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Abstract
We propose a quality-based optimization strategy to reduce the total number of 
degrees of freedom associated with a discrete problem defined over a polygonal tes-
sellation with the Virtual Element Method. The presented Quality Agglomeration 
algorithm relies only on the geometrical properties of the problem polygonal mesh, 
agglomerating groups of neighboring elements. We test this approach in the context 
of fractured porous media, in which the generation of a global conforming mesh on 
a Discrete Fracture Network leads to a considerable number of unknowns, due to 
the presence of highly complex geometries (e.g. thin triangles, large angles, small 
edges) and the significant size of the computational domains. We show the effi-
ciency and the robustness of our approach, applied independently on each fracture 
for different network configurations, exploiting the flexibility of the Virtual Element 
Method in handling general polygonal elements.

Keywords  Virtual element method · Fractured media · Mesh regularity · Mesh 
quality indicators · Optimal rates convergence

Mathematics Subject Classification  65N12 · 65N15

1  Introduction

Over the last fifty years, computer simulations of Partial Differential Equations 
(PDEs) have dramatically increased their impact on research, design, and produc-
tion, and are now an indispensable tool for modeling and analyzing phenomena 
from physics, engineering, biology, and medicine. The most popular techniques 
for computer-based simulations (e.g., the Finite Element Method) rely on suitable 
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descriptions of geometrical entities, such as the computational domain and its prop-
erties, which are generally encoded by a mesh, sometimes also called tessellation. 
Despite decades of research and significant results, techniques for generating meshes 
with good geometrical properties are still studied and developed. Current meshing 
algorithms typically produce an initial mesh, which we expect to be dominated by 
well-shaped elements, and optionally perform optimization steps to maximize the 
geometrical quality of the elements. We can broadly group such optimization strate-
gies into two categories [1]: geometrical methods (also called smoothing or untan-
gling) that keep the mesh connectivity fixed while changing only the locations of 
the mesh vertices [2–4], and topological methods (also re-meshing) that keep the 
vertices fixed while changing only the connectivity [5, 6]. In both cases, the critical 
point is the definition of the concept of quality for polygonal or polyhedral elements. 
While there is some concordance in the literature on the notion of quality related 
to triangular and quadrangular meshes, this concept is still a debated topic when 
associated with generic polygonal meshes, as proved by the vast number of very dif-
ferent attempts to define a universal quality indicator [7–14]. As a result, it is easier 
to define mesh optimization strategies that are only related to the optimization of the 
size of the elements, or the number of incident edges, instead of a generic concept 
of quality.

In this work, we present an algorithm called Quality Agglomeration that automat-
ically optimizes the number of degrees of freedom (DOFs) in the discrete problem 
defined over a polygonal tessellation. The algorithm acts as a topological optimiza-
tion method, agglomerating groups of neighboring elements. In particular, it mini-
mizes an energy functional based on the mesh quality indicator introduced in [12], 
which involves the use of the Virtual Element Method (VEM) [15] in the numerical 
discretization. The algorithm performs energy minimization via the graph-cut tech-
nique (also known as maximum-flow or minimum-cut algorithm [16]), an efficient 
graph-based technique aimed at splitting a graph into two or more parts, minimizing 
a certain energy.

We also present an application of our algorithm in the context of fractured 
porous media. The flow simulation in underground fractured porous media is a 
fundamental task for a huge number of applications, such as carbon capture pro-
cesses, the monitoring of aquifers, or the contaminant transport in the subsoil. 
Among the existing approaches for the simulation of underground phenomena in 
fractured media [17], the Discrete Fracture Network (DFN) model is particularly 
suited for scenarios in which the permeability of the surrounding media is negli-
gible with respect to the fracture transmissivities. Indeed, in DFN simulations the 
porous rock matrix is neglected and the fluid is confined to move on the rock dis-
continuities, called fractures, which act as channels for the flow. The DFN model 
is characterized by a dimensional reduction of each fracture to a planar polygon 
immersed in a three-dimensional space, and the coupling conditions are imposed 
on fracture segment intersections [18]. Due to the deficiency of direct measure-
ments of the subsoil properties, the position, orientation, size, and aperture of 
each polygonal fracture are generated according to different probability distribu-
tions. Furthermore, real fractured media are characterized by a huge computa-
tional domain, that involves a large number of unknowns, and often present an 
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intricate system of intersections at different scales, e.g., large faults are crossed 
by small fractures. Smart approaches to tackle DFN simulations involve the use of 
non-conforming meshes at fracture interfaces, combined with constrained optimi-
zation problems or high-performance domain decomposition strategies [19–24]. 
Alternative methods rely on a global conforming mesh on the whole network: this 
requires a numerical method able to deal with generic polygonal tessellations, as 
the generation of a standard FEM mesh over a complex domain would be com-
putationally demanding. For this reason, polygonal methods such as the Hybrid 
High Order [25, 26], the Mimetic Finite Difference [27–29], the Discontinuous 
Galerkin [30], or the Virtual Element Method (VEM) [31–34] have recently been 
investigated. This work focuses on the global conforming mesh approach com-
bined with the VEM.

The generation of a polygonal tessellation of a DFN conforming to the fracture 
interfaces is not a trivial task, due to the large number of fractures typically found 
in real applications, the different sizes of neighboring domains, and the high com-
plexity of their intersections. In particular, it frequently leads to a high number 
of degrees of freedom (DOFs) in the discrete problem, and to the generation of 
numerous elongated elements with aligned small edges. Such “bad-shaped” cells 
impact on the accuracy of the simulation, producing high condition numbers and 
numerical errors, while the huge number of DOFs translates into a significant 
computational cost and, again, an increase of the condition numbers.

For these reasons, we propose the application of the Quality Agglomeration 
algorithm locally on each fracture of the network, which is able to reduce the 
total unknowns of the discrete problem with a control on the geometric quality 
of the elements. To evaluate the effects of the Quality Agglomeration, we run 
the algorithm over two DFNs of increasing complexity and solve a numerical 
problem over the original and the agglomerated versions. Then, we compare the 
results produced by the VEM over the different networks in terms of computa-
tional cost, approximation error, and convergence rate.

The paper is organized as follows. We devote Sect. 2 to the description of the 
mesh quality agglomeration algorithm. In Sect. 3 we introduce the DFN model, 
the numerical problem to be solved and the VEM discretization used. In Sect. 4 
we report the numerical tests performed on two DFNs of increasing complexity. 
Finally, in Sect. 5 we collect conclusions and possible future research directions.

Throughout the paper we will use the standard definition and notation of 
Sobolev spaces, norms, and seminorms, cf. [35]; thus, given a bounded, con-
nected subset � of ℝ2 , we denote the dot product and the norm in L2(�)-space 
with (⋅, ⋅)� and || ⋅ ||� respectively. In addition, | ⋅ |� is the seminorm of H1(�) . 
Given a generic dimensional geometric object G , we indicate by hG its diame-
ter, xG = (xG, yG, zG) its centroid and |G| its measure (i.e. length or area). We will 
denote as ℙn(G) the space of polynomials of degree less or equal to n ∈ ℕ and we 
adopt the usual convention ℙ−1(G) = {0} . Finally, similarly to [36], we indicate 
with Mn(G) the selected basis for the space ℙn(G) defined as
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2 � Mesh quality agglomeration

Consider the two-dimensional domain Ω , tessellated with an initial polygonal mesh 
Ωh . The Quality Agglomeration algorithm aims at reducing the total number of 
DOFs in the virtual element approximation, keeping control over the mesh geo-
metric quality. By Quality Agglomeration, we mean the process in which we glue 
together neighbouring elements to form bigger ones. The gluing strategy is driven 
by the minimization of a functional related to a notion of mesh “quality” suited 
explicitly for the VEM. Furthermore, we admit a finite number of constraints, so that 
the gluing process is capable of preserving some selected mesh nodes and edges. In 
particular, we are interested in operating over the two following types of elements: 

1.	 Elements located in regions where we can assume that the solution does not 
vary so much, for example, areas of the domain that are distant from geometrical 
details or features. In such regions, the algorithm can increase the size of the ele-
ments without a significant impact on the accuracy of the simulation;

2.	 “Badly-shaped” or pathological elements according to the chosen notion of qual-
ity. The gluing algorithm can often improve the quality of such elements by merg-
ing them with neighboring elements.

In what follows, we consider the mesh Ωh formed by generic polygonal elements E 
with the boundary �E subdivided into edges e . Finally, the positive number h indi-
cates the mesh size, i.e., the finite constant that bounds all the element diameters hE.

2.1 � Mesh quality

The first crucial component of the Quality Agglomeration algorithm is the notion of 
mesh quality. The standard approach in the VEM literature to ensure a good quality 
mesh is to impose some geometrical (or regularity) assumptions that a mesh must 
respect to guarantee the optimal behavior of the method. In [12], the authors isolate 
the four principal assumptions typically required (even if not all simultaneously) for 
the convergence of the VEM on a given mesh family:

G1:   there exists a real number � ∈ (0, 1) , independent of h, such that every poly-
gon E ∈ Ωh is star-shaped with respect to a disc with radius rE ≥ �hE;
G2:   there exists a real number � ∈ (0, 1) , independent of h, such that for every 
polygon E ∈ Ωh , each edge e ∈ �E satisfies |e| ≥ �hE;

(1)Mn(G) ∶=

{
m ∈ ℙn(G) ∶ m =

(
x − xG

hG

)
s

, |s| ≤ n

}
.



1 3

Mesh quality agglomeration algorithm for the virtual element… Page 5 of 27  27

G3:   there exists a positive integer N , independent of h , such that the number of 
edges of every polygon E ∈ Ωh is (uniformly) bounded by N;
G4:      there exists a positive number � , independent of h, such that for every 
polygon E ∈ Ωh , the 1-dimensional mesh IE representing its boundary can be 
subdivided into a finite number of disjoint sub-meshes I1

E
,… , IN

E
 , and for each 

I
i
E
 it holds that maxe∈Ii

E
he∕mine∈Ii

E
he ≤ � (see [37] for a more rigorous defini-

tion).

Using these assumptions as absolute conditions that a mesh can only satisfy or vio-
late has been shown to be particularly restrictive [12]. Instead, we can define the 
quality of a mesh as a measure of how much it satisfies the above conditions. This 
approach is more accurate as it captures small quality differences between meshes 
and does not exclude a priori all the particular cases of meshes that are only slightly 
outside the geometrical assumptions.

In [12], the authors derive four scalar functions �s ∶ Ωh → [0, 1] , which meas-
ure how a mesh element E ∈ Ωh meets the requirements of assumption Gs, for 
s = 1,… , 4 . In particular, �s = 0 if E does not respect Gs, and the higher �s the bet-
ter E is shaped with respect to Gs. We briefly report the indicator definitions and 
refer the reader to [12] and [38] for a more complete discussion:

The kernel operator computes the kernel of a polygon, intended as the set of points 
from which the whole polygon is visible, and Ij

E
 are all the 1-dimensional disjoint 

sub-meshes corresponding to the edges of E (we consider each Ij
E
 as a mesh as it 

may contain more than one edge, see [37]) such that IE = ∪jI
j

E
 , where IE is the 

1-dimensional mesh induced by �E introduced in assumption G4.
We combine together the four indicators �1, �2 , �3 and �4 into a quality indicator 

� ∶ Ωh → [0, 1] , which measures the overall quality of an element E ∈ Ωh:

We have �(E) → 1 if E is a perfectly-shaped element, e.g. an equilateral triangle or 
a square, �(E) = 0 if and only if E is not star-shaped, and 0 < 𝜚(E) < 1 otherwise. 

�1(E) =
�kernel(E)�

�E� =

⎧
⎪⎨⎪⎩

1 if E is convex

∈ (0, 1) if E is concave and star-shaped

0 if E is not star-shaped

�2(E) =
min(

√�E�, mine∈�E �e�)
hE

�3(E) =
3

#{e ∈ �E}
=

�
1 if E is a triangle

∈ (0, 1) otherwise

�4(E) = min
j

min
e∈I

j

E

�e�
max

e∈I
j

E

�e�

(2)�(E) ∶=

√
�1(E)�2(E) + �1(E)�3(E) + �1(E)�4(E)

3
.
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We remark that all indicators {�s}s∈{1,…,4} , and consequently � , only depend on the 
geometrical properties of the mesh elements; therefore their values can be computed 
before applying the VEM.

We point out that the local quality indicator (2) is the restriction to a single ele-
ment of the mesh quality indicator introduced in [12]. A strict correspondence has 
been proven between the values measured by the mesh quality indicator and the per-
formance of the VEM in terms of approximation errors and convergence rates. In 
particular, the VEM is likely to produce small approximation errors over meshes 
with a high quality value in the sense of (2). Moreover, given a collection of refined 
meshes with decreasing mesh size, the VEM is expected to converge rapidly at the 
optimal rate if the quality of the meshes remains constant throughout the refinement 
process (note that � is scale-independent).

2.2 � Mesh agglomeration

The second component of the Quality Agglomeration algorithm is the procedure 
that agglomerates groups of elements in the mesh, following the information pro-
vided by the quality indicator. We perform the element agglomeration by solving an 
optimization problem that balances the number of elements in the mesh and their 
quality. The energy functional E ∶ Ωh → ℝ that we want to minimize is:

We define the cost functions dc and sc from the product space Ωh × Ωh to the unit 
interval [0, 1] as follows:

•	 the data cost (dc) represents the cost of agglomerating two elements E,E� ∈ Ωh , 
and measures the potential quality of the element E ∪ E� . We define it as: 

 Here, E ∪ E� is the boolean union of the two neighboring elements, and � is the 
elemental quality indicator (2) of the union;

•	 the smoothness cost (sc) encodes information on the structure of the mesh, set-
ting a zero weight to the non-adjacent elements: 

The agglomeration parameter � ∈ [0, 1] balances the relative importance of the two 
cost functions. By setting � = 0 we are essentially saying that all the elements are 
isolated, and therefore no agglomeration is possible. In the next sections, we use this 
value to indicate the original input mesh. It would be possible to consider values of 

(3)E ∶=
∑

E,E�∈Ωh

dc(E,E�) + �
∑

E,E�∈Ωh

sc(E,E�).

(4)dc(E,E�) ∶=

⎧
⎪⎨⎪⎩

0 if E = E�

1 − �(E ∪ E�) if E and E� are adjacent

1 otherwise

(5)sc(E,E�) ∶=

{
1 if E and E� are adjacent and E ≠ E�

0 otherwise
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� greater than 1, but our tests suggest that the most interesting results are obtained 
within the range [0, 1], see Fig. 2. Empirically, values of � closer to 1 lead to more 
aggressive agglomerations.

To minimize the energy functional defined in (3) we interpret the mesh Ωh as 
a graph, in which a node represents an element E ∈ Ωh . The graph connects two 
nodes if their corresponding elements are adjacent, i.e., if they share at least one 
mesh edge. We use the graph-cut technique [39–41] to solve the energy optimi-
zation problem, in the implementation provided by the Multi-label Optimization 
method [42]. Graph-cut iterates on the graph nodes, i.e., the mesh elements, and 
opportunely groups them until the energy associated with the graph undergoes 
a given threshold. During this process, graph-cut assigns a label to each node to 
indicate the element(s) that this node should be merged with.

Let L denote the set of all possible labels and L ∶ Ωh → L the map that assigns 
a label l ∈ L to each node E ∈ Ωh . In [42] the cost functions are defined in the 
form d̃c ∶ Ωh × L → [0, 1] and s̃c ∶ L × L → [0, 1] , while we defined both (4) and 
(5) over Ωh × Ωh . To align with this notation, we set L ∶= {1,… , #Ωh} and define 
the trivial labeling L̃ ∶ Ωh → L that bijectively maps each element of the mesh 
to its index, i.e., its position in the array of the mesh data structure containing 
all the elements. Then, we opportunely compose the cost functions (4) and (5) 
with the inverse map L̃

−1
∶ L → Ωh , which, therefore, connects a label l ∈ L to 

the (unique) element E ∈ Ωh with index l:

where E′ , E1 , and E2 are the graph nodes whose corresponding elements have indi-
ces l, l1 , and l2 , respectively. In other words, the operator dc(E,E�) expresses the 
cost of merging elements E and E′ , while the operator d̃c(E, l) expresses the cost 
of merging E with the l-th element of the mesh. If the l-th element is E′ , the trivial 
labeling will give L̃

−1
(l) = E� and the two operators coincide.

Substituting d̃c and s̃c into (3), we obtain a new energy functional, which 
depends on the particular labeling:

The minimization problem now reads as minL∈P Ẽ(L) , where P is the set of all the 
possible labelings. We solve this problem by using the alpha-beta swap algorithm 
[39]. This technique iteratively segments the graph nodes labeled with a given label 
� to those with another label � . These two labels change after each iteration, scout-
ing all the possible combinations. Other algorithms exist in the literature, for exam-
ple, the so-called alpha-expansion algorithm, which requires the function sc to be a 
metric (i.e., to respect the triangular inequality). The results obtained with this latter 
algorithm are less useful in our context because it generally leads to uneven label 
distributions. Indeed, the alpha-expansion algorithm tries to expand each label as 

d̃c(E, l) ∶= dc(E, L̃
−1
(l)) = dc(E,E�),

s̃c(l1, l2) ∶= sc(L̃
−1
(l1), L̃

−1
(l2)) = sc(E1,E2),

(6)Ẽ(L) ∶=
∑
E∈Ωh

d̃c(E, lE) + �
∑

E,E�∈Ωh

s̃c(lE, lE� ).
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much as possible, thus assigning the same label to large part of the domain and dif-
ferent labels only to small isolated areas. This strategy leads to meshes with unbal-
anced elements.

2.3 � The algorithm

We now detail the Quality Agglomeration algorithm for the VEM. Given an input 
mesh Ω̃h , we build the corresponding graph by generating a node for each ele-
ment in the mesh and connecting the nodes corresponding to adjacent elements. 
In the case of a constrained mesh edge that has to be preserved, we consider the 
elements sharing that edge as non-adjacent. We initialize the node labels with 
the trivial labeling L̃ , see Fig. 1a. Then, we run the graph-cut technique with a 
selected value of the parameter � , and find new labels for the elements (Fig. 1b). 
Note that graph-cut only operates over the labels without actually modifying the 
mesh. Graph-cut reaches convergence when the energy term (6) attains a (local) 
minimum. This task is typically accomplished in a few iterations. Last, a post-
processing step is required to merge all elements sharing the same label (Fig. 1c) 
and create the agglomerated mesh Ωh . To further improve the mesh quality, the 
algorithm merges aligned edges in the newly generated elements (Fig. 1d), while 
preserving possible constraints on nodes or edges of the initial mesh Ω̃h.

Since the agglomerated mesh Ωh is the solution to a minimization problem, it is 
also optimal in the number of elements. However, we can compute different opti-
mal versions of the same mesh Ω̃h by choosing different values of the parameter � 
in (6). Fig. 2 gives a hint on how to choose the value of � : the difference between 
� = 0.23 and � = 0.25 is significant, while from � = 0.25 to � = 1 the output does 
not change much. Such effects highly depend on the geometric properties of the 
considered mesh; however, we noted that for 𝜆 > 1 we hardly see differences 
on the agglomerated meshes. Higher values of � provide agglomerated meshes 
containing a smaller number of elements, edges, nodes, and, therefore, degrees 

Fig. 1   Visualization of the agglomeration algorithm, with elements colored with respect to their label 
and elements’ indices reported in black. a Initial mesh Ω̃

h
 : every element has a different label, corre-

sponding to its index; b after the graph-cut algorithm, some elements share the same label (color), while 
maintaining distinct indices; c agglomerated mesh Ω

h
 : new elements are created with new indices and 

new labels; d merging of aligned edges: the vertex at the bottom of element 3 is removed
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of freedom of the VEM space, thus requiring a smaller computational cost for 
the VEM. At the same time, we expect the errors produced by the agglomerated 
meshes to be slightly higher, as for every removed DOF we have less information 
on the numerical solution. We are interested in understanding how this reduction 
of degrees of freedom impacts the accuracy of the VEM, and if it affects the con-
vergence rate of the method.

3 � DFN problem formulation

To test the Quality Agglomeration algorithm, we introduce the steady-state flow prob-
lem in DFNs as a possible application. We consider a network domain Ω ⊂ ℝ

3 made 
of a finite number ī of fractures Fi , i ∈ I ∶= {1,… , ī} ; thus, Ω ∶=

⋃
i∈I Fi , such that 

each Fi has at least one intersection with at least one Fj , for j ∈ I ⧵ {i} . In the DFN 
model, each Fi is represented by a two-dimensional polygonal tessellation oriented in 
ℝ

3 that approximates a geological fracture immersed in the impervious rock matrix, as 
done in [18, 33, 34, 43, 44]. With this assumption, the network results in a collection of 
two-dimensional elements. Therefore, we refer to it with the same symbol Ω of Sect. 2 
even if it is not properly contained in ℝ2.

Let �Ω ∶=
⋃

i∈I �Fi be the domain boundary. We split it into a Dirichlet part 
ΓD and a Neumann part ΓN , such that �Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = � , and ||ΓD

|| ≠ 0 . 
The fractures intersect along a finite number m̄ of segments, denoted as Sm , with 
m ∈ M ∶= {1,… , m̄} . For the sake of simplicity, we assume that each intersection 
is formed by exactly two fractures, i.e., Sm ∶= Fi ∩ Fj , fixing a unique pair of fracture 
indices �m = {i, j} for each m ∈ M . We point out that this is a simplifying assump-
tion that does not alter the results. Finally, we denote by Mi the set of the indices of 
the fracture intersections Sm which lie on Fi , i.e., Mi ∶= {m ∈ M ∶ Sm ∩ Fi ≠ �} . 
In what follows, ∇i represents the tangential component of the tridimensional gradient 
operator ∇ on the plane of Fi and the subscript i on a quantity indicates its restriction to 
Fi.

Fig. 2   Impact of the paramenter � on the allgomeration algorithm. a Original mesh ( � = 0 ) with 54 ver-
tices, 130 edges, and 78 elements; b agglomeration with � = 0.23 : 0 vertices, 16 edges, and 16 elements 
removed; c � = 0.25 : 4 vertices, 40 edges, and 36 elements removed; d � = 1.0 : 5 vertices, 49 edges, and 
44 elements removed
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We seek the distribution of the hydraulic head u in the whole network Ω ; we pre-
scribe the Dirichlet boundary condition on ΓD through function g ∈ H

1

2 (ΓD) and set the 
homogeneous Neumann boundary condition on ΓN . We define the functional spaces:

The weak formulation reads: find u ∈ VD such that u − uD ∈ V  with uD ∈ VD and, 
for all v ∈ V ,

 where 𝕂i ∶ ℝ
2
→ ℝ

2×2 is the in-plane transmissivity on the fracture. According to 
[45, Theorem 2.7.7], problem (7) is well posed since the symmetric bilinear form

 is coercive and continuous on V .

3.1 � Network discretization

We describe the approach used to construct an optimal polygonal tessellation Ωh on 
Ω , globally conforming at the fracture intersections, exploiting the Quality Agglom-
eration algorithm of Sect. 2.3. The approach is composed of three steps; we show an 
illustrative example on Fig. 3.

First, we independently discretize each fracture domain Fi ∈ Ω by a classical tri-
angular planar mesh Ti

h
 of given size h . On each Ti

h
 , given the set of local fracture 

segments Sm with m ∈ Mi , we split all the cells T ∈ T
i
h
 that intersect the segments 

Sm by the direction of the segments [33]. Thus, on each Fi we obtain a local polygo-
nal mesh Pi

h
 , which is conforming to all Sm with m ∈ Mi , see Fig.  3a. Since we 

do not implement any particular geometrical smoothing technique on this cutting 

VD ∶=
{
v ∶ v∣ΓD

= g, vi ∈ H1(Fi) ∀i ∈ I, vi∣Sm = vj∣Sm ∀m ∈ M
}
,

V ∶=
{
v ∶ vi ∈ H1

0
(Fi) ∀i ∈ I, vi∣Sm = vj∣Sm ∀m ∈ M

}
.

(7)
∑
i∈I

(
�i∇iui,∇ivi

)
Fi

=
∑
i∈I

(
fi, vi

)
Fi

,

(8)a(v,w) ∶=
∑
i∈I

aFi(v,w) =
∑
i∈I

(
�i∇iwi,∇ivi

)
Fi

Fig. 3   Visualization of a single fracture mesh during the discretization process, with elements around the 
intersection colored. a Local conforming polygonal mesh Pi

h
 on fracture F

i
 : the original triangular ele-

ments around the intersection segment are split in sub-polygons; b locally optimal quality discretization 
Ωi

h
 with new agglomerated polygons; c global conforming mesh Ω

h
 with the new polygon vertices (green 

points) added along the intersection segment; d global conforming mesh Ω
h
 like it would be without the 

agglomeration process
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phase, the meshes Pi
h
 may present small edges and elongated “bad-shaped” cells, in 

the sense of the geometrical assumptions from Sect. 2.1.
Second, the Quality Agglomeration algorithm described in Sect. 2.3 processes all 

the meshes Pi
h
 independently and imposes the constraints on the mesh vertices that 

are the segment endpoints of each fracture intersections Sm , m ∈ Mi . Thus, on each 
domain Fi we obtain a locally optimal quality discretization Ωi

h
 that still respects 

the conformity constraints along boundaries and interfaces Sm with m ∈ Mi , see 
Fig. 3b.

Finally, we collect the optimal meshes Ωi
h
 to generate the global polygonal con-

forming mesh Ωh on the whole network. The conforming operation only works on 
the intersection segments Sm : for each m ∈ M , with �m = {i, j} , we unify the two 
sets of mesh nodes in ℝ3 of Ωi

h
 and Ωj

h
 lying on the segment Sm , and create new mesh 

elements E ∈ Ωh that have aligned edges in correspondence of the new nodes, see 
Fig. 3c. We point out that, at the end of the agglomeration process, aligned points 
lying on Sm are removed (e.g., the vertex shared by the purple, yellow, light blue and 
blue elements in Fig. 3a). Therefore, the number of new points to be added during 
the global conforming step gets considerably smaller. With this approach, we obtain 
that each element E ∈ Ωh lies in only one Fi ∈ Ω . Therefore, quantities introduced 
locally on E are considered with respect to the two-dimensional tangential reference 
system of Fi , and we omit in what follows the suffix i on all the operators (e.g., ∇i 
becomes ∇).

In Fig. 3d we present the result of the global conforming operation without the 
agglomeration step. The difference with Fig. 3c is significant, both in terms of num-
ber of degrees of freedom and of geometrical quality of the elements. Moreover, if 
we wanted to apply a standard FEM on this mesh, we should connect each green 
vertex to a red one to obtain a triangular mesh. This visual example gives a first hint 
on the impact of our technique, better analyzed in Sect. 4.

3.2 � Virtual element approximation

We remark that ℙn(E) is built on the reference system that is tangential to the fracture 
Fi to which the mesh element E belongs. We define Π∇

n,E
∶ H1(E) → ℙn(E) as the 

H1(E)-orthogonal projection operator, computed for any p ∈ ℙn(E) and v ∈ H1(E) 
with the conditions:

Similarly, we let Π0
n,E

 and Π0
n,E

∇ denote the L2(E)-orthogonal projection operators 
on ℙn(E) for functions v in H1(E) and on [ℙn(E)]

2 , respectively.
We locally define the Virtual Element space of order k ≥ 1 on E as

⎧⎪⎪⎨⎪⎪⎩

�
∇Π∇

n,E
v,∇p

�
E
= (∇v,∇p)E�

Π∇
n,E

v, 1
�
�E

= (v, 1)�E if n = 1�
Π∇

n,E
v, 1

�
E
= (v, 1)E otherwise
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Given a function v ∈ V
k,E

h
 , we select the following standard degrees of freedom on 

the element E:

•	 the values of v in the vertices of E;
•	 if k > 1 , the values of v on the k − 1 internal Gauss-Lobatto quadrature points 

on every edge e ∈ E;
•	 if k > 1 , the k(k−2)

2
 moments of v on E: 1

|E|
(
v,mj

)
E
 , ∀mj ∈ Mk−2(E).

The chosen DOFs are unisolvent for Vk,E

h
 , and all the projection operators Π∇

k,E
 , 

Π0
k,E

 , and Π0
k−1,E

∇ are computable [15]. Finally, using the Lagrangian basis func-
tions with respect to the DOFs as a basis for Vk,E

h
 , we define the global discrete 

space Vk
h
 on the whole domain as

We can now define the discrete counterpart of the bilinear form introduced in (8) as 
ah ∶ Vk

h
× Vk

h
→ ℝ , such that for all v,w ∈ Vk

h
:

with

where Fi is the fracture to which the mesh element E belongs.
The bilinear form SFi

E
 is selected such that

where aFi

E
 is the restriction to the mesh element E of the bilinear form aFi introduced 

in (8). Different choices for SFi

E
 are used in the literature, see for example [46]. In this 

work we select the typical form

where dofE
𝓁
(⋅) is the operator that selects the �-th degree of freedom of Vk,E

h
.

The discrete formulation of problem (7) reads as: Find uh ∈ Vk
h
 such that, for 

all vh ∈ Vk
h
 , it holds

V
k,E

h
∶=

{
v ∈ H1(E) ∶Δv ∈ ℙk(E), v∣�E ∈ C0(�E), v∣e ∈ ℙk(e) ∀e ∈ E,

(v, p)E =
(
Π∇

k,E
v, p

)
E
∀p ∈ ℙk(E) ⧵ ℙk−2(E)

}
.

Vk
h
∶=

{
v ∈ V ∶ v∣E ∈ V

k,E

h
∀E ∈ Ωh

}
.

ah(v,w) ∶=
∑
E∈Ωh

aE
h
(v,w),

aE
h
(v,w) ∶=

(
�iΠ

0
k−1,E

∇w∣Fi
,Π0

k−1,E
∇vi

)
Fi

+ S
Fi

E
(v − Π∇

k,E
v,w − Π∇

k,E
w),

∃ 𝛼, 𝛽 > 0 ∶ 𝛼 a
Fi

E
(u, u) ≤ aE

h
(u, u) ≤ 𝛽 a

Fi

E
(u, u) ∀u ∈ V

k,E

h
,

(9)S
Fi

E
(v,w) ∶= ||||�i

||||L∞(E)

#V
k,E

h∑
�=1

dofE
�
(v) dofE

�
(w),
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For a detailed discussion about the approximation of the source term we refer to 
[15]. Finally, we can prove the well-posedness of problem (10) and the optimal con-
vergence rates measured in the numerical results of Sect. 4 by using standard argu-
ments for Virtual Element methods, see [47].

4 � Numerical results

We present some numerical results for two increasingly complex networks: the first 
deals with a known hydraulic head in a simple setting, whereas the second simulates 
a quite realistic DFN configuration.

In both cases, we apply the Quality Agglomeration algorithm proposed in Sect. 2 
on each Fi with i ∈ I  , using the same agglomeration parameter for all the fractures 
of the network Ω . We associate the value � = 0.0 to the non-agglomerated strategy, 
and compare two different � values, namely 0.25 and 1.0, to test a moderate and an 
aggressive agglomeration strategy, respectively. We stress that the mesh optimiza-
tion approach is performed independently on each domain Fi . Thus, we can tackle 
large networks coming from real applications with a naturally distributed parallel 
strategy.

We compare the values of the energy functional (6) measured in the global polyg-
onal conforming mesh Ωh of the network before and after the optimization process. 
We test the effectiveness of the algorithm by comparing the performance of the 
VEM from Sect. 3.2 with k = {1, 2, 3} for each � value. We set a constant transmis-
sivity �i = � for all i ∈ I  , and solve the linear system generated by problem (10) 
directly, exploiting the Cholesky factorization of the C++ Eigen library, see [48].

4.1 � Network 1: simple DFN with known solution

In the first test, we analyze the convergence properties of the proposed method on 
a simple network that is composed by three fractures aligned with the reference 
system:

These fractures intersect along three interfaces, S1, S2 , and S3 , see Fig. 4.
We test three tessellations of decreasing size, labeled M1, M2, and M3. We first 

discretize the network with three triangular meshes fixing the maximum area of the 
triangular elements to 10−1, 10−2 , and 10−3 . Then, we cut the elements along the frac-
ture intersection segments as described in Sect. 3.1. Finally, we apply the Quality 

(10)ah
(
uh, vh

)
=

∑
E∈Ωh

(
f ,Π0

k−1,E
vh

)
E
.

F1 = {(x, y, z) ∈ ℝ
3 ∶ −1.0 ≤ x ≤ 0.5, −1.0 ≤ y ≤ 1.0, z = 0.0},

F2 = {(x, y, z) ∈ ℝ
3 ∶ −1.0 ≤ x ≤ 0.0, y = 0.0, −1.0 ≤ z ≤ 1.0},

F3 = {(x, y, z) ∈ ℝ
3 ∶ x = 0.5, −1.0 ≤ y ≤ 1.0, −1.0 ≤ z ≤ 1.0}.
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Agglomeration algorithm described in Sect. 2 to M1, M2, and M3, with � = 0.25 
and � = 1.0 . In Fig. 5a we present a visualization of the effects of the agglomeration: 
the algorithm deletes several edges from the original mesh with � = 0.0 (in blue). 
By observing the localization of the quality indicator � on a single fracture (Fig. 5b), 
we notice how the most pathological elements (in red) are around the interfaces.

Table 1 summarizes the results of the optimization process applied to meshes M1, 
M2, and M3 on fracture F3 (we do not report F1 and F2 , as the measured values were 
comparable). We analyze the energy functional (3) and compare its value E1 over the 
original meshes against its value E2 over the meshes agglomerated with the two � val-
ues. In columns (E1 − E2) we report the percentage of energy saved by the optimiza-
tion process, compared to the total original energy of the non-agglomerated mesh. In 
columns E2,dc and E2,sc , we report the contribution of the data cost and the smoothness 
cost to the total energy E2 . We remark that, while E1,dc and E1,sc are equal over the same 
mesh, their combination E1 also depends on the value of � . We can observe how the 
process always leads to a reduction of the total energy within a small number of itera-
tions (this latter is reported in column It). However, using � = 0.25 leads to a more con-
servative strategy (around 2% of energy saving), counter to the aggressive approach of 
using � = 1.0 (more than 30% of energy saving).

In Table 2, we report the number of elements ||Ωh
|| of the meshes for the different � 

values, and the relative number of DOFs (which varies according to the VEM order k). 
We observe that ||Ωh

|| is roughly 30% smaller for � = 0.25 and 70% smaller for � = 1.0 
than the value for the original mesh for � = 0 . As far as DOFs are concerned, we recall 
from Sect. 3.2 that, for k = 1 , the degrees of freedom correspond to the mesh verti-
ces; thus, since the agglomeration algorithm mainly removes edges and elements, the 
number of DOFs remains almost untouched in the linear formulation, especially with 
� = 0.25 . As soon as we raise the order, however, the difference becomes significant: 
around 50% reduction in the case of k = 2 and � = 1.0 , and slightly more for k = 3.

We set the numerical problem by imposing the Dirichlet boundary conditions in 
accordance with the exact solution

Fig. 4   Network 1; discretization with mesh M1 a and M2 b, with constrained edges along the interfaces 
marked in red
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In Fig. 6 we show the solutions computed with the proposed method with k = 3 on 
the mesh M2 for the three different levels of agglomeration. We can appreciate that 
no qualitative differences can be observed in the three results, despite a significant 
reduction of the DOFs (up to 50% ) in the agglomeration process, see Table 2c.

In the middle columns of Table 2 we show the global approximation errors

u1(x, y) = −
1

10
(
1

2
+ x)[x3 + 8xy(x2 + y2)atan2(y, x)]on F1,

u2(x, z) = −
1

10
(
1

2
+ x)x3 + �

4

5
(
1

2
+ x)x3|z|on F2,

u3(y, z) = y(y − 1)(y + 1)z(z − 1)on F3.

||||eh||||L2 ∶= ||||u − uh
||||L2(Ω)

, ||||eh||||H1 ∶= ||u − uh
||H1(Ω)

.

Fig. 5   Network 1, mesh M3; a visual comparison between fracture F3 with � = 0.0 (blue lines) and 
� = 1.0 (red lines) b fracture F3 with � = 1.0 colored w.r.t. the � value on each cell, from red ( � ≈ 0 ) to 
white ( � ≈ 1)

Table 1   Network 1; energy 
functional over F3 before ( E1 ) 
and after ( E2 ) the optimization, 
with the detail of the data cost 
( E

dc
 ) and smoothness cost ( E

sc
 ) 

contribution

The percentage in the fourth column is computed with respect to E1 , 
and in the last two columns with respect to E2 . Column It shows the 
number of iterations needed to converge

� It �1 (�1 − �2)% �2,dc % �2,sc %

M1 0.25 4 2.12 × 103 1.23 19.81 80.19
M1 1.00 5 8.38 × 103 37.87 37.85 62.15
M2 0.25 4 1.62 × 105 1.95 26.72 73.28
M2 1.00 6 6.47 × 105 33.36 28.44 71.56
M3 0.25 5 1.50 × 107 2.29 28.76 71.24
M3 1.00 9 5.98 × 107 32.38 23.11 76.89
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Fig. 7 shows the error curves versus the total number of degrees of freedom. The 
slopes of these curves reflect the convergence rate � for the polynomial degrees 
k = 1, 2, 3 . Optimal convergence rates are evident in all plots, and the rate lines are 
similar in all the agglomerations. These optimal rates are achieved thanks to the 
global conformity of the mesh, despite the low regularity of the solution around the 

Table 2   Network 1; analysis of the numerical errors for the different meshes and VEM orders k

� is the agglomeration parameter, ||Ωh
|| the number of elements in the mesh, e

h
 the discrete error, � the 

stiffness matrix and NNZ its non-zero elements

� |Ω
h
| DOFs ||e

h
||
L2

||e
h
||
H1 NNZ % cond (�)

(a) k = 1
Ml 0.00 184 131 1.7758 × 10−1 1.6816 × 100 11.87 1.39 × 102

Ml 0.25 143 131 1.9084 × 10−1 1.6207 × 100 12.77 1.10 × 102

Ml 1.00 52 92 2.8219 × 10−1 1.9004 × 100 23.44 6.87×101

M2 0.00 1571 947 1.6651 × 10−2 5.4935 × 10−1 1.12 1.29 × 103

M2 0.25 972 947 2.3599 × 10−2 6.0055 × 10−1 1.30 1.27 × 103

M2 1.00 484 788 3.8770 × 10−2 7.1998 × 10−1 2.01 6.94 × 102

M3 0.00 14,548 7,865 1.6124 × 10−3 1.7183.10 −1 0.11 1.69 × 104

M3 0.25 8,112 7,865 2.1136 × 10−3 1.7904.10 −1 0.13 1.68 × 104

M3 1.00 4,687 7,065 3.8983 × 10−3 2.2326.10 −1 0.18 9.39 × 103

(b) k = 2
Ml 0.00 184 629 1.2251 × 10−2 2.6309 × 10−1 2.68 3.41 × 103

Ml 0.25 143 547 1.6465 × 10−2 3.1200 × 10−1 3.62 3.14 × 103

Ml 1.00 52 287 4.4063 × 10−2 5.5645 × 10−1 10.72 1.42 × 103

M2 0.00 1,571 5,035 3.6072 × 10−4 2.6098 × 10−2 0.29 3.83 × 104

M2 0.25 972 3,837 8.9759 × 10−4 4.4846 × 10−2 0.49 3.21 × 104

M2 1.00 484 2,543 1.7383 × 10−3 6.8635 × 10−2 1.01 2.05 × 104

M3 0.00 14,548 44,825 1.1458 × 10−5 2.5864 × 10−3 0.03 1.20 × 106

M3 0.25 8,112 31,953 2.4618 × 10−5 4.0638 × 10−3 0.05 8.84 × 105

M3 1.00 4,687 23,503 5.4295 × 10−5 6.6139 × 10−3 0.09 6.28 × 105

(c) k = 3
Ml 0.00 184 1,311 7.2477 × 10−4 2.2584 × 10−2 1.85 9.03 × 106

Ml 0.25 143 1,106 1.8690 × 10−3 3.7121 × 10−2 2.53 8.30 × 106

Ml 1.00 52 534 1.1745 × 10−2 1.2751 × 10−1 7.97 4.07 × 106

M2 0.00 1,571 10,694 6.6740 × 10−6 6.7445 × 10−4 0.20 3.56 × 108

M2 0.25 972 7,699 3.4226 × 10−5 1.8136 × 10−3 0.35 2.98 × 108

M2 1.00 484 4,782 8.4998 × 10−5 3.6409 × 10−3 0.77 1.94 × 108

M3 0.00 14,548 96,333 6.9926 × 10−8 2.1951 × 10−5 0.02 2.04 × 1011

M3 0.25 8,112 64,153 3.1432 × 10−7 5.3694 × 10−5 0.04 1.50 × 1011

M3 1.00 4,687 44,628 8.6702 × 10−7 1.1447 × 10−4 0.07 1.07 × 1011
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extremity of S3 that falls inside F1 , see Fig. 4. Note that the dots relative to agglom-
erated meshes are shifted leftwards, as they contain smaller numbers of DOFs. To 
analyze pointwise the errors produced by an agglomerated mesh, we rescale the 
errors measured in the original mesh by the number of DOFs of the agglomerated 
mesh. Let |||

|||eh1
|||
|||⋆ and |||

|||eh2
|||
|||⋆ for ⋆ ∈

{
L2, H1

}
 the errors measured on two meshes 

with different mesh size h1 and h2 . We expect |||
|||eh1

|||
|||⋆h

𝛼
2
≈
|||
|||eh2

|||
|||⋆h

𝛼
1
 . Thus, in the 

plots of Fig. 8, we compare the errors ||||eh||||L2 and ||||eh||||H1 and the expected errors 
obtained by rescaling the non-optimized error norms ||||eh||||�=0L2  and ||||eh||||�=0H1  with the 
corresponding convergence rates; the order of magnitude of the two norms are com-
parable even when the reduction of DOFs is greater than 50% , see Table  2b as a 
reference.

In particular, when the order of the VEM space increases (Fig. 8b, c) the meas-
ured errors in the H1-seminorm become slightly lower than the expected ones. This 
fact seems corroborated by Fig. 9, in which we report the localization of ||||eh||||H1 on 
the domain F3 for the finer mesh M3. Indeed, we can note from these images that 
the error roughly remains in the same order of magnitude across the agglomeration 
process (see the color bar at the left of each subplot), and this is more evident for the 
high VEM orders. Moreover, the blue zones, which correspond to areas with lower 

Fig. 6   Network 1, mesh M2; solution computed with k = 3 for each � value

Fig. 7   Network 1; convergence curves of L2 and H1 errors for different k values
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error values, seem to have a greater extension in the optimized meshes, meaning that 
the error is more evenly distributed in those cases.

Fig. 9   Network 1, mesh M3; localization of the error ||||eh||||H1 on each cell of F3

Fig. 8   Network 1, mesh M3; measured errors vs expected errors without mesh optimization
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To conclude the analysis, in the last columns of Table 2 we report the number NNZ 
of non-zero elements and the condition number cond(�) of the stiffness matrix associ-
ated with the discrete problem (10). From the non-zero values measurements, we can 
assert that the optimization process does not excessively affect the sparsity pattern of 
matrix � , since the percentage values for the different � values are quite close. On the 
other hand, we observe that the condition number of the stiffness matrix is under con-
trol for k = 1, 2 , and increases for k = 3 . This growth is typical when using the basis 
(1) as the polynomial base for the VEM, see [49, 50]. In support of this statement, in 
Table 3 we measure the maximum l2-norm quantities |||Π∇

k,∗
D − I

|||2 and |||Π0
k,∗
D − I

|||2 
on the elements of each mesh and for each � value, as an estimate of the approximation 
error produced by the projectors involved in the computation of the discrete quantities. 
As done in [51], we denote by Π∇

k,∗
 and Π0

k,∗
 the matrices containing on each column 

the coefficients of the projection Π∇
k
�i and Π0

k
�i respectively of each basis function �i 

of the VEM space Vk
h
 ; moreover, we indicate with D the matrix formed by the ele-

ments Dij = dofi(mj) , with mj ∈ Mk(E) and the operator dofi introduced in (9). We 
can observe how the error produced by the projectors increases with the VEM order as 
expected; this effect can be mitigated by making a different choice for the basis (1), 
such as the one proposed in [49, 50], but this is out of the context of this work. In con-
clusion, the optimization process slightly reduces the approximation errors and the 
condition number of � ; this effect is related to the agglomeration operation, which is 
able to remove most of the small edges and the bad-shaped “long” elements of the 
original discretization, as detailed in Fig. 5a.

4.2 � Network 2 ‑ realistic DFN problem

The second numerical test considers the computation of the hydraulic head distribu-
tion in a realistic DFN setting. The network, presented in Fig. 10, is randomly gener-
ated inside the box [0, 1000] × [−400, 1400] × [−350, 1200] following the strategy 
proposed in [52], and it is composed by 86 rounded fractures and 159 interfaces.

Table 3   Network 1; maximum discrepancy of the projection matrices Π∇
k,∗

 and Π0

k,∗
 measured in the mesh 

elements; note that for k < 3 we have Π∇
k,∗

= Π0

k,∗

� |Π∇
1,∗
D − I|2 |Π∇

2,∗
D − I|2 |Π∇

3,∗
D − I|2 |Π0

3,∗
D − I|2

Ml 0.00 5.9506 × 10−16 6.7983 × 10−13 1.7733 × 10−11 7.9387 × 10−11

Ml 0.25 6.9427 × 10−16 6.7983 × 10−13 1.7735 × 10−11 7.9387 × 10−11

Ml 1.00 7.3183 × 10−16 5.7589 × 10−13 1.5569 × 10−11 2.0760 × 10−11

M2 0.00 3.8745 × 10−15 1.6826 × 10−11 1.0390 × 10−9 1.2036 × 10−9

M2 0.25 3.9257 × 10−15 1.6826 × 10−11 1.0387 × 10−9 1.2032 × 10−9

M2 1.00 3.3886 × 10−15 1.3492 × 10−11 9.0217 × 10−10 7.5128 × 10−10

M3 0.00 5.7185 × 10−15 8.9036 × 10−10 8.0172 × 10−7 8.6223 × 10−7

M3 0.25 5.7185 × 10−15 8.9036 × 10−10 8.0482 × 10−7 8.5470 × 10−7

M3 1.00 3.0768 × 10−15 8.9581 × 10−10 2.4545 × 10−7 2.6581 × 10−7



	 T. Sorgente et al.

1 3

27  Page 20 of 27

We generate two meshes, labeled M1 and M2, by discretizing each fracture 
Fi with a fixed number of triangular elements (100 and 200, respectively). As in 
Sect. 4.1, we optimize the meshes through the Quality Agglomeration algorithm of 
Sect. 2. Figure 11 shows the effects of the agglomeration over a fracture of mesh M1: 
a lot of small edges and cells are merged into coarser and more regular elements.

Details on the number of elements and DOFs are given in Table 4 and are quite 
similar to those of Table  2. The number of elements ||Ωh

|| decreases by 30% with 

Fig. 10   Network 2; domain description with interfaces S
m
 highlighted in magenta

Fig. 11   Network 2, mesh M1; small edges and cells in the original fracture F3 (a) are removed after the 
optimization process with � = 1.0 (b). Blue circles compare three example of mesh quality improvements
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� = 0.25 and by 70% with � = 1.0 ; again, the number of DOFs does not change 
sognificantly in the case k = 1 , while for k > 1 it decreases by 20% and 50% with 
� = 0.25 and 1.0, respectively.

In Table  5 we report the values of the energy functional E obtained for a 
generic fracture of the network ( F3 , presented in Fig.  11). The results achieved 
by the optimization algorithm in terms of number of iterations, saved energy, and 
different energy contributions, are comparable to the ones obtained in Table  1. 
The measurements suggest that the optimization algorithm is robust with respect 
to the geometric complexity of the fracture, since the shape and the interfaces of 
F3 are highly more complex, compared to those of the fractures in Network 1.

We set the numerical problem by imposing two Dirichlet boundary conditions 
on the mesh edges which intersect the top and the bottom planes of the box:

{
u = 0.0 on ΓD,1 ∶= {(x, y, z) ∈ ℝ

3 ∶ x = 1000}

u = 10.0 on ΓD,2 ∶= {(x, y, z) ∈ ℝ
3 ∶ x = 0}

Table 4   Network 2; analysis of the numerical errors for the different meshes and VEM orders k . � is the 
agglomerat ion parameter, ||Ωh

|| the number of elements in the mesh, u the discrete solution, � the stiff-
ness matrix and NNZ its non-zero elements

� |Ω
h
| DOFs ||�

h
||
L2

||�
h
||
H1 NNZ % cond ( �)

K = 1

Ml 0.00 16,976 11,852 2.3335 × 104 1.8707 × 101 0.08 7.26 × 104

Ml 0.25 11,962 11,807 2.3333 × 104 1.8632 × 101 0.09 7.28 × 104

Ml 1.00 5,950 10,056 2.3324 × 104 1.8443 × 101 0.14 4.83 × 104

M2 0.00 30,968 19,937 2.3324 × 104 1.8676 × 101 0.05 1.08 × 104

M82 0.25 20,865 19,782 2.3323 × 104 1.8615 × 101 0.05 1.08 × 104

M2 1.00 10,355 16,838 2.3322 × 104 1.8478 × 101 0.08 7.21 × 104

K = 2

Ml 0.00 16,976 57,698 2.3331 × 104 1.8493 × 101 0.03 5.90 × 106

Ml 0.25 11,962 47,580 2.3331 × 104 1.8481 × 101 0.04 4.36 × 106

Ml 1.00 5,950 32,053 2.3328 × 104 1.8433 × 101 0.08 3.60 × 106

M2 0.00 30,968 101,852 2.3334 × 104 1.8498 × 101 0.01 1.02 × 107

M2 0.25 20,865 81,336 2.3334 × 104 1.8491 × 101 0.02 7.46 × 106

M2 1.00 10,355 54,428 2.3331 × 104 1.8457 × 101 0.04 2.85 × 106

K = 3

Ml 0.00 16,976 120,520 2.3332 × 104 1.8492 × 101 0.02 1.58 × 1012

Ml 0.25 11,962 95,315 2.3333 × 104 1.8487 × 101 0.03 1.17 × 1012

Ml 1.00 5,950 60,000 2.3334 × 104 1.8466 × 101 0.06 1.21 × 1012

M2 0.00 30,968 214,735 2.3337 × 104 1.8494 × 101 0.01 2.47 × 1012

M2 0.25 20,865 163,755 2.3337 × 104 1.8491 × 101 0.02 1.81 × 1012

M2 1.00 10,355 102,373 2.3335 × 104 1.8474 × 101 0.03 2.06 × 1011
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We recall that homogeneous Neumann boundary conditions are imposed on the 
other borders.

The numerical solution for k = 1 on the coarser mesh M1 is shown in Fig. 12 
a. As no exact solution is available for this network, we measure the L2-norm and 
the H1-seminorm of the discrete solution uh obtained on the whole network as a 
quantitative benchmark indicator. Values of ||||uh||||L2(Ω)

 and ||||uh||||H1(Ω)
 are reported 

in Table 4.
In Fig. 12b we perform a qualitative comparison, in which we report the value 

of uh (computed for k = 3 ) on a generic line in the middle of the random frac-
ture F49 for each optimization value � . No relevant differences can be identified 
between the solution on the non-optimized mesh and the one computed on the 
agglomerated one, despite the huge DOFs reduction (up to 50% ) measured in the 
DOFs column of Table 4.

The last analysis is devoted to the stiffness matrix � of the discrete problem (10), 
measuring its non-zero elements and its condition number in Table 4. We can assert 
that the sparsity pattern of � is even less influenced by the optimization process 
than in the test of Sect. 4.1, due to the presence of a higher number of DOFs. We 

Table 5   Network 2; energy functional over F3 before ( E1 ) and after ( E2 ) the optimization, with the detail 
of the data cost ( E

dc
 ) and smoothness cost ( E

sc
 ) contribution. The percentage in the fourth column is 

computed with respect to E1 , and in the last two columns with respect to E2 . Column It shows the number 
of iterations needed to converge

� It (�1 − �2)% �2,dc% �2,sc%

Ml 0.25 3 1.98 × 104 1.01 11.85 88.15
Ml 1.00 6 7.91 × 104 32.93 38.27 61.73
M2 0.25 4 5.80 × 104 1.19 14.89 85.11
M2 1.00 6 2.31 × 104 33 11 32.50 67.50

Fig. 12   Network 2; a discrete solution u
h
 for k = 1 on mesh M1; b u

h
 for k = 3 over a line on fracture F49 

of mesh M2
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immediately notice how the condition numbers rapidly increase for higher orders of 
the method, even faster than in the tests with Network 1. This effect is ascribed to the 
high complexity of the fracture intersections caused by the randomness of Network 
2, which leads to a conforming mesh with very small edges and elongated cells, as 
highlighted in Fig.  11a. Such pathological elements are partially removed during 
the agglomeration process, as shown in Fig. 11b and we can observe a remarkable 
reduction of cond(�) after the optimization, see for instance mesh M2 in Table 4c.

To conclude, we show in Table 6 the performance of VEM projectors Π∇
k
 and Π0

k
 , 

measuring the maximum values of the identities which estimate the approximation 
errors produced by the projection operation. While for VEM order k = 1 and k = 2 the 
errors are acceptable, the case k = 3 requires further analysis. Thus, in Fig. 13 we com-
pare the distributions of the indicators |||Π∇

3,∗
D − I

|||2 and |||Π0
3,∗
D − I

|||2 on the elements 
of mesh M2, for the different values of � . From the reported data we can see how the 
projection errors remain under control in the vast majority of the mesh, with very few 
elements (less than 0.1% ) with projection error greater than 10−5 . As for the previous 
test, we are confident that those elements are curable by making a different choice for 
the basis (1). Finally, the plots clearly highlight that the local approximation error of the 

Table 6   Network 2; maximum discrepancy of the projection matrices Π∇
k,∗

 and Π0

k,∗
 measured in the mesh 

elements; note that for k < 3 we have Π∇
k,∗

= Π0

k,∗

� |Π∇
1,∗
D − I|2 |Π∇

2,∗
D − I|2 |Π∇

3,∗
D − I|2 |Π0

3,∗
D − I|2

Ml 0.00 3.9173 × 10−14 1.8995 × 10−9 6.0107 × 10−8 5.1498 × 101

Ml 0.25 3.9173 × 10−14 1.8995 × 10−9 6.5839 × 10−8 5.1228 × 101

Ml 1.00 1.1423 × 10−10 4.6435 × 10−9 5.7271 × 10−7 7.9567 × 101

M2 0.00 8.6066 × 10−14 5.5342 × 10−10 1.1387 × 10−7 3.9317 × 102

M2 0.25 8.6066 × 10−14 5.5342 × 10−10 1.1387 × 10−7 3.9317 × 102

M2 1.00 1.4869 × 10−10 6.1476 × 10−9 1.5121. × 10−9 2.0541 × 100

Fig. 13   Network 2, mesh M2; statistic distribution of |||Π0

3,∗
D − I

|||2 (a) and |||Π∇
3,∗
D − I

|||2 (b), with number 
of mesh elements reported at the end of each bar
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projectors decreases thanks to the optimization process, leading to an improvement of 
the global condition number and to a more reliable solution.

5 � Conclusions

The results obtained with the proposed mesh optimization approach in conjunction 
with the primal VEM-based formulation applied on DFNs are encouraging. We 
remark that the Quality Agglomeration strategy presented is performed indepen-
dently on each fracture of the network, thus its application in larger and more com-
plex DFN configurations is perfectly feasible.

The Quality Agglomeration strategy has proved to be equally effective in both the 
simple and the complex DFN setting, being able to reduce the total number of mesh 
elements (up to 65% ) and the number of DOFs (up to 50% ), while preserving the 
VEM optimal convergence rates. The former effect leads to a remarkable reduction 
in the computational effort for the discrete system assembly process; the latter effect 
translates into a significant gain in terms of computational cost to obtain the numeri-
cal solution. Moreover, a slight improvement in the quality of the discretization was 
observed, both locally on the VEM projector approximation errors measured on 
each mesh element and globally on the condition number of the stiffness matrix.

A possible limitation of the agglomeration algorithm is that it only compares pairs of 
elements, i.e. given an element E with neighboring elements E′ and E′′ , the algorithm 
computes separately the potential quality of E ∪ E� and that of E ∪ E�� not consider-
ing the total quality E ∪ E� ∪ E�� . Therefore, some small mesh elements still persist in 
the optimized final mesh, particularly in the neighborhood of fracture intersection seg-
ments. This issue could be partially controlled at a higher computational cost by merg-
ing the elements after each graph-cut minimization iteration. However, the numerical 
results presented in this work show that this action is likely not necessary.

In conclusion, we advise the application of the proposed optimization process in 
the computation of the solution for time-dependent/parametric problems, in which 
the computational cost reduction would reflect in each time iteration/parameter 
value resolution.

In addition, we point out that the Quality Agglomeration is modular, in the sense 
that both the quality indicator and the graph-cut technique can be easily replaced by 
other objects with the same functionalities. In particular, the quality indicator (2) is 
peculiar to the VEM, being derived from geometrical assumptions specific to this 
method. However, we could apply the same approach to other numerical methods 
(e.g., the Discontinuous Galerkin or the Hybrid High Order methods), starting from 
the relative geometrical assumptions and deriving new indicators.
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