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Abstract. Size and shape data are of interest in automatic object identification, life-form studies, and
any time the shape of a statistical unit is relevant. This paper briefly introduces the Bayesian estimation
of regression models for size and shape data while presenting a Julia package implementing the MCMC
estimation required.
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1 Introduction

Shape is all the geometrical information that remains when location, scale and rotational effects are re-
moved from an object. Modeling shape data has recently gained interest in many research fields. For
example, in biology, there is great interest in modeling the shape features of organisms, and relating
them to environmental conditions. In [8], a study about the sex differences in the crania of a macaque
species is reported, and environmental features could be included as well. Magnetic Resonance data
can be seen as size-and-shape data. Their analysis is helpful to assess specific features such as the Fetal
alcohol spectrum disorder or Schizophrenia Magnetic Resonance images (see [11]). Image analysis and
computer vision are other natural fields of application. Generally speaking, image recognition could
be approached in different ways, and, among others, the shape analysis approach has often given suc-
cessful results, e.g., digit recognition [2]. In genetics, it is common to use electrophoretic gel images
[10], and shape analysis could be successfully adopted to analyze them efficiently. In chemistry, it is
fundamental to assess the geometric structure of molecules using three-dimensional coordinates, e.g., it
has been used to evaluate the shape features of steroid molecules [3]. And in bio-informatics, an impor-
tant task is Protein matching, i.e., aligning molecules to find common geometrical structures in them.
Shape analysis could be adopted to deal successfully with these tasks [9]. Theoretically, the involved
data spaces are not Euclidean, and differential geometric tools should be adopted to develop a proper
statistical shape theory. Some descriptive and basic inference tools have been proposed in the scientific
literature, but to our current knowledge, only two papers introduced a regression model [6, 5]. In [6] the
authors propose a marginal likelihood approach to implement a size-and-shape response regression with
Gaussian landmarks. Likelihood-based approaches show some difficulties in dealing with complex co-
variance structures and are affected by numerical stability issues in numerical optimization algorithms.



2 BAYESIAN SIZE AND SHAPE

In [5], a Bayesian approach is proposed in a very simplified setting. Here we move to an alternative
easily-interpretable approach that starts from the Bayesian latent variable models framework. It poten-
tially allows for the specification of complex covariance structures, with the advantage that numerical
issues are solved through MCMC algorithms efficiently implemented. Hence, building on [6, 5], this
work presents the Bayesian estimation of a regression model for size-and-shape response variables with
Gaussian landmarks. Our proposal fits into the framework of Bayesian latent variable models and defines
a highly flexible modeling approach.

2 Bayesian Size and Shape

Adopting the same notation as in [4], let X̃i 2 R(k+1)⇥p, with i = 1, . . . ,n be a (k+ 1)⇥ p dimensional
configuration matrix, with k � p, that represents the Euclidean coordinates of k+ 1 landmarks (points
of interest an object) in dimension p for the i�th recorded object, where p is usually equal to 2 or 3.
To perform any size-and-shape inference, we must remove information about the objects’ location and
orientation to model the data. Location information is usually removed post-multiplying by the Helmert
submatrix H [see 7], obtaining the Helmertized configuration

X̆i = HX̃i, (1)

where H has dimension k⇥ (k+ 1), and its j-th row is equal to (�d j,�d j, . . . ,�d j, jd j,0, . . . ,0) where
d j = 1/

p
j( j+1). The matrix X̆i 2Rk⇥p is also called pre-form matrix. Following [6], if we decompose

X̆i using the singular value decomposition, i.e. according to

X̆i = Ui�iR̆>
i (2)

where R̆i 2 O(p) i.e. belongs to the space of the p⇥ p orthogonal matrices, it could be readily proven
that R̆i contains all the information about orientation and Yi = Ui�i is the size-and-shape version of the
original configuration X̆i, it represents the object of the inference and the data we are modelling. An
important point is that allowing R̆i 2 O(p) the reflection information is lost, and if we want to retain
it, we have to assume that R̆i 2 SO(p), i.e., R̆i is a rotation matrix with |R̆i| = 1, and SO(p) is the
p-dimensional Special Orthogonal group or rotation group.

Let us suppose that for each Yi we have an associated vector of d covariates zi = (zi1,zi2, . . . ,zid)
>

and we are interested in the relation between zi and Yi. Unfortunately, the size-and-shape space, where
Yi lives, is a non-Euclidean manifold with a very complicated geometric structure that is not easy to
handle, and even a distribution for Yi cannot be easily specified. The idea proposed in [6], which here
we extend to a Bayesian setting, is to model this relation using the latent variable Ri 2 SO(p) and to
define a regressive-type relation between Xi = YiRi and zi in the following way:

vec(Xi)⇠ Nkp

 
vec

 
d

Â
h=1

zihBh

!
,Ip ⌦⌃

!
, i = 1, . . . ,n, (3)

with Xi ? Xi0 if i 6= i0, where vec(·) indicates the vectorization of a matrix, ⌃ is a non singular k⇥ k
covariance matrix and Bh, h = 1, . . . ,d, is a k⇥ p matrix of regressive coefficients. It should be noted
that Ri is latent and hence a non-observable variable, which must not be confused with R̆i, which is
the rotation matrix of the original data. In [4], the set of full conditional is found when ⌃ is a generic
covariance matrix, and this is the model implemented in the Julia package.

GRASPA 2023 Workshop 2



REFERENCES

3 Julia implementation

Julia is a high-level, general-purpose dynamic programming language. Its features are well-suited for
numerical analysis and computational science. Work on Julia was started in 2009 by Jeff Bezanson,
Stefan Karpinski, Viral B. Shah, and Alan Edelman, who set out to create a free language that was
both high-level and fast. The first website with a blog post explaining the language’s mission was out
on February 2012, and in the past 10 years, the community has grown. The Julia package ecosystem
has over 11.8 million lines of code (including documentation and tests) [1]. The JuliaCon academic
conference for Julia users and developers has been held annually since 2014 with an increasing public.
The popularity of the language is mostly due to its efficiency, it is a compiled language, whereas R and
Python are interpreted ones. Using the appropriate interface, the user can handle data with R and process
estimation using Julia (we use VScode and its extensions).

3.1 The BayesSizeAndShape package

The BayesSizeAndShape package (directly available in Julia) implements the model sketched in section
2. Currently, a generic ⌃ covariance matrix with inverse Wishart prior is implemented. In [4], a small
simulation experiment using this package was carried out. At the same time, here we present the estima-
tion of the regression model using the well-known data on rats skull [see 6] to allow comparison with the
likelihood proposal. The dataset includes rat skull data from X-rays. Eight landmarks in two dimensions
for eighteen individuals were observed at 7, 14, 21, 30, 40, 60, 90, and 150 days from birth see figure
1. To compare our proposal with [6], we estimate two regression models, both of which include time
as an independent variable; in M1, the log-transformed time is linear, while in M2 it appears as a linear
and quadratic term. We run the MCMC estimation with 100000 iterations, discarding half of them and
keeping every 5 samples for inferential purposes. To assess the model’s goodness of fit, we compute
the Riemannian distance between observed and predicted landmarks (mean of predictive samples), both
treated as curves on a Riemannian manifold. M2 (0.375) performs slightly better than M1 (0.430). In [6],
a parametric bootstrap approach is built to test for the model’s goodness of fit. In the Bayesian setting,
we can use the posterior samples and the samples from the predictive distribution for all inferences. For
example, we can compute a distance between curves using each realization from the predictive distribu-
tion and the data. Using the Riemannian distance, again, all realizations from M2 are closer to the data
than those from M1.
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Figure 1: Rats Skull data: original landmarks

(a) (b)

Figure 2: Rats Skull data: Scaled helmertized observed (black) and predicted (red) landmarks with 95%
highest posterior density regions for M1 (a) and M2 (b)
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