2

f (s)+
k‖ − f (s)−

−k‖

nFA
(
ε

(s)+
k‖

) , (3.8)

where nFA(ε) is the DOS of arc states in Eq. (2.22).

2In addition, there is a Berry curvature component along the x-
direction. However, this term does not generate a net Hall response,
and it can safely be ignored here.

B. Linear response and quasielastic approximation

To linear order in the applied electric field, we may expand
the arc-state distribution function as

f (s)±
k‖ = nF

(
ε

(s)±
k‖

) + ϕ
(s)±
k‖

(
−

dnF
(
ε

(s)±
k‖

)
dε

(s)±
k‖

)
, (3.9)

where nF(ε) = 1/(e(ε−μ)/T + 1) is the Fermi-Dirac distri-
bution function. Similarly, the linearized bulk distribution
function f (b)

k is encoded by ϕ
(b)
k . With this ansatz, the colli-

sion integrals are expanded to linear order in ϕ
(b)
k and ϕ

(s)±
k‖ ,

whereas the distribution functions on the left-hand side of
Eqs. (3.1) and (3.2) can be replaced by the equilibrium dis-
tribution functions.

After linearization, the Boltzmann equation becomes

−eE‖ · v(b)
‖ (k) = J (bb)

k + 1

L

∑
±

J (sb)±
k , (3.10)

−eE‖ · v(s)±
‖ (k‖) = J (bs)±

k‖ + J (ss)±
k‖ , (3.11)

where the linearized collision integrals for bulk-bulk and arc-
bulk scattering are given by

J (bb)
k =

∫ ∞

−∞

dk′
x

2π

∫ dk′
‖

(2π )2
W (bb)

k′,k

(
ϕ

(b)
k′ − ϕ

(b)
k

)
,

J (bs)±
k‖ =

∫ ∞

0

dk′
x

2π

∫ dk′
‖

(2π )2
W (bs)±

k′,k‖

(
ϕ

(b)
k′ − ϕ

(s)±
k‖

)
. (3.12)

The bulk-bulk kernel W (bb)
k′,k reads

W (bb)
k′,k = 2π

∣∣G (bbl )
k′,k

∣∣2{[
nB

(
(l )

q

) + nF
(
ε

(b)
k + (l )

q

)]
× δ

(
ε

(b)
k′ − ε

(b)
k − (l )

q

)
+ [

nB
(
(l )

q

) + 1 − nF
(
ε

(b)
k − (l )

q

)]
×δ

(
ε

(b)
k′ − ε

(b)
k + (l )

q

)}
, (3.13)

where q = k′ − k, and the arc-bulk kernel is given by

W (bs)±
k′,k‖ = 2π

∑
λ

∫ ∞

0

dqx

2π

∣∣G (bsλ)±
k′,k‖,qx

∣∣2{[
nB

(
(λ)

q

)
+ nF

(
ε

(s)±
k‖ + (λ)

q

)]
δ
(
ε

(b)
k′ − ε

(s)±
k‖ − (λ)

q

)
+[

nB
(
(λ)

q

) + 1 − nF
(
ε

(s)±
k‖ − (λ)

q

)]
× δ

(
ε

(b)
k′ − ε

(s)±
k‖ + (λ)

q

)}
+2π

∣∣G (bsR)±
k′,k‖

∣∣2{[
nB((R)

q‖ ) + nF
(
ε

(s)±
k‖ + (R)

q‖

)]
×δ

(
ε

(b)
k′ − ε

(s)±
k‖ − (R)

q‖

)
+2π

[
nB

(
(R)

q‖

) + 1 − nF
(
ε

(s)±
k‖ − (R)

q‖

)]
×δ

(
ε

(b)
k′ − ε

(s)±
k‖ + (R)

q‖

)}
, (3.14)

where q‖ = k′
‖ − k‖. Contributions involving phonon emis-

sion or absorption can easily be identified in the above
expressions. Expressions for the bulk-arc and arc-arc colli-
sion terms along with the associated kernels are specified in
Appendix C; see Eq. (C3).
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Since the sound velocities cl , ct , and cR are generally much
smaller than the Fermi velocity v, the typical change of the
electronic energy is small in comparison to the character-
istic energy scales μ and kWv for chemical potential T �
μ � kWv. This motivates the “quasielastic” approximation,
in which the phonon energies are dropped from the energy-
conserving δ functions in Eqs. (3.13), (3.14), and (C3). The
phonon energies are retained in the arguments of the Planck
functions nB and Fermi-Dirac functions nF.

Because energy is conserved after making the quasielastic
approximation, it is advantageous to use the energy ε to label
bulk states and arc states. For the bulk states, we eliminate
the transverse momentum kx in favor of ε; for the arc states,
we replace ky in favor of ε. The integration over k′

x (for bulk
states) and over k′

y (for arc states) in the expressions for the
collision integrals can be performed with the help of the δ

functions of energy in the scattering kernels of Eqs. (3.13),
(3.14), and (C3), using∫ ∞

0

dk′
x

2π
δ
(
ε

(b)
k′ − ε

) = 1

2π
∣∣v(b)

x (ε, k′
‖)

∣∣ ,∫ dk′
y

2π
δ
(
ε

(s)±
k′

‖
− ε

) = 1

2π
∣∣v(s)±

y (ε, k′
z )

∣∣ , (3.15)

where v(b)
x (ε, k‖) = ∂ε

(b)
k /∂kx and v(s)±

y (ε, kz ) = ∂ε
(s)±
k‖ /∂ky

are the x and y components of the velocities of bulk and arc
states, respectively; see Eqs. (2.10) and (2.17). The range of
kz-values at energy ε is −k̄W(ε) � kz � k̄W(ε); see Eq. (2.18).

In this notation, the equations of motion for the linear-
response corrections to the distribution function read

−eE‖ · v(b)
‖ (ε, k‖) = J (bb)

ε,k‖ + 1

L

∑
±

J (sb)±
ε,k‖ , (3.16)

−eE‖ · v(s)±
‖ (ε, kz ) = J (bs)±

ε,kz
+ J (ss)±

ε,kz
, (3.17)

where the collision integrals are obtained from Eqs. (3.12)
using the procedure described above. We refer to Appendix C
for a detailed discussion of these collision integrals. The ex-
pressions (3.5)–(3.8) for the in-plane current density and the
transverse voltage then become

J(b)
‖ = 2eL

∫
dk‖

(2π )2

∫
dε

2π

v(b)
‖ (ε, k‖)∣∣v(b)
x (ε, k‖)

∣∣
(

−dnF(ε)

dε

)
ϕ

(b)
ε,k‖ ,

J(s)±
‖ = e

∫
dkz

2π

∫
dε

2π

v(s)±
‖ (ε, k‖)∣∣v(s)±
y (ε, kz )

∣∣
(

−dnF(ε)

dε

)
ϕ

(s)±
ε,kz

,

(3.18)

and

eV⊥ =
∫

dkz

2π

∫
dε

2π

ϕ
(s)+
ε,kz

− ϕ
(s)−
ε,−kz

nFA(ε)
∣∣v(s)+

y (ε, kz )
∣∣
(

−dnF(ε)

dε

)
.

(3.19)
Since in the quasielastic approximation the energy ε is con-
served, the label ε will be dropped from the expressions if
no confusion is possible. Finally, we note that the inversion
symmetry of the problem allows us to reduce the number of
degrees of freedom by one-half. The corresponding symmetry
relations are summarized in Appendix C.

C. Scattering rate for bulk electrons

The scattering rate for bulk electrons is given by

�
(bb)
k =

∫
dk′

x

2π

∫ dk′
‖

(2π )2
W (bb)

k′,k , (3.20)

see Eq. (3.13). The probability of bulk-arc scattering for an
electron incident on the surface at x = ±L/2 is given by

P(sb)±
k = 1∣∣v(b)

x (k)
∣∣
∫ dk′

‖
(2π )2

W (sb)±
k′

‖,k
, (3.21)

where v(b)
x (k) is the transverse velocity; see Eq. (2.10). A

necessary condition for the use of Fermi’s golden rule to
calculate the transition rates is

P(sb)±
k � 1. (3.22)

Since the rates for phonon-induced scattering are strongly
temperature-dependent, this condition is always satisfied at
sufficiently low temperatures. We also assume that

P(sb)±
k �

∣∣v(b)
x (k)

∣∣
L�

(bb)
k

. (3.23)

This inequality ensures that the transit time of electrons be-
tween opposite surface is less than the escape time into the arc
states, so that the distribution function of electrons in the bulk
is uniform across the cross section of the slab. The inequality
(3.23) follows from the inequality (3.22) if the bulk mean
free path for electron-phonon scattering is larger than the slab
width L, but it may still be satisfied if that is not the case. [In
the ultralow-temperature regime T � T (b)

BG , the rate �
(bb)
k in

Eq. (3.23) should be replaced by the transport scattering rate,
which leads to an even weaker condition on the slab width L
than Eq. (3.23).]

We now consider the regime μ � kWv, where the interme-
diate temperature window T (b)

BG � T � TBG opens up. Here
the Bloch-Grüneisen temperature T (b)

BG for intranode scattering
of bulk quasiparticles has been defined in Eq. (2.44). Within
this temperature window, the scattering rate for bulk quasipar-
ticles with energy ε = μ can be calculated from Eq. (3.20),
see also Appendix C, as

�(bb) = �0
T T (b)2

BG

T 3
BG

�(bb,2), (3.24)

where �0 is a characteristic energy scale for the electron-
phonon scattering rate,

�0 = g2
0k3

W

ρMclv
, (3.25)

and �(bb,2) is a dimensionless numerical constant. For μ �
kWv, we find �(bb,2) = 1/8π . On the other hand, in the high-
temperature limit T � TBG (but still T � kWv), one arrives at
a similar result as in Eq. (3.24),

�(bb) = �0
T T (b)2

B

T 3
BG

�(bb,1), (3.26)

but with a different numerical constant �(bb,1). For μ � kWv,
we obtain �(bb,1) = 2�(bb,2) since now bulk quasiparticles can
also be efficiently scattered between different Weyl nodes. In
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the low-temperature limit T � T (b)
BG , internode scattering is

suppressed and intranode scattering implies

�(bb) = �0
T 3

T 3
BG

�(bb,3), (3.27)

with the numerical constant �(bb,3) = 7ζ (3)/4π . Here ζ (s) is
the Riemann zeta function and ζ (3)  1.202.

Using g0 ∼ 1 eV and the above-mentioned TaAs material
parameters with ρM ≈ 12 g/cm3 for a rough estimate, we find
�0 ∼ 80 GHz and hence �0/TBG ∼ 0.3. The linear tempera-
ture dependence in Eq. (3.24) reflects the fact that intranode
backscattering processes proliferate in the temperature regime
(2.45). The Boltzmann approach requires a sufficiently high
charge-carrier density, μ � �

(bb)
k [13]. This situation is com-

monly realized in experiments [40,43]. We note that very
low carrier densities ∼1019/cm3 have been reported for TaAs
[114]. For μ → 0, a conductivity minimum is then expected,
where disorder may cause puddles with local variations of the
chemical potential [115]. Such effects are beyond the scope
of Eqs. (3.1) and (3.2). Using the above parameter estimates,
Eq. (3.24) predicts a bulk mean free path �ph � 1 mm for T �
TBG. We conclude that in a disorder-free WSM slab at low
temperatures, electrons move ballistically along the transverse
(x̂) direction, i.e., L � �ph(T ), for slab width L � 1 mm, such
that the condition (3.23) is satisfied.

IV. FERMI ARC QUASIPARTICLE DECAY RATE

In this section, we discuss the phonon-induced scattering
rate for Fermi arc states, which is the sum of the rate �

(ss)±
k‖ for

arc-arc scattering and the rate �
(bs)±
k‖ for arc-bulk scattering,

�
(ss)±
k‖ =

∫ dk′
‖

(2π )2
W (ss)±

k′
‖,k‖

,

�
(bs)±
k‖ =

∫ ∞

0

dk′
x

2π

∫ dk′
‖

(2π )2
W (bs)±

k′
‖,k‖

. (4.1)

Expressions for the kernels W (ss) and W (bs) are given in
Eqs. (C3) and (3.14), respectively. For each rate in Eq. (4.1),
contributions from different phonon types add up. For simplic-
ity, we focus on the Fermi arc states at the surface x = +L/2
and omit the superscript + in what follows. We then separately
describe the scattering rates �

(ss)
k‖ and �

(bs)
k‖ and their tempera-

ture dependence, where (unless noted otherwise) we focus on
the regime |ε − μ| � T .

A. Arc-arc decay rate

We consider first the decay rate of a Fermi arc surface
state with in-plane momentum k‖ and energy ε = ε

(s)+
k‖ due

to phonon-induced arc-arc scattering. Using the expressions
in Sec. II B and in Appendix C, this rate is given by

�
(ss)
k‖ = 2

∫
dk′

z

2π
∣∣v(s)+

y (ε, k′
z )

∣∣
[∣∣G (ssR)

k′
‖,k‖

∣∣2F (cRq‖)

+
∑
λ=l,t

∫ ∞

0

dqx

2π

∣∣G (ssλ)
k′

‖,k‖,qx

∣∣2F (cλq)

]
, (4.2)

where we defined

F () = nB() + 1
2 [nF(ε + ) + 1 − nF(ε − )]. (4.3)

For |ε − μ| � T , Eq. (4.3) can be simplified to F () =
1/ sinh(/T ). In Eq. (4.2), we use k′

‖ = k′
yŷ + k′

zẑ with k′
y be-

ing the solution of ε
(s)+
k′

‖
= ε, q‖ = k′

‖ − k‖, and q = (qx, q‖).

From the Fermi arc dispersion relation (2.16), we find that

qy = qz(2kz + qz )

2kW
tan α (4.4)

for the surface at x = L/2.
Representative numerical results for the temperature de-

pendence of the arc-arc decay rate are shown in Fig. 2(a).
In the low-temperature regime T � TBG, with the effective
Bloch-Grüneisen temperature in Eq. (2.43), we observe that
the Rayleigh mode quantitatively gives the largest contribu-
tion since this phonon mode has the lowest frequency. The
contributions from bulk (λ = l, t ) phonon modes give the
same temperature dependence but come with a smaller pref-
actor. At high temperatures, T � TBG, bulk modes give the
dominant contribution.

For temperatures T � TBG, we may approximate F () ≈
T/. After the integration over k′

z in Eq. (4.2), one finds

�
(ss)
k‖ ≈ �0

T T ∗(ε, kz )

T 2
BG

�(ss,1)(ε, kz )

= 2πλ(ss)(ε, kz )T, (4.5)

with the rate �0 in Eq. (3.25). The temperature scale

T ∗(ε, kz ) = κ (ε, kz )

kW
TBG (4.6)

goes to zero at the arc ends, see Eq. (2.20), and �(ss,1) is
a dimensionless numerical coefficient that depends on the
position kz along the arc. The second line in Eq. (4.5) defines
the dimensionless electron-phonon coupling parameter λ(ss)

[111,112] due to arc-arc scattering, which also depends on kz.
Using the matrix elements in Appendix B and typical material
parameters, we obtain the numerical results for �(ss,1)(kz )
shown in Fig. 2(b).

In what follows, we discuss the regime T � TBG and give
explicit expressions for the Rayleigh mode contribution �

(ss,R)
k‖

only, for which analytical expressions can be obtained. Taking
the matrix element G (ssR)

k′
‖,k‖

from Eq. (B2) and replacing the

integration variable in Eq. (4.2) by qz, we find

�
(ss,R)±
kz

= 4g2
0ξ

(l )2cR

c2
l ρM

∫
dqz

2π

F (cRq‖)∣∣v(s)±
y (kz + qz )

∣∣
× q2

‖κ (kz )κ (kz + qz )

[κ (kz ) + κ (kz + qz ) + γRq‖]2
, (4.7)

where ξ (l ) and γR =
√

1 − (cR/cl )2 are dimensionless con-
stants; see Eqs. (A9)–(A11).

For T � TBG and staying away from the arc ends at kz =
k̄W(ε), we may approximate kz + qz ≈ kz and neglect the term
proportional to q‖ in the denominator in Eq. (4.7). Performing
the integration over qz and using Eq. (2.17) for v(s)±

y (ε, k′
z ), we
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FIG. 2. Arc-arc decay rate for α = 0.8. In all figures, we use cl/v = 0.0170 and ct/cl = 0.571. Panel (a) shows the temperature dependence
of �(ss)(ε, kz ), see Eq. (4.2), on double-logarithmic scales for ε = 0.1vkW and two values of kz, with �0 in Eq. (3.25) and TBG = cl kW, see
Eq. (2.43). We distinguish contributions from the Rayleigh (R) mode and from bulk (B) phonon modes (λ = l, t ). The dashed lines represent
the T 3 and T 2 scaling near the arc center, see Eq. (4.8), and close to the arc edge, see Eq. (4.10), respectively. Panel (b) shows (for two different
energies) the kz-dependence of the rate for T � TBG as encoded by the coefficient �(ss,1)(kz ) in Eq. (4.5).

then find a T 3 scaling of the rate,

�
(ss,R)±
k‖ ≈ �0

(
T

TBG

)3

�(ss,2)(kz ), (4.8)

where

�(ss,2)(kz ) = 7ζ (3)ξ (l )2c2
l

2πc2
R

kW√
k2

W cos2 α + k2
z sin2 α

(4.9)

is a numerical coefficient of order unity that depends only
weakly on kz.

The T 3 scaling law in Eq. (4.8) does not hold if T �
T ∗(ε, kz ), which occurs in the immediate vicinity of the arc
ends. To describe the arc-arc scattering rate for kz near the
arc ends, we note that for T ∗(ε, kz ) � T � TBG, we may ap-
proximate κ (kz + qz ) ≈ k̄W(ε)|qz|/(kW cos α), see Eq. (2.20),
and we neglect κ (kz ) with respect to κ (kz + qz ) and q‖ in the
denominator of Eq. (4.7). Performing the integral over qz in
Eq. (4.7), we now find a T 2 scaling law for the rate

�
(ss,R)
k‖ ≈ �0

(
T

TBG

)2 T ∗(ε, kz )

TBG
�(ss,3)(ε), (4.10)

where �(ss,3)(ε) is a numerical coefficient of order unity,

�(ss,3)(ε) = πξ (l )2cl

2cR

k̄W(ε)kW

[k̄W(ε) + γRk̃W(ε)]2
, (4.11)

and we use

k̃W(ε) =
√

k2
W cos2 α + k̄W(ε)2 sin2 α. (4.12)

The contributions of bulk (λ = l, t) phonon modes will
renormalize the coefficients �(ss,2) and �(ss,3), but they do not
affect the overall temperature dependence of the arc-arc scat-
tering rate at low temperatures; cf. Fig. 2(a). Our numerical
results show that the Rayleigh contribution to the arc-arc rate
is at most slightly larger than the bulk phonon contribution,
but both share the same power-law temperature dependence
of the rate.

Finally, we remark that similar estimates for the arc-arc rate
can be made in the regime |ε − μ| � T , but with the role of T
replaced by |ε − μ| and different numerical coefficients �(ss, j)

for j = 1, 2, 3.

B. Arc-bulk decay rate

We next consider the decay rate of a Fermi arc state
with in-plane momentum k‖ and energy ε = ε

(s)+
k‖ due to

phonon-induced arc-bulk scattering. Within the quasielastic
approximation, the arc-bulk scattering rate is given by the
expression

�
(bs)
k‖ = 2

∫ dk′
‖

(2π )2
∣∣v(b)

x (ε, k′
‖)

∣∣
[∣∣G (bsR)

k′,k‖

∣∣2F (cRq‖)

+
∑
λ=l,t

∫ ∞

0

dqx

2π

∣∣G (bsλ)
k′,k‖,qx

∣∣2F (cλq)

]
. (4.13)

The matrix elements G (bsR)
k′,k‖ and G (bsλ)

k′,k‖,qx
follow from

Eqs. (B5)–(B7), where k′
x is the positive solution of

ε
(b)
(k′

x,k
′
‖ ) = ε, (4.14)

and q = (qx, q‖) with q‖ = k′
‖ − k‖.

The integration in Eq. (4.13) is restricted to those values
of k′

‖ for which solutions of Eq. (4.14) exist. Using the bulk
dispersion (2.7), Eq. (4.14) gives the condition

vk′
x =

√
ε2 − v2k′2

y − m2(k′
z ), (4.15)

which, for ε � kWv, effectively restricts the integration over
k′

‖ to an approximately circular region of radius ε/v around
the nodal points; see Fig. 1(b). For energies approaching the
neutrality point, ε → 0, the vanishing bulk DOS nb(ε) ∝ ε2

in Eq. (2.11) thereby implies that the arc-bulk rate approaches
zero for all kz. The temperature dependence of the arc-bulk
rate at finite ε is illustrated for α = 0.8 in Fig. 3(a), where
we separately show the contributions from bulk and from
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FIG. 3. Arc-bulk decay rate �(bs)(ε, kz ) for energy ε = 0.1vkW and boundary angle α = 0.8 as obtained by numerical integration of
Eq. (4.13). Panel (a) shows the temperature dependence of �(bs) on double-logarithmic scales for two values of kz. Equation (4.19) gives
min/TBG  4.6 × 10−6 for kz = 0.999k̄W. As in Fig. 2(a), we separately show contributions from Rayleigh (R) and bulk (B) phonon modes.
The dashed lines indicate power-law scaling with the respective exponents. Panel (b) shows the kz-dependence of the coefficient �(bs,1)

determining the arc-bulk rate for T � TBG, see Eq. (4.16), for two energies.

Rayleigh phonons as obtained by numerical integration of
Eq. (4.13).

For T � TBG and |ε − μ| � T , we may again use F () ≈
T/. One then arrives at a linear temperature dependence of
the arc-bulk scattering rate, see also Fig. 3(a),

�
(bs)
k‖ ≈ �0

T T (b)2
BG

T 3
BG

�(bs,1)(ε, kz )

= 2πλ(bs)(ε, kz )T, (4.16)

where �(bs,1) is a kz-dependent numerical coefficient that is
of order unity away from the arc edges. The effective Bloch-
Grüneisen temperature T (b)

BG has been defined in Eq. (2.44),
and the factor T (b)2

BG /T 2
BG ∝ (ε/kWv)2 reflects the suppression

of the bulk DOS in the vicinity of the nodal points. With the
dimensionless parameter λ(bs), the full electron-phonon cou-
pling parameter for Fermi arc states is given by λ = λ(ss) +
λ(bs). Numerical results for �(bs,1) are shown in Fig. 3(b).
By comparing these results to those for arc-arc scattering in
Fig. 2(b), we observe that arc-arc scattering generally domi-
nates over arc-bulk scattering except in the vicinity of the arc
termination points at kz = ±k̄W(ε).

We now turn to the low-temperature regime T � TBG,
where it is essential that the arc and bulk states are nonover-
lapping in the in-plane momentum space, as illustrated in
Fig. 1(b). As a result, for an arc state at in-plane momentum
k‖, there is a minimal (in-plane) phonon momentum q‖ =
|k′

‖ − k‖| required for arc-bulk scattering. (We recall that in
the quasielastic approximation, the initial arc state at in-plane
momentum k‖ and the final bulk state at momentum k′ have
the same energy ε.) For ε � kWv, the support of bulk states
is a disk of radius ε/v around the nodal points ±kW; see
Fig. 1(b). Using Eq. (2.19) for ky(ε, kz ), an elementary geo-
metric consideration then shows that the minimum in-plane
phonon momentum is given by

qmin(ε, kz ) =
√

ky(ε, kz )2 + (|kz| − kW)2 − ε

v
. (4.17)

If the condition ε � kWv is not met, qmin is determined from
the condition (4.14) using a constrained minimization proce-
dure.

Since the Rayleigh mode is the energetically lowest
phonon branch, the existence of a threshold phonon mo-
mentum for arc-bulk scattering qmin implies the threshold
activation energy

min(ε, kz ) = cRqmin(ε, kz ). (4.18)

Representative results for min are shown in Fig. 4 for differ-
ent values of ε < vkW/2. The activation energy min reaches
its maximum value at the arc center, with a cusplike depen-
dence on kz for kz → 0, and it vanishes upon approaching the
arc edges at kz = ±k̄W(ε),

min(ε, kz ) ≈ vcR[|kz| − k̄W(ε)]2

2ε cos2 α
, (4.19)

where we have again used ε � vkW.
The existence of a finite activation gap implies an expo-

nential suppression of the arc-bulk decay rate at temperatures

FIG. 4. Phonon threshold energy for arc-bulk scattering,
min(ε, kz ), vs position along the arc, kz/k̄W(ε), for α = 0.5 and
several energies.
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TABLE I. Temperature dependence of the scattering rates in different parameter regimes. Putting kB = 1, the Bloch-Grüneisen tempera-
tures are given by TBG = cl kW and T (b)

BG = 2clμ/v; see Eqs. (2.43) and (2.44). The scale T ∗(ε, kz ) has been defined in Eq. (4.6) and goes to
zero near the arc ends, and the arc-bulk activation energy min(ε, kz ) follows from Eqs. (4.17) and (4.18).

T � T (b)
BG T (b)

BG � T
�(bb) T 3 T

T � T ∗ T ∗ � T � TBG TBG � T
�(ss) T 3 T 2 T

T � T (b)
BG � min T (b)

BG � T � min T (b)
BG � min � T

�(bs) away from arc end T 2e−min/T e−min/T T

T � min � T (b)
BG min � T � T (b)

BG min � T (b)
BG � T

�(bs) close to arc end T 2e−min/T T 5/2 T

T � min(ε, kz ). As a result, arc-bulk scattering will be ap-
preciable near the arc ends only. Up to numerical prefactors
of order unity, analytical estimates for the arc-bulk rate at
T � TBG can be obtained in a similar way as for the arc-arc
rate in Sec. IV A by using the expressions in Appendix C.
In the remainder of this section, we discuss the arc-bulk
rate in different regimes defined by the relation between the
temperature T , the activation gap min(ε, kz ), and the intran-
ode Bloch-Grüneisen scale T (b)

BG , where we assume ε � vkW

throughout. Those results will also be used in Sec. V below.
First, let us consider the case away from the arc edges

at kz = ±k̄W(ε), where the condition T (b)
BG � min(ε, kz ) is

fulfilled. For min � T , the arc-bulk scattering rate can be
estimated as, cf. Eq. (4.16),

�(bs) ∼ �0
T (b)2

BG T

T 3
BG

. (4.20)

On the other hand, for T (b)
BG � T � min, the activation gap

causes an exponential suppression of the arc-bulk rate,

�(bs) ∼ �0
T (b)2

BG min

T 3
BG

e−min/T . (4.21)

Finally, for T � T (b)
BG , we obtain

�(bs) ∼ �0
T 2min

T 3
BG

e−min/T . (4.22)

The exponential suppression of the arc-bulk rate away from
the arc edges is consistent with the numerical results in
Fig. 3(a).

We finally discuss what happens very close to the arc
edges, where min � T (b)

BG . For details of the derivation, see
Appendix D. First, for T � T (b)

BG , a high-temperature regime
as in Eq. (4.16) is realized, with

�(bs) ∼ �0
T 

1/2
minT (b)3/2

BG

T 3
BG

. (4.23)

Second, for min � T � T (b)
BG , we obtain a nontrivial T 5/2

scaling law for the rate,

�(bs) ∼ �0
T 5/2

1/2
min

T 3
BG

. (4.24)

This T 5/2 scaling law is consistent with the numerical results
in Fig. 3(a). These numerical results also show that in this
parameter range, the arc-bulk rate is always dominated by
bulk phonon contributions. Nonetheless, the Rayleigh con-
tribution yields the same power-law exponent. Finally, for
extremely low temperatures, T � min, the rate will again be
exponentially suppressed,

�(bs) ∼ �0
T 2min

T 3
BG

e−min/T . (4.25)

A schematic overview summarizing the temperature de-
pendence of the arc-bulk rate is given in Table I, which also
includes the respective results for the bulk-bulk rate and for
the arc-arc rate.

V. TRANSPORT PROPERTIES

In this section, we consider the phonon-limited linear con-
ductivity tensor in a WSM slab for an electric field applied
along the ŷ or ẑ direction, i.e., perpendicular or parallel to
the separation between the Weyl points. A brief discussion of
the Hall response is given in Appendix E. We focus here on
the longitudinal conductivities σyy and σzz. We will first give
qualitative considerations for σyy along the chiral direction ŷ,
see Sec. V A, and similarly for σzz in Sec. V B. Subsequently,
we will summarize the temperature dependence of σyy and
σzz in different parameter regions as obtained by a numerical
solution of the Boltzmann equation; see Sec. V C. Below
we assume μ � vkW to have a clear separation between the
temperature scales T (b)

BG and TBG.

A. Diagonal conductivity σyy

We first consider an electric field along the chiral direction
ŷ and discuss the qualitative behavior of the conductivity σyy.
These arguments are backed up by a numerical analysis of the
full problem in Sec. V C. Since the current is carried by bulk
electrons and by Fermi arc surface states, we can write σyy as
a sum of bulk and surface contributions,

σyy = σ (b)
yy + σ (s)

yy . (5.1)

Each contribution may be estimated using the Drude formula,

σ (b)
yy ∼ e2μ2L

v
τ

(b)
tr,y, σ (s)

yy ∼ e2vkWτ
(s)
tr,y, (5.2)
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where τ
(b)
tr,y and τ

(s)
tr,y are transport relaxation timescales for bulk

and Fermi arc electrons. Here we have used Eqs. (2.11) and
(2.22) for the DOS of bulk and surface electrons, respectively.
Below we will demonstrate that, up to a numerical factor of
order unity,

1

τ
(b)
tr,y

∼ �0 ×

⎧⎪⎨
⎪⎩

T (b)2
BG T
T 3

BG
if T � T (b)

BG ,

T 5

T (b)2
BG T 3

BG

if T � T (b)
BG ,

(5.3)

and

1

τ
(s)
tr,y

∼ �0 ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T (b)2
BG T
T 3

BG
if T � TBG,

T (b)2
BG T 2

T 4
BG

if T ′
BG � T � TBG,

T 5

T 5
BG

if T � T ′
BG,

(5.4)

with the temperature scale

T ′
BG = (

T (b)2
BG TBG

)1/3
. (5.5)

From Eq. (5.2), we then find σyy ∝ 1/T at high tempera-
tures, T � TBG. On the other hand, for ultralow temperatures
T � T (b)

BG , we obtain σyy ∝ 1/T 5; see also Ref. [26]. Interest-
ingly, Eq. (5.4) admits a third power-law scaling regime with
σyy ∝ 1/T 2 at intermediate temperatures T ′

BG � T � TBG.
This 1/T 2 scaling is caused by the chirality of Fermi arc states
and does not occur for σzz; see Sec. V B. However, it is only
realized for sufficiently thin slabs. Indeed, the above equations
imply that with the temperature-dependent crossover length
scale

Ly = v2kW

μ2

TBG

T
, (5.6)

the surface (bulk) contribution will dominate the conductiv-
ity σyy for a slab width L � Ly (L � Ly). The σyy ∝ 1/T 2

scaling is expected if L � Ly holds for temperatures T ′
BG �

T � TBG. For thicker slabs, the 1/T 2 dependence is instead
replaced by a conventional high-temperature law σyy ∝ 1/T
for all T � T (b)

BG . In this case, T ′
BG has no physical importance

anymore.
Contribution from bulk electrons. For temperatures T (b)

BG �
T � TBG and for T � TBG, the bulk-bulk scattering rate
�(bb) is given by Eqs. (3.24) and (3.26), respectively. Since
these rates differ only by a numerical factor of order unity,
the first estimate in Eq. (5.3) follows immediately. For ul-
tralow temperatures T � T (b)

BG , the rate is instead given by
Eq. (3.27). However, �(bb) differs from the transport rate since
the momentum change ∼kBT/cl for a single electron-phonon
scattering event is much less than the momentum change
∼2μ/v = T (b)

BG /cl required for backscattering. As a result, the
transport mean free time is a factor (T (b)

BG /T )2 larger than
1/�(bb), and one obtains the standard T 5 law of the second
estimate in Eq. (5.3).

Contribution from Fermi arcs. Since all Fermi arc states
at the same surface have a velocity component v(s)

y with the
same sign, arc-arc scattering alone is not sufficient to relax the
current carried by arc states. Instead, the transport mean free
time τ

(s)
tr,y is determined by the interplay of arc-arc, arc-bulk,

and bulk-bulk scattering. The absence of backscattering of

Fermi-arc surface states without arc-bulk couplings is a direct
consequence of their chirality and therefore holds beyond the
specific model studied here. We now separately describe this
interplay for the three temperature regimes T � TBG, T (b)

BG �
T � TBG, and T � T (b)

BG .
For T � TBG, the arc-arc scattering rate is parametrically

larger than the arc-bulk rate; see Eqs. (4.5) and (4.16). The fast
arc-arc scattering causes equilibration of the arc states, but it
does not contribute to backscattering. Instead, backscattering
is possible only via arc-bulk scattering. Hence, for T � TBG,
we find 1/τ

(s)
tr,y ∼ �(bs). Using Eq. (4.16) for �(bs) then leads to

the first estimate in Eq. (5.4).
We next turn to temperatures T � TBG, where the arc-arc

rate �(ss) acquires a T 3 proportionality, see Eq. (4.8), except
in the immediate vicinity of the arc ends, see Eq. (4.10).
Moreover, in this temperature range, the typical momentum
change upon arc-phonon scattering is smaller by a factor
∼T/TBG than in the high-temperature regime. As a result, the
rate �(ss)

eq for full equilibration of the arc states is reduced by
a factor (T/TBG)2 compared to the typical arc-arc relaxation
rate obtained from Eq. (4.8),

�(ss)
eq ∼ �0

T 5

T 5
BG

. (5.7)

The linear decay of �
(ss)
k‖ as one approaches the arc ends,

see Eq. (4.10), does not affect this estimate. In fact, arc-bulk
scattering takes place close to the arc ends only, within a
distance such that min(ε, kz ) � T ; see Sec. IV B. For T (b)

BG �
T � TBG, only a fraction T/TBG of all arc states are this close
to the arc ends. The net arc-bulk transport scattering rate �

(bs)
tr

is then found by multiplying the arc-bulk decay rate �(bs) in
Eq. (4.20) by a factor T/TBG,

�
(bs)
tr ∼ �0

T (b)2
BG T 2

T 4
BG

. (5.8)

We now observe that both �(ss)
eq and �

(bs)
tr are smaller than the

bulk-bulk transport relaxation rate in the temperature window
T (b)

BG � T � TBG. As a consequence, bulk scattering does not
restrict the relaxation of Fermi arc states between arcs at
opposing surfaces. Comparing Eqs. (5.7) and (5.8), we see
that �

(bs)
tr is smaller than �(ss)

eq for temperatures in the window
T ′

BG � T � TBG. In this case, the relaxation of arc states is
dominated by arc-bulk scattering, and we obtain the second
estimate in Eq. (5.4). If, on the other hand, T (b)

BG � T � T ′
BG,

it is the intra-arc relaxation that limits the backscattering of
arc states, and one arrives at the third estimate in Eq. (5.4).
For ultralow temperatures T � T (b)

BG , the estimate for �
(bs)
tr

will change, but arc-arc relaxation remains the limiting factor
determining the transport relaxation time τ

(s)
tr,y. As a result, the

third estimate in Eq. (5.4) continues to hold for T � T (b)
BG , and

therefore for all T � T ′
BG.

Let us finally verify the condition �(ss)
eq � �

(bs)
tr for T �

T (b)
BG . We first note that to find �

(bs)
tr in this temperature regime,

we may set min ∼ T in Eqs. (4.24) or (4.25). Making use
of Eq. (4.19), the fraction of arc states that meet the condition

min(ε, kz ) � T is thus given by ∼
√

T T (b)
BG /T 2

BG, and we arrive
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at the estimate

�
(bs)
tr ∼ �0

T 5

T 5
BG

√
T 2

BG

T (b)
BG T

. (5.9)

Clearly, this rate is parametrically larger than �(ss)
eq in

Eq. (5.7).

B. Diagonal conductivity σzz

The current in the perpendicular direction (ẑ) may also
be written as the sum of contributions by bulk electrons and
by Fermi arc states, σzz = σ (b)

zz + σ (s)
zz . We again estimate the

respective contributions to σzz by using the Drude formula,

σ (b)
zz ∼ e2μ2L

v
τ

(b)
tr,z, σ (s)

zz ∼ e2vkWτ
(s)
tr,z, (5.10)

where τ
(b)
tr,z and τ

(s)
tr,z are transport relaxation times for bulk and

Fermi arc electrons.
The estimate for the bulk transport mean free time τ

(b)
tr,z

is the same as for τ
(b)
tr,y in Eq. (5.3), although the numerical

coefficient may differ because of the anisotropy in the bulk
dispersion if the chemical potential μ is not very close to
zero. For the contribution from Fermi arcs, a key difference
with the case of transport in the chiral direction in Sec. V A is
that for transport along ẑ, arc-arc scattering contributes to the
transport relaxation rate because Fermi arc states have no net
velocity component v(s)

z . This argument immediately leads to
the estimates

1

τ
(s)
tr,z

∼ �0 ×
⎧⎨
⎩

T
TBG

if T � TBG,

T 5

T 5
BG

if T � TBG.
(5.11)

As in Sec. V A, we thus find σzz ∝ 1/T for T � TBG and
σzz ∝ 1/T 5 for all T � T (b)

BG . At intermediate temperatures
T (b)

BG � T � TBG, the surface contribution will dominate for
L � Lz with

Lz = v3k2
W

μ3

T 4
BG

T 4
, (5.12)

and hence σzz ∝ 1/T 5. For L � Lz, on the other hand, we
expect the bulk-dominated high-temperature law σyy ∝ 1/T .

To conclude, the crossover temperature separating the low-
temperature regime σzz ∝ 1/T 5 from the high-temperature
regime σzz ∝ 1/T is set by T (b)

BG for thick slabs (L � Lz ), and
by TBG for thin slabs. Importantly, the intermediate tempera-
ture window with 1/T 2 scaling found for σyy is not expected
for σzz anymore.

C. Numerical solution

We now turn to the numerical solution of the coupled
Boltzmann equations for the bulk and arc distribution func-
tions ϕ

(b)
k and ϕ

(s)
k‖ , respectively, for an electric field along ŷ or

ẑ. Using the linearized Boltzmann equations in the quasielas-
tic approximation, for fixed energy ε, we need to solve a
set of Fredholm integral equations of the second kind, see
Eqs. (3.16) and (3.17). For a numerical solution, we dis-
cretize those equations on a momentum-space grid of small
linear step-size δk such that integrals over momenta become

Riemann sums. At given energy ε, the coupled Boltzmann
equations are thereby written as a nonsingular matrix in-
version problem that can be numerically solved by standard
routines. The conductivities σyy and σzz then follow by eval-
uating the energy integrals in Eq. (3.18) as Riemann sums as
well. Our numerical results include the effects of all phonon
modes, where convergence with respect to the step-size δk

is typically achieved for δk � 0.002kW. Below we use the
conductivity reference scale

σ0 = e2

2π h̄

vk2
W

�0
, (5.13)

where �0 in Eq. (3.25) encodes the electron-phonon coupling.
While we study small μ to access the regime T (b)

BG � T �
TBG, it is worth mentioning that the approximations behind
our formalism (e.g., T � μ) exclude the limit of extremely
small μ.

Figure 5 illustrates the temperature dependence of σyy and
of the ratio σyy/σzz for different boundary angles α, assum-
ing a fixed slab width kWL = 1000 and chemical potential
μ = 0.08vkW. The results for σyy in Fig. 5(a) clearly show
the high-temperature 1/T scaling and the low-temperature
1/T 5 law. From Eq. (5.6), we observe that the slab width
taken in Fig. 5 is of the same order as the crossover length
Ly. Nonetheless, our results for σyy are consistent with 1/T 2

scaling at intermediate temperatures.
The effects of changing the boundary parameter α are best

studied by using the ratio σyy/σzz; see Fig. 5(b). In a bulk-
dominated case with chemical potential near the nodal points,
this ratio is expected to be close to unity. We observe from
Fig. 5(b) that for these parameters, in particular for small α,
the low-temperature ratio is significantly larger than unity. For
instance, the conductivity along the chiral direction is larger
by a factor ≈5 for α = 0 and low temperatures. (We recall
that α = 0 corresponds to straight Fermi arc curves connect-
ing the Weyl node projections in reciprocal space.) Chirality
effects are then most pronounced for α = 0, and upon in-
creasing α, the conductivity ratio decreases and approaches
values near unity, i.e., the chirality-induced anisotropy of the
conductivities is washed out. We emphasize that a strong
dependence on the boundary parameter α represents di-
rect evidence for surface-dominated transport in the slab
geometry.

Both at very low, T � T (b)
BG , and at high, T � TBG, temper-

atures, the conductivities σyy and σzz share the same power-law
scaling with temperature. Up to subleading terms, their ra-
tio therefore becomes independent of T . We observe from
Fig. 5(b) that the intermediate temperature regime is more
interesting. Noting that for the parameters in Fig. 5, we
have L ≈ Ly but L � Lz, see Eqs. (5.6) and (5.12), the rapid
increase of σyy/σzz upon lowering temperature within this
regime is in accordance with the qualitative considerations in
Secs. V A and V B.

Figure 6 shows results at fixed boundary angle α = 0. We
investigate here what happens when the slab width L and/or
the chemical potential μ are changed. We first note that the
results for σyy in Fig. 6(a) show a qualitative difference for
kWL = 1000 and 10 000. In the latter case, we have L � Ly

for all temperatures T (b)
BG � T � TBG, and there is little room
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FIG. 5. Temperature dependence of the conductivities σyy and σzz for different values of the boundary angle α. We take kWL = 1000
and μ = 0.08vkW, where T (b)

BG /TBG = 0.16 and T ′
BG/TBG ≈ 0.29. The data points have been obtained by numerical solution of the Boltzmann

equation; curves are guides to the eye only. Panel (a) shows σyy in units of σ0, see Eq. (5.13), vs T/TBG on a double-logarithmic scale. Straight
dashed lines indicate the quoted power laws. Panel (b) shows σyy/σzz vs T/TBG for the same parameters on a semilogarithmic scale.

for an intermediate 1/T 2 scaling law anymore. Indeed, our
numerical results point toward a direct crossover from the
1/T 5 to the 1/T scaling around T ∼ T (b)

BG . The ratio σyy/σzz

in Fig. 6(b) now reaches values ≈30 for μ = 0.05vkW and
α = 0 with the same slab width as in Fig. 5. By decreasing
the chemical potential, the relative importance of the Fermi
arc contribution thus has increased. Similarly, for decreasing
slab width, one gets a larger ratio σyy/σzz. We note that for
kWL = 10 000 and μ = 0.08vkW, this ratio is already close
to unity for all studied temperatures. Transport is then essen-
tially isotropic as expected in the bulk-dominated case with
small μ.

Our numerical results show that chirality effects associated
with Fermi-arc surface states are most pronounced for small α

(corresponding to straight Fermi arcs), for small to intermedi-
ate slab width [i.e., L � Ly in Eq. (5.6)], and for small values
of the chemical potential (where the bulk DOS is very small,
and bulk contributions to the conductivity are suppressed).
We conclude that the numerical solution of the Boltzmann

equation is consistent with the qualitative considerations in
Secs. V A and V B. These results also suggest that a conve-
nient way for extracting information about chirality consists
of measuring the ratio of conductivities along perpendicular
directions (such as ŷ and ẑ). This ratio will be maximized if
the axis with the larger conductivity is parallel to the chiral
direction.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have formulated and studied a low-energy
theory of WSMs coupled to acoustic phonons, focusing on
the quasiparticle decay rate of Fermi arc surface states and on
transport in a slab geometry. While in general the shape of
the Fermi arcs in the surface Brillouin zone is nonuniversal,
the phenomenological boundary angle α has allowed us to
include such features and their impact on transport observ-
ables and on the quasiparticle decay rate. We predict transport

FIG. 6. Temperature dependence of σyy and σzz as in Fig. 5 but for fixed boundary angle α = 0 and with μ/vkW ∈ (0.05, 0.08) and kWL ∈
(1000, 10000). Panel (a) shows σyy/σ0 vs T/TBG on double-logarithmic scales. Panel (b) shows σyy/σzz vs T/TBG for the same parameters on
a semilogarithmic scale.
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signatures of chirality from the dependence of the conduc-
tivity tensor on key parameters, e.g., on temperature, slab
width, or chemical potential. Similarly, our predictions for the
quasiparticle decay rate may be tested by ARPES or STM
experiments.

Experimental reality is inevitably more complex than our
theory in several regards. Let us point toward just a few of
these complications, which also provide interesting perspec-
tives for future work. (i) In known WSM materials, the band
structure is more complicated than assumed in our work,
usually featuring several pairs of Weyl nodes and several arcs
at a given surface. Our analysis could be extended to account,
e.g., for multiple arcs and the resulting scattering of surface
electrons between different arc states. (ii) Disorder is typically
present in available samples. We have assumed that phonon
scattering dominates over disorder effects. The interplay of
disorder and electron-phonon interaction effects, as well as
the extension of our theory to diffusive transport along the
transverse direction and/or the inclusion of external magnetic
fields, remain to be addressed. (iii) The relevant acoustic
phonon modes and their coupling to electrons may differ from
our model. We leave studies of more general phonon models
and other types of electron-phonon coupling to future work.
(iv) It will be interesting to also study the effects of Coulomb
interactions on the temperature-dependent decay rates and
resistivities. We expect that different power laws will gov-
ern these quantities in comparison to those reported here for
electron-phonon interactions.

Despite the above potential complications, on a quali-
tative level our key predictions are expected to be robust,
especially when they are tied to the topological nature of
the Fermi surface. In particular, the various power-law or
activated temperature dependences of arc-arc and arc-bulk
scattering rates in the respective parameter regimes (as re-
ported in Sec. IV) only rely on the linearity of the acoustic
phonon dispersion at long wavelengths and on the existence
of an arc-bulk activation gap. The latter, with its strong de-
pendence on the geometric arc shape, is a direct consequence
of energy-momentum conservation. Similarly, the chirality-
induced anisotropy of the conductivity tensor in thin slabs
(at low temperatures and chemical potential near the nodal
points) and the intermediate 1/T 2 scaling regime for transport
along the chiral direction should allow for transport signatures
of chirality. We are confident that experimental progress will
soon lead to the observation of such phenomena in Weyl
semimetals.
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APPENDIX A: PHONON MODES

In this Appendix, we provide details about the phonon
modes discussed in Sec. II B. To find an expression for the
phonon reflection amplitudes s±, we require that the displace-
ment field (2.31) satisfies the boundary condition (2.26). This
gives the equations

(
1 + s(l,l )±

qx,q‖

)c2
l

(
q2

‖ + q(l,l )2
x

) − 2c2
t q2

‖

2c2
t

√
q2

‖ + q(l,l )2
x

= ±is(t,l )±
qx,q‖

q(t,l )
x q‖√

q2
‖ + q(t,l )2

x

,

( − is(l,t )±
qx,q‖

)c2
l

(
q2

‖ + q(l,t )2
x

) − 2c2
t q2

‖

2c2
t

√
q2

‖ + q(l,t )2
x

= ±(
s(t,t )±

qx,q‖ − 1
) q(t,t )

x q‖√
q2

‖ + q(t,t )2
x

,

(
1 + s(t,t )±

qx,q‖

) q2
‖ − q(t,t )2

x

2
√

q2
‖ + q(t,t )2

x

= ∓is(l,t )±
qx,q‖

q(l,t )
x q‖√

q2
‖ + q(l,t )2

x

,

is(t,l )±
qx,q‖

q2
‖ − q(t,l )2

x

2
√

q2
‖ + q(t,l )2

x

= ±(
s(l,l )±

qx,q‖ − 1
) q(l,l )

x q‖√
q2

‖ + q(l,l )2
x

. (A1)

For the bulk modes, the coefficients s(λ′,λ)±
qx,q‖ are dimensionless

numbers that depend on the ratio qx/q‖ and the mode indices
λ′ and λ only. We find

s(ll )±
qx,q‖ = −4 − 4c2

t 
2q2

‖ + 4c4
t q2

‖
(
q2

‖ − qxq(t,l )
x

)
4 − 4c2

t 
2q2

‖ + 4c4
t q2

‖
(
q2

‖ + qxq(t,l )
x

) ,

s(t l )±
qx,q‖ = ∓i

4cl ct q‖qx
(
2 − 2c2

t q2
‖
)

4 − 4c2
t 

2q2
‖ + 4c4

t q2
‖
(
q2

‖ + qxq(t,l )
x

) ,

s(lt )±
qx,q‖ = ∓i

4c3
t q‖qx

(
2 − 2c2

t q2
‖
)
/cl

4 − 4c2
t 

2q2
‖ + 4c4

t q2
‖
(
q2

‖ + qxq(l,t )
x

) ,

s(tt )±
qx,q‖ = −4 − 4c2

t 
2q2

‖ + 4c4
t q2

‖
(
q2

‖ − qxq(l,t )
x

)
4 − 4c2

t 
2q2

‖ + 4c4
t q2

‖
(
q2

‖ + qxq(l,t )
x

) , (A2)

where we recall that the phonon frequency is given by  =
cλ

√
q2

x + q2
‖. For  > q‖cλ′ , we have

cλ′q(λ′,λ)
x =

√
2 − c2

λ′q2
‖. (A3)

Similarly, for  < q‖cλ′ ,

cλ′q(λ′,λ)
x = i

√
c2
λ′q2

‖ − 2. (A4)
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The coefficient s(ll )±
qx,q‖ is real while s(t l )±

qx,q‖ is imaginary. They
satisfy the flux conservation condition

c2
l qx

∣∣s(ll )±
qx,q‖

∣∣2 + c2
t q(t,l )

x

∣∣s(t l )±
qx,q‖

∣∣2 = c2
l qx. (A5)

The coefficients s(tt )±
qx,q‖ and s(lt )±

qx,q‖ are, respectively, real and

imaginary for  > cl q‖ (because q(l,t )
x is real for these fre-

quencies). In that case, they satisfy the flux conservation
condition

c2
t qx

∣∣s(tt )±
qx,q‖

∣∣2 + c2
l q(l,t )

x

∣∣s(lt )±
qx,q‖

∣∣2 = c2
t qx.

For ct q‖ <  < clq‖, the quantity q(l,t )
x is imaginary, so that

the coefficients s(tt )±
qx,q‖ and s(lt )±

qx,q‖ are complex and satisfy the
unitarity condition ∣∣s(tt )±

qx,q‖

∣∣2 = 1. (A6)

The same set of equations, but without the inhomoge-
neous terms, determine the frequency (R)

q‖ and the coefficients

s(l,R)±
q‖ and s(t,R)±

q‖ of the Rayleigh surface modes. In this case,

one has  < ct q‖, and the transverse wave numbers q(l,R)
x and

q(t,R)
x are imaginary,

cλq(λ,R)
x = i

√
c2
λq2

‖ − 
(R)2
q‖ .

The frequency (R)
q‖ and the coefficients s(l,R)±

q‖ and s(t,R)±
q‖

satisfy the equation

(R)4
q‖ − 4c2

t 
(R)2
q‖ q2

‖ + 4c4
t q2

‖
(
q2

‖ + q(l,R)
x q(t,R)

x

) = 0, (A7)

from which the velocity cR of the Rayleigh modes can be
determined,

(R)
q‖ = cRq‖, (A8)

with cR < ct < cl . The ratio cR/cl depends on the quotient
cl/ct of longitudinal and transverse sound velocities only. To
find the coefficients s(l,R)±

q‖ and s(t,R)±
q‖ , we write

s(l,R)±
q‖ = ξ (l )√q‖, s(t,R)±

q‖ = ±ξ (t )√q‖, (A9)

with ξ (l ) real and positive and ξ (t ) real. (The factors
√

q‖ are
necessary for normalization.) To determine the dimensionless
numbers ξ (l ) and ξ (t ), we note that their ratio follows from
Eq. (A1) (without the inhomogeneous terms),

ξ (l )

ξ (t )
=

2c2
t

√
c2

t − c2
R

cl
(
2c2

t − c2
R

)
= 2c2

t − c2
R

2ct

√
c2

l − c2
R

, (A10)

where the second equality makes use of Eq. (A7). Their mag-
nitude can then be obtained from the normalization condition
of the phonon mode, which gives

c2
R = ξ (l )2 cl

(
2c2

l − c2
R

)
2
√

c2
l − c2

R

+ ξ (t )2 ct
(
2c2

t − c2
R

)
2
√

c2
t − c2

R

− 2ξ (l )ξ (t )cl ct .

(A11)
Although algebraic expressions for cR, ξ (l ), and ξ (t ) can be
obtained, these expressions are not useful for further analyt-
ical calculations, and we will work with the dimensionless
coefficients cR/cl , ξ (l ), and ξ (t ) instead. For example, for
ct/cl = 0.571 we obtain the numerical values cR/cl  0.526,
ξ (l )  0.464, and ξ (t )/ξ (l )  2.583.

APPENDIX B: ELECTRON-PHONON MATRIX ELEMENTS
FOR ARC-ARC AND ARC-BULK SCATTERING

Using that the coefficients s(λ′,λ)±
qx,q‖ depend on qx and on the

magnitude q‖ = |q‖| only, we may write the electron-phonon
Hamiltonian near the interface at x = ±L/2 as

Hep = i
g0

cl

∑
λ

∫ ∞

0
dqx

∫
dq‖

√


(λ)
q

2ρM
eiq‖·r‖

(
e±iqxxδλ,l + s(l,λ)±

qx,q‖ e∓iq(l,λ)
x x

)(
a(λ)±,in

qx,q‖ − a(λ)±,out†
qx,−q‖

)

+ i
g0

cl

∫
dq‖

√


(R)
q‖

2ρM
eiq‖·r‖s(l,R)±

q‖ e∓iq(l,R)
x x

(
a(R)±

q‖ − a(R)±†
−q‖

)
. (B1)

Taking the electron wave function from Eq. (2.14), we find that the arc-arc electron-phonon matrix elements of Eq. (2.41) are

G (ssλ)±
k′

‖,k‖,qx
= i

g0

cl

√
2

(λ)
q κ±(k‖)κ±(k′

‖)

ρM

[
δλ,l

κ±(k′
‖) + κ±(k‖) + iq(l,λ)

x

+
s(l,λ)±

qx,q‖

κ±(k′
‖) + κ±(k‖) − iq(l,λ)

x

]
, (B2)

G (ssR)±
k′

‖,k‖
= i

g0

cl

√
2

(R)
q‖ κ±(k‖)κ±(k′

‖)

ρM

s(l,R)±
q‖

κ±(k′
‖) + κ±(k‖) − iq(l,R)

x

, (B3)

where q‖ = k′
‖ − k‖. Similarly, using Eq. (2.12) for the electronic bulk states, with the reflection amplitudes r±

kx,k‖ in Eq. (2.13),
and defining

r′±
kx,k‖ =

〈
ξ∓(−α)

∣∣ξ(±kx,k‖ )
〉

〈
ξ∓(−α)

∣∣ξ(∓kx,k‖ )
〉 , (B4)
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we find that the arc-bulk matrix elements are

G (sbλ)±
k′

‖,k,qx
= i

g0

cl

〈
ξ∓(−α)

∣∣ξ(∓kx,k‖ )
〉√

(λ)
q κ±(k′

‖)

ρM

[
δλ,l

(
r′±

kx,k‖

κ±(k′
‖) + ikx + iq(l,λ)

x

−
r±

kx,k‖

κ±(k′
‖) − ikx + iq(l,λ)

x

)

+s(l,λ)±
qx,q‖

(
r′±

kx,k‖

κ±(k′
‖) + ikx − iq(l,λ)

x

−
r±

kx,k‖

κ±(k′
‖) − ikx − iq(l,λ)

x

)]
, (B5)

G (sbR)±
k′

‖,k
= i

g0

cl

〈
ξ∓(−α)

∣∣ξ(∓kx,k‖ )
〉√

(R)
q‖ κ±(k′

‖)

ρM
s(l,R)±

q‖

(
r′±

kx,k‖

κ±(k′
‖) + ikx − iq(l,R)

x

−
r±

kx,k‖

κ±(k′
‖) − ikx − iq(l,R)

x

)
, (B6)

and

G (bsλ)±
k′,k‖,qx

= −r±∗
k′

x,k
′
‖
G (sbλ)±

k‖,k′,qx
, G (bsR)±

k′,k‖ = −r±∗
k′

x,k
′
‖
G (sbR)±

k‖,k′ . (B7)

The latter two expressions can be verified using the identities 〈ξ∓(−α)|ξ(kx,k‖ )〉 = 〈ξ(−kx,k‖ )|ξ∓(−α)〉 and |r±
kx,k‖ |2 = 1. One further

has

∣
∣
〈
ξ∓(−α)

∣∣ξ(∓kx,k‖ )
〉∣
∣

2 = 1

2
−

{
[ε + m(kz )]2 − v2

(
k2

x + k2
y

)}
sin α ∓ 2[ε + m(kz )]vky cos α

2
{
[ε + m(kz )]2 + v2

(
k2

x + k2
y

)} . (B8)

We next provide matrix elements of the electron-phonon interaction. In analogy to the arc-bulk matrix element (2.41), the
bulk-arc and arc-arc matrix elements are given by

〈
�

(s)±
k′

‖

∣∣Hep

∣∣�(b)±
kx,k‖

〉 =
∑

λ

∫ ∞

0
dqxG (sbλ)±

k′
‖,k,qx

(
a(λ)±,in

qx,q‖ − a(λ)±,out†
qx,−q‖

) + G (sbR)±
k′

‖,k

(
a(R)±

q‖ − a(R)±†
−q‖

)
,

〈
�

(s)±
k′

‖

∣∣Hep

∣∣�(s)±
k‖

〉 =
∑

λ

∫ ∞

0
dqxG (ssλ)±

k′
‖,k‖,qx

(
a(λ)±,in

qx,q‖ − a(λ)±,out†
qx,−q‖

) + G (ssR)±
k′

‖,k‖

(
a(R)±

q‖ − a(R)±†
−q‖

)
, (B9)

with q‖ = k′
‖ − k‖. The corresponding transition rates follow as

W (sb)±
k′

‖,k
= 2π

∑
λ

∫ ∞

0

dqx

2π

∣∣G (sbλ)±
k′

‖,k,qx

∣∣2{
nB

(
(λ)

q

)
δ
(
ε

(s)±
k′

‖
− ε

(b)
k − (λ)

q

) + [
nB

(
(λ)

q

) + 1
]
δ
(
ε

(s)±
k′

‖
− ε

(b)
k + (λ)

q

)}

+2π
∣∣G (sbR)±

k′
‖,k

∣∣2{
nB

(
(R)

q‖

)
δ
(
ε

(s)±
k′

‖
− ε

(b)
k − (R)

q‖

) + [
nB

(
(R)

q‖

) + 1
]
δ
(
ε

(s)±
k′

‖
− ε

(b)
k + (R)

q‖

)}
,

W (ss)±
k′

‖,k‖
= 2π

∑
λ

∫ ∞

0

dqx

2π

∣∣G (ssλ)±
k′

‖,k‖,qx

∣∣2{
nB

(
(λ)

q

)
δ
(
ε

(s)±
k′

‖
− ε

(s)±
k‖ − (λ)

q

) + [
nB

(
(λ)

q

) + 1
]
δ
(
ε

(s)±
k′

‖
− ε

(s)±
k‖ + (λ)

q

)}

+2π
∣∣G (ssR)±

k′
‖,k‖

∣∣2{
nB

(
(R)

q‖

)
δ
(
ε

(s)±
k′

‖
− ε

(s)±
k‖ − (R)

q‖

) + [
nB

(
(R)

q‖

) + 1
]
δ
(
ε

(s)±
k′

‖
− ε

(s)±
k‖ + (R)

q‖

)}
, (B10)

where q = (qx, q‖).

APPENDIX C: COLLISION INTEGRALS

In analogy to Eq. (3.4), the collision integrals for bulk-arc and arc-arc scattering are defined as

I (sb)±
k =

∫ dk′
‖

(2π )2

{
W (bs)±

k,k′
‖

f (s)±
k′

‖

(
1 − f (b)

k

) − W (sb)±
k′

‖,k
f (b)
k

(
1 − f (s)±

k′
‖

)}
,

I (ss)±
k‖ =

∫ dk′
‖

(2π )2

{
W (ss)±

k‖,k′
‖

f (s)±
k′

‖

(
1 − f (s)±

k‖

) − W (ss)±
k′

‖,k‖
f (s)±
k‖

(
1 − f (s)±

k′
‖

)}
. (C1)

For the linearized Boltzmann theory, these collision integrals are in analogy to Eq. (3.12) given by

J (sb)±
k =

∫ dk′
‖

(2π )2
W (sb)±

k′
‖,k

(
ϕ

(s)±
k′

‖
− ϕ

(b)
k

)
, J (ss)±

k‖ =
∫ dk′

‖
(2π )2

W (ss)±
k′

‖,k‖

(
ϕ

(s)±
k′

‖
− ϕ

(s)±
k‖

)
. (C2)
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The bulk-arc and the arc-arc kernels appearing in these expressions read

W (sb)±
k′

‖,k
= 2π

∑
λ=l,t

∫ ∞

0

dqx

2π

∣∣G (sbλ)±
k′

‖,k,qx

∣∣2{[
nB

(
(λ)

q

) + nF
(
ε

(b)
k + (λ)

q

)]
δ
(
ε

(s)±
k′

‖
− ε

(b)
k − (λ)

q

)

+ [
nB

(
(λ)

q

) + 1 − nF
(
ε

(b)
k − (λ)

q

)]
δ
(
ε

(s)±
k′

‖
− ε

(b)
k + (λ)

q

)}
+2π

∣∣G (sbR)±
k′

‖,k

∣∣2{[
nB

(
(R)

q‖

) + nF
(
ε

(b)
k + (R)

q‖

)]
δ
(
ε

(s)±
k′

‖
− ε

(b)
k − (R)

q‖

)
+[

nB
(
(R)

q‖

) + 1 − nF
(
ε

(b)
k − (R)

q‖

)]
δ
(
ε

(s)±
k′

‖
− ε

(b)
k + (R)

q‖

)}
,

W (ss)±
k′

‖,k‖
= 2π

∑
λ

∫ ∞

0

dqx

2π

∣∣G (ssλ)±
k′

‖,k‖,qx

∣∣2{[
nB

(
(λ)

q

) + nF
(
ε

(s)±
k‖ + (λ)

q

)]
δ
(
ε

(s)±
k′

‖
− ε

(s)±
k‖ − (λ)

q

)
+[

nB
(
(λ)

q

) + 1 − nF
(
ε

(s)±
k‖ − (λ)

q

)]
δ
(
ε

(s)±
k′

‖
− ε

(s)±
k‖ + (λ)

q

)}
+2π

∣∣G (ssR)±
k′

‖,k‖

∣∣2{[
nB

(
(R)

q‖ ) + nF
(
ε

(s)±
k‖ + (R)

q‖

)]
δ
(
ε

(s)±
k′

‖
− ε

(s)±
k‖ − (R)

q‖

)
+[

nB
(
(R)

q‖

) + 1 − nF
(
ε

(s)±
k‖ − (R)

q‖

)]
δ
(
ε

(s)±
k′

‖
− ε

(s)±
k‖ + (R)

q‖

)}
. (C3)

The expressions for the bulk-bulk and for the arc-bulk kernel are specified in Eqs. (3.13) and (3.14), respectively.
We next provide explicit expressions for the collision integrals of the linearized Boltzmann theory. For the sake of simplicity,

we restrict the arc-arc, bulk-arc, and arc-bulk scattering to the contribution from the Rayleigh surface modes. However, the
other phonon contributions to the collision integrals directly follow along similar lines and have been taken into account in our
numerical analysis.

The collision integrals J (ss)±
kz

for arc-arc scattering and J (bs)±
kz

for arc-bulk scattering (omitting the energy argument ε

throughout) read

J (ss)±
kz

=
∫

dk′
z

2π

1∣∣v(s)±
y (k′

z )
∣∣ 4g2

0ξ
(l )2cRq2

‖κ (kz )κ (k′
z )

ρMc2
l [κ (k′

z ) + κ (kz ) + q‖
√

1 − (cR/cl )2]2
F (cRq‖)

[
ϕ

(s)±
k′

z
− ϕ

(s)±
kz

]
, (C4)

J (bs)±
kz

=
∫ dk′

‖
(2π )2

1∣∣v(b)
x (k′

‖)
∣∣ 8g2

0ξ
(l )2q2

‖cRκ (kz )

c2
l ρM

∣
∣
〈
ξ±(α)

∣∣ξ(∓k′
x,k

′
‖ )
〉∣
∣

2

∣∣∣∣∣Im
〈
ξ∓(−α)

∣∣ξ(±k′
x,k

′
‖ )
〉〈
ξ±(α)

∣∣ξ(∓k′
x,k

′
‖ )
〉

κ (kz ) + ik′
x + γRq‖

∣∣∣∣∣
2

F (cRq‖)
[
ϕ

(b)
k′

‖
− ϕ

(s)±
kz

]
, (C5)

where ξ (l ) is a dimensionless number, see Eqs. (A9)–(A11), cR is the velocity of the Rayleigh mode, γR =
√

1 − (cR/cl )2, and
κ (kz ) is the inverse decay length of Fermi arc states; see Eq. (2.20). The function F () has been defined in Eq. (4.3) and can be
written as

F () = 1

sinh(/T )
+ tanh(/2T )

cosh[(ε − μ)/T ] − 1

cosh[(ε − μ)/T ] + cosh(/T )
. (C6)

In Eq. (C4), q‖ = [k±
y (k′

z ) − k±
y (kz )]ŷ + (k′

z − kz )ẑ; see Eq. (2.19). In Eq. (C5), q‖ = [k′
y − k±

y (kz )]ŷ + (k′
z − kz )ẑ, and k′

x is the

positive solution of ε
(b)
(k′

x,k
′
‖ ) = ε. Similarly, the collision integral J (sb)±

k‖ for bulk-arc scattering reads

J (sb)±
k‖ =

∫
dk′

z

2π

1∣∣v(s)±
y (k′

z )
∣∣ 8g2

0ξ
(l )2q2

‖cRκ (k′
z )

c2
l ρM

∣
∣
〈
ξ±(α)

∣∣ξ(∓kx,k‖ )
〉∣
∣

2

∣∣∣∣Im
〈
ξ∓(−α)

∣∣ξ(±kx,k‖ )
〉〈
ξ±(α)

∣∣ξ(∓kx,k‖ )
〉

κ (k′
z ) + ikx + γRq‖

∣∣∣∣
2

F (cRq‖)
[
ϕ

(s)±
k′

z
− ϕ

(b)
k‖

]
, (C7)

where kx is the positive solution of ε
(b)
(kx,k‖ ) = ε, and q‖ = [k±

y (k′
z ) − ky]ŷ + (k′

z − kz )ẑ. Finally, J (bb)
k‖ is given by

J (bb)
k‖ =

∫ dk′
‖

(2π )2

1∣∣v(b)
x (k′

‖)
∣∣ g2

0

[
qF (clq)

∣
∣
〈
ξ(k′

x,k
′
‖ )

∣∣ξ(kx,k‖ )
〉∣
∣

2 + q̃F (cl q̃)
∣∣〈ξ(−k′

x,k
′
‖ )

∣∣ξ(kx,k‖ )
〉∣∣2]

2clρM

[
ϕ

(b)
k′

‖
− ϕ

(b)
k‖

]
, (C8)

with kx and k′
x the positive solutions of ε

(b)
(kx,k‖ ) = ε

(b)
(k′

x,k
′
‖ ) = ε. Moreover, we use q = (k′

x − kx )x̂ + k′
‖ − k‖ and q̃ = (−k′

x −
kx )x̂ + k′

‖ − k‖.
We finally summarize symmetry relations of the scattering kernels, which follow from the inversion symmetry of the problem.

For a given energy ε, the integral equations (3.10) and (3.11) are invariant under the replacement k → −k combined with
interchanging the surfaces at x = ±L/2. This gives the symmetry relations

W (ss)±
k′

z,kz
= W (ss)∓

−k′
z,−kz

(C9)
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for the arc-arc kernel. Similarly, the bulk-bulk kernel obeys

W (bb)
k′

‖,k‖
= W (bb)

−k′
‖,−k‖

. (C10)

The bulk-arc and arc-bulk kernels satisfy the relations

W (sb)±
k′

z,k‖ = W (sb)∓
−k′

z,−k‖ ,

W (bs)±
k′

‖,kz
= W (bs)∓

−k′
‖,−kz

. (C11)

Since the velocities appearing on the left-hand side of
Eqs. (3.10) and (3.11) are antisymmetric under inversion I ,
these symmetry relations imply that we may search for a so-
lution of Eqs. (3.16) and (3.17) that satisfies the antisymmetry
properties

ϕ
(b)
k‖ = −ϕ

(b)
−k‖ ,

ϕ
(s)±
kz

= −ϕ
(s)∓
−kz

. (C12)

APPENDIX D: ON THE ARC-BULK RATE

Here we outline the derivation of the temperature depen-
dence of the arc-bulk rate for kz close to the arc termination at
kz = k̄W, where min � T (b)

BG . The starting point is Eq. (4.13),
where we retain only the Rayleigh phonon contribution. We
will omit numerical factors of order unity and neglect the
differences between the phonon mode velocities, all of which
we will denote by the symbol c. For the Rayleigh mode, we
then have iq(l )

x ∼ −q‖. Close to the arc edge, the inverse decay
length is

κ ∼ k̄W(ε) − kz ∼
√

minε

cv
. (D1)

The integration domain in Eq. (4.13) is the projection of the
bulk states in the (k′

y, k′
z )-plane, that is (in the regime ε �

vkW), the disk k′2
y + (k′

z − kW)2 � ε2/v2. We use a rotated
coordinate system (k′

1, k′
2) with the origin on the boundary of

the domain at the point closest to the initial arc momentum,
so that the domain is parametrized as 0 < k′

1 < 2ε/v, |k′
2| �√

ε2/v2 − (ε/v − k′
1)2. In this frame, the transferred phonon

momentum is

q‖ ∼
√

(k′
1 + min)2 + k′2

2 , (D2)

while the transverse momentum kx and the velocity vx of the
final-state bulk electron are

kx ∼
√

k′
1ε

v
, vx ∼ v

√
vk′

1

ε
. (D3)

We next estimate the matrix element GbsR
k′,k‖ . We first observe

that at k′
1 = 0, one has kx = 0, hence the reflection amplitudes

rkx,k′
‖ = r′

kx,k′
‖
= 1. From Eqs. (B6) and (B7) we then see that

the matrix element vanishes at the boundary of the projection
of the bulk states. Upon moving away from the boundary, the
difference of the two fractions in Eq. (B6) becomes nonzero. It
becomes nonzero because the denominators are different once
kx is nonzero, and because rkx,k′

‖ and r′
kx,k′

‖
are no longer equal.

Indeed, to linear order in kx,

rkx,k′
‖ ∼ (rkx,k′

‖ )∗ ∼ 1 + i
vkx

ε
. (D4)

Which of the two mechanisms dominates depends on the
relative magnitude of κ + q‖ and ε/v. For min � T (b)

BG , the
estimate (D1) implies κ � ε/v. Since the maximum value of
q‖ is of order ε/v, we conclude that we may safely restrict
ourselves to the kx-dependence arising from the kx term in the
denominators and approximate rkx,k′

‖ ≈ r′
kx,k′

‖
≈ 1. Combining

all these estimates, we obtain

�
(bs)
k‖ ∼ g2

0

vcρM

∫ ε/v

0
dk′

1

∫ ε/v

−ε/v

dk′
2

κq2
‖

sinh(cq‖/T )

×
√

ε

vk′
1

k2
x[

(κ + q‖)2 + k2
x

]2 . (D5)

We first consider the case min � T . The integrand is
sharply peaked for small k′

1, but the main contribution to the
integral comes from k′

1, |k′
2| � min(T/c, ε/v). The integral

can be estimated by setting k′
1, |k′

2| ∼ min(T/c, ε/v) in the
integrand and multiplying by a factor ∼min(T/c, ε/v)2 to ac-
count for the integration volume. Then for min � T (b)

BG � T ,
we have T/c � ε/v and we find

�
(bs)
k‖ ∼ g2

0

vcρM
(ε/v)2

√
minε

cv
(ε/v)2 T v

cε

v2

ε2

∼ �0
T 

1/2
minT (b)3/2

BG

T 3
BG

. (D6)

Similarly, for min � T � T (b)
BG , we have T/c � ε/v and we

get

�
(bs)
k‖ ∼ g2

0

vcρM
(T/c)2

√
minε

cv
(T/c)2

√
cε

vT

cv

T ε

∼ �0
T 5/2

1/2
min

T 3
BG

. (D7)

For T � min, on the other hand, the effective integration
range is k′

1 � T/c, |k′
2| �

√
T min/c2. Within this range, one

may approximate (κ + q‖)2 + k2
x ≈ κ2 ∼ minε/cv. To esti-

mate the integral, we set k′
1 ∼ T/c, k′

2 ∼
√

min/c2, q‖ ∼
min/c, and multiply with the integration volume, which is
∼(T/c)3/2(min/c)1/2. This gives the estimate

�
(bs)
k‖ ∼ g2

0

vcρM
(T/c)3/2(min/c)1/2

√
minε

cv
(min/c)2

× e−min/T

√
cε

vT

T ε

cv

(
cv

minε

)2

∼ �0
minT 2

T 3
BG

e−min/T . (D8)

APPENDIX E: HALL RESPONSE

Here we briefly discuss the Hall response. The presence of
a net current along the chiral (ŷ) direction carried by Fermi
arc surface states comes with a finite Hall voltage V⊥. Com-
paring Eqs. (3.18) and (3.19), and using nFA(ε)v(s)±

y ∼ ±kW,
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we estimate

eV⊥ ∼ J (s)+ − J (s)−

kW
. (E1)

As a result, the Hall voltage is given by

eV⊥ ∼ σ (s)
yy

kW
Ey. (E2)

There is no transverse response for an electric field applied
along the ẑ direction.
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