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Abstract

Deep learning is the dominant approach in modern computer vision. However,
its success mainly hinges on the availability of large scale annotated datasets for
training, and capturing the infinite semantic diversity of the real world into one or
more training sets is, unfortunately, unfeasible. Consequently, deep neural networks
are forced to limit their understanding of the world to the restricted knowledge
available during the training phase. In this thesis, we argue that, to develop deep
neural networks capable of operating in the real world, it is vital to empower them
with the capabilities of i) detecting previously unseen concepts and ii) incrementally
integrating them in subsequent learning stages. In the first part of this thesis, we
address the aforementioned challenges separately. We first address the anomaly
segmentation problem, which involves identifying for each pixel of an image whether
it belongs to a previously unseen category, i.e. an anomaly. We propose to segment
anomalies using class-specific prototypes extracted from a cosine classifier, and to
determine pixels to be anomalous when the highest matching score between a pixel
and the set of known prototypes is below a certain threshold. We then address the
challenges of incremental learning, which involves incrementally updating existing
models as new categories become available. Despite advancements in the field, state-
of-the-art semantic segmentation strategies still require supervision at pixel-level
on new classes, which is often costly and time-consuming to acquire. In this thesis
we present a new perspective to the field, showing how to incrementally extend the
knowledge of a pre-trained segmentation model using only cheap image-level labels,
which provide information only on the presence of a certain class but not on its
shape or location. We demonstrate that directly applying existing weakly-supervised
segmentation strategies to the traditional incremental segmentation ones is sub-
optimal, and we propose to use a localizer module to produce pseudo-labels and a
distillation-based loss to prevent forgetting previously learned classes. In the second
part of this thesis, we address the open world recognition (OWR) setting to tackle the



vii

two challenges simultaneously. Differently from prior works, we demonstrate that
learning a separate rejection threshold for each class is crucial to reduce the number of
samples wrongly identified as never-seen-before ones. To achieve this, we shape the
representation space to be semantically consistent through a global-to-local clustering
approach, that enforces samples to be closer to the centroid of the respective class,
while pushing away samples from other classes. The training sets, however, impose
not only semantic limitations on agents, but also environmental ones, due to the
inherent bias towards specific acquisition conditions that do not necessarily represent
the high variability of the real world. Therefore, in the final part of the thesis, we
investigate the impact of different training and test distributions (domain-shifts) on
OWR frameworks. We introduce the first benchmark to assess OWR methods under
domain-shifts, and we show that existing OWR strategies significantly suffer from
performance degradation when the train and test distributions differ. We demonstrate
that coupling OWR methods with domain generalization algorithms mitigates this
degradation, but their simple integration is not sufficient to identify new and unknown
categories in unfamiliar domains. We then highlight open challenges and future
research directions, that serve as foundations towards developing agents capable of
reliably operating in real open world environments.
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Chapter 1

Introduction

A long-standing goal of the current artificial intelligence and robotics revolution is to
create agents capable of autonomously operating in the real world. In order to achieve
this goal, it is essential for agents to understand their surrounding environment,
which is made possible through powerful sensors that act as windows into the real
world. Visual cameras are among the most powerful, accessible and informative
sensors, and have become extremely valuable in applications that require visual
capabilities, such as self-driving vehicles, warehouse robots, indoor vacuum robots,
etc. All of these applications, in order to operate in a real world setting, require
a deep understanding of the appearance, characteristics, and functions of their
surroundings. Robot vision systems have made remarkable progress in recent years,
thanks to the use of deep learning architectures, specifically Convolutional Neural
Networks (CNNs), which achieved outstanding results in a variety of computer
vision applications, ranging from object classification and detection, to semantic
segmentation, scene understanding, action recognition, object tracking, and more.

Despite their effectiveness, traditional deep neural networks have one major
limitation preventing them to operate in a real world environment. Relying on the
closed world assumption (CWA), which implies that all the classes a model will ever
need to recognize are present in the training set(s), deep neural networks confine their
understanding of the real world only to the knowledge available during the training
phase. Obviously, this perspective is extremely limiting, as the real world contains
an endless set of potential input conditions (e.g. various illumination, environments),
and because models are likely to encounter previously unseen categories after being
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Fig. 1.1 In the context of an open world scenario, it is essential for an agent to possess the
ability to accurately classify known objects (such as apple and mug), while also being capable
of detecting novel semantic concepts (such as banana). When a novel concept is identified,
the agent should learn the new category and update its knowledge base accordingly.

deployed, it is crucial to empower them with the ability to detect these novel classes.
However, identifying unknowns is not the only challenge that deep learning models
encounter in real world environments. After deployment, it is likely that these models
will require to be updated to recognize those new semantic categories, while also
avoiding forgetting already learned concepts. In this thesis, we show how to break
the CWA, getting one step closer towards the development visual systems capable of
operating in the open world.

To clarify our objective, let us examine the example reported in Fig. 1.1. The
knowledge base of our robot consists of a limited set of categories (e.g., apple, mug),
and the robot is capable of detecting and classifying only the objects belonging to
them. However, it is highly probable that the robot will encounter a new object (e.g.,
banana) at some stage during its lifespan. In such a situation, we need the robot to
detect the novel object and categorize it as unknown. Additionally, once a set of
images for that object is acquired, the robot needs to update its knowledge base and
learn how to detect and classify the new object.

To achieve this goal, a robot vision system must possess two essential capabilities:
(i) it must have the capacity to recognize concepts it has already encountered, while
also detecting previously unseen ones, and (ii) it must be capable of expanding its
knowledge base with novel categories without erasing the previously learned ones,
and without having access to previous training datasets.
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In the initial part of the thesis, we address the first issue, investigating the
challenges of identifying unknown objects at pixel level. This scenario is referred to
as anomaly segmentation (AS), which entails segmenting an image and determining
the class to which each pixel belongs if known, otherwise recognizing the pixel
as anomalous. We propose a novel approach based on prototype learning, which
achieves the new state-of-the-art in identifying anomalous objects at the pixel level,
while maintaining accuracy in recognizing previously seen classes. We note that,
in this context, we define anomalies only as pixels belonging to never-seen-before
categories, which differs from the definition of anomalies in industrial contexts,
where it typically refers to defects or unexpected behaviors.

The second part of this thesis focuses on the complementary scenario, referred to
as incremental learning (IL), which involves incrementally updating existing models
as new classes become available. While state-of-the-art segmentation models still
require full pixel-wise labels, that are costly and time-consuming to acquire, we
introduce a new perspective to the field by focusing on the more realistic challenge
of extending the knowledge of a pre-trained segmentation model using only cheap
image-level labels. These image-level labels provide information only about the
presence or absence of a particular class, without providing any cues on their location
or appearance. We present a novel approach that employs a localizer module for
generating pseudo-labels, and a distillation-based loss to avoid forgetting previously
learned categories, resulting in the new state-of-the-art.

In the final section of the thesis, we address the two scenarios simultaneously
in the open world recognition (OWR) setting. Firstly, we present our method, B-
DOC, which employs two complementary clustering losses to learn semantically
consistent clusters in the representation space. This allows us to identify unknown
samples by learning distance-based class-specific rejection thresholds. We then
investigate how the differences between training and test domains (i.e., the domain-
shift problem) affect open world recognition algorithms by introducing the first
benchmark in the field. Our results show that OWR algorithms perform significantly
worse when evaluated on different domains, and coupling them with single-source
domain generalization strategies can only reduce but not solve the issue.
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1.1 Contributions

Focusing on visual recognition, this thesis contributes towards developing deep
learning architectures able to operate in the real world, empowering models with the
capabilities of identifying previously unseen categories, and learning them afterwards.
The main contributions of this work can be divided into three parts. Firstly, we
present a prototypes-based approach to detect previously unseen objects at pixel
level, while maintaining the ability of the model to detect and recognize already
learned classes. Second, we present a method to incrementally extend the knowledge
of a segmentation module over time without the need for full pixel-wise traditional
labels, using cheaper and easier to obtain image-level labels instead. Finally, we
address both challenges in one single fashion, introducing a clustering paradigm able
to cluster samples in the feature space and learn class-specific rejection thresholds to
distinguish between known and unknown categories. Additionally, we investigate the
impact of domain-shift on open world recognition algorithms, and identify potential
future directions.

Specifically, we present:

a prototype-based approach to segment at pixel levels known and unknown
categories [16]. The intuition is that learning generalized but distinctive represen-
tations of each class allows the model to identify anomalies as pixels that do not
match any of these representations. We obtain the prototypes using a cosine classifier
that encodes the corresponding average pixel features for each known class, and we
consider a pixel to be anomalous only if the highest matching score with the known
classes is below a certain threshold.

a novel framework capable of segmenting previously unseen classes using only
cheap image-level labels [17]. Unlike previous methods which generate pseudo-
labels offline, we train a localizer module using only image-level labels, which
enables us to obtain online pseudo-supervision and update the model incrementally.
Coupling this module with a distillation-inspired loss, we are able to continuously
extend the knowledge of the model to segment new classes, while avoiding forgetting
already learned ones.

a global-to-local features clustering approach that allows us to learn class-
specific rejection thresholds [13]. We introduce a global clustering loss term that
enforces the model to map samples closer to the centroid of their class, and a local
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clustering loss term that brings samples of the same class closer and pushes away
neighbors from other categories. Moreover, differently from previous works, we
learn class-specific rejection thresholds by introducing a novel loss formulation,
rather than using a single global threshold.

a case study on the effectiveness of open world algorithms under domain-shifts
[18]. We present the first benchmark to fairly evaluate open world algorithms with
and without domain-shifts. Our findings show that existing methods experience
significant performance degradation when trained and tested on different distributions.
Additionally, we show that simply integrating domain generalization strategies
into open world algorithms only partially alleviates this degradation. Our results
point towards open challenges and opportunities for future research in developing
robust visual systems for robots that can operate under such challenging yet realistic
conditions.
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1.2 Outline

Chapter 2 introduces the closed world assumption (CWA) (Section 2.1), being one
of the major limitations for deep models to operate in the real world, and proposes
a strategy to deal with it. Section 2.2 presents a literature review that serves as
starting point for our work. It gives the foundation for semantic segmentation, out-
of-distribution detection, and anomaly segmentation. Section 2.3.1 presents the
anomaly segmentation more in detail, providing a precise mathematical formulation,
and analyzing the drawbacks of the popular approach MSP, that uses the highest
probability assigned to any of the known classes to infer the anomaly score for a pixel.
In Section 2.3.2 we introduce our method PAnS, that leverages a cosine classifier to
learn a class-specific prototype that allows us to compute anomaly scores from the
classification scores directly, overcoming the softmax function limitations of MSP.
The experimental setting and results in Section 2.3.3 support the effectiveness of our
method.

Chapter 3 leads us to incremental learning (IL), which is a crucial step in developing
models able to work in realistic environments. Section 3.1 presents IL challenges,
while Section 3.2 provides an extensive review of related work. In Section 3.3 we
introduce a more realistic setting with respect to traditional scenarios, in which
we aim at extending the knowledge of a pre-trained deep model using only cheap
image-level labels. We start with a mathematical formulation of the problem setting
(Section 3.3) and we present our method WILSON, that couples the segmentation
model with a localizer module, and uses image-level labels on new categories to
generate pseudo-labels to train the segmentation backbone in a single fashion. We
detail the components of WILSON in Section 3.3.2 and 3.3.3, and we present our
qualitative and quantitative results in Section 3.3.4, which show how WILSON is
able to outperform weakly-supervised semantic segmentation methods, and achieve
similar results compared to standard fully supervised IL approaches.

Chapter 4 introduces the open world recognition (OWR) setting that ultimately
aims at breaking the CWA, empowering models to identify the presence of unknown
categories as well as to learn new ones as they become available for training. We
introduce the problem in Section 4.1, and we provide a review of OWR strategies in
Section 4.2. In Section 4.3 we present our method B-DOC, which introduces a global-
to-clustering loss training objective, and trainable class-specific rejection thresholds
to distinguish between known and unknown categories. Section 4.3.3 presents our
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experimental results and findings. In Section 4.4 we take a step further, and investi-
gate the effects that domain-shifts have on OWR frameworks. Section 4.4.1 presents
the first benchmark to assess OWR algorithms under shifting visual domains, and
Section 4.4.2 presents our findings. In particular, we asses how domain-shift affects
OWR methods in Section 4.4.3, and we investigate whether domain generalization
approaches can solve the degradation in performance in Section 4.4.4.

The thesis concludes by summarizing our findings, open challenges, and possible
future direction of research in Chapter 5.
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Chapter 2

Recognizing unseen semantic concepts

Traditional semantic segmentation methods can recognise during testing only the
specific set of classes they have seen in the training phase, which is a major lim-
itation for autonomous systems operating in realistic environments. Unexpected,
unknown objects will inevitably appear during testing, and the inability to identify
such anomalies might lead autonomous agents equipped with such segmentation
modules to incorrect or even dangerous behaviour. The majority of state-of-the-art
anomaly segmentation approaches relies on generative models, which are expensive
and prone to consider generated artifacts as false anomalies. In this chapter we
take a different direction. In particular, we start by presenting an overview of the
problem in Section 2.1, followed by a review of the related literature Section 2.2.
In Section 2.3, we present PAnS (Prototopycal Anomaly Segmentation) which uses
prototype learning to segment anomalies. We extract prototypes from the training
data by means of lightweight cosine similarity-based classifier. Experiments (Sec-
tion 2.3.3) on the popular StreetHazards benchmark confirm the effectiveness of our
method.
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2.1 Problem statement

As highlighted in Chapter 1, for machines operating in the real world environments,
it is essential to be able to identify which objects are present in their surroundings,
and where. To achieve this goal, several works have focused on the semantic
segmentation task [19, 20], in which the objective is to assign a semantic label to
each pixel in an image. Semantic segmentation models, however, are inherently
bounded to recognise only the classes they see annotated during training (closed
world assumption). Regardless of how vast their training database may be, it is
clearly not possible to anticipate and capture every potential semantic class a system
may encounter. Ideally, a segmentation model would need to be able to recognize
when a pixel belongs to one of its known classes, or when it belongs to an unseen
category that was not included in the training set. This capability is especially
important in cases where pixels of unknown categories could potentially become
a threat to the machine (or the human) using the semantic segmentation module.
As an example, consider the scenario depicted in Fig. 2.1. Because no semantic
segmentation dataset provides labeled pixels for the helicopter class, the model
has no chance of avoiding a fatal collision, unless it detects that there is something
unexpected in the image.

In this chapter, we focus on the problem known as anomaly segmentation (AS)
[21, 22], which involves recognizing whether a pixel in an image belongs to a
category that the model was not trained on, i.e. an anomaly. Previous approaches to
this problem have either imposed a threshold on the predicted probabilities for each
pixel [23] or employed generative methods to compare input images (or features) to
their reconstructed counterparts [24, 22]. However, both of these strategies have their
limitations. The first approach ignores the fact that the softmax function blurs the
model’s confidence regarding the presence of a particular class. In other words, after
the softmax function is applied, two classes that were predicted with high scores
(logits) end up having an equal low probability. On the other hand, it is particularly
difficult to generate images with high fidelity in the context of semantic segmentation
because of the complexity of the content. As a result, generative approaches tend
to produce artifacts not only when synthesizing pixels of unknown classes, but also
when synthesizing pixels of known classes (see Fig. 2.2). These behaviours limit the
effectiveness of these methods for anomaly segmentation.
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Fig. 2.1 The goal of anomaly segmentation (AS) is to segment objects that the model has not
seen before. Addressing AS is critical, particularly in autonomous driving scenarios, where
mistakenly identifying an anomalous object for a known one can be highly dangerous. In
this chapter, we address AS via prototype learning, where anomalies (depicted in light-blue)
are defined as all regions that do not match any class prototypes that the model has learned.

In this chapter, we propose to address the anomaly segmentation problem di-
rectly at the class scores level. Our intuition is that if a model learns general but
discriminatory representations of each class, it will be able to detect anomalies as
pixels that do not match any of the class representations. We pursue this idea by
introducing class-specific prototypes and considering a pixel to be anomalous only
when its highest matching score with the set of prototypes of the known classes is
below a certain threshold. We extract the prototypes using a cosine classifier that em-
bodies for each of the known classes the corresponding average pixel features. It is
important to note that we avoid the normalization issues of softmax-based strategies,
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since we estimate anomalies directly from the compatibility between the feature set
of a test sample, and the prototypes of the known classes. We evaluate our model,
called PAnS (Prototopycal Anomaly Segmentation), on the popular StreetHazards
benchmark [2] and demonstrate that it performs better than expensive generative
approaches, while largely surpassing the previous state of the art. Additionally, a
final ablation study completes our experiments.

Contributions. To summarize, the contributions presented in this chapter are three-
fold. Firstly, we present a new perspective for the anomaly segmentation problem,
which emphasizes the importance of class-specific scores rather than probabilities
in identifying anomalous pixels. Secondly, we propose our Prototypical Anomaly
Segmentation (PAnS) method, which matches a test sample’s feature vector and
class-specific prototypes to compute class-specific scores, and learns the prototypes
as weights of a cosine classifier. Lastly, we demonstrate through experiments on
the widely adopted StreetHazards dataset that our approach surpasses the previous
state-of-the-art by a margin.
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2.2 Literature review

In this section we review the fundamental topics that serve as the building blocks for
our work, i.e. semantic segmentation architectures, out-of-distribution detection and
anomaly segmentation.

Semantic segmentation. Modern semantic segmentation architectures [19, 25–
28] consist of fully-convolutional encoder-decoder networks [19, 29] which differ
in the strategy in which contextual information is integrated into the pixel-level
features. These works can be categorized into two main approaches: pyramid-
based approaches [26, 27, 30, 20, 28, 25] which incorporate modules that leverage
information at different scales, and attention-based approaches [31–36] which ag-
gregate long-range spatial dependencies using attention modules at different levels.
To completeness, we briefly summarize in the following semantic segmentation
transformers-based architectures [37–40], which recently gained attention in the
field. [37] projects image patches into a sequence of embeddings which is encoded
using a transformer encoder and decoded by a mask transformer decoder to predict
segmentation masks. [38] removes the positional encoding by employing a hierar-
chical transformer encoder which outputs multi-scale features, and a MLP decoder
which combines the information coming from the different encoder layers to produce
the final segmentation maps. [39] proposes to addresses segmentation as a mask
classification problem. It employs a transformer and a per-pixel decoder to generate
per-pixel and mask embeddings, which are then combined together to produce the
segmentation output. Building upon [39], [40] introduces a transformer decoder
which adopts a novel masked-attention module, and feeds the transformer decoder
with one pixel-decoder feature at a time.

All of these architectures, however, have a common limitation: they necessitate
a vast amount of training data, which is often both time-consuming and extremely
costly to acquire. Furthermore, these models only operate in an offline scenario,
meaning that it is impossible to incorporate additional knowledge after training.
While recent works have attempted to address the addition of new classes [41–
43, 15, 44, 14], none of these approaches account for anomaly detection.

Out-of-distribution detection aroused growing interest in the machine learning com-
munity in recent years. The authors of [23] set the baseline for out-of-distribution
(OOD) detection by applying a threshold on the maximum softmax probability
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(MSP) which determines whether a sample belongs to the training distribution (in-
distribution) or not (out-of-distribution). Besides being simple and effective, MSP is
not optimal to detect anomalies for mainly two reasons. To begin with, the model
might produce high probabilities even when the predictions are incorrect [45]. More-
over, in cases where the predictions are correct but with low probability values, the
model might misinterpret them as OOD samples. Other methods have investigated
OOD detection challenges and proposed alternative solutions. Early works [46, 47]
used Monte Carlo Dropout (MC-Dropout) to compute the uncertainty of the model,
by performing multiple forward passes of the same input image randomly selecting
each time a different dropout probability. [48] proposes identifying class-wise highly
similar training samples and removing the sparse samples that might be outliers. At
test time, the model adopts a modified nearest-neighbor classifier, which computes
the prediction based on the distances between class sets. [45] takes a different
approach, and uses in-distribution data to train an additional neural network with the
objective of emitting high confidence values when the original model’s predictions
are correct. At test time, the additional module is used to detect if the predictions
of the main network are reliable or not. ODIN [49] improved the baseline proposed
by [23] introducing a perturbation over the features before the classification stage,
and a scaling factor into the subsequent softmax operation. Similarly, [50] scales
the softmax probabilities by a temperature factor, and for each sample it computes
the energy which is higher for known samples rather than unobserved ones. Both
of these hyperparameters were computed on an out-of-distribution validation set.
Differently, [51] uses Mahalanobis distance to learn a confidence score, while [52]
introduces an entropy-based classifier to detect OOD classes.

It is worth noting that our method (depicted in Section 2.3.2) conceptually differs
from the approaches stated above mainly in two aspects. First, rather than depending
on a temperature scaling factor for the softmax function, we compute the class scores
directly through prototype-matching. Second, whereas [53, 51, 52, 24] require an
external out-of-distribution set, we train our model using only in-distribution data.

Anomaly segmentation. The approaches discussed in the previous paragraph focus
on determining whether an entire image is an OOD example or not. In this section,
instead, we focus on the more challenging yet realistic scenario known as anomaly
segmentation (AS) [2, 22, 54, 16, 55], in which models are asked to recognize
whether each pixel of an image belongs to the in-distribution or not. OOD pixels are
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referred to as anomalies, and AS is the task of segmenting anomalous regions from
an image. Early AS approaches [55, 21] were based pixel-wise reconstruction from
auto-encoders (AEs). In complex road scenes, AEs have been shown to be unable to
correctly model the in-distribution in complicated road scenarios, leading to inferior
performance [2] compared to less complex baselines (e.g. MSP [23]). Recent
works on generative models [24, 22] achieved promising results, by measuring the
discrepancies between the reconstructed version of OOD images and the original
ones. The former used pix2pixHD [56] to reconstruct test images and a discrepancy
network to compare them with the respective original versions, while the latter used
SPADE [1] and a comparison module based on cosine similarity. One disadvantage
of these approaches is that artefacts in the reconstructions might be misidentified
as anomalies, as depicted in Fig. 2.2. Taking a completely different approach, the
recent work of [57] proposes a hybrid approach combining the known class posterior,
the dataset posterior, and an un-normalized data likelihood to estimate anomalies.

Unlike prior works, our method illustrated in Section 2.3.2 does not rely on
expensive generative approaches, instead producing predictions directly from the
prototypes-matching.
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Fig. 2.2 Qualitative results of SPADE [1] reconstructions (top) on an image from StreetHaz-
ards dataset [2] (middle). The green box identifies the anomaly, which the model correctly
does not reconstruct. The red box, on the other hand, shows one example of the artifacts that
the generator produces, i.e. the traffic lights are not reconstructed by the model and are thus
predicted as anomalies.
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2.3 Anomaly Segmentation

2.3.1 Problem formulation

Let us denote as X ∈ IR|I| the image space, where I is the set of pixels. During
training, we are given a dataset T = {(xk,yk)}N

i=k where x ∈X is an image and y ∈Y
is its corresponding ground-truth mask. As in standard segmentation, Y contains
pixel-level annotations for a set of semantic classes C, i.e. Y ∈ C|I|. Given T , we
want to learn a function f mapping an image to its corresponding anomaly score
at pixel level, i.e. f : X → IR|I|. Without loss of generality, we consider f built on
three components. The first is a feature extractor ω : X →Z mapping images into
a feature space Z ⊂ IR|I|×d , with d being the feature dimensions. The second is
a scoring function ρ : Z → IR|I|×|C| mapping the features in Z to pixel-level class
scores. The third is an anomaly score function σ : IR|I|×|C| → IR|I|, mapping the
class scores to the final anomaly ones.

In the following, we will examine how previous approaches have instantiated the
σ function, which is responsible for producing the final anomaly scores.

Maximum Softmax Probability (MSP) [23] is one of the most widely-used ap-
proaches for anomaly segmentation. The idea behind MSP is that the anomaly score
of a pixel should be determined depending on the highest probability assigned to any
of the known classes. Given a test image x and the corresponding pixel-level class
scores s = ρ(ω(x)), MSP computes the anomaly score for pixel i, denoted as σi(s),
as follows:

σi(s) = 1−max
c∈C

esc
i

∑k∈C esk
i

(2.1)

where sk
i = ρ i

k(z) is the score for class k in pixel i. It is worth noting that MSP defines
the anomaly scores as the inverse of the maximum probability assigned to any of
the known classes in C, and that the probabilities are computed using the softmax
function.

Also known as normalized exponential function, the softmax function, is the
most commonly used function to convert the logits produced by a model into class
probabilities. For each score, it takes its exponents value and divides it by the sum of
the exponents of all the scores so that the output vector adds up to 1, becoming a
probability score. Despite its effectiveness, we argue that utilising softmax probabil-
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ity values to estimate anomaly scores is not the best approach. In fact, when using
the softmax function, the confidence of the model on each pixel may get smoothed,
sometimes flattened, leading pixels with high predicted initial scores to be considered
uncertain (and thus anomalous) after the softmax normalization.

As a toy example, let us suppose we have two different classes and a model
trained to classify pixels between them. Given a test pixel, if the model produces a
very high score for one class and a very low score for the other one, the probabilities
computed by the softmax function will correctly have a low entropy, with a high
probability for the class with the highest score and a low probability for the other.
Therefore, the model will correctly classify the pixel as belonging to the class with
the higher score, and consider it to be not anomalous. On the other hand, if the
scores for both classes are high but closed in values, the probabilities produced by
the softmax function will have high entropy after the softmax normalization. In this
case, this high entropy indicates that the model is uncertain about the semantics of
the pixel, but the high initial scores may suggest that the model is not uncertain that
the pixel belongs to a known class.

In the following section, we will demonstrate that maintaining the independence
of class scores and constraining them to a known range (i.e. [−1,1]) through pro-
totype matching is useful for accurately assessing the confidence of a model in its
predictions, and improves the ability to identify anomalous pixels.

2.3.2 Prototopycal Anomaly Segmentation: PAnS

In the previous section, we discussed how the approach of MSP may fail in identify-
ing anomalies due to the softmax normalization, which discards information about
the model’s confidence. Therefore, we propose a different approach, arguing that
it is critical to consider separately the confidence of each class. Ideally, we would
like to obtain confidence values that: i) are independent for each class, ii) do not
require additional computation, and iii) are bounded within a certain range, such that
a threshold for detecting anomalies can be defined on their scores.

To accomplish this, we propose using a prototype to represent each class. Each
class prototype can be considered as a reference feature vector for a particular class.
We can then compute confidence scores independently for each class by calculating
the similarity between the features of any pixel and the prototype. Among the
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different ways to define class prototypes in the literature [58–62], we take inspiration
from few-shot classification learning works [60, 59] and use a simple but effective
cosine classifier, which encodes the class prototypes implicitly in its classification
weights.

Cosine Classifier. To efficiently extract class-prototypes, we employ a cosine
classifier, which computes the cosine similarities between the input features and
the class weights and uses these values as the class scores. While this classifier
has previously been utilized for image classification [59, 63–65] to efficiently learn
class-prototypes, we are the first to utilize this classifier specifically for the purpose
of identifying anomalies in semantic segmentation. In our framework, therefore,
we substitute the standard convolutional classifier with a cosine similarity-based
classifier.

In particular, given an image x and a pixel i, the classification score for a class c
is computed as follows:

sc
i = ρ

i
c(ω(x)) = ⟨ωi(x),wc⟩=

ωi(x)⊺wc

||ωi(x)|| ||wc||
, (2.2)

where ωi(x) is the output of the feature extractor ω at pixel i of the image x, and
wc ∈ IRd is the prototype of class c. We note that the resulting scores s are in the
range [−1,1], due to the normalization term in the denominator.

To learn the prototypes, we use the standard cross-entropy loss on probabilities
computed from the scores sc by means of the softmax function:

ℓCE(x,y) =− 1
|I| ∑i∈I

log
eτsyi

i

∑c∈C eτsc
i
, (2.3)

where τ is a scalar value that scales the classification scores to the range [−τ,τ] and
yi is the label of pixel i. Intuitively, minimizing the ℓCE loss helps to ensure that the
prototype weights for each class have a low cosine distance with the features of their
respective class, effectively representing them on average. In fact, the loss is min-
imised only when the prototypes are similar to the features set of their corresponding
class, and dissimilar from the features set of the other classes. Furthermore, since the
feature vectors of a class are pushed closer to the prototype of that class, the features
extractor ω is forced to generate features vectors with very low intra-class variance.
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This further improves the networks in being more confident when it encounters pixels
of known classes and much less confident with anomalous pixels.

Computing the Anomaly Scores. After defining the prototypes, we now introduce
how to effectively use them to segment anomalies in the input test images.

To overcome softmax function limitations, we argue that it is important to use
the classification scores directly, rather than normalized probabilities. The cosine
classifier makes it possible to use class scores s as a measure of the network’s
confidence in the presence (or absence) of a certain class since they represent the
similarity between each class weights and the visual features extracted from the
network itself. Additionally, since the scores of the classifier are bounded in the
range [−1,1], we can define the binary probability σ̄ of a class c appearing at pixel i
of an image x as:

s̄c
i =

sc
i +1

2
(2.4)

and the anomaly score σ using the maximal binary probability, which we define as:

σi(si) = 1−max
c∈C

s̄c
i . (2.5)

Intuitively, σi will produce scores close to 1 when the visual features are far from all
the class-prototypes, and scores close to 0 if at least one prototype is close to them.

With this approach, we expect our method to effectively represent the known
classes, resulting in high confidence for pixels belonging to them. On the other hand,
we expect that no class prototype will be close to the features extracted from pixels
of anomalous objects. Additionally, by avoiding the aforementioned issues of the
softmax function, we can largely boost the results, as we will demonstrate in the
following experimental section.

2.3.3 Experiments

In this section, we present experimental settings, baselines, metrics and protocols
used to assess the performance of our method, PAnS, in comparison to state-of-the-
art approaches for anomaly segmentation. We also conduct an ablation study on the
anomaly scores and the classifiers, and provide some qualitative results.
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Method AUPR ↑ AUROC ↑ FPR95 ↓
AE [55] 2.2 66.1 91.7
Dropout [46] 7.5 69.9 79.4
MSP [23] 6.6 87.7 33.7
MSP + CRF [2] 6.5 88.1 29.9
SynthCP [22] 9.3 88.5 28.4
PAnS 8.8 91.1 23.2

Table 2.1 Results under AUPR, AUROC and FPR95 metrics on StreetHazards dataset [2].

Dataset and baselines. Our experiments are conducted on the StreetHazards dataset
[2], which is a synthetic dataset for anomaly segmentation proposed within the CAOS
benchmark [2] (see Chapter A). We compare our method to several state-of-the-art
approaches for anomaly segmentation, including MSP [23], MSP + CRF [2], an
auto-encoder (AE) based approach [55], Dropout [46], and the generative approach
SynthCP [22].

Metrics. Following previous work [2, 22, 24], we use three anomaly segmenta-
tion metrics: AUPR, AUROC, and FPR95 which are commonly used in out-of-
distribution detection scenarios [66, 49] as well. AUPR measures the area under
the Precision-Recall curve, AUROC measures the area under the True Positive Rate
(TPR) and False Positive Rate (FPR) curve, and FPR95 measures the FPR at 95%
of recall. For all of these metrics, pixels corresponding to anomalies are considered
positive, and all other pixels are considered negative.

Implementation details. Following [22], we use a ResNet-50 architecture [67]
as the backbone and PSPNet [26] as the head module of our model. We train the
segmentation module for 40 epochs with a batch size of 2 and a learning rate of
0.007. The used learning rate decay policy is a polynomial schedule with a power of
0.9 and a weight decay of 0.0001. We also use InPlace-ABN [68] which allows to
save up to 50% of GPUs memory. Similar to [22], we use multi-scale evaluations
at test time and perform random scale, random crop, and random horizontal flip
augmentations during training.

Comparison with the state of the art. The results of our comparison with state-
of-the-art approaches are shown in Table 2.1. As the table reports, our method
consistently achieves the best performance by a margin under the AUROC and FPR95
out-of-distribution metrics, while being comparable under AUPR values. Among
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all, noteworthy is the result of 23.2% under the FPR95 metric, which indicates that
our method is less likely to confuse pixels of known classes as anomalies. This
can be attributed to the fact that our prototype-based classifier better preserves the
original scores for known classes, which might be either smoothed by the softmax
normalization (as in MSP) or overwritten by inaccurate generations (as in SynthCP).

Indeed, under the FPR95 metric, our approach surpasses the previous state-of-
the-art (SynthCP) by almost +6%. This increased robustness of our prototype-based
classifier against the misclassification of known class pixels is also reflected in the
other metrics. Our approach achieves an AUROC of 91.1%, improving upon the
previous best method (SynthCP) by 2.6%. These results confirm that our approach
achieves the best trade-off between accurately identifying anomalous pixels while
preserving at the same time high confidence predictions for pixels of known classes.
SynthCP obtains, on the other hand, a slightly better AUPR (+0.5 compared to PAnS).
However, it is worth noting that our method only requires a single forward pass
on the network, without the need of any generative step and without increasing the
computation required by the model.

It is also worth noting that generative models may be affected by the quality of
the generated images. In fact, exploiting synthetic images often introduces artifacts
[22] that may hinder the performance of generative AS models, by causing them to
wrongly segment the artifacts as anomalies (see Fig. 2.2).

Qualitative results. To analyze the impact of our cosine classifier and scores, we
provide qualitative examples in Fig. 2.3 comparing the anomaly scores produced
by the softmax-based approach MSP [23] and ours for randomly chosen samples
from StreetHazards dataset. Higher anomaly scores are represented by white regions,
while lower ones are represented by blue regions. As shown in the figure, PAnS
is capable of accurately assigning low scores to regions with anomalies (i.e., the
helicopter in the top image and the carriage in the bottom image), while MSP
identifies only small portions of the anomalies. However, both approaches have a
tendency to assign high anomaly scores to regions where boundaries between known
classes can be found, such as the street lines and road in the top or the building and
sidewalk in the bottom. We believe that modeling these highly uncertain regions
between known classes is an open challenge for anomaly segmentation algorithms,
which would be important to address in future research.
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Fig. 2.3 Qualitative evaluation of the propability-based approach of MSP and our direct
scores while segmenting anomalies on StreetHazards dataset [2]. White pixels indicate a
high anomaly score, while the blue ones indicate a low score. Anomalies are represented in
cyan in the semantic labels.

Ablation study of anomaly scores. Fig. 2.4 presents an ablation study about the
impact of different anomaly score functions σ on StreetHazards [2]. To provide a
comprehensive comparison, we considered four variants: i) softmaxed predictions
produced by a standard linear classifier (MSP [23]); ii) softmaxed predictions
produced by a cosine classifier (Cosine cls + softmax); ii) unnormalized class scores
computed by a linear classifier (Class scores); iv) unnormalized cosine scores of
PAnS. As shown in the figure, using a cosine classifier to compute the softmax
probabilities improves performance compared to a standard classifier, increasing the
FPR95 value by 5.8%.

However, directly using the class scores produced by the network instead of
the softmax-normalized probabilities is highly beneficial, increasing the standard
softmaxed version and the cosine one by 9.5% and 4.7%, respectively. Finally, we
note that using the unnormalized cosine scores of our approach outperforms the
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Fig. 2.4 Ablation study on the direct usage of scores produced by both a standard and a
cosine-based classifier. Results are computed on StreetHazard dataset [2].

Classifier bkg building fence pole street-line road sidewalk veget. car wall t.sign mIoU

Standard 84.5 70.9 30.1 23.6 26.7 92.1 57.4 75.1 53.3 42.9 28.9 53.2

Cosine-based 84.8 72.1 30.9 22.3 26.7 92.5 60.0 75.3 55.2 45.7 30.3 54.2

Table 2.2 Comparison on IoU using a standard and the cosine classifier.

usage of standard class scores, achieving the highest FPR95 value of 23.2%. This
improvement can be attributed to the unbounded nature of scores of a standard
classification layer, which makes it difficult to define threshold values for detecting
anomalies.

Ablation study of classifiers. While our model achieves promising results on AS,
an open question is whether it maintains the strong discrimination capabilities of a
standard classifier. In Table 2.2, we compare the IoU achieved by both a standard and
a cosine-based classifier on the classes of StreetHazards. Overall, the cosine-based
classifier performs better than the standard one, achieving a 54.2% mIoU compared to
a 53.2% mIoU for the standard classifier. The results show that the cosine similarity
allows reaching higher mIoU values on almost every class, especially on those that
are typically considered difficult, such as fence, sidewalk, and traffic sign. The only
exception is the pole category, where the performance of the model slightly decreases
to 22.3% compared to 23.6% for the standard classifier. The cause of this behaviour
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is the small size and infrequent representation of the pole class in the StreetHazards
dataset, which makes it challenging for the model to estimate a good prototype for it.

Limitations. As depicted in Figure 2.3, an unresolved issue remains the uncertainty
that the model has on the pixels located at the boundaries between different semantic
classes. Despite achieving better performance than traditional classifiers, out model
still struggles to provide highly confident predictions for these particular regions.
The reason for this limitation lies in the fact that pixels situated on boundaries often
differ from those that represent the semantics of a specific class. Consequently, they
deviate significantly from the expected values encoded in the prototypes. As a result,
the prototypes end up encoding features that are dissimilar from those found at the
boundaries and, due to this discrepancy, the model sometime fails to recognize these
pixels and categorizes them as anomalies. It would be interesting to investigate if
transformer-based architectures [38, 40] would be able to mitigate this issue given
their ability to incorporate semantic context.

2.3.4 Conclusions

In this section, we addressed the issue of anomaly detection in semantic segmentation,
namely anomaly segmentation, which is an important yet scarcely studied topic.
Previous approaches have either concentrated on modeling the probability of a
pixel belonging to an unknown category or on generative methods for detecting
anomalies via inconsistencies in their reconstructions. In contrast, we argue that
measuring the distance between the visual features extracted from a pixel and a
general representation of each class is a more effective approach than relying on
maximum softmax probabilities for identifying that pixel as anomalous. To this end,
we use class-specific prototypes extracted from the weights of a cosine similarity-
based classifier to learn such general representations. Experimental results on the
widely used StreetHazards benchmark show that our approach outperforms previous
state-of-the-art methods in two of the three metrics commonly used in anomaly
segmentation literature by a significant margin.
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Learning new semantic concepts

Existing semantic segmentation models achieved over the years impressive results
in a variety of applications, but they still struggle to update their knowledge over
time, which limits their adoption in real world environments. Moreover, pixel-
wise annotations are expensive and time-consuming to obtain. In this chapter we
propose a framework for Weakly Incremental Learning for Semantic Segmentation,
which aims to segment new classes from cheap image-level labels. We start by
introducing the problem formulation in Section 3.3.1 and a related work review in
Section 3.2. In Section 3.3 we present our method, that differently from existing
approaches that generate pseudo-labels offline, uses a localizer module trained
with only image-level labels to obtain pseudo-supervision online used to update
the segmentation model over time. Furthermore, we propose a way to exploit
the localizer-generated soft-labels to reduce the noise generated in the process.
Experimental results on the Pascal VOC and COCO datasets (Section 3.3.4) show
that our approach outperforms offline weakly-supervised methods and achieves
results comparable to fully supervised incremental learning methods.
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Fig. 3.1 Overview of Weakly-Supervised Incremental Learning for Semantic Segmentation
(WILSS). We start by considering a model pre-trained on a set of categories (e.g., person,
motorbike, car), using expensive pixel-wise annotations. Then, the model is incrementally
updated to segment new categories (e.g., cow) using only image-level annotations and without
having access to old data.

3.1 Problem statement

Despite the significant progress achieved in recent years in semantic segmentation,
especially thanks to the rapid growth of deep learning approaches [20, 30, 25] and
the availability of large-scale annotated datasets [69–73], we highlighted in Chapter 1
how crucial is to make models able to update over time their internal knowledge to
successfully operate in the real world. A naïve approach would be annotating new
samples and adding them to existing datasets, in order to train new models from
scratch. However, this approach is not feasible when updates are frequent, as training
on the entire augmented dataset would require too much time, increasing carbon
footprint and energy consumption of machine learning models [74–76]. In addition,
retraining or fine-tuning the models becomes infeasible when the original data is no
longer accessible, for instance due to privacy or intellectual property concerns.

In this chapter we focus on the challenge known as class-incremental learning
(IL) [77–81], which involves incrementally updating pre-existing models when
new classes are available, as proposed in several recent works [41, 44, 15, 42, 14].
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These IL approaches update models through multiple learning steps, where each
step contains only the newly available data, and they employ ad-hoc techniques to
mitigate the catastrophic forgetting issue [82]. While these approaches reduce the
cost of training, they still require pixel-wise supervision on new classes, which is
often expensive and time-consuming to collect, and typically requires expert human
annotators [70, 83].

To reduce the cost of annotations, various forms of weak supervision have been
proposed, such as points [84], scribbles [85, 86], bounding boxes [87, 88] and
image-level labels [89–91]. Image labels, in particular, can be easily obtained from
image classification benchmarks [92] or from the web, dramatically reducing the
annotation cost. Nevertheless, their use in an incremental learning setting has not
been previously explored.

To this end, in this chapter we propose to incrementally train semantic segmen-
tation models using only image-level labels for the new classes and we name this
task Weakly-Supervised Incremental Learning for Semantic Segmentation (WILSS).
This new setting combines the advantages of incremental learning (avoiding an
entire re-training phase) with those of weak supervision (cheap and widely available
annotations). An illustration of WILSS is shown in Fig. 3.1.

Directly applying existing weakly-supervised segmentation strategies to incre-
mental segmentation ones would involve (i) extracting pixel-level pseudo-supervision
offline using a weakly-supervised approach [4, 3, 93, 94, 5] and (ii) updating the seg-
mentation network using an incremental learning technique [44, 15, 14]. However,
we argue that creating offline pseudo-labels in incremental settings is sub-optimal,
as it requires two separate training stages, and it prevents exploiting the model’s
knowledge on previous classes to learn more efficiently the new ones.

Therefore, we propose a Weakly Incremental Learning framework for semantic
Segmentation, which incrementally trains a segmentation model by means of ONline
pseudo-supervision from image-level annotations (WILSON) and leverages previous
knowledge to learn novel classes.

We propose to extend the standard encoder-decoder semantic segmentation
architecture [20, 30, 25] by introducing a new module on the encoder, the localizer.
Its role is to generate pixel-level pseudo-supervision for the segmentation backbone
starting from image-level labels. To improve the pseudo-supervision, we guide the
training of the localizer with a pixel-wise loss originated from the predictions of



30 Learning new semantic concepts

the segmentation model. This regularization serves two main purposes: (i) it serves
as a strong prior for the previous class distribution, helping the model to locate
old classes within the image, and (ii) it provides a saliency prior for the extraction
of more accurate object boundaries. To mitigate the issue of noise in the pseudo-
supervision, we do not use hard pseudo-labels as in previous approaches ([3–5]), but
rather obtain soft-labels from the localizer, which provides information about the
probability of a pixel belonging to a specific class.

Contributions. To summarize, the contributions presented in this chapter are the
following: i) we present WILSS, the Weakly supervised Incremental Learning for
Semantic Segmentation task in which we extend pre-trained segmentation models
by adding new classes using only image-level supervision; ii) we present WIL-
SON, a novel framework which generates pseudo-supervision online by means
of a localizer trained with two loss functions: an image-level classification loss
function and a pixel-wise localization loss function. To account for noise in the
pseudo-supervision, we use a convex combination of soft and hard labels, which
leads to improved segmentation performance compared to using hard labels only;
iii) we demonstrate the effectiveness of the proposed method through evaluations on
the Pascal VOC [69] and COCO [70] datasets, showing outstanding performance
compared to offline weakly-supervised methods and comparable or slightly inferior
performance compared to fully supervised incremental learning methods.
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3.2 Literature review

Incremental learning. While several attempts to address this task have been made
over the years for shallow models, e.g. [95, 96], the field has lately experienced
a rise in interest for deep learning models due to the additional challenges they
provide. Existing approaches for deep architectures fall mostly into three categories:
parameter isolation-based [97–99], regularization-based (prior- and data-focused)
[100, 101, 79, 77, 102] and rehearsal-based [78, 80, 103, 81, 104, 105]. Parameter
isolation-based approaches allocate a parameters subset to each task, and inhibit their
modification through the subsequent learning stages to prevent forgetting. Similarly,
prior-focused regularization-based strategies [79, 101, 100, 106] constraining the
learning of new tasks by penalizing changes of important old parameters, rely on
knowledge stored in parameters value. In contrast, data-focused ones [77, 102, 107–
110, 81] make use of the distillation paradigm [111] by applying a regularisation
term based on the distance between the activation computed by the network at
the current step and at the previous one. Lastly, rehearsal-based strategies adopt
examples belonging to prior tasks, which are either generated [103–105] or stored
[78, 80, 81, 112], and used to prevent the model from forgetting them during the
training phase of the following task.

Even though it has been extensively investigated in image classification [78, 98,
77, 81, 80, 104, 97, 99] and object detection [113–121], IL is still in the early stages
in semantic segmentation [41, 44, 15, 42, 14]. [44] has been the first to identify the
background shift problem as the cause of catastrophic forgetting in segmentation.
The authors modified the cross-entropy loss such that only the probability of old
classes was propagated across the incremental steps, and they implemented a novel
distillation term to maintain previous knowledge. Later on, [15] proposed to maintain
long and short range relationships in the feature space; while [42] improved class-
conditional latent separations by regularizing the features space. Slightly closer to
our task is the work of [14], which pseudo-labels downloaded images from the web
to integrate samples of old classes during the learning stages. However, while they
use class labels to identify images of old classes, in section Section 3.3 we focus on
learning novel categories that have never been encountered before, relying solely on
cheap image-level labels.
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Weakly supervised semantic segmentation. Collecting pixel-wise annotation to su-
pervise semantic segmentation models is typically a costly and time-consuming
process. The goal of the weakly supervised semantic segmentation task is to
build effective semantic segmentation models utilising only cheap annotations, that
generally come in the form of bounding boxes [87, 122, 88], scribbles [123, 86],
points [83, 124], and image-level labels [125, 126, 91, 94].

This thesis focuses on image-level supervision, which has garnered more interest
than other forms of weak supervision due to its low cost and wide adoption. The
majority of image-based weakly supervised methods [91, 127, 126, 93, 128, 125, 94,
129] adopt a two-step procedure: (i) starting from the image-level annotations, they
generate pixel-level pseudo-labels, which are then (ii) used to train a segmentation
backbone. To extract the pseudo-labels, [130] proposed to use the Class Activation
Maps (CAMs) computed from an image-level classifier. Subsequent works mainly
focused on improving the pseudo-annotations through refinements steps [93, 128],
additional losses [91, 126, 129, 3, 94, 4], or by erasing portions of the images [131–
133] which makes the CAM expanding also to non-non-discriminatory image areas.
Moreover, [5, 134] proposed to use additional external supervision, e.g. saliency, to
improve the pseudo-labels object boundaries. The only exception is [4], which trains
in one single stage a segmentation model directly from the image-level labels.

Despite the fast development of strategies for generating pseudo-labels from
image-level supervision, these works only operate in a static environment in which
the model is limited to learn from a predetermined set of classes. Instead, in section
Section 3.3 we concentrate on the more difficult incremental learning scenario, in
which additional classes are learned over time using only cheap image-level labels.
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Fig. 3.2 Illustration of the end-to-end training of WILSON. The localizer module is directly
trained using ℓCLS (the classification loss) and ℓLOC (the Localization Prior loss) which
exploits prior knowledge derived from the old model at step t −1. The supervision of the
segmentation model, on the other hand, comes from both CAM and old model output. The
dotted lines indicate no backpropagation of the gradient.

3.3 Incremental learning in semantic segmentation
from image labels

Adapting current WSSS methods [3, 5, 135, 93, 91] for incremental segmentation
requires generating pseudo-labels offline for the novel classes, and training a separate
segmentation model after. Instead, we present an end-to-end framework for WILSS
that allows incremental learning from pseudo-labels by means of a localizer attached
to the model. The details of the framework are outlined as follows: in Section 3.3.1
we define the problem and notation; in Section 3.3.2 we illustrate how to train the
classification to obtain pseudo-supervision, and in Section 3.3.3 we describe how the
segmentation model is trained to learn new classes without forgetting the old ones.
The overall structure of the framework is illustrated in Fig. 3.2.

3.3.1 Problem formulation

We define our input space X as the image space, and we assume that each image is
composed of a set of pixels I with a fixed cardinality |I|= H ×W = N. We then
define the output space YN as the product set of N-tuples with elements in a label
space Y . In standard semantic segmentation settings, given an image x ∈ X , the goal
is to learn a mapping function that assigns each pixel xi to a label yi ∈Y , representing
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its semantic class. This function is realized by a model fθ = dθ d ◦eθ e : X 7→ IRN×|Y|

mapping images in the image space X to a pixel-wise class probability vector. We
denote the encoder and the decoder of the segmentation networks with e and d,
respectively.

The output segmentation mask, denoted as y∗ = {argmaxc∈Y pc
i }N

i=1, is obtained
by taking for each pixel the class with the highest probability, where pc

i represents
the model’s prediction for pixel i belonging to class c. In the incremental semantic
segmentation scenario [44], training occurs over multiple learning steps. At each
step t, the previous set of labels Y t−1 is augmented with new classes Ct , resulting in
a new set of labels Y t = Y t−1 ∪Ct .

Differently from the original incremental segmentation setting, in WILSS, we
are only provided with dense annotations for the initial step (t = 0). This means that
the model is initially pre-trained on a densely-annotated dataset T 0 ⊂ X × (C0)N

containing only the initial classes. For all subsequent steps (t > 0), we only have
access to training sets with cheap image-level annotations for the novel classes T t ⊂
X × (Ct). Following [44], we assume that data belonging to previous training steps
is no longer available, and we want to extend our model to perform segmentation on
new classes while preserving its performance on old classes i.e. fθ t : X 7→ IRN×|Yt |.

3.3.2 Training the Localizer

Inspired by previous work on WSSS [4, 3, 5, 135, 93, 91], we introduce a localizer
g which is trained with image-level labels to generate pseudo-supervision for the
segmentation model. The localizer takes in the features from the segmentation
encoder e and produces a score for each class (including background, old, and new
classes) i.e. z = g(e(x)) ∈ IR|Yt |×H×W .

Learning from image-level labels. To learn from image-level labels, we need to
firstly aggregate the pixel-level classification scores z. A common approach is to
simply aggregate the features e(x) via Global Average Pooling (GAP) [93, 3] and
classify them afterwards, but this leads to coarse pseudo-labels [4] as all the pixels
in the feature map are encouraged to identify with the target class, resulting in less
discriminative learned features.
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Instead, following [4], we use the normalized Global Weighted Pooling (nGWP),
which avoids a direct aggregation on the features, but rather weights each pixel based
on its relevance for the target class. Specifically, the weight of each pixel is computed
with the softmax operation ψ , i.e. m = ψ(z), and the final aggregated scores are
computed as:

ŷnGWP =
∑i∈I mizi

ε +∑i∈I mi
, (3.1)

where ε is a small constant. Furthermore, to encourage the scores to identify all the
visible pieces of the object, we also employ the focal penalty term introduced by [4],
which is calculated as:

ŷFOC = (1− ∑i∈I mi

|I|
)γ log(λ +

∑i∈I mi

|I|
), (3.2)

in which λ and γ are hyper-parameters. When the weights ∑i∈I mi
|I| are non-zero,

p > 0 discounts further increases, to focus on the failure cases of weights that are,
instead, near-zero. We invite the readers to consult [4] for further details on nGWP
and the focus penalty.

Being WILSS an incremental learning scenario, we assume to only have access
to image-level annotations y for the new classes Ct . We then train the localizer
minimizing the widly adopted multi-label soft-margin loss [93, 3, 4]:

ℓCLS(ŷ,y) =− 1
|K| ∑

c∈K
yclog(ŷc)+(1− yc)log(1− ŷc), (3.3)

where K = Ct , ŷ = σ(ŷnGWP + ŷFOC), and σ is the logistic function.

It is important to note that, although the loss is computed only on the new classes,
it implicitly depends on the scores of the old classes as well, due to the softmax-based
aggregation in Eq. (3.1). However, given the low cost of image-level annotations
and the ease with which new images can be weakly annotated, we may also take into
consideration a more relaxed setting, with weak annotations provided for both old
and new classes. In this scenario the classification loss in Eq. (3.3) is calculated on
all classes and K = Y t .

Localization Prior. The image-level labels only indicate the presence of new classes
in the image, but do not provide any information about their boundaries or any
insights into the location of old classes. However, we argue that these cues can



36 Learning new semantic concepts

be freely obtained from the segmentation model learned in previous training steps.
In particular, we can use the background score as a saliency prior to extract more
accurate object boundaries. Additionally, the scores of the old classes can be used to
guide the localizer in detecting where and whether old categories are present in the
image, directing its attention to alternative regions.

Therefore, we introduce on the localizer a direct signal of supervision coming
from the segmentation model learned in step t −1, denoted as f t−1

θ
. This supervision

acts as a Localization Prior (LOC) and is provided in the form of a pixel-wise
loss between the segmentation model outputs ξ = σ( f t−1

θ
(x)) and the classification

scores z. The objective function to be minimized is as follows:

ℓLOC(z,ξ ) =− 1
|Y t−1||I| ∑i∈I

∑
c∈Yt−1

ξ
c
i log(σ(zc

i ))+(1−ξ
c
i )log(1−σ(zc

i ))), (3.4)

where σ(·) is the logistic function.

In Eq. (3.4), the segmentation model provides dense target for old classes. Dif-
ferently from the softmax operator, which forces competition among classes, the
logistic function allows class probabilities to be independent. This is beneficial
for an accurate localization prior, as in the case of a new class low scores for both old
classes and the background will be produced, implicitly indicating to the localizer
that the pixel belongs to a novel category.

3.3.3 Learning to Segment from Pseudo-Supervision

In order to train a semantic segmentation network, WSSS methods often extract hard-
pseudo labels from an image-level classifier. These labels are created by generating
a one-hot distribution qHard,c for each pixel, where the class with the highest score is
given a value of one and all other classes are given a value of zero, i.e.

qHard,c
i =

1 if c = argmaxk∈Yt mc
i

0 otherwise
(3.5)

where m is the softmax normalized score obtained from the localizer.
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However, pseudo-supervision generated from image-level classifiers is well-
known for being noisy [135, 5, 4, 3], and using qH,c to supervise the segmentation
network might be deleterious for learning, resulting in the model fitting the wrong
targets. To address this issue, we propose smoothing the pseudo-labels to reduce the
noise [136]. Formally, the pseudo-supervision qc for a given class c is computed as:

qc = αqHard,c +(1−α)mc, (3.6)

where α is a hyper-parameter that controls the smoothness of the pseudo-labels.

Although the localizer generates scores for both new and old categories, the
output distribution might be biased in favor of new categories due to the incremental
training step. This can lead to catastrophic forgetting [82] if we use q as the target
for the segmentation model. Inspired by the knowledge distillation framework [111],
we replace the pseudo-supervision extracted from the localizer on old classes with
the output of the segmentation model trained in the preceding learning step. The
final pixel-level pseudo-supervision q̂ is defined as follows:

q̂c =


min(σ( fθ t−1(x))c,qc) if c = b,

qc if c ∈ Ct ,

σ( fθ t−1(x))c otherwise,

(3.7)

where b represents the background class and σ(·) is the logistic function. We note
that we use the minimum value of the two distributions for the background class,
which helps to model the background shift [44].

Nevertheless, the pseudo-supervision q̂c is not a probability distribution that
sums to one, which is required, instead, by the standard softmax-based cross-entropy
loss. Therefore, we propose to use the multi-label soft-margin loss as the training
loss:

ℓSEG(p, q̂) =− 1
|I| ∑i∈I

∑
c∈Yt

q̂c
i log(pc

i )+(1− q̂c
i )log(1−σ(pc

i )), (3.8)

where Y t is the set of all seen categories and p = fθ t (x) is the output of the segmen-
tation model.

In conclusion, it is worth noting that the localizer is not used during the testing
phase, thus our method does not increase the time required for inference.
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3.3.4 Experiments

In this section, we present experimental settings, baselines, and protocols used
to assess the performance of our method, WILSON, in the novel WILSS task
against weakly supervised semantic segmentation approaches and fully-supervised
incremental segmentation methods. Moreover, we present three ablation studies
evaluating the effectiveness of the localization prior, the smoothing effects on pseudo-
labels and the effect of having available supervision for both old and new classes in
the incremental steps.

Datasets and Settings. We extensively evaluate WILSON on the Pascal VOC
2012 [69] and COCO [70] standard segmentation benchmarks (see Chapter A).
We adopt the training split and annotation of [137] which resolves the problem of
overlapping annotations in [70].

Following prior works [44, 14], we conducted experiments on the Pascal VOC
dataset in two incremental learning settings: the 15-5 VOC, in which 15 categories
are learned in the first learning stage, and 5 new categories are added in the second
step; and the 10-10 VOC,in which two phases of 10 categories each are performed.
As in [44, 14], we report results in two experimental protocols: (i) the disjoint sce-
nario, where only images containing new or previously seen categories are included
in each training step; and (ii) the overlap scenario, where each training stage contains
all the images having at least one pixel from a new class. In addition, we propose a
new incremental learning scenario called COCO-to-VOC, which consists of two
training steps. In the first step, we learn the 60 COCO categories that are not present
in the Pascal VOC dataset, excluding all the images containing at least one pixel from
Pascal VOC categories. In the second step, we then learn 20 Pascal VOC classes.
As in previous protocols [44, 14], we report results on the dataset validation sets,
as the test set labels are not publicly available. To evaluate the performance of the
segmentation model, we used the standard mean Intersection over Union (mIoU)
metric [69].

We recall that, unlike [44, 14], in the proposed WILSS setting, each incremental
step provides only image-level labels for the novel cateogires.

Baselines. Since WILSS is a new setting, we compare WILSON with both incremen-
tal learning and weakly supervised semantic segmentation strategies. We report the
results of eight methods that are currently the state-of-the-art for incremental learn-
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ing using pixel-wise supervision: LWF [77], LWF-MC [78], ILT [41], CIL [138],
MiB [44], PLOP [15], SDR [42], and RECALL [14]. Note that RECALL [14]
uses additional images from the Web, which is not the case for the other methods.
For the Pascal VOC dataset, we use the results published in [14, 15], and for the
COCO-to-VOC setting, we run the experiments using the code provided by [44].

Moreover, we report the performance of WSSS state-of-the-art methods adapted
to act in an incremental learning scenario. Specifically, we first train a classification
model on the available images in the incremental learning steps, then we generate
hard pseudo-labels offline and we train the segmentation model minimizing the
loss in Eq. (3.8). We report results using the pseudo-labels generated from the
following methods: class activation maps (CAM) obtained from a standard image
classifier, SEAM [3], SS [4], and EPS [5]. As with WILSON, we followed the
same experimental protocols of [44], training each method using only the images in
disjoint and overlap scenarios. To produce the results, we used the implementation
released by the authors of each method. For CAM, we used the same implementation
EPS used. It is important to note that while CAM, SS, and SEAM only use image-
level labels, EPS also relies on an off-the-shelf saliency detector trained on external
data.

Implementation Details. In all our experiments, we employed Deeplab V3 ar-
chitecture [20] with either a ResNet-101 [67] backbone (for Pascal VOC) or a
Wide-ResNet-38 [139] backbone (for COCO), both pre-trained on ImageNet. The
ResNet-101 had an output stride of 16, while the Wide-ResNet-38 had an output
stride of 8. Following [44], to reduce memory requirements we employed in-place
activated batch normalization [68]. The localizer module is made of three convolu-
tional layers, followed by a batch normalization layer and Leaky ReLU. The first
two layers have a kernel size of 3×3, while the last one has a kernel size of 1×1,
with {256, 256, number of classes} channel numbers, and stride equal to 1. The
model was trained for a total of 40 epochs using a batch size of 24. We used SGD
with 0.001 as the initial learning rate (0.01 was used for the Deeplab head and the
localizer), 0.9 as momentum and 10−4 as weight decay. We started by training only
the localizer for the first 5 epochs; thereafter, we trained the entire network by adding
the pseudo-supervision generated by the localizer, and employing a polynomial
schedule with 0.9 as power. As in [4], we set λ = 0.01 and γ = 3 in Eq. (3.2), and
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Disjoint Overlap
Method Sup 1-15 16-20 All 1-15 16-20 All
Joint ⋆ Pixel 75.5 73.5 75.4 75.5 73.5 75.4
FT ⋆ Pixel 8.4 33.5 14.4 12.5 36.9 18.3
LWF ⋆ [77] Pixel 39.7 33.3 38.2 67.0 41.8 61.0
LWF-MC ⋆ [78] Pixel 41.5 25.4 37.6 59.8 22.6 51.0
ILT ⋆ [41] Pixel 31.5 25.1 30.0 69.0 46.4 63.6
CIL ⋆ [138] Pixel 42.6 35.0 40.8 14.9 37.3 20.2
MIB ⋆ [44] Pixel 71.8 43.3 64.7 75.5 49.4 69.0
PLOP ⋄ [15] Pixel 71.0 42.8 64.3 75.7 51.7 70.1
SDR ⋆ [42] Pixel 73.5 47.3 67.2 75.4 52.6 69.9
RECALL ⋆ [14] Pixel 69.2 52.9 66.3 67.7 54.3 65.6
CAM Image 69.3 26.1 59.4 69.9 25.6 59.7
SEAM [3] Image 71.0 33.1 62.7 68.3 31.8 60.4
SS [4] Image 71.6 26.0 61.5 72.2 27.5 62.1
EPS [5] Image 72.4 38.5 65.2 69.4 34.5 62.1
WILSON (ours) Image 73.6 43.8 67.3 74.2 41.7 67.2

Table 3.1 Results on Pascal VOC 15-5 setting expressed in mIoU%. Best Image-level
supervision method is bold. Best Pixel-level supervision method is underlined. ⋆: results
from [14]. ⋄: results from [15].

after the fifth epoch, we used the self-supervised segmentation loss on the localizer.
Lastly, we set in all our experiments α = 0.5 in Eq. (3.6).

Single step addition of five classes (15-5). In this setting, the 5 classes of Pascal
VOC dataset added after the initial learning stage are: plant, sheep, sofa, train,
tv-monitor. The results are reported in Table 3.1.

Despite being trained only using image-level annotations, WILSON achieves
competitive results against approaches trained with full pixel-wise supervision in
all the settings (both disjoint and overlap). Considering all the classes (disjoint
scenario), WILSON outperforms SDR [42] by 0.1% and RECALL [14] by 1.0%,
demonstrating WILSON’s resilience to forgetting without the use of a replay buffer
while maintaining sufficient plasticity for learning new classes. Additionally, in the
disjoint scenario, we are able to surpass PLOP [15] by 1.0% and MIB [44] by 0.5%
on the new classes.

When comparing WILSON to other WSSS methods adapted to the WILSS
setting, the results demonstrate the strengths of WILSON: the ability to retain
knowledge of past categories and, most importantly, its ability to learn new semantic
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Disjoint Overlap
Method Sup 1-10 11-20 All 1-10 11-20 All
Joint ⋆ Pixel 76.6 74.0 75.4 76.6 74.0 75.4
FT ⋆ Pixel 7.7 60.8 33.0 7.8 58.9 32.1
LWF ⋆ [77] Pixel 63.1 61.1 62.2 70.7 63.4 67.2
LWF-MC ⋆ [78] Pixel 52.4 42.5 47.7 53.9 43.0 48.7
ILT ⋆ [41] Pixel 67.7 61.3 64.7 70.3 61.9 66.3
CIL ⋆ [138] Pixel 37.4 60.6 48.8 38.4 60.0 48.7
MIB ⋆ [44] Pixel 66.9 57.5 62.4 70.4 63.7 67.2
PLOP [15] Pixel 63.7 60.2 63.4 69.6 62.2 67.1
SDR ⋆ [42] Pixel 67.5 57.9 62.9 70.5 63.9 67.4
RECALL ⋆ [14] Pixel 64.1 56.9 61.9 66.0 58.8 63.7
CAM Image 65.4 41.3 54.5 70.8 44.2 58.5
SEAM [3] Image 65.1 53.5 60.6 67.5 55.4 62.7
SS [4] Image 60.7 25.7 45.0 69.6 32.8 52.5
EPS [5] Image 64.2 54.1 60.6 69.0 57.0 64.3
WILSON (ours) Image 64.5 54.3 60.8 70.4 57.1 65.0

Table 3.2 Results on Pascal VOC 10-10 setting expressed in mIoU%. Best Image-level
supervision method is bold. Best Pixel-level supervision method is underlined. ⋆: results
from [14].

categories using only image-level annotations. Indeed when considering new classes,
WILSON outperforms EPS [5] by +5.3% mIoU in the disjoint scenario, even if EPS
uses off-the-shelf generated saliency maps as additional supervision. Additionally,
we outperform SEAM [3] and SS [4] by 11.7% and 17.8%, respectively. These
improvements are even more pronounced in the overlap scenario, where WILSON
not only retains all its prior knowledge, but also achieves a +7.2% boost when
learning new categories compared to EPS. In this situation, the overall improvement
is +5.1% when compared to the best methods (SS and EPS).

Single step addition of ten classes (10-10).

In this setting, we add 10 categories in the incremental step: dining-table, dog,
horse, motorbike, person, plant, sheep, sofa, train, tv-monitor. As shown in Table 3.2,
the results are consistent with the 15-5 setting. The differences between WILSON
and pixel-wise supervision are minor and the results are nearly comparable. In terms
of mIoU, the gap between WILSON and the most accurate incremental learning
methods, i.e. ILT in the disjoint scenario and SDR in the overlapped one, is 3.9%
w.r.t. the former and shrinks to 2.4% w.r.t. the latter. The efficacy of WILSON is
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COCO VOC
Method Sup 1-60 61-80 All 61-80
FT Pixel 1.9 41.7 12.7 75.0
LWF [77] Pixel 36.7 49.0 40.3 73.6
ILT [41] Pixel 37.0 43.9 39.3 68.7
MIB [44] Pixel 34.9 47.8 38.7 73.2
PLOP [15] Pixel 35.1 39.4 36.8 64.7
CAM Image 30.7 20.3 28.1 39.1
SEAM [3] Image 31.2 28.2 30.5 48.0
SS [4] Image 35.1 36.9 35.5 52.4
EPS [5] Image 34.9 38.4 35.8 55.3
WILSON (ours) Image 39.8 41.0 40.6 55.7

Table 3.3 Results on COCO-to-VOC setting expressed in mIoU%. The best method using
Image-level supervision is bold. Best Image-level supervision method is bold. Best Pixel-
level supervision method is underlined.

also confirmed when compared to WSSS (image-level annotations) methods. Indeed,
when learning new semantic classes, our online strategy outperforms all offline
competitors by more than +0.7% overall mIoU in the overlap protocols, while
achieving comparable results (+0.2%) in the disjoint scenario. Furthermore, we
provide qualitative results confirming the superiority of WILSON on both old and
new categories in Fig. 3.4.

COCO-to-VOC. We consider this set of experiments the most challenging. The
network is first trained on 60 categories from the COCO dataset (unshared with the
Pascal VOC dataset) and 20 classes from the the Pascal VOC dataset are then added
in the second step. We report in Table 3.3 the evaluations on both COCO and Pascal
VOC validation sets. Despite experiencing a 8% drop in performance compared to
LwF when learning new classes, WILSON still demonstrates its ability to retain prior
knowledge while learning new categories under image-level supervision surpassing
ILT on old classes by +2.8%, with ILT being the top competitor trained with pixel-
wise annotations. When comparing against WSSS methods, WILSON outperforms
all of them, achieving 4.8% improvements in terms of mIoU over EPS (best WSSS
method) on the COCO dataset. Similar results also hold true for the Pascal VOC
validation set. WILSON outperforms all previous WSSS methods on both old and
new categories, on both COCO and Pascal VOC.
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Disjoint Overlap
Prior Loss 1-10 11-20 All 1-10 11-20 All

- - 64.8 49.9 58.8 69.4 52.0 62.0
Fixed - 66.1 50.3 59.7 71.4 52.8 63.4

Learned CE 61.1 46.0 54.5 67.6 49.5 59.2
Learned ℓLOC 64.5 54.3 60.8 70.4 57.1 65.0

Table 3.4 Ablation study to validate the robustness of pseudo-supervision evaluating different
types of localization priors for training the localizer.

VOC 15-5
Disjoint Overlap

Method 1-15 16-20 All 1-15 16-20 All
CAM 70.5 34.7 62.6 71.6 36.0 63.7
SEAM [3] 71.9 26.9 61.7 70.8 28.1 61.0
SS [4] 71.8 26.3 61.7 72.1 27.6 62.1
EPS [5] 73.5 45.7 67.7 75.3 47.6 69.4
WILSON (ours) 75.0 46.0 68.9 76.1 45.6 69.5

VOC 10-10
Disjoint Overlap

1-10 11-20 All 1-10 11-20 All
CAM 63.1 42.2 53.9 66.6 45.0 56.8
SEAM [3] 66.0 50.4 59.7 70.9 54.6 64.0
SS [4] 60.8 26.0 45.2 69.6 33.0 52.6
EPS [5] 69.1 53.0 62.4 72.9 55.7 65.4
WILSON (ours) 69.5 56.4 64.2 73.6 57.6 66.7

Table 3.5 Ablation study to evaluate weakly supervised segmentation methods trained using
direct supervision on both old and new classes in the incremental step.

Ablation study on the Localization Prior. To validate the robustness of our pseudo-
supervision generation, we conducted an ablation study on the VOC 10-10 disjoint
and overlap scenarios considering different strategies for training the localizer. The
results are shown in Table 3.4. Specifically, we compared the following strategies:
(i) using a constant value for the old classes, as in [4], (ii) using a fixed prior, directly
concatenating the old model’s segmentation output to the class scores when comput-
ing m, (iii) providing a localization supervision to the localizer using the softmax
cross-entropy loss, and (iv) using the loss in Eq. (3.4). Overall mIoU achieved by
using a constant value and disregarding past knowledge from the old segmentation
network is lower when compared to using a localization prior, especially for new
classes (-5.1% on overlap and -4.4% on disjoint). This demonstrates that teaching
the location of previous classes to the localizer might prevent forgetting and improve
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Fig. 3.3 Ablation study on the effect of α on smoothing one-hot pseudo-labels used to
supervise the ℓSEG. Reported mIoU for both the Disjoint and Overlap VOC 10-10 protocols.

performance when learning new categories. Thereby, using aggressive priors, such
as the direct segmentation output of the old model, does not allow the network
to properly learn the new categories, resulting in a gap of −4.3% on overlapped
scenario and −4.0% on disjoint scenario w.r.t. ℓLOC. Furthermore, using the softmax
cross-entropy loss to match the segmentation output leads to poor performance on
both new and old categories (-5.8% on overlapped and-6.3% on disjoint, with respect
to ℓLOC). This is because the softmax normalization in the cross-entropy loss does
not treat each class independently and causes the localizer to generate high scores
for old categories even when they have low segmentation scores.

Smoothing effect on pseudo-supervision. We tune α , the hyper-parameter in
Equation 3.4 that regulates the smoothness of the pseudo-labels used to supervise
the segmentation model. Fig. 3.3 displays the final mIoU in the VOC 10-10 disjoint
and overlap scenarios for five different values of α ranging from 0 to 1. As expected,
using hard labels (α = 1) leads to the worst results, as the model tends to fit the noise
in the supervision and forgets prior knowledge, failing in learning novel classes. We
selected α = 0.5 for our experiment because it is a reasonable trade-off in terms of
mIoU between learning and remembering. It is worth noting that changing α from 0
to 0.7 has only a minor impact on the results, with an average difference of less than
0.5% between the disjoint and overlap cases, indicating the robustness of WILSON
to different values of α .
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Fig. 3.4 Qualitative results on Pascal VOC 10-10 setting comparing different weakly super-
vised semantic segmentation approaches. The image emphasized the superiority of WILSON
in both learning new classes (e.g. sheep, dog, motorbike) and preserving knowledge of old
ones (e.g. cow, car) with respect to competitors. From left to right: image, CAM, SEAM [3],
SS [4], EPS [5], WILSON and the ground-truth. Best viewed in color.

Using supervision for all the classes. Since image-level labels are not expensive,
we evaluate weakly-supervised techniques’ performance when the supervision in
the incremental steps is provided for both old and new categories. The results of
this evaluation on the Pascal VOC dataset are shown in Table 3.5. When compar-
ing these results to Table 3.1 and Table 3.2, a performance improvement can be
noticed. In particular, all of the methods experience improvements, with WILSON
achieving an average of +2% on both old and new categories in the 15-5 and 10-10
scenarios. This demonstrates that integrating knowledge about old categories in the
pseudo-supervision generation is critical for both learning new categories and at
the same time avoiding forgetting of old ones. Additionally, we show that in this
scenario, WILSON outperforms all the offline weakly-supervised semantic segmen-
tation methods. Specifically, WILSON achieves better performance in every setting,
outperforming EPS on the VOC 15-5 by 1.2% and 0.1%, and by 1.8% and 1.3% on
the VOC 10-10, for disjoint and overlapped scenario, respectively.

Limitations. Although WILSON achieves impressive results in multi-class incremen-
tal learning using image-level labels, it lacks the capability to perform single-class
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incremental learning due to the structure of Eq. (3.3). Specifically, Eq. (3.3) requires
the presence of negative examples in the training batch, which poses a challenge
in the context of single-class incremental learning where such examples are absent.
Consequently, this restriction hampers the usability of WILSON in scenarios where
the updates of the model require the addition of only one new class at a time.

3.3.5 Conclusions

In this section we presented WILSS, a new setting in which the goal is to extend
semantic segmentation models’ knowledge via cheap image-level annotations. Di-
rectly applying weakly-supervised semantic segmentation strategies to incremental
learning methods would require generating pseudo-supervision offline, and training
the segmentation model after. Instead, we proposed WILSON, that combines the
segmentation model with a localizer and uses image-level labels on new categories to
generate online pseudo-supervision for the segmentation backbone. We demonstrated
that adding a localization prior (coming from the old model) to the localizer improves
the generation of pseudo-annotations. We proved the efficacy of our approach in
three incremental settings and showed that it outperforms weakly-supervised seman-
tic segmentation methods that generate pseudo-annotations offline. Furthermore,
we achieved results close to fully supervised incremental learning state-of-the art
methods.



Chapter 4

Towards recognizing and learning
unseen new semantic concepts

While convolutional neural networks have significantly advanced robot vision, they
are often limited to closed world scenarios, where the amount of semantic categories
to be recognized is pre-determined by the training set. Since it is practically unfeasi-
ble to capture all the possible real world semantic concepts into a single training
set, it is crucial to break the closed world assumption, and equip our robots with the
ability to act in an open world. To provide such capabilities, a robot vision system
should be capable of (i) detecting previously unseen concepts and ii) expanding their
knowledge over time, as new semantic classes arrive. In this chapter we show how
to improve deep open world recognition algorithms by enforcing a global-to-local
features clustering at class level. Specifically, we start by formalizing the open
world recognition (OWR) setting in Section 4.1, and we review related work in
Section 4.2. We then introduce our method, called B-DOC (Boosting Deep Open
World Recognition by Clustering) (Section 4.3). We present a global clustering loss
that enforces the model to map samples closer to the centroid of their class, and a
local clustering loss that shapes the latent space such that samples of the same class
get closer while pushing away neighbours from other categories. Furthermore, we
propose to learn class-specific rejection thresholds with a novel loss formulation,
instead of heuristically estimating a single global threshold as done in previous
works. Experiments on RGB-D Object, Core50 and CIFAR-100 datasets show the
effectiveness of our approach. (Section 4.3.3).
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In Section 4.4 we take a step further, investigating the effect of discrepancies
between training and test distributions (i.e., domain-shift) has on OWR frameworks.
In Section 4.4.1 we present the first benchmark for fairly assessing OWR algorithms
performance with and without domain-shift. We use this benchmark to conduct
analyses in several scenarios, showing that existing OWR methods indeed suffer
from a sever performance deterioration when train and test distributions differ.
Our analyses show that coupling OWR algorithms with domain generalization
strategies only mitigates this degradation, indicating that the mere plug-and-play
of existing domain generalization algorithms is not enough to recognise new and
unknown classes in unfamiliar domains (Section 4.4.2). Our results point towards
open challenges and future directions, that need to be investigated for designing
robot visual systems that can function reliably under these challenging yet realistic
conditions (Section 4.4.5).
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4.1 Problem statement

Traditional machine learning models are trained under the closed world assumption
(CWA) which implies that the only classes the models will ever need to recognize
are the ones learned in the training set. However, this is an extremely limiting
perspective, as in many real world applications the set of classes of interest is not
known a priori, and might change over time. Thus, we need systems to be able to
recognize new classes as they appear, and handle the uncertainty and ambiguity that
arises from the presence of unknown classes. The open world recognition (OWR)
scenario aims at breaking the CWA, empowering models for the recognition of both
known and unknown classes in a real world setting. To accomplish this, for a robot
vision system is crucial to be capable of: (i) detecting unknown categories while
recognizing already seen ones, and (ii) extending its internal knowledge with new
categories, without forgetting the previously learned ones having no access to old
training sets (avoiding therefore the catastrophic forgetting issue [82]).

In this context, we show how deep OWR algorithms can be enhanced by im-
plementing a global-to-local features clustering approach at the class level (Sec-
tion 4.3.2). Specifically, we propose a global clustering loss that compels the model
to map samples closer to their class centroid, and a local clustering loss that shapes
the latent space such that samples of the same class are brought closer together,
while pushing away at the same time samples from other categories. Moreover, we
introduce a novel loss formulation for learning class-specific rejection thresholds, as
opposed to heuristically estimating a single global threshold estimation as done in
prior works.

In Section 4.4, we take a step further and highlight a challenge that has yet to
be solved, i.e. these algorithms always assume that the training and test images
are acquired under the same conditions. We refer to this assumption as the closed
domain assumption (CDA) which, as for the CWA, may be suitable for robots
operating in highly restricted settings (e.g., industrial robots) but does not apply to
robots operating in the wild. These robots, indeed, need visual systems that can
handle various input distributions (known as domains) that can arise from different
environments, illumination, and acquisition conditions. The discrepancy between
the training and test distributions is referred to as domain-shift. In Section 4.4.1,
we introduce the first benchmark to fairly investigate whether OWR methods can
effectively operate under shifting visual domains. Our findings (Section 4.4.2)
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highlight the need for further research in developing robot visual systems that can
reliably operate under these challenging yet realistic conditions.

Problem formulation. The purpose of OWR is to create models able to (ii) recognize
known classes (i.e., concepts seen during training), (ii) detect unseen classes (i.e.,
categories not present in any previous set used for training), and (iii) incrementally
add new categories as new training data becomes available. More formally, let us
consider X to be the input space (image space) and K to be the closed world output
space (set of known classes). In particular, as our output space will evolve as we
receive more data from new classes, we denote the set of categories seen after the Tth

incremental step as KT , with K0 denoting the classes in the first training set.

We begin with an initial training set T0 = (xi,yi)i=1N0 , where xi ∈ X , yi is a class
label in the set Y0, and N0 is the number of samples. Subsequently, at learning step
T , we receive another training set TT which contains a new set of categories, i.e.
YT

⋂
Yt = /0 ∀t ∈ [0,T − 1]. Since we aim at determining if an image contains an

unknown concept, we introduce u as the special unknown category, defining the final
output space as KT and u. Our goal, then, is to learn a function f that maps an image
x to either one of the semantic categories learned up to step T (KT =

⋃T
t=0Yt) or the

unknown class u, i.e. f : X →KT ∪u.
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4.2 Literature review

Open world recognition. The visual learning community has investigated in the last
few years the problem of life-long, open ended learning [140, 78], with approaches
tackling a unifying framework for novelty detection and incremental class learning,
known as open world recognition (OWR) [6, 67, 141]. While these efforts are princi-
pled and hold promise, to the best of our knowledge their effectiveness has never
been tested within the robot vision scenario. Moreover, current deep approaches in
this thread address mainly the incremental class learning problem, rather than the
whole OWR challenge. While previous approaches addressed the incremental and
continual learning challenges, acting in real open world environments necessitates
both detecting previously unseen categories and incorporating them in subsequent
learning stages. In order to achieve this goal, the authors of [6] introduced the
open world recognition (OWR) setting as a more generic and realistic scenario for
real world agents. They also extended the Nearest Class Mean (NCM) classifier
[142, 141] to OWR scenario proposing the Nearest Non-Outlier (NNO) algorithm
which introduces a fixed rejection threshold that estimates if a test sample belongs
to the known or unknown set of classes. [140] addressed OWR challenges with the
Nearest Ball Classifier and proposed a rejection threshold based on the confidence of
the model’s prediction. Recently, [7] extended the NNO method of [6] by adopting
as the feature extractor a trainable end-to-end deep architecture, and introduced
a novel dynamic strategy to update the rejection threshold. In Section 4.3.2 we
propose a novel method which introduces a global to local clustering loss able to
enhance the performance of an NCM-based classifier. In addition, differently from
previous works, we learn a specific rejection threshold for each class, as opposed to
the previously predetermined ones based on heuristic strategies.

Domain-Shift in Robot Vision. For robotic systems to operate effectively in the
wild, it is crucial to develop models robust to domain-shift. To achieve this objective,
various efforts have been made in robotics to perform adaptation in the presence of
target data [143–148]. However, as it is almost impossible to gather data for every
possible target domain in advance, researchers have explored techniques to address
the domain-shift issue without using target data during training. One approach
involves utilizing a stream of incoming target data to perform online adaptation,
such as updating domain-specific components [149] and/or utilizing adversarial
objectives [150]. However, these strategies have a slow adaptation time, which can
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be problematic in scenarios that require fast adaptation (e.g., sudden illumination
changes).

One way to create systems that are robust to (possibly) any target domain without
requiring any target data during training or deployment is by utilizing domain
generalization (DG) techniques [151]. While existing methods focused on multi-
source settings [151], there has been relatively less research devoted to the case of
a single source domain. In such scenarios, where it is impossible to disentangle
domain-specific and semantic-specific information explicitly, one solution is to
construct classifiers that are structurally more robust using part-based models [152,
153], multiple visual cues [154], regularization strategies [155], and self-supervised
learning [156]. Another approach is to simulate the presence of multiple source
domains through adversarial techniques [157] or data augmentation [158]. In the
latter case, data augmentation can simulate increasingly difficult new domains [158]
or fictitious multiple sources [159].

In this work, we focus on DG models, which can be applied to various target
domains without requiring any target data. Despite some efforts in testing domain
adaptation models in an open set [160, 161] scenario, we are the first to explicitly ex-
amine the domain-shift issue in the open world recognition framework, investigating
the effectiveness of coupling OWR with DG strategies to address its challenges.
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4.3 Open World Recognition

Standard methods for open world recognition (OWR) [6, 140, 7] involve applying
non-parametric classification algorithms on top of learned metric spaces. A popular
choice is extending the Nearest Class Mean (NCM) [142, 141] classification algo-
rithm to incorporate a rejection option based on an estimated threshold. While early
approaches [6, 140] utilize shallow features, it has recently been demonstrated that
deep neural networks can be effectively utilized in OWR scenarios [7]. In this thesis,
we follow the deep learning approach of [7] and take a step forward.

We argue that it is essential to force the deep feature extractor to appropriately
cluster samples belonging to the same class, while pushing away samples from other
classes. Towards this objective, we introduce a global clustering loss term that aims
at keeping the features of samples within the same class closer to their class centroid.
Additionally, we show how to successfully employ the soft nearest neighbor loss
[162, 163] as a local clustering loss term to force pairs of samples within the same
category to be closer in the learned latent space than samples from other classes.

Moreover, unlike previous works [6, 7], we do not rely on heuristic rules to
estimate a global rejection threshold on model predictions. Instead, we (i) define
an independent threshold for each category and (ii) explicitly learn these thresholds
through the use of a margin-based loss function, which balances errors on rejecting
samples from an in memory held-out set from training. We evaluate our method,
called B-DOC (Boosting Deep Open World Recognition by Clustering) on the RGB-
D Object dataset [8], Core50 [9], and CIFAR-100 [10] datasets, and show that
combining the two complementary clustering loss terms and learning the rejection
thresholds outperforms previous methods.

Contributions. The contributions presented in this section are the following: (i) we
introduce two clustering loss terms that effectively locate samples within the same
category in the representation space, while separating them from samples belonging
to other categories; (ii) we propose an effective method for detecting unknown
samples employing learned class-specific rejection thresholds; (iii) we demonstrate
the superiority of B-DOC compared to the state of the art, including quantitative
analysis and an in-depth ablation of the components of our model.
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NNO DeepNNO B-DOC
ω fixed updated updated
φ N (1− d(z,µy)

τ
) exp

(
−1

2 ||z−µy||
) 1

ϕ
z−µy

2

ψ τ ≤ 0 φ ≤ τ φ > τ

τ fixed updated learned

Table 4.1 Difference among key components of OWR methods. Each approach learns a
classification function f composed of the feature extractor ω , the scoring function φ and the
final prediction function ψ . N is a normalization factor, while ϕ is the standard deviation of
the features in z = ω(x) and τ is the method-specific threshold(s).

4.3.1 Preliminaries.

OWR methodologies vary in the way the function f is defined and learned. Without
loss of generality, we consider f to be built on three components: a feature extractor
ω (ω : X →Z), which maps images into a feature space Z; a scoring function φ

(φ : Z → ℜ|KT |), which maps the features to class scores for known classes; and
ψ (ψ : ℜ|KT | →KT ∪ u), which maps the class scores to the final prediction. We
summarize in Table 4.1 how OWR algorithms have previously defined and learned
ω , φ , and ψ , while in the following we detail each of them.

Baselines. Standard approaches address OWR by applying non-parametric classifi-
cation algorithms on learned metric spaces [6, 140]. A popular algorithm is Nearest
Class Mean (NCM) [142, 141] which is adopted by the Nearest Non-Outlier (NNO)
[6] to compute φ , which is calculated using the following equation for a known class
y and a sample x:

φ
NNO
y (z) =N (1−

d(z,µy)

τ
), (4.1)

where z = ω(x), µy is the class-specific centroid computed using the NCM algorithm
[142], τ is a rejection threshold computed through a set of held-out validation
samples, d is a distance measure and N is the normalization factor. The final
prediction ψ(z) is computed as:

ψ(z) =

u if φ NNO
y (z)≤ 0 ∀y ∈ KT ,

argmaxy∈YT
φ NNO

y (z) otherwise.
(4.2)

Following [142], in [6] the features are projected into a metric space defined by a
matrix W (i.e. ω(x) =W ·x) with W being learned in the initial training step, and kept
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fixed during all the subsequent learning steps. The key limitation of this approach is
that when new knowledge is added to the classifier φ , the feature extractor ω is not
updated accordingly. A solution to this issue is presented in [7] which introduces a
deep extension of NNO, named DeepNNO, that uses as features extractor ω a deep
architecture trained end-to-end in each incremental step, and computes the scoring
function as:

φ
DNNO
y (z) = exp

(
−1

2
||z−µy||

)
. (4.3)

Considering z = ω(x), at step T the feature extractor ω is trained by minimizing the
binary-cross entropy loss:

ℓBCE(zi,yi) = ∑
y∈YT

1y=yi log(φ DNNO
y (zi)+1y̸=yi log(1−φ

DNNO
y (zi)). (4.4)

After the training phase, the final prediction is obtained as:

ψ(z) =

u if φ DNNO
y (z)≤ τ ∀y ∈ KT ,

argmaxy∈YT
φ DNNO

y (z) otherwise
(4.5)

where τ is updated through a heuristic rule that adjusts the threshold based on the
predictions of the network (raised whenever the model predicts true positives or
negatives, and lowered whenever it predicts false positives or negatives).

Differently from [142, 6], the data representations in the latent space change
along with the parameters of the backbone. As a result, it is not possible to keep
class-specific centroids µ fixed, especially in an incremental learning scenario,
where changes in network parameters will cause a discrepancy between old class
centroids and current network activations. Such discrepancy, indeed, cannot be
recovered, since previous training sets (Ti with i < T ) are unavailable. To overcome
this issue, DeepNNO proposed to (i) update the class centroids in an online fashion
and (ii) perform rehearsal by storing samples from old categories. It also computes a
distillation loss [111, 78] on the network activations by means of the network at the
previous training step. In this way, it reduced the catastrophic forgetting problem
by preventing deviation between the network activations and the features used to
discern old categories.

While our architecture ω and the classification functions φ and ψ are based
on the work of [7], we argue that DeepNNO has two main drawbacks. Firstly, the
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Fig. 4.1 Overview of our global to local clustering strategy. The global clustering (depicted
on the left) pushes representations closer to the centroid (star) of the respective category. On
the other hand, for a given sample in the representation space, the local clustering (depicted
on the right forces its neighborhood to be semantically consistent, pushing away samples
belonging to other categories.

learned feature representation ω is not forced to emit predictions clearly localized
within a limited region of the metric space. Indeed, forcing the representations
of a given category to a limited area of the metric space results in more confident
predictions on seen categories, and clearer rejections for images of unseen classes.
Secondly, its heuristic approach for setting the threshold is sub-optimal and with
no guarantees on the robustness of the chosen threshold. In the following, we will
present our solutions to address both these issues.

4.3.2 Boosting Deep Open World Recognition by Clustering:
BDOC

In this section we introduce our core components and how we learn the rejection
thresholds independently for each class. In order to enforce feature representations to
be clearly localized in a limited region of the metric space based on their semantics,
we introduce a pair of loss functions enforcing clustering. Specifically, we use
a global term that enforces the network to map images of the same categories
close to their respective class centroid (Fig. 4.1, left) and a local clustering term
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that constrains the neighborhood of an image to be semantically consistent, i.e. to
contain samples from the same category (Fig. 4.1, right). Furthermore, we introduce
a distance-based loss function to learn class-specific rejection thresholds. If the
distance between a sample from a certain class and its class centroid is more than
the threshold, the loss forces the threshold value to be increased. On the other hand,
if the distance between a sample not belonging to that class and the class centroid is
less than the threshold, the loss function enforces a reduction in the threshold value.

Global Clustering. The goal of the global clustering term is to minimize the distance
between the features of a sample and the centroids of its category. To model this,
we utilize a cross-entropy loss with the probabilities obtained through the distances
among samples and category centroids. Mathematically, let x be a sample and y its
class label, the global clustering term is defined as:

ℓGC(x,y) =− log
sy(x)

∑
k∈KT

sk(x)
(4.6)

where the class-specific probability s(x) comes from the softmaxed scores φ BDOC
y (z)

defined as:
φ

BDOC
y (z) =

1
ϕ

z−µy
2, (4.7)

where z = ω(x), ϕ is set to be the standard deviation of z, to normalize the represen-
tation space and increase the system’s stability.

During training, σ2 is set to the variance of the current batch features extracted,
while we also maintain an online global estimate of σ2 that we use during testing.
The class mean vectors µi with i ∈ KT and σ2 are calculated in an online fashion, as
in [7].

Local Clustering. To enforce that the samples in the feature space have a semanti-
cally consistent neighborhood (i.e., for a sample x of class y the nearest neighbors of
ω(x) belong to category y) we employ the soft nearest neighbor loss [162, 163]. This
loss measures the class-conditional entanglement of features in the representation
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space and it is defined as:

ℓLC(x,y,B) =− log

∑
x j∈By\{x}

e−
1
ϕ
||ω(x)−ω(x j)||2

∑
xk∈B\{x}

e−
1
ϕ
||ω(x)−ω(xk)||2

(4.8)

where B represents the current training batch, By is the set of samples in the batch
belonging to category y, and ϕ = σ2.

Intuitively, for a sample x of class y, If the loss value is low, it suggests that
the nearest neighbors of ω(x) belong to class y. On the other hand, if the loss
value is high, it indicates that the nearest neighbors belong to classes i ∈ KT with
i ̸= y. Minimizing the loss allows to maintain semantic consistency among the
neighborhood of sample x in the representation space.

Reducing catastrophic forgetting through distillation. As highlighted in the
previous sections, to avoid catastrophic forgetting, we want to preserve the behaviour
learned by the feature extractor in the previous training steps. To achieve this, we
follow standard rehearsal-based incremental learning approach [78, 101, 7, 80], and
we introduce two elements: (i) a memory which stores the most relevant samples of
the categories in KT , and (ii) a distillation loss that enforces consistency between the
features extracted by ω and those obtained from the feature extractor of the previous
learning step (i.e., ωT −1).

Mathematically, the distillation loss is defined as follows:

ℓDS(x,ωT−1) = ||ω(x)−ωT−1(x)|| (4.9)

This loss is minimized only during the incremental learning steps (i.e., only when
T > 1).

Overall, we train the network to minimize the following loss on a batch of
samples B = {(x1,y1), ...,(x|B|,y|B|)}:

L=
1
|B| ∑

(x,y)∈B
ℓGC(x,y)+λ ℓLC(x,y,B)+ γ ℓDS(x) (4.10)

where λ and γ are hyperparameters that weight the relative importance of each
component. We set λ = γ = 1 in all the experiments.
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Fig. 4.2 Overview of our class-specific rejection thresholds learning approach. We represent
the samples in the held-out set using small circles, while the centroid of each respective class
using stars. The dashed circles indicate the limitis beyond which a sample is considered
not a member of that class and thus rejected. The class-specific learned maximal distance
used to reject a sample is depicted in red. As it can be evinced, we learn the class-specific
thresholds to reduce the rejection errors.

Learning to detect the unknown. To extend our NCM-based classifier to the
open set scenario we explicitly learn class-specific rejection criteria. As depicted in
Fig. 4.2, we define the class-specific threshold τy for each class y as the maximum
distance for which a sample still belongs to y. Under this definition, we express our
ψ function as:

ψ(x) =

u ifφ BDOC
y (z)> τy, ∀y ∈ YT ,

argminyφ BDOC
y (z) otherwise

(4.11)

Instead of heuristically estimating or fixing a maximal distance, we explicitly
learn it for each class minimizing the following objective:

ℓMD(x,y) = ∑
k∈KT

max(0,m · ( 1
ϕ
||ω(x)−µk||2 − τk)) (4.12)

where ϕ = σ2, and m = −1 if y = k, m = 1 otherwise. If the distance between a
sample of class y and its class centroid µy is greater than τy, the ℓMD loss leads to an



60 Towards recognizing and learning unseen new semantic concepts

increase of τy. On the other hand, if the distance between a sample not in class y and
µy is less than τy, the ℓMD loss decreases the value of τy.

Overall, the training procedure of B-DOC consists of two stages: in the first stage,
we train the feature extractor on the training set by minimizing the loss in Eq. (4.10).
In the second stage, we learn the distances τy using a set of samples that have been
excluded from the training set. To achieve this, we split the memory samples into
two parts: one is used to update the feature extractor ω and the centroids µy, while
the other part is used for learning the τy values.

4.3.3 Experiments

In this section, we start by introducing the experimental setting and the metrics
utilised for the evaluations. We then provide the results of our experiments followed
by an ablation study on our contributions.

Datasets and Baselines. We assess the performance of B-DOC on three datasets:
RGB-D Object [8] Core50 [9] and CIFAR-100 [10]. The RGB-D Object dataset [8]
is widely-used to evaluate the capabilities of a model in recognizing daily-life objects
(see Chapter A). It includes 51 different semantic categories, which we split into two
groups for our experiments: 26 classes are considered known categories, while the
other 25 are unknown classes. Among the 26 categories, we consider the first 11 as
the initial training set, and then we incrementally add the remaining categories in
4 steps of 5 classes each. As in [8], we sub-sample the original dataset by taking
one every fifth frame, and we follow the first train-test split among the original ones
defined in [8]. In each of these splits, one object instance is selected from each class
to be excluded from the training set and become part of the test set. The utilized split
provides almost 35,000 training images and 7,000 test images. As done in previous
approaches [6, 7], we ignored depth information to focused on RGB images only.

The recent Core50 benchmark [9] is mostly used to evaluate continual learning
methods in an egocentric setting. It consists of images of 50 objects grouped into
10 semantic classes. Following the protocol outlined in [9], we use sequences 3, 7,
and 10 for evaluation and the remaining sequences for training. Due to the differing
conditions between sequences, this dataset is a particularly challenging benchmark
for object recognition. Similar to RGB-D Object dataset division, we split the Core50
dataset into two parts, with 5 classes being considered as known, and the other 5 as
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unknown. Within the known set, the first 2 classes are used as the initial training set.
The other classes are incrementally added 1 at a time.

The CIFAR-100 dataset [10] is a standard benchmark for evaluating incremental
class learning algorithms [78]. It consists of 100 semantic categories and, following
previous works [7], we split them into 50 known classes and 50 unknown ones, using
20 classes as the initial training set and incrementally adding the remaining classes
in steps of 10.

We compare the performance of B-DOC in the OWR scenario to DeepNNO [7]
and NNO [6], using the implementation in [7] for the latter. We further compare
B-DOC with two standard incremental class learning algorithms, i.e. LwF [77] (in
the MC variant of [78]) and iCaRL [78]. Since both of them are developed for
closed world scenario only, we use their results as references in that setting, without
open-ended evaluation. For each dataset, we have randomly chosen five different
sets of known and unknown classes and, after fixing them, we ran the experiments
three times for each method. The final results are obtained by averaging the results
among each run and order.

Networks architectures and training protocols. As in previous works, we employ
a ResNet-18 architecture [67] for all the experiments. For both RGB-D Object
dataset and Core50 we train the network on the initial classes for 12 and 4 epochs
respectively, starting from scratch. For CIFAR-100 dataset, instead, we set the
number of epochs to 120 for the initial learning phase and to 40 for each subsequent
incremental learning step. We employ a learning rate of 0.1 and batch size equal to
128 for the RGB-D Object dataset and CIFAR-100, while 0.01 and 64 for Core50.
To train the network we use Stochastic Gradient Descent (SGD) with a momentum
of 0.9 and a weight decay equal to 10−3. We resize the images within the RGB-D
Object dataset to 64×64 pixels and those within the Core50 dataset to 128×128
pixels. We apply random cropping and mirroring to all datasets, and perform color on
the set of held-out samples varying brightness, hue and saturation. For the baselines,
we employ the same network architecture and training protocol outlined in [7]. We
also use the same memory management strategy of [7], with a fixed size of 2000
samples, and constructing each batch by drawing 40% of the samples from memory.
However, unlike in [7], we never see during training 20% of the samples present in
memory, we use them only to learn the class-specific thresholds values τy.
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(a) Closed World Without Rejection (b) Closed World With Rejection

(c) Open World Recognition Average (d) Open World Recognition Harmonic Mean

Fig. 4.3 Comparison of NNO [6], DeepNNO [7] and B-DOC on RGB-D Object dataset [8].
The average accuracy among the different incremental steps is indicated in parenthesis.

Metrics. We evaluate the performance of OWR methods using 3 standard metrics.
For the closed world, we show the global accuracy with and without rejection option.
In particular, in the closed world without rejection scenario, the model is only tested
on the known set of categories, excluding the possibility to identifying a sample as
unknown. This setting measures the model’s capabilities of correctly classifying
samples withing the given set of categories. In the closed world with rejection
setting, instead, the model can either categorize a samples withing the known set
of categories, or classifying it as unknown. This scenario is more challenging than
the one without rejection, because samples within the known set of categories may
be misclassified as unknowns instead. For the open world scenario, we use the
standard OWR metric defined in [6], which is the average accuracy between the
accuracy achieved by the model in the closed world with rejection scenario and the
accuracy achieved in the open set scenario (i.e., the accuracy at rejecting samples of
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(a) Closed World Without Rejection (b) Closed World With Rejection

(c) Open World Recognition Average (d) Open World Recognition Harmonic Mean

Fig. 4.4 Comparison of NNO [6], DeepNNO [7] and B-DOC on Core50 dataset [9]. The
average accuracy among the different incremental steps is indicated in parenthesis.

unknown categories). However, this metric can create biases in the final score (e.g.,
the accuracy of a method that rejects every sample will be 50%). To mitigate this
bias, we introduced the OWR-H metric, which is the harmonic mean between the
accuracy in the open set and in the closed world with rejection scenarios.

Quantitative results. The results of our method on the RGB-D Object dataset are
shown in Fig. 4.8. When operating in the closed world without rejection (Fig. 4.8a)
scenario, B-DOC is able to improve the feature representation, therefore outperform-
ing DeepNNO and NNO by 5.6% and 14.8% of accuracy on average, respectively.
This improvement is due to the introduction of global and local clustering loss terms,
which combined together allow the model to better cluster samples withing the same
class and to separate them from samples of other categories. When compared to the
incremental class learning approaches LwF and iCaRL, B-DOC is highly compet-
itive, surpassing LwF by a large margin while being comparable with iCaRL. We
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(a) Open World Recognition Average (b) Open World Recognition Harmonic Mean

Fig. 4.5 Comparison of NNO [6], DeepNNO [7] and B-DOC on CIFAR-100 dataset [10].
The average accuracy among the different incremental steps is indicated in parenthesis.

believe that these results are remarkable, given that our model’s primary goal is not
to purely incrementally extend its knowledge with new concepts. The comparison
on the closed world with rejection, depicted in Fig. 4.8b demonstrates that B-DOC
is also more confident in classifying known classes, being capable of rejecting a
smaller number of known samples. In particular, B-DOC is more confident in the
first incremental steps, achieving, on average, an accuracy that is 10.3% higher
than DeepNNO. Considering open world metrics, B-DOC is superior to previous
approaches. As shown in Fig. 4.3c, our method reaches similar results to DeepNNO
in the first stages, but outperforms it in the latest steps. In the OWR-H metric
(Fig. 4.3d), our method consistently outperforms previous methods in all incremental
steps. This can be attributed to the fact that previous methods tend to reject more
samples, as demonstrated by their lower closed world with rejection performance. In
contrast, our learned rejection strategy, combined with our clustering losses, enables
our model to achieve a better trade-off between open set and closed world with
rejection accuracy. Overall, B-DOC improves on average over DeepNNO by 4.8%
and 5.2% in the OWR and OWR-H metrics, respectively.

The results on the Core50 [9] dataset are shown in Fig. 4.4. Similarly to the
RGB-D Object dataset, when compared to incremental learning algorithms designed
for the closed world setting, B-DOC performs competitively, remarkably surpassing
iCaRL by 4.7% of accuracy in the final incremental step. Moreover, our method
achieves superior results with respect to OWR state-of-the-art algorithms in both
the closed world with and without rejection scenarios. In the former scenario,
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our method outperforms NNO by 13.01% and DeepNNO by 7.74% on average
(Fig. 4.4a) and outperforms both NNO and DeepNNO by more than 10% in the
latter (Fig. 4.4b). It is also worth noting that both DeepNNO and NNO struggle to
model the confidence threshold, rejecting most of the samples with known classes.
Indeed, by incorporating the rejection option, the accuracy drops considerably for
DeepNNO and NNO, down to 27.2% and 26.3% respectively, while B-DOC achieves
an average accuracy of 38.0%. We report in Fig. 4.4c and Fig. 4.4d the performances
on Core50, under standard and harmonic OWR metric. consistently with previous
results, B-DOC outperforms DeepNNO by 3.4% and 7.2% in average in standard
OWR and OWR-H metrics respectively, confirming the efficacy of the proposed
clustering losses and the learned class-specific maximal distances.

Finally, the results on the CIFAR-100 dataset are shown in Fig. 4.5a and 4.5b
in terms of the OWR and OWR-H metrics, respectively. Even in this benchmark,
our method performs better on average than previous approaches. While our model
achieves lower performance than NNO and DeepNNO in the initial training stage,
which we attribute to a poor initial estimation of the rejection thresholds, it outper-
forms both methods in the subsequent incremental learning steps, demonstrating
the ability of our model to learn and recognize unknown new classes in an open
world, without forgetting old categories. In fact, considering the incremental steps,
our model shows an average improvement of 10% over NNO in both the OWR and
OWR-H metrics, and an improvement of 2% and 4.5% over DeepNNO in OWR and
OWR-H metrics, respectively.

Ablation studies

The main components of our approach are three: (i) the global clustering loss (GC);
(ii) the local clustering loss (LC); (iii) the learned class-specific rejection thresholds.
In this section, we will examine in-depth each of these contributions, starting with
the clustering loss terms and then comparing the choice we made for the rejection
strategy to other common options.

Global and local clustering. In Table 4.2, we compare the performance of the two
clustering loss terms considering the OWR metrics in the RGB-D Object dataset.
Evaluating the global clustering (GC) and the local clustering (LC) terms separately,
we find that on average they show similar performance. In particular, using only
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Method Known Classes OWR
11 16 21 26 [20] H

GC 66.0 57.3 58.6 53.3 58.8 58.7
LC 64.1 56.0 57.9 56.4 58.6 58.4
Triplet 62.1 54.9 54.8 49.5 55.4 55.4
GC + LC 67.7 59.6 59.5 57.3 61.0 60.8

Table 4.2 Ablation study on three clustering approaches: global clustering (GC), local
clustering (LC) and Triplet loss, under the OWR metric. The average OWR-H over all steps
is shown in the right column.

Method Class Multi Known Unknown Diff.specific stage
DeepNNO [7] 84.4 98.8 14.4

Ours
✓ 83.0 98.6 15.6

✓ 4.4 26.9 22.6
✓ ✓ 27.4 65.2 37.8

Table 4.3 Ablation study on the rejection rates of different approaches for detecting unknowns.
Results computed on the RGB-D Object dataset using the same feature extractor.

GC, we achieve slightly better results on the first three incremental stages, while
LC performs better on the fourth step. However, the best results on every steps are
achieved by combining together global and local clustering terms (GC + LC). This
demonstrates that the two clustering terms provide complementary contributions and
help to learn a representation space that properly clusters samples within the same
categories, while better detecting unknowns. We also report in Table 4.2 the results
of using a triplet loss [164] instead of our objective function, since they both share
the same learning objective, i.e. shaping a metric space in which samples sharing the
same semantics are closer then samples with different semantics. As the table shows,
the triplet loss (Triplet) achieves significantly inferior performance than our full
objective function, with a gap of over 5% in both the standard and harmonic OWR
metrics. Notably, it achieves lower results than all of the loss terms in isolation, and
the superior performance of local clustering term further confirms the advantages of
SNNL-based loss functions compared to triplets, as previously shown in [163].

Detecting the Unknowns. In Table 4.3, we provide a comparison of different
approaches for rejecting samples on the RGB-D Object dataset [8], all using the
same feature extractor. Specifically, we compare our method that learns class-
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specific maximal distances with the three other baselines: (i) the strategy proposed
by DeepNNO [7], (ii) learning class-specific maximal distances but during training
(i.e. unlike our two-stage pipeline), and (iii) learning a single maximal distance that
applies to all the categories using our two-stage strategy. In the comparison, we
consider the difference in the rejection rates for both known and unknown samples.
For known class samples, we report the percentage of the samples which have been
correctly classified in the closed world but then rejected when the rejection option
was included. We intentionally exclude the wrongly classified samples in order to
isolate rejection mistakes from classification errors. For unknown samples, we report
the open set accuracy, which corresponds to the percentage of rejected samples
among all the unknown samples. The third column shows the difference between the
open set accuracy and the rejection rate on known test samples. Ideally, we would
like to have this difference as close as possible to 100%, indicating a 100% rejection
rate on unknown samples and 0% on samples belonging to known classes.

The table shows that our two-stage pipeline with class-specific maximal dis-
tances strategy reaches the highest gap, rejecting 27.4% of known class samples and
65.2% of unknown samples. This gap we have with other strategies is remarkable.
Employing the two-stage pipeline but with a class-generic maximal distance results
in a low rejection rate for both known and unknown samples, with a difference
of 22.6%, which is 15.2% lower than using a class-specific distance. Differently,
estimating the confidence threshold as in DeepNNO [7], or without the two-stage
pipeline, leads to a very high rejection rate for both known and unknown classes,
resulting in a difference of 14.4% and 15.6% for DeepNNO and the single-stage
strategy respectively. These results are the lowest two among the four strategies.

In fact, calculating the thresholds using only the training set introduces a bias
in the rejection criterion towards the overconfidence the model acquired on this set.
During testing, this causes the model to consider differences in the data distribution
(such as different object instances) as a source for rejection, even if test samples
contain known semantics. The two-stage strategy allows to overcome this bias and
to tune the rejection criterion on unseen samples, on which the model cannot be
overconfident.
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4.3.4 Conclusions

In this section, we proposed a method for addressing the open world recognition
problem in robot vision. Like previous approaches, our method is based on a NCM
classifier built upon a deep feature extractor. We improved the OWR performance of
this framework by introducing as a training objective the minimization of a global
to local clustering loss. This loss helps to reduce the distances between samples
within the same class in the latent space, while increasing the distances between
samples of different classes, resulting therefore in a better detection of unknown
concepts. Additionally, we explicit learn class-specific distances to determine when
a sample should be rejected, rather than relying on heuristic estimates as prior
works. We evaluated our method, B-DOC, on standard recognition benchmarks and
demonstrated superior performance compared to the previous OWR state-of-the-art.

While in this section we focused on the OWR scenario, there are still many
directions that would need to be explored to fully enable robots to learn autonomously
in real world scenarios. In the following section, we will discuss the challenges these
approaches face under shifting visual domains, and we will see that while there exist
some techniques to mitigate this issues, the field remains still open.
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Fig. 4.6 Overview of our considered problem. In OWR, an agent must be able to incrementally
learn new concepts over time while detecting previously unseen ones. Our research question
is: does the efficacy of the visual system hold when operating in various visual domains and
environments?

4.4 Open World Recognition under Shifting Visual
Domains

Identifying the presence and the semantic category of an object in an image is a
crucial ability for any visual understanding system. As presented in Section 4.1, a
primary issue of traditional object recognition systems is that they often rely on the
CWA, meaning that the set of classes available during training is assumed to be the
only one that the robot will ever encounter in the real world. This assumption is
unrealistic for robots acting in various and dynamic environments, given that there
are potentially an infinite number of semantic concepts in the real world. The need
of breaking the CWA has lead researchers to explore the OWR problem [6], in which
algorithms are asked to not only detect previously unseen semantic concepts, but
also learn new categories over time.
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Although their efficacy, these algorithms overlook the possibility of operating
in neverseen conditions, assuming that training and test images will always come
from the same exact conditions. As for CWA, this assumption, which we refer to
as the closed domain assumption (CDA), is only appropriate for robots operating
in highly constrained environments such as industrial robots. However, the CDA
is unrealistic for e.g., mobile robots operating in the wild, and their visual systems
needs to be able to handle the various input distributions (i.e., domains) that can arise
from e.g., different environments, illumination, acquisition conditions. For example,
a visual system for security robots patrolling public areas, that has been trained on
purely daytime images, may struggle to generalize to nighttime images due to the
significant differences between the two. This difference between the training and
test distributions is known as domain-shift [165]. Several works have addressed
this problem in robot vision in the form of domain adaptation (DA) [145, 11]. In
standard domain adaptation settings, we have labeled data for one training domain
(source domain) and unlabeled data for one test domain (target domain), and the
objective is to utilize these data to model the discrepancies between the source and
target distributions.

Since our ultimate goal is to break both the CWA and CDA (see Fig. 4.6)
simultaneously, a crucial yet still open question is whether OWR algorithms can
properly function under domain-shift. In this section, we attempt to answer this
question by benchmarking OWR approaches under variations between training and
test distributions. To fulfill our objective, we evaluate the three OWR algorithms
introduced in Section 4.3.1, i.e. NNO [6, 140], DeepNNO [7] and B-DOC, on the
widely-adopted RGB-D Object dataset (ROD) [8] and two additional datasets sharing
the same semantic classes, but different acquisition conditions, namely synthetic
ROD (synROD) [11] and Autonomous Robot Indoor Dataset (ARID) [12]. When
trained on either synROD or ROD and tested on the other datasets, we observe for
OWR algorithms significant performance degradation, with drops down to almost
45% in the OWR harmonic mean, demonstrating how OWR approaches severely
suffer from performance deterioration when tested on domains on which they have
not been trained on. Interestingly, we found that end-to-end trained deep OWR
algorithms are more susceptible to the domain-shift problem than their non end-to-
end counterparts, despite achieving the highest performance on in-domain tests.

In the next sections, we then combine NNO, DeepNNO, and B-DOC with
three single source domain generalization (DG) techniques. The results of our
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experiments showed that DG techniques mitigate but do not completely solve these
issues, highlighting how the goal of solving CWA and CDA jointly is still far from
being accomplished.

Contributions. To summarize, the contributions presented in this section are the
following: (i) we present the first benchmark of OWR algorithms under shifting
domains, showing that their performance significantly decreases when tested onto
different domains; (ii) we demonstrate that combining OWR models with single-
source domain generalization techniques only partially solves the problem, but does
not eliminate it; (iii) we propose a validation methodology for allowing fair and easy
future research.

4.4.1 Shifting visual domains benchmark

In this section, we describe the single source domain generalization algorithms we
use in our benchmark. We refer the reader to Section 4.1 for the problem notation.

Data augmentation with transformation sets (RSDA). The first common single
source domain generalization approach is via data augmentation techniques, either
adversarial [157, 159] or transformations-based [158]. In this section, as representa-
tive of this category, we select the data augmentation based approach of [158]. Given
a training batch B= {(xi,yi)}n

i=1, we train the model applying semantic objectives on
a transformed version of the same batch B̂ = {(αxi,yi)}n

i=1, where α is a randomly
sampled transformation from the set A. The set A populated by composed trans-
formations that are extracted from a set of simple transformations A (e.g., blurring,
mirroring). In particular, an evolutionary-based algorithm selects the combination of
A that results in the worst model performance and adds it to A. The hyperparameters
of the model include the set A of basic transformations, their possible values, and
the frequency of updating A. We fix the set A to the following transformations: hue,
contrast, brightness, saturation, random crop, and mirroring.

Self-supervised learning with relative rotations (RR). Another widely used ap-
proach to improving domain generalization performance is through self-supervised
learning [156]. In particular, by employing an auxiliary self-supervised task, the
model concentrates on discriminative invariances and regularities, thereby enhancing
generalization to new domains [156]. To be effective, the task must require the model
to focus on the content of images, rather than their peculiar styles or appearances.
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Solving jigsaw puzzles [166, 156] and predicting rotations [167, 161] are examples
of successful tasks. Here, we take the relative rotations [161] approach. In particular,
given a batch B, we create a new batch B̂ = {(xi,yi, rotθi(xi),θi)}n

i=1 where rot rep-
resents a rotation transformation applied with angle θi to the original image xi. θi is
sampled from a discrete set Θ (i.e., 0◦, 90◦, 180◦ or 270◦), making the auxiliary task
classifying which θi has been applied to xi. To perform this, we instantiate a network
branch ρ that maps features extracted from both the original and rotated images to
the correct rotation angle, i.e. ρ : Z×Z → Θ. We use a standard cross-entropy loss
on the rotation predictions to update both ρ and ω . In the training objective of an
OWR algorithm (e.g. Eq.(4.10)), this auxiliary loss is included scaled by a parameter
ξ . Note that we apply the semantic objectives also to the rotated images and we
apply random data augmentations to them, in order to increase the complexity of the
auxiliary task.

Regularization through self-challenging (SC). Finally, regularization techniques
can enhance the ablities of models to generalize to unseen domains [155]. Here
we evaluate the self-challenging algorithm proposed in [155], where the model is
asked to classify features that have been corrupted by removing the elements that
mostly contributed to a correct classification of the corresponding sample. Formally,
features (z = ω(x)) are extracted from the original samples to calculate a score
φy(z) for the ground-truth class y. The gradient of the score with respect to z is
then computed (g = ∂φy(z)/∂ z), and a new set of features (ẑ = m ◦ z) is obtained
by applying a binary mask m on the original features z, where ◦ is the Hadamard
product. The mask m has 0s for values z j whose gradients g j ≥ qp, and 1s for others.
The threshold qp is determined by preserving the top-p percentile of activations per
corrupted sample. The model’s hyperparameters are the sample- and batch-wise
corruption ratios.

Experimental setting. We perform the experiments on three datasets: RGB-D
Object dataset (ROD) [8], synthetic ROD (synROD) [11], and Autonomous Robot
Indoor Dataset (ARID) [12]. All three datasets contain images of the same 51
daily-life objects but obtained through varying acquisition conditions.

In ROD [8], objects are captured in a controlled scenario, with no clutter or
changes in illumination or background, only varying camera angles. On the other
hand, ARID [12] presents a more challenging environment, with objects depicted
against various backgrounds, scales, views, lighting, and occlusions. It was designed
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to test the robustness of recognition models in real world conditions. synROD [11]
is a synthetic version of ROD [8] aimed at evaluating a model’s ability to handle the
domain shift between synthetic and real images. For more detailed information, see
Chapter A.

Concerning the evaluation protocol, we adopt the same division presented in Sec-
tion Section 4.3.3, using 26 classes as known and 25 as unknown, and incrementally
adding 5 classes in each step with the first 11 serving as base classes. We used the
first train-test split defined in [8], including one instance per class in the test set and
the rest in the training set. For synROD, we follow the split outlined in [11], adding
the images of the 3 classes omitted from the benchmark1. Finally, we use ARID [12]
exclusively for testing, being the most challenging and realistic scenario.

Metrics. To evaluate the performance of OWR methods under domain-shifts, we
use two metrics: i) the accuracy of known classes (closed world with and without
the rejection) across all the incremental steps to assess the capability of learning
new concepts and ii) the open world harmonic mean (OWR-H) to assess OWR
performance (see Section 4.3.3 for additional information).

Validation protocol. In OWR, an open question is how to select the values of
a method’s hyperparameters since i) in each training step only a subset of the
semantic categories is available, and ii) samples of unknown classes are not available.
Here, we present a strategy that uses only the base categories to find the optimal
hyperparameters.

To solve this, we propose to split the categories available in the first training
stage into two groups: known and unknown. 10% of the base classes (e.g. 2 out of
11 in our benchmark) are considered unknown categories and the rest are considered
known. From the known class set, 50% of them (e.g. 5 out of 9 in our benchmark)
are used for the initial training step, while the other half (4 out of 9 in our case)
are used for the incremental learning steps. Note that with this setup we artificially
created i) a set of base classes to initiate the training of the model, ii) a set of
categories that will be incrementally learned, and iii) a set of unseen categories to
evaluate the model’s open set performance. Finally, since the number of categories
received in each incremental step is unknown during deployment, we simulate this
uncertainty using multiple trials with different cardinality in terms of incrementally

1The omitted images were provided by the authors of [11].
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added classes. In particular, we use multiple steps with a single class (4 steps with 1
class in our benchmark), two steps with half of the classes (2 steps of 2 classes), and
a single step with all the classes (1 step with 4 classes). The known/unknown and
base/incremental splits are repeated several times to improve hyperparameter value
estimation.

Once obtaining the base class splits, we perform hyperparameters validation
in two steps. Firstly, we validate hyperparameters that contribute only to build the
network’s knowledge (i.e., closed world without rejection). This ensures that the
model can effectively learn new concepts without the risk of retaining only the
old knowledge, or having low confidence on its prediction, which could negatively
impact open set performance later. In this stage, two types of hyperparameters are
validated: those related to network optimization (e.g., learning rate and weight decay)
and those related to the weights of the loss function (e.g., cross-entropy, distillation,
and clustering). In the second step, all hyperparameters related to detecting samples
containing unknown classes are validated using OWR-H performance. For example,
we validate the negative weight used by DeepNNO [7] to update the rejection
thresholds, and the learning rate used by B-DOC to learn the class-specific rejection
thresholds.

Note that this entire process is agnostic to the OWR model and benchmark
adopted, relying solely on the base classes to determine the optimal hyperparameters.
The only hyperparameters this protocol does not set are the training epochs for the
base and incremental steps, which we determine by evaluating the training accuracy
on the categories present in each learning step. In our case, we used 12 epochs for
ROD and 70 for synROD for the base categories. For the incremental steps, we use
a proportionate number of epochs for ROD based on the number of added classes,
while we have fixed the value to 35 for synROD, as it is a more challenging scenario.

4.4.2 Experiments

In this section, we present the results of our benchmark. Specifically, we evaluate
the performance of standard OWR methods under domain shift (Section 4.4.3),
considering both Synthetic-to-Real and Constrained-to-Unconstrained scenarios,
showing that OWR algorithms suffer from significant performance degradation
whenever their input distributions change. Next, we demonstrate that using single
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(a) Closed World Without
Rejection

(b) Closed World With
Rejection (c) OWR Harmonic mean

Fig. 4.7 Comparison of NNO [6], DeepNNO [7] and B-DOC (Section 4.3) trained on
synROD [11] and evaluated on synROD [11], ROD [8] and ARID [12]. Numerical values
denote the average accuracy among the different incremental steps.

source domain generalization (DG) techniques in combination with OWR methods
can mitigate the domain-shift issue, despite being still not sufficient to fully solve
the problem (Section 4.4.4). Finally, we discuss the implications of our benchmark,
highlight open issues, and state future research directions (Section 4.4.5).

4.4.3 Are OWR models Robust to Domain Shift?

Synthetic-to-Real. We start our analysis by considering the synROD dataset as the
source domain, and all the other datasets are target domains, in turn. The results
are presented in Fig. 4.7 in terms of closed world with and without rejection, and
OWR harmonic mean. As shown, all OWR methods experience a significant decline
in performance when evaluated under domain-shift. In particular, we can see in
Fig. 4.7a that in the closed world setting without the possibility of categorizing
samples as unknowns, recognizing real objects is a very challenging task for all
OWR algorithms trained on synthetic data. While DeepNNO and B-DOC achieve
good performance in absence of domain-shift (47.6% and 46.1%, respectively), they
experience a drop in performance by almost 18% when going from synROD to ROD,
and by almost 26% when going from synROD to the more challenging ARID.

Similarly, in Fig. 4.7b, we see that the performance with the rejection option
enabled decreases in average by almost 15% on ROD, and by more than 19% on
ARID. Surprisingly, the performance of B-DOC is the most affected when the
rejection option is introduced, resulting in a loss of nearly 16% accuracy on ROD
and 20% on ARID. This may be because the thresholds used by B-DOC are estimated
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(a) Closed World Without
Rejection

(b) Closed World With
Rejection (c) OWR Harmonic mean

Fig. 4.8 Comparison of NNO [6], DeepNNO [7] and B-DOC (Section 4.3) trained on ROD
[8] and tested on ROD [8] and ARID [12]. Numerical values denote the average accuracy
among the different incremental steps.

using a holdout set from the training data, which do not accurately represent the
distribution of test samples under domain-shifts. As a result, the wrongly computed
thresholds lead the model to poor performance. Similarly, DeepNNO performs
poorly in the closed world with rejection scenario, achieving values of 9.6% accuracy
on ROD and 5.4% on ARID. Surprisingly, NNO performs considerably better on
ROD and ARID, with an average loss of 13.5%. The reason of this is that NNO
usually computes a low threshold on synROD, due to both the low confidence its
shallow classification model has in the predictions, and to the high variability of
the dataset. This enables NNO to reject fewer samples and better preserve closed
world accuracy. However, the average accuracy of nearly 5% on ARID raises serious
concerns about the applicability in real scenarios of these algorithms

Lastly, we can consider Fig. 4.7c as a global analysis, from which it is clear
that the OWR-H performance of all methods confirms previous trends, suffering a
significant drop, with an average decrease of more than 19% on ROD and 26% on
ARID. In particular, the performance of both deep models (i.e. DeepNNO, B-DOC)
experiences a decrease of almost 23% on ROD and 30% on ARID. Again (and
surprisingly), NNO exhibits a good trade-off, with a performance decrease of around
15% on average.

Constrained-to-Unconstrained. We continue our set of experiments in a different,
real-to-real scenario, where the source domain is ROD and the target domains are
ROD and ARID. We note that both ROD and ARID are real datasets, which differ
only from the environments they depict: constrained (ROD) and unconstrained
(ARID).
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(a) NNO - OWR Harmonic
(b) DeepNNO - OWR

Harmonic (c) B-DOC - OWR Harmonic

Fig. 4.9 Comparison of NNO [6], DeepNNO [7] and B-DOC (Section 4.3) coupled with
Domain Generalization techniques when trained on synROD [11] and evaluated on ROD
[8] and ARID [12]. Numerical values denote the average accuracy among the different
incremental steps.

The results in Fig. 4.8 show that, as expected, while all the methods achieve
good performance on the same domain, they all suffer a significant decrease in
performance when tested under domain-shifts. However, this decline is even more
pronounced than the one seen in the synthetic-to-real scenario. In the closed world
with rejection scenario (Fig. 4.8a), the models which had an average accuracy of
65% on ROD, experience a drop of almost 45% in accuracy when tested on ARID,
down to almost 20% of accuracy. The same drop in accuracy is observed in the
closed world with rejection setting (Fig. 4.8b). The domain-shift causes the models
to confuse samples from the new domain as unknowns, as evidenced by the drop in
performance between ROD and ARID: the accuracy with rejection, in the latter, is
barely of 7% on average.

Overall, the performance under the OWR-H metric is very unsatisfactory, show-
ing a significant gap (almost 40% on average) between the accuracy values obtained
on ROD and ARID by all three methods. These results highlight how OWR methods
significantly suffer when tested on data coming from new domains/environments
and, confirms that domain-shift is a major issue for OWR algorithms.

4.4.4 Can DG methods address the problem?

Given the unsatisfactory performance of OWR methods under domain-shift, in
the following section we investigate whether single source domain generalization
algorithms can be used to address and solve this problem.
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Synthetic-to-Real. We start our analysis from the synthetic-to-real scenario. Fig. 4.9
shows how OWR-H changes when OWR methods are coupled with DG techniques.
While NNO experiences a slight improvement, the performance of both DeepNNO
and B-DOC gains a large boost, particularly when the SC strategy [155] is applied.
In fact, with respect to the originals, the results on ARID for DeepNNO and B-DOC
are 2 and 4 times higher, respectively. Considering the other DG methods, they all
contribute to improving DeepNNO and B-DOC performance on ROD, although with
zero to minor benefits on ARID. We attribute the higher efficacy of SC technique
to its regularization of the classifier, which forces it to i) focus on several cues
and ii) achieve a lower confidence on the predictions, which may leads to estimate
better thresholds for identifying unknowns in different domains. As stated above,
all the domain generalization techniques have little to even negative impact on the
performance of NNO (Fig. 4.9a). The reason for this is that NNO does not fine-tune
its representation across training steps, and this limits the impact DG techniques
might have on learning a more domain invariant latent space.

For what concerns the other domain generalization techniques, while RR [161]
brings a small improvement across all baselines in each scenario, RSDA [158] is
more effective on ROD dataset, rather than ARID. The reason behind it is that
synROD images differ mainly in color and shape from ROD ones, and using spe-
cific data augmentation to bridge these differences results in a global performance
improvement. For ARID, the impact of RSDA is only partial due to other (different)
challenges such as occlusion and scale variations.

Despite these results, the domain-shift problem remains still significantly present,
with an average drop in performance from the synROD results of approximately 10%
on ROD and 19% on ARID.

Constrained-to-Unconstrained. Lastly, in this section we examine the impact of
DG techniques on models trained on ROD and evaluated on ARID dataset. The
results are reported in Fig. 4.10. As shown in the figure, all of the DG methods
improve OWR methods in this scenario, albeit in different ways. SC, for example,
leads to the best results for B-DOC, with 27.3% accuracy, while RSDA and RR are
more effective for DeepNNO and NNO. In particular, even if the training phase in
which the DG algorithms operate is limited, NNO still benefits from their adoption in
this scenario, achieving results that are more than three times greater when combined
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(a) NNO - OWR Harmonic
(b) DeepNNO - OWR

Harmonic (c) B-DOC - OWR Harmonic

Fig. 4.10 Comparison of NNO [6], DeepNNO [7] and B-DOC [13] with Domain Generaliza-
tion techniques when trained on ROD [11] and tested on ARID [12]. The numbers denote
the average accuracy among the different incremental steps.

with RR and RSDA. This implies that the augmentations applied by these methods
aids in reducing the domain-shift between ROD and ARID.

However, when compared to the original results on ROD dataset, the gaps remain
significant: NNO+RR achieves still 40% less in accuracy than the original NNO on
ROD. Similarly, DeepNNO+RR and B-DOC+SC are almost 30% lower than their
respective counterparts evaluated on ROD. These results confirm that the domain-
shift issue in OWR can only be mitigated (but not solved) by coupling OWR methods
with single-source DG algorithms.

4.4.5 Conclusions

Based on the findings in Section 4.4.2, two key conclusions can be drawn. Firstly,
OWR methods lack robustness to domain-shift, resulting in significantly poorer
performance when evaluated on data from different distributions than the ones seen
during training. Secondly, despite minor improvements, combining OWR models
with single-source DG techniques is not sufficient to fully solve the domain-shift
issue. Following these conclusions, it is worth emphasizing two open issues that we
believe require further attention in future research, in order to develop OWR systems
suitable for real world use cases.

Domain-shift in recognition. In order to effectively apply OWR models in real
world scenarios, they need to adapt to unseen domains quickly. In Section 4.4.4
we have shown how coupling OWR methods with DG techniques is not sufficient
for addressing this issue, resulting in poor recognition performance and incorrect
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estimation of rejection thresholds. Possible future works include developing a single
model to address both problems incorporating algorithms that utilize target data
streams in an online DA fashion [149].

Domain-shift while learning. Existing OWR methods assume that data in each
incremental step comes from the same distribution. However, an open question is
how the performance of these methods would be affected if the data in different
incremental steps were from different domains. Our intuition is that models would be
more prone to forgetting, and would also tend to use domain cues to make (incorrect)
predictions. A crucial challenge in this scenario would be disentangling domain- and
semantic-specific. Specifically, in the incremental learning step, it becomes vital to
guide the model’s attention towards visual cues that are representative of the semantic
of the novel class, while disregarding those influenced by the current domain. By
doing so, the model could improve its ability to effectively generalize and accurately
identify the novel category across diverse domains. Possible directions may either
involve the usage of unlabeled data [168] or additional side-information [169].



Chapter 5

Conclusions

This chapter summarizes key contributions and findings presented in this thesis, and
further discusses open issues and potential directions of future research.
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5.1 Summary of contributions

In this thesis, we investigated the ability of deep neural networks to recognize
previously unseen semantic concepts and incorporate knowledge that was not part of
the original training set, with the goal of developing deep models that are capable of
recognizing and learning new/unseen visual semantic concepts over time.

In Chapter 2, we started by introducing the main limitation on which traditional
machine learning models rely, i.e. the closed world assumption (CWA). Under this
assumption, models confine their understanding of the world to a specific set of
categories they have been trained on, overlooking the inevitable possibility of having
to deal with unexpected, unseen categories once deployed in the real world. After a
literature review (Section 2.2), we formally introduced the anomaly segmentation
(AS) scenario in Section 2.3.1, and analyzed the drawbacks of the popular approach
called MSP, which relies on the highest probability assigned to any of the known
classes to compute the anomaly score for a pixel. To overcome the softmax function
limitations of MSP, we argued that anomaly scores should be computed directly
from the classification scores, and we introduced PAnS (Section 2.3.2) that learns
class-specific prototypes through a cosine classifier and computes the anomaly scores
based on the classifier predictions. Section 2.3.3 reported the experimental results
which supported the effectiveness of our method.

As a second step towards developing models able to act in the real world, we
introduced the incremental learning (IL) scenario in Section 3.1. We provided an
extensive review of related work in Section 3.2, and we then introduced a more
challenging yet realistic scenario, where pre-trained deep models are asked to extend
their knowledge using only cheap image-level labels (Section 3.3). After the prob-
lem mathematical formulation (Section 3.3), we introduced our method WILSON,
that combines the segmentation network with a localizer module, and leverages
image-level labels on new categories to generate pseudo-labels for the segmentation
model in one single step. Section 3.3.2 and 3.3.3 detailed the components of WIL-
SON, and Section 3.3.4 presented our qualitative and quantitative results, showing
how WILSON is capable of outperforming weakly-supervised semantic segmenta-
tion approaches, and achieving comparable results to standard fully supervised IL
methods.
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Finally, in Section 4.1 we presented the open world recognition (OWR) frame-
work, which seeks to break the CWA by allowing models to detect the presence
of never-seen-before categories and learn new ones as they become available. Af-
ter a review of OWR strategies in Section 4.2, we presented our methods B-DOC
(Section 4.3), which introduces a global-to-clustering training loss objective, and a
learnable rejection threshold per each class in order to distinguish between known
and unknown categories. Our experimental results and findings were presented
in Section 4.3.3. Moreover, in Section 4.4 we took a step further, and we investi-
gated the effects that visual domain-shifts have on OWR methods. We presented
the first benchmark to fairly assess OWR methods under shifting visual domains
in Section 4.4.1, and we discussed our experimental findings in Section 4.4.2. In
particular, we investigated how domain-shift affects OWR methods in Section 4.4.3,
and whether domain generalization approaches can alleviate the degradation in
performance in Section 4.4.4.
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5.2 Open problems and future directions

While in this thesis we explored the development of deep learning models capable
of identifying categories that were not previously encountered (Chapter 2), learning
new semantic concepts (Chapter 3), and performing both tasks (Chapter 4) in a single
fashion, multiple challenges and directions still need to be explored to enable visual
systems to function effectively in real world settings.

Starting from PAnS, our proposed solution to address anomaly segmentation
challenges (Section 2.3.2), a major open problem remains the model’s uncertainty
on pixels that lie on the boundaries between different classes. It would be interesting
to investigate how to strengthen the confidence of the model on those pixels. One
direction could be applying conditional random fields [170] to get smoother and more
coherent predictions on boundaries. Moreover, it would be interesting to analyze how
transformer-based architectures [37, 38, 40] act in an anomaly segmentation scenario.
Given their ability to incorporate semantic context, and the outstanding results
achieved over traditional convolutional-based networks in semantic segmentation
[171–175], it would be interesting to understand if they are intrinsically able to
reduce the amount of pixels wrongly identified as anomalous at object boundaries,
being them able to capture finer contextual relations.

For what concerns incremental learning in semantic segmentation (Section 3.3),
one interesting direction would be investigating how to make WILSON able to
perform single-class incremental learning steps, since to properly guide the training,
Eq. (3.3) requires negative examples in the training batch. Given that WILSON still
needs a considerable amount of images to be trained, another interesting research
question would be how to learn novel categories using only a limited amount of im-
ages (as few-shot [176–178] approaches aims at doing). Finally, the current version
of WILSON does not specifically address the background-shift issue identified by
[44], which manifests itself in traditional fully-supervised semantic segmentation
models, and it would be interesting to verify the effectiveness of [44]’s approach in
this scenario as well.

Moving to the open world recognition task (Section 4.3), a clear limitation of
OWR approaches regards the need of collecting and labelling a new set of images
every time a new class is discovered, usually involving a human in the loop. While
the first issue might be addressed by acquiring images from the Web [7], the second
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challenge remains still unsolved. One approach could be adopting an active learning-
based pipeline [179, 180] to identify the most meaningful data, and to avoid a
human-in-the-loop, it could be interesting to investigate how to generate pseudo-
labels to avoid the labelling process.
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Appendix A

Datasets

The following section presents the datasets used in this thesis. We first present the
semantic segmentation datasets used for anomaly segmentation and incremental
learning, and then describe the datasets used to assess OWR challenges.

StreetHazards is a synthetic dataset proposed in the CAOS benchmark [2] to assess
anomaly segmentation approaches. This database contains 5125 training images with
the corresponding semantic labels, 1031 validation images with no anomalies, and
1500 test images containing anomalies. The images were generated using the Unreal
Engine and the CARLA simulator [181], and the dataset includes different towns
for the training, validation, and testing splits. The test images contain randomly
selected anomalies from a set of 250 objects, which are placed in the images to create
plausible road scenarios.

Pascal VOC 2012 [69] is a dataset containing real-life images used to assess several
tasks, such as semantic segmentation and object detection. Following standard
protocols [91, 93] we augmented the dataset with images from [182], reaching a
total of 10582 training images and 1449 validation images. The dataset contains
annotated images for 20 common object categories: aeroplane, bicycle, bird, boat,
bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted
plant, sheep, sofa, train, television. The images in the dataset were collected from
various sources, including the web, and cover a wide range of visual scenes.

MS-COCO [70] is a dataset used to evaluate large-scale models in a variety of tasks.
It contains over 160k high resolution images. Each image is annotated with a set of
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labels for a total of 80 annotated classes, 20 of which overlap with the annotations of
Pascal VOC 2012.

RGB-D Object dataset [8] is a widely-used benchmark to evaluate models’ ca-
pabilities in recognizing daily-life objects. The dataset consists of more than 40k
images, organised into 300 instances and 51 classes of common indoor objects (e.g.
scissors, cereal box, keyboard etc). Each object instance has been captured from
three different viewpoints.

synROD [11] is a synthetic version of RGB-D Object dataset [8], generated utilizing
freely available 3D models from public catalogs. To produce realistic lighting, the
authors employed a ray-tracing engine in Blender to render the scenes. The objective
of proposing this benchmark is to evaluate a model’s capacity to cope with the
domain-shift existing between synthetic and real images.

ARID [12] contains instead images captured in a much more realistic context than
the previous two, despite containing the sema exact categories. In ARID, the
objects are represented with several backgrounds, scales, views, lighting conditions,
and different levels of occlusions. These additional challenges make ARID a more
demanding dataset, originally collected to evaluate the robustness of deep recognition
models in unconstrained settings.

Core50 [9] dataset is a recently adopted benchmark for evaluating continual learn-
ing algorithms in an egocentric setting. The dataset includes images of 50 ob-
jects, grouped into the following 10 semantic categories: clothing, food, household,
kitchen, office, personal care, sports, tools, toys, vehicles. The images were acquired
on 11 different sequences, under varying conditions.

CIFAR-100 [10] dataset includes 60,000 low-resolution images, usually split into
50,000 training images and 10,000 test images. Each of them falls under one of
the 100 fine-grained annotated categories, which might be further divided into 20
coarse-grained classes.
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