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Abstract

Building on Dryden et al. (2021), this note presents the Bayesian estimation of a
regression model for size-and-shape response variables with Gaussian landmarks.
Our proposal fits into the framework of Bayesian latent variable models and,
potentially, allows for a highly flexible modelling framework.

Keywords: Bayesian models, Size-and-Shape, Latent variables, Statistics on
manifolds

1. Introduction

Shape data naturally arise in various research fields, whenever our atten-
tion is on the shape of objects. For example, in biology there is interest in
modelling the shape features of organisms and understanding their relationship
with environmental conditions. Even magnetic resonance data can be inter-
preted as containing size-and-shape information (Mardia et al., 2013). Image
analysis, computer vision, and bioinformatics are other fields where shape data
analysis finds natural applications (Anderson, 1997, Green and Mardia, 2006).
In genetics, electrophoretic gel images contain shape information, while chem-
istry employs three-dimensional coordinates to assess the geometric structure of
molecules (Horgan et al., 1992; Czogiel et al., 2011).

Recent advances in this area focus on developing methodologies to capture
and explain changes in the shape of objects. For example, Kenobi et al. (2010)
proposed smoothing methods, while, on the other hand, regression methodolo-
gies for shape and size-and-shape data have been explored in a limited number
of papers. For instance, Gutiérrez et al. (2019) propose a Bayesian approach
to shape data, starting with a Gaussian distribution on the configuration space
and then accounting for location, rotation, and scale effects using a projected
normal distribution. Dryden et al. (2021) tackle size-and-shape data, devel-
oping their proposal within the likelihood-based framework. An earlier paper
(Dryden et al., 2019) proposes the Bayesian estimation of a regression model
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where an additional parameter for the rotation matrix is introduced. However,
this approach limitation is that it depends on defining a prior distribution on
the rotation matrix, making the inference reliant on the rotation information
of the original data. On the contrary, for size-and-shape modelling, the in-
ference should be rotation-independent. Additionally, landmarks are assumed
independent.

This paper, along with Dryden et al. (2021), treats the rotation as a latent
variable, eliminating the need to specify a prior distribution. Additionally, the
model considers dependent landmarks. As a result, this study presents an al-
ternative Bayesian regression methodology tailored for size-and-shape response
data. The proposed methodology ensures estimation stability through a simple
and efficient MCMC (Markov Chain Monte Carlo) algorithm. The model has
been implemented in the Julia (Bezanson et al., 2017) package BayesSizeAnd-
Shape (Mastrantonio and Jona Lasinio, 2023).

2. A Bayesian model for size-and-shape

Let X̃i ∈ R(k+1)×p, with i = 1, . . . , n and k ≥ p, be a collection of random
configuration matrices. In statistical shape analysis, the configuration matrix
contains the Euclidean coordinates of k+1 landmarks (“a landmark is a point of
correspondence on each object that matches between and within populations”,
Dryden and Mardia (2016)) in a p-dimensional space, where p is typically 2 or
3. To perform size-and-shape inference, it is essential to eliminate information
about location and orientation from every configuration matrix X̃i. To remove
location information, we use the Helmert submatrix H (see Dryden and Mardia,
2016), where H has dimension k × (k + 1), and, setting dj = 1/

√
j(j + 1), its

j-th row has the first j elements equal to −dj , element j+1 is equal to jdj , and
the remaining k− j elements are equal to zero. By pre-multiplying the i-th con-
figuration matrix with H, we obtain the Helmertized configuration X̃H

i := HX̃i.
Following the approach in Dryden et al. (2021), we can decompose each X̃H

i us-
ing the singular value decomposition, which results in X̃H

i = Ui∆iR̃
⊤
i , where

R̃i ∈ SO(p), and SO(p) represents the p × p-dimensional Special Orthogonal
group. The matrix R̃i contains all the information about the i-th object’s ori-
entation. On the other hand, Yi := Ui∆i represents the size-and-shape version
of the original configuration X̃i, which is the actual focus of the inference. By
assuming R̃i ∈ SO(p), we preserve reflection information that would otherwise
be lost if R̃i belongs to the space of the p × p-dimensional Orthogonal group,
denoted as O(p).

2.1. The model

In our scenario, each Yi is coupled with a vector of d covariates, zi =
(zi1, zi2, . . . , zid)

⊤, and we are interested in understanding the relationship be-
tween zi and Yi. However, the size-and-shape space, where Yi takes values,
is a non-Euclidean manifold with a complex geometric structure, and directly
specifying a probability distribution for Yi is not a simple task. We adopt the
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idea proposed in Dryden et al. (2021) to address these challenges, extending
it to a Bayesian setting. The approach involves introducing a latent variable
Ri ∈ SO(p) and defining a regressive-type relationship between Xi := YiR

⊤
i

and zi as follows:

vec(Xi) ∼ Nkp

(
vec

( d∑
h=1

zihBh

)
, Ip ⊗Σ

)
, i = 1, . . . , n, (1)

with Xi ⊥ Xi′ if i ̸= i′. In the above expression, vec(·) denotes the vectorization
of a matrix, Σ is a non-singular k × k covariance matrix and Bh, h = 1, . . . , d,
is a k × p matrix of regressive coefficients. Remark that Ri is latent, and it
must not be confused with R̃i, which is the rotation matrix of the original data.
The latent variable approach avoids dependence on the rotation and leads to
a proper inference depending only on Y1, . . . ,Yn. To describe our Bayesian
model, we must introduce the prior distributions for the model’s unknown pa-
rameters. To simplify notation and the derivation of the full conditionals (i.e.,
the distribution of one parameter given all the others and the data) we use Xi,l

and Bh,l to indicate the l−th column of Xi and Bh, respectively, we assume

βl := (B⊤
1,l,B

⊤
2,l, . . . ,B

⊤
d,l)

⊤, β := (β⊤
1 , . . . ,β

⊤
p )

⊤, and we introduce the design

matrix Zi := Ik ⊗ zi
⊤. Since the l-th column of vec(

∑d
h=1 zihBh) is equal to

Ziβl, we define the Bayesian model as

Xi,l|β,Σ ∼ Nk(Ziβl,Σ), i = 1, . . . , n, l = 1, . . . , p, (2)

βl ∼ Nkd(Ml,Vl), Σ ∼ IW (ν,Ψ),

with Xi,l|β,Σ ⊥ Xi′,l′ |β,Σ if i ̸= i′ or l ̸= l′ and IW denotes the Inverse
Wishart distribution. It should be noted that, once we condition on (β,Σ),
models (1) and (2) induce the same distribution on the configuration space.
Remark that an identification problem arises from the model specification, which
has not been highlighted in Dryden et al. (2021). To make it evident, we show
that the sets of parameters {B1, . . . ,Bd,Σ} and {B1Λ, . . . ,BdΛ,Σ}, where
Λ ∈ SO(p) is a rotation matrix, induce the same probability density function

over (U1,∆1, . . . ,Un,∆n). Let µi :=
∑d

j=1 zijBj and f denotes a probability
density function, we need to prove that

f(Ui,∆i;µi,Σ)

f(Ui,∆i;µiΛ,Σ)
= exp

(
− tr(µ⊤

i Σ
−1µi)− tr(Λ⊤µ⊤

i Σ
−1µiΛ)

2

)
= 1, (3)

for all i = 1, . . . , n, where the joint density of (Ui,∆i) is derived by Dryden
et al. (2021) in Theorem 1. From the properties of the trace operator, and since
Λ⊤ = Λ−1, we have that tr(Λ⊤µ⊤

i Σ
−1µiΛ) = tr(µ⊤

i Σ
−1µi), which shows that

(3) holds true for any i = 1, . . . , n. For this reason, an identification constraint
is needed to prevent any arbitrary rotation of µi. This can be achieved by
assuming that for one of the Bh, e.g., the first, we have that

[B1]wl = 0, l > w, [B1]ll ≥ 0, l = 1, . . . , p− 1. (4)
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These are a version of the transformations proposed by Dryden et al. (2021) to
identify and isolate the size-and-shape information of the mean configuration.
To impose these constraints effectively, two different approaches can be used.
The first approach involves modifying the prior distributions, altering the pa-
rameter space to adhere to the identification constraints. The second approach
relies on the MCMC algorithm to explore the posterior freely, and after obtain-
ing each posterior sample Bb

h, where b indicates the b-th sample, a remapping
step is performed. This remapping transforms each Bb

h to an identified version

B̃b
h using the map Bb

h 7→ B̃b
h := Bb

hΛ
b. Here, Λb = g(Bb

h) ∈ SO(p) represents an
appropriate rotation matrix defined by a function g : Rk×p → SO(p) such that
B̃b

h satisfies the desired identification constraints (4). We employ the second

approach with a Gram-Schmidt construction to define Λb. This method allows
for a more straightforward MCMC algorithm, while respecting the constraints.

2.2. The Markov chain Monte Carlo algorithm

To implement the MCMC algorithm, we need to derive the full conditional
distributions of β, Σ, R1, R2, . . . ,Rn. Owing to the model specification given in
(2), we can easily see that the full conditional of β andΣ (indicated, respectively,
as βl| . . . andΣ| . . . ) are the same that we would obtain in the case of a standard
Bayesian regression, i.e.,

βl| · · · ∼ Nkd(M
∗
l ,V

∗
l ), Σ| · · · ∼ IW (ν∗,Ψ∗),

with ν∗ = ν + np, Ψ∗ = Ψ +
∑n

i=1

∑p
l=1(Xi,l − Ziβl)(Xi,l − Ziβl)

⊤, M∗
l =

V∗
l (
∑n

i=1 Z
⊤
i Σ

−1Xi,l + V−1
l Ml), and V∗

l = (
∑n

i=1 Z
⊤
i Σ

−1Zi + V−1
l )−1. To

derive the full conditional distribution of Ri, we can refer to the computation
presented in Dryden et al. (2021). According to Theorem 1, the distribution of
Ri has density proportional to exp(tr(RiA

⊤
i )) where Ai = µ⊤

i Σ
−1Yi, i.e. a

Matrix Fisher distribution with parameter Ai (Mardia and Jupp, 2000). Sam-
pling directly from a Matrix Fisher distribution is typically not straightforward,
and ad hoc techniques are required; some proposals can be found in Kent et al.
(2013) and Hoff (2009). Here, we handle the case p = 2 by expressing the
rotation matrix as a function of the rotation angle θi ∈ [0, 2π). It can be
shown that the distribution of θi is von-Mises, since its density is proportional
to exp(κi cos(θi − ηi)), and its parameters (ηi, κi) can be derived by setting the
equation tr(RiA

⊤
i ) = κi cos(θi − ηi). When p = 3, we express Ri as function of

the Euler angles θi,1 ∈ [0, 2π), θi,2 ∈ [0, π), θi,3 ∈ [0, 2π), by representing Ri as
the product of elementary rotations. Then, samples from the Matrix Fisher are
obtained using the approach proposed by Green and Mardia (2006).

3. Simulation experiments

The simulation experiment has been designed to assess the model’s capacity
to recover the underlying parameters used to generate the data. It covers a
wide range of settings, providing a comprehensive evaluation of the model’s
performance under diverse conditions. We generate the data from equation
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(2), assuming that Σ is equal to λΣ∗ and λ is a parameter we change in the
simulations, with d = 3. Variable zi,1 = 1, ∀ i = 1, . . . , n, defines the intercepts,
a continuous covariate zi,2 is simulated from a normal distribution with mean
10 and standard deviation 1, and a categorical variable zi,3 with two levels is
included in a corner-point representation. Each zi,3 has an equal probability of
assuming one of the two levels. ParameterΣ is simulated from an IW (k+2, 5Ik),
and the regressive coefficients are generated from a N(5, 1). To comply with the
identifiability constraint in (4), coefficients are transformed to their identifiable
version by multiplication of each Bh with an appropriate rotation matrix Λ. We
generate 100 datasets for each of 16 different settings, considering all possible
combinations of k ∈ {10, 20}, n ∈ {20, 100}, λ ∈ {1, 10}, and p ∈ {2, 3}.
The total number of regressors to be estimated, taking into consideration the
identifiability constraints, are kdp−1 if p = 2 and kdp−3 if p = 3, which ranges
from a minimum of 59 to a maximum of 177, while the number of elements in
Σ is (k2 + k)/2, which is equal to 55 if k = 10 and 210 if k = 20. We assume
Ml = 0kd, Vl = 104Ikd, ν = k + 2, and Ψ = Ik. We run the algorithm for
90000 iterations, discarding the first 30000 iterations as burn-in, and keep every
30th iteration, retaining 2000 samples for inferential purposes. The model is
implemented in Julia 1.8.2.

For each parameter, we evaluate the percentage of times that the 95% cred-
ible interval (CI) contains the value used to simulate the data, and the total
length of the CI. Summary tables are shown in the online supplementary mate-
rial. The proportion of correctly estimated parameters (parameters inside the
associated CI) within the simulated datasets ranges from 0.917 to 0.974 under
all settings. The CI lengths increase as k, p, and (especially) λ increase. On the
other hand, interval lengths decrease as n increases, as expected.

4. Further developments

In this paper we presented the size-and-shape regression model within a
Bayesian latent variable framework, addressing the identifiability issues. Our
work opens new possibilities for modelling size-and-shape data, particularly in
formalizing complex dependence structures which might be handled within the
Bayesian framework. Future research will explore dependence among landmarks
using lattice-type modelling approaches. We also aim to account for temporal
dependence to model the shape evolution over time (Fontanella et al., 2018).
Recognizing the limitations of linearity, we plan to explore more flexible func-
tional relationships between covariates and mean configuration.
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