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Abstract—Large process plants generally require energy in
different forms: mechanical, electrical, or thermal (in the form
of steam or hot water). A commonly used source of energy is
cogeneration, also defined as Combined Heat and Power (CHP).
Cogeneration can offer substantial economic as well as energy
savings; however, its real-time operation scheduling is still a
challenge today. Multiple algorithms have been proposed for the
CHP control problem in the literature, such as genetic algorithms
(GAs), particle swarm optimization algorithms, artificial neural
networks, fuzzy decision making systems and, most recently,
reinforcement learning (RL) algorithms.

This paper presents the comparison of a RL approach and
a GA for the control of a cogenerator, using as a case study
a thermal power plant serving a factory during the year 2021.
The two methods were compared based on an earnings before
interest, taxes, depreciation, and amortization (EBITDA) metric.
The EBITDA that could be obtained using the RL algorithm,
exceeds both the EBITDA that could be generated using a per-
week genetic algorithm and the one from the manual scheduling
of the CHP. Thus, the RL algorithm proves to be the most cost-
effective strategy for the control of a CHP.

Keywords—CHP, cogeneration optimization, EBITDA, energy
cogeneration, genetic algorithm, neural networks, reinforcement
learning.

I. INTRODUCTION

Large process plants generally require energy in different
forms: mechanical, electrical, or thermal (in the form of steam
or hot water). These energies very often come from various
types of energy sources such as gas turbine generators, steam
turbine generators, boilers and internal combustion engines.
A commonly used source of energy in both industrial sectors
and residential applications [1] is cogeneration, also defined
as combined heat and power (CHP), which is the combined
production of thermal and electrical/mechanical energy in a
single process from a single primary energy source [2]. For
electricity, the national grid acts as a source of supplementary
electricity when the production facilities available to the in-
dustry do not produce enough electricity and, if necessary, as a

sink when excess electricity is produced. The variety of energy
sources and their interdependence, as well as their changing
technical and economic conditions over time, make energy
cost reduction strategies non-trivial, as they are one of the
main factors in the total cost of ownership of a process plant.
Cogeneration can offer substantial economic as well as energy
savings [3]. However, its real-time control is still a challenge
today, as explained in [4] and [5].

At the state of the art, different approaches are used to
control energy systems, which can be classified into three
classes: white box, data-driven (black box), and grey box
models. White box models, also known as model-based control
strategies, apply physical principles to represent the relation-
ship between model inputs and outputs during the control
process [6]. However, the lack of good quality data and the
complexity of energy systems is an obstacle to the adoption of
such strategies. Data-driven models, also known as black box
control methods, use knowledge derived from online or offline
data processing instead of depending on the explicit or implicit
information of the mathematical model [7]: as an example,
Reinforcement Learning (RL) [8] belongs to this category.
Finally, grey box models are those found between white and
black box models: models based on fuzzy logic [9] are among
those classified in this category. Multiple algorithms have been
proposed for the CHP control problem in the literature, which
are generally non-linear, with multi-modal objective functions
and can contain both discrete and continuous variables. Some
of the most commonly used methods are the following: genetic
algorithms (GAs), such as the self adaptive real-coded GA
proposed in [10] and the real-coded genetic algorithm using
an improved Mühlenbein mutation in [11]; Particle Swarm
Optimization, such as the multi-objective PSO model in [12]
and the set of improved PSO algorithms in [13]; Artificial
Neural Networks such as the multi-layer feedforward neural
network for the simulation and optimization of cogeneration
in [14], the ANN for the re-modeling and optimization of the



cogeneration system in [15]and an feedforward neural network
based on the output of a physics-based model in [16]; fuzzy
decision making systems such as [17] and, most recently, RL
algorithms such as the offline RL-based optimization model
proposed in [18], the RL algorithm for the control of a district
heating network powered by a CHP [19] and an improved
Distributed Proximal Policy Optimization in [20].

This work presents a comparison between a RL approach
and a GA optimization approach for the control of a CHP
based on the energy demands of an industrial plant. The
considered case study is a cogenerator located in a thermal
power plant in Italy. The combined production of electricity
and heat takes place via a reciprocating engine, combined with
heat recovery circuits for the production of hot water, saturated
steam and low-temperature. The objective of the task under
analysis is to identify the most cost-effective CHP operation
scheduling approach.

The first strategy used is the off-line computation of the best
CHP operation scheduling of a day or a week using a GA. The
second strategy used is an on-line RL-based controller, which
learns a control strategy to handle the hourly load factor of
the CHP in real time.

II. SYSTEM DESCRIPTION

The case study for this work is a cogenerator plant with
an internal combustion engine, located in a thermal power
plant serving a factory in the Lombardy region in Italy, which
produces adhesive systems for industry and consumer goods.
The cogeneration plant consists of one ECOMAX 12 NGS
cogeneration module, derived from GE JENBACHER JGS
416 GS-N.L. The thermal power plant serving the industry
consists, as far as the production part is concerned, of the re-
ciprocating engine and three boilers. The combined production
of electricity and heat takes place via a reciprocating engine
with a nominal full-load power output of 1203 electric kW,
with a nominal thermal energy recovery of 1385 kW. The
cogeneration unit operates based on the four-stroke Otto cycle,
consumes natural gas and it is connected to the power supply
network of the national power grid in parallel with a 15000V
voltage.

In the ECOMAX 12 NGS cogeneration module, the first
stage of heat recovery takes place within the engine block
(lubricating oil circuit, engine jacket water circuit, intercooler
first stage circuit), from which it was planned at the design
stage to recover about 774 kW. Such power recovery, when
added to the 97 kW offered by the preheating coil, enables the
production of hot water at about 85 °C for the plant utilities.
Combustion fumes exiting the engine block are sent to a shell-
and-tube heat exchanger capable of producing 396 kW (includ-
ing 41 kW offered by the economizer) in the form of saturated
steam at about 175°C, which is entirely self-consumed by
the plant. Finally, by means of an additional exchanger, the
thermal energy of the second intercooler stage, amounting to
118 kW, is recovered in the form of low-temperature hot water
at about 29.5 °C, which is self-consumed by the plant too.

Currently, the CHP is manually controlled by plant techni-
cians based on their past experience. The heat and power pro-
duced by the CHP are approximately entirely self-consumed,
therefore it is assumed that the CHP plant is a high-
efficiency cogeneration plant in accordance with the directive
2012/27/EU of the European Parliament [21]. Based on this
assumption, it is possible to further assume that the CHP plant
has dispatching priority on the national electric power grid
with respect to traditional sources of power [21].

III. METHODOLOGY

A. Dataset

The energy demands data of the considered plant refer to
the whole 2021 calendar year and have an hourly granularity,
for a total of 8760 data points. Each data point comprises five
features:

• the electrical power demand of the plant;
• the heat demand in the form of steam;
• the heat demand in the form of high-temperature hot

water;
• the heat demand in the form of low-temperature hot

water;
• the heat demand of the degasser.

The real manually-scheduled load factor of the CHP during
year 2021 was used to compute a benchmark for the evaluation
of the results, as will be described in Sec. IV.

To achieve good performance under various scenarios of
energy demand from the plant in the RL algorithm, in order
to simulate all possible operating states of the CHP system,
the agent was not trained on the real dataset but the trends
of electrical and thermal energy demand were modified to
generate a new training dataset. The electricity demand of the
odd months was reduced to 50% and then 20% in 2000-hour
intervals. In the remaining hours it was finally reduced to 10%.
The thermal demand of the odd months was kept at 100% for
the first 500 hours, then reduced to 50%, 25%, 5% at 500-hour
intervals. This process was repeated on the rest of the dataset.
As a test dataset, the whole original dataset was used.

B. Objective function

The objective function to be maximized is the earnings be-
fore interest, taxes, depreciation, and amortization (EBITDA)
metric [22]. The revenues of the plant included in the formula-
tion of the EBITDA are those due to Energy Efficiency Credits
(EECs, i.e. documents that attest that a certain decrease of
energy consumption has been achieved), the sale of exported
electricity to the grid, as well as the avoided cost of natural
gas for the production of thermal energy and the avoided cost
of electricity purchased from the grid. The costs included in
the EBITDA are those due to the purchase of natural gas
feeding the cogenerator, and maintenance and operating costs
of using the cogeneration plant. The self-consumption of heat
was considered in the calculation of the EBITDA with respect
to the directive 2012/27/EU of the European Parliament [21]
on high efficiency cogeneration, relating to the calculation of



the primary energy saving. The detailed formulation of the
EBITDA is the following:

EBITDA =REEC ∗ EEC+

+RkWh ∗ Eelsold to network
+

+ CGN ∗ EthCHP

9.8 ∗ ηIB
+

+ CkWh ∗ (EelCHP
− Eelsold to network

)+

− CGN ∗ VNGCHP
+

− CO&M ∗ h

(1)

where EEC is the number of EECs for the performance of
the CHP; REEC is the price of EECs; RkWh is the per-
kWh revenue from selling the electric energy produced by the
CHP to the network; Eelsold to network

is the electric energy
produced by the CHP and sold to the network; CNG is the
cost of natural gas; EthCHP

is the thermal energy produced by
the CHP; ηIB is the efficiency of integration boilers; CkWh

is the cost of electric energy purchased from the network;
EelCHP

is the electric energy produced by the CHP during
its operating time; VNGCHP

is the volume of natural gas
consumed by the CHP (computed as the ratio between the
electric energy produced by the CHP and the product of
the electric efficiency of the CHP and the lower calorific
value of natural gas); CO&M is the cost for operations and
maintenance of the CHP; h is the number of operating hours
of the CHP (defined as the hours where the load factor of the
CHP is greater than zero). In the calculation of EBITDA in the
experiments reported below, all incentive aspects of the Italian
legislation related to the primary energy saving directive were
taken into account. Regarding the costs of natural gas, self-
consumed electricity, electricity sold to the grid, and operation
and maintenance, point values for the year 2021 were used, in
accordance with the dataset collection period. The parameters
affected by the CHP scheduling are EelCHP

, Eelsold to network
,

VNGCHP
, EthCHP

, h, and EEC.

C. Genetic algorithm

GAs are meta-heuristic methods that apply the principles of
biological evolution processes to solve optimization problems.
[23] By representing a set of points in the solution space in the
form of a population of chromosomes, GAs allow iteratively
obtaining solutions which evolve toward a point of optimum.
A fitness function is used to assign a value to chromosomes
and select them for further processing, and recombination
strategies, namely crossover and mutation, are applied in the
creation off-springs.

A brief description of the employed GA is provided in the
following:

• An individual is a vector of 24 numbers belonging to the
set α = {0, 0.50, 0.55, 0.60, ..., 0.95, 1}, representing the
load factor of the cogenerator for all the 24 hours of a
day.

• The fitness function is the EBITDA and is calculated over
a whole year.

• A new generation is created by applying one-point
crossover to the two fittest individuals, followed by
random mutations on the newly generated individuals.

• At each generation, the population is updated by re-
moving the two least fit individuals from the previous
population and adding the new generation of individuals.

• The initial population is composed of randomly initialized
individuals.

• The maximum number of generations used is 5000.
• The mutation rate is 0.04.
• The number of individuals in the population is 50.
The GA was fed with the energy demands of a previous

time interval (day or week) and the optimal solution found
was applied in the subsequent time interval for running the
CHP.

D. Reinforcement Learning algorithm

Reinforcement learning is a machine learning paradigm
aimed at finding learning strategies that maximize a numerical
reward while an agent explores and interacts with an environ-
ment [24]. The main elements that constitute a RL algorithm
are the following: a policy, defining the computations which
determine the action the agent performs at each time step;
a reward signal, i.e. the goal of the optimization problem; a
value function, indicating the amount of reward that can be
obtained from a certain state; and, optionally, a model of the
environment to make inferences on future scenarios.

In the context of CHP scheduling, the environment is the
mathematical model of the cogeneration system, the agent is
the control system, its actions are the variations of the load
factor of the CHP, and the reward is the EBITDA value at each
time step based on the action of the agent in the environment.
The RL model which was selected for this analysis is a Deep
Q Network (DQN) [25], available in the Keras-RL library
[26]. DQN integrates Q-learning [27] with neural networks and
experience replay to maximize the reward of actions performed
by an agent in an environment. Q learning is an off-policy
model-free algorithm, which applies to the Reinforcement
Learning problems that do not require any model of the
environment [27].

In this work, the environment is defined by a state variable
for each hour, composed by six elements:

• the electrical power demand;
• the heat demand in the form of steam;
• the heat demand in the form of high-temperature hot

water;
• heat demand in the form of low-temperature hot water;
• the heat demand of the degasser;
• the load factor of the CHP.
The first five elements of the state variables are the input

dataset features, while the load factor is initially set as a
random value belonging to the set α = {0, 0.50, 0.55, 0.60,
..., 0.95,1} (the value 0 indicates that the CHP is switched
off). The set of actions the agent can perform is defined as
the set of possible variations of the load coefficient δα = {-
0.5, -0.45, -0.40, ..., 0.40, 0.45, 0.50} and their application is



constrained to the limits defined by α. The reward function
to be maximized is the EBITDA. The type of neural network
implemented within the model presented in this section is a
multi-layer perceptron [28] with two hidden layers composed
of 128 and 64 units respectively and with ReLU activation
[29]. The optimization function used is Adam and the learning
rate is 5 ∗ 10−4. The agent uses an ϵ-greedy Q exploration
policy associated with a linear annealing strategy [30] to
choose actions. The value of epsilon decreases linearly over
170 episodes from a value of 1 to a value of 0.01. The memory
of experience replay was set to 1000. The target Q model is
updated every 400000 steps. The RL algorithm receives as
input the data of the current moment and is able to determine
the best variation of the CHP load factor for the next hour to
maximize the EBITDA. Then, due to the use of the Q policy, it
continuously (each hour) updates the neural network weights
during training to correct the load factor scheduling.

IV. RESULTS

The two approaches were compared on a real EBITDA
maximization dataset. In both cases, the benchmark for the
evalutation of the results is the real EBITDA that the plant
obtained by manually schedulng the load factor of the CHP
during the year 2021, which amounted to 630702C. This value
is, of course, not the highest obtainable one, due to the manual
control of the CHP; however, since it was achieved via a
traditional human-based approach, it can be considered as a
minimum boundary for the EBITDA.

The results of the application of the GA and the DQN are
reported in the following two subsections, respectively. The
comparison of the results is provided in Sec. IV-C.

A. Genetic algorithm

The GA has been applied to three different scenarios:
1) Whole dataset: all available data were fed to the GA;

the system was tested on the same dataset to obtain the
yearly EBITDA.

2) Only data of the previous day: data of the previous day
were fed to the GA; the system was tested on the data
of the subsequent day; such a process was repeated over
the whole dataset to obtain the yearly EBITDA.

3) Only data of the previous week: data of the previous
week were fed to the GA; the system was tested on the
data of the subsequent week; similarly also in this case
such a process was repeated over the whole dataset to
obtain the yearly EBITDA.

Table I shows the yearly EBITDA values obtained in each
scenario. It may seem that the first approach performs better
than the benchmark (660798C vs 630702C); however, it
represents an ideal scenario where the whole energy demands
are known in advance for the whole year. In this sense, it was
considered in order to have a benchmark for comparison that
is close to the maximum EBITDA that could be obtained for
the year 2021.

On the other hand, it is possible to observe that both the
computations of the GA using data from the previous day or

TABLE I
GA EBITDA RESULTS ON DIFFERENT INPUTS

Data used to compute the GA EBITDA (C)
Whole dataset 660798
Previous day 451388
Previous week 528911

the previous week do not improve the obtained EBITDA of the
year, causing a 32% and 20% loss respectively: such a result
is significantly lower than the benchmark EBITDA obtained
with CHP manual scheduling.

In the third case (only data of the previous week), a greater
EBITDA can be related to the fact that the energy demands
of the plant have a weekly periodicity.

Figs. 1(a) and 1(b) show the scheduling of the CHP (purple
graph) computed using data of the previous day (a) and data
of the previous week (b), with respect to the electrical power
demand of the plant (green graph). As expected, the larger
backward window of the latter case enables a more precise
scheduling of the CHP. A situation where the daily scheduling
of the CHP provides a better result is highlighted in the
zoomed-in parts of the plots: in Fig. (a) it is possible to observe
that the one-week delay in the application of the GA causes
significant losses in the exceptional case when there was no
power demand in the previous week; on the contrary, in picture
(b) the scheduling of the CHP is overall more coherent with
respect to the electrical power demand. However, this situation
is a rare occurrence in the energy demands of the factory over
a whole year.

In conclusion, it can be stated that the GA is not able to
reach a satisfactory optimization performance without know-
ing the future energy demands. In a real case scenario, an
accurate forecast system of factory demands is not available
at the beginning of the operating period; however, if such a
tool was in place, the GA could be a significant cost-effective
tachnique for maximizing the EBITDA.

B. Reinforcement Learning algorithm

As explained in Sec. III-A, to simulate all possible operating
states of the CHP system, the RL agent was trained on the
modified dataset and tested on the whole real dataset.

The RL algorithm was trained and tested in six separate
experiments to ensure result consistency; this was possible
due to the faster convergence time of the RL algorithm with
respect to the genetic one. The mean obtained EBITDA is
equal to 640040C, with a standard deviation equal to 1181C:
it is only, on average, 3% lower than the maximum EBITDA
which could be obtained in the ideal condition of computing
the GA on the whole dataset. Additionally, the mean EBITDA
is higher than the manually optimized benchmark by 1.5%.
Furthermore, the standard deviation is very low compared to
the mean EBITDA, which indicates that the RL algorithm has
a consistent optimization performance even if it works in a
real case scenario with random initial conditions.

Fig. 2 shows the scheduling of the CHP (purple plot),
computed using the DQN algorithm, compared to the electrical



Fig. 1. Figs. (a) and (b) show the scheduling of the CHP (purple plot) with respect to a single power demand, i.e. the electrical power demand (green
plot), for a clearer visualization. In particular, graph (a) shows the scheduling of the CHP (purple plot) computed with the GA using the data of the previous
week as input, with respect to the electrical power demand of the plant (green plot). Graph (b) shows the scheduling of the CHP (purple plot) computed with
the GA using the data of the previous day as input, with respect to the electrical power demand of the plant (green plot). The zoomed-in portion of graph
(a) shows that the one-week delay in the application of the GA causes significant losses in the exceptional case when there was no power demand in the
previous week. On the contrary, the zoomed-in portion of graph (b) it is possible to observe that the scheduling of the CHP is more coherent with respect to
the electrical power demand in that situation. However, the weekly scheduling of the CHP enables a more precise scheduling of the CHP overall, due to the
weekly periodicity of energy demands.

power demand of the plant (green plot). In this case, the
scheduling of the CHP follows the electrical power demand
better. Such an improvement can derive from the use of
continuous feedback during training, which led to a better
approximation of the lowest points of the power demand curve.

C. Comparison

Table II summarizes the EBITDAs obtained by applying the
GA using, as input, the whole dataset, data of the previous day
or data of the previous week, as well as EBITDA of the test
of the DQN model. In addition, the benchmark value, i.e. the
real EBITDA obtained by manually scheduling the CHP in
the year 2021, is reported in the first row. As stated in Sec.
IV-A, the case of GA fed with the whole dataset represents an
ideal scenario where the whole energy demands are known in
advance for the entire year. Thus, it has been considered only
as a further benchmark that is close to the maximum EBITDA
that could be obtained for the year 2021.

The scheduling of the CHP which provided the best perfor-
mance in terms of greater EBITDA is the one computed with
DQN: if this method had been used to optimize the scheduling
of the CHP in the year 2021, the total EBITDA would have
amounted to 640040C, which exceeds both the EBITDA of

the per-week GA and the one of the manual scheduling of
the CHP. Conversely, the per-day and per-week GAs resulted
in a lower EBITDA compared to both the manual scheduling
and the DQN scheduling of the CHP: therefore, they are not
cost-effective strategies for the control of the CHP.

TABLE II
COMPARISON OF EBITDA RESULTS.

Algorithm EBITDA (C)
Manual scheduling 630702
GA on whole dataset 660798
GA on previous day 451388
GA on previous week 528911
DQN 640040

V. CONCLUSION

This paper presents the comparison of a RL and a GA
optimization approach for the control of a cogenerator, using a
thermal power plant serving a factory during the year 2021 as a
case study . The first strategy used is the off-line computation
of the best hourly CHP operation scheduling of a day or a
week using a GA. The EBITDA obtained from both the per-
day and the per-week scheduling was significantly lower than



Fig. 2. The scheduling of the CHP (purple plot) computed using the RL algorithm, compared to the electrical power load of the plant (green plot). The
zoomed-in portion of the graphs shows that the scheduling of the CHP follows better the electrical power demand.

the real EBITDA generated by manually scheduling the CHP
during 2021. The second strategy used is an on-line RL-based
controller, which learns a control strategy to handle the hourly
load factor of the CHP based on the data of the previous hour.
The RL algorithm that was chosen is a DQN. In this case, the
mean EBITDA that could be obtained amounted to 640040C,
which exceeds both the EBITDA from the per-week GA and
the EBITDA from the manual scheduling of the CHP. Thus,
the DQN proves to be the most cost-effective strategy for the
control of a CHP, compared to the use of a GA or manual
scheduling.

Future works will involve comparing different energy de-
mand forecasting strategies to be integrated in the two pro-
posed techniques of this paper. Additionally, a bigger real
dataset will be collected to further test the two optimization
approaches.
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