
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Telecommunications Engineering

(XXXV cycle)

Machine Learning based
Surrogate Modeling of Electronic

Devices and Circuits
...

Nastaran Soleimani
* * * * *

Supervisors
Prof. Riccardo Trinchero, Prof. Flavio Canavero

Doctoral Examination Committee:
Prof. Alain Reineix, Referee, Xlim Laboratory, Limoges, France
Prof. Antonio Maffucci, Referee, Università di Cassino e del Lazio Meridionale, Cassino, Italy
Prof. Mihai Gabriel Telescu, University of Brest, Brest, France
Prof. Luca Lussardi, Politecnico di Torino, Torino, Italy
Prof. Igor Simone Stievano, Politecnico di Torino, Torino, Italy

Politecnico di Torino
May, 2023

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Nastaran Soleimani
Turin, May, 2023

www.creativecommons.org

List of Figures

1.1 Computational model determining the relative contribution of input
variables . 18

1.2 Illustration of the Monte Carlo method for calculating probabilities
of the model output of interest in an uncertain process via repeated
random sampling. 19

1.3 Illustration of a generic optimization scheme based on the computa-
tional model. 20

1.4 Surrogate model training by using a data-driven approach 21

2.1 Illustration of the k-fold cross-validation with K=5 and L=100 train-
ing samples. 28

2.2 Basic ANN architecture with a single hidden layer. 30
2.3 Graphical interpretation of the minimization problem Eq. (2.23) and

of the role of ε-intensive loss function in Eq. (2.24) (inspired by [27,
29]). 33

2.4 Panel (a): graphical interpretation of the SVM regression optimiza-
tion problem in Eq. (2.25) (inspired by [27, 29]). Panel (b): illustra-
tion of the corresponding least square formulation in Eq. (2.30) for
the LS-SVM regression. 35

2.5 Permittivity of the wet human skin vs frequency predict by the OLS,
Ridge, SVM and LS-SVM surrogate models 37

2.6 Permittivity of the wet human skin vs frequency which corrupted by
noise predicted by the OLS, SVM and LS-SVM surrogate models . . 38

2.7 Cross-section view of the hybrid interconnect structure considered in
this example. 39

2.8 Scaling of the testing NRMSE with increasing number of training
points for the values of the L11,L12,R11 and C11 p.u.l. parameters
using the different machine learning metamodel. 41

2.9 Scaling of the testing NRMSE with increasing number of training
points for the values of the C12, C20, C23 and C30 p.u.l. parameters
using the different machine learning metamodel. 42

3

3.1 Block diagram illustrating how a low-fidelity model and a ML meta-
model can be utilized in a SD technique. 47

3.2 Block diagram illustrating how a low-fidelity model and a ML meta-
model can be utilized in a PKI technique. 48

3.3 Left panel: schematic of the hybrid interconnect network showing
the driver and load circuits modeled as linear RC circuits. Right
panel: cross-sectional view of the hybrid interconnect structure. . . 49

3.4 Scatter plots showing the correlation between the predictions of the
low- and high- fidelity model for the RLC p.u.l. parameters. 51

3.5 Scaling of the testing NRMSE with increasing number of training
points for the values of the L11 and L12 p.u.l. parameters using the
different ML metamodel and their PKI and SD variants. 52

3.6 Scaling of the testing NRMSE with increasing number of training
points for the values of the R11, C11, C12, C20, C23 and C30 p.u.l.
parameters using the different ML metamodel and their PKI and
SD variants. 54

3.7 Comparison of the scatter plots for the C12 and R12 p. u. l. param-
eters computed from the prediction of the proposed metamodels by
using as reference the corresponding values computed via a full-wave
EM simulation in ANSYS Q3D Extractor. 55

3.8 Transient responses at the end of line 1 and crosstalk in the at the end
of line 2 simulated in SPICE and based on the p. u. l. parameters
predicted by the different metamodels for the two different design
points. 56

4.1 Panel (a): design parameters of the serpentine line to be analyzed;
Panel (b): cross-sectional view of the serpentine line. 69

4.2 Normalized singular value plot of the serpentine delay line for the
considered dataset with 5000 frequency points (blue line). The hor-
izontal line shows the 0.001% threshold for the PCA truncation . . 70

4.3 Comparison of the relative NRMSE values computed by the proposed
approaches on the test samples by considering the real part of the
S21 parameter of the serpentine delay line structure for an increasing
number of training samples (i.e., L = 50, 250, 500) 71

4.4 Comparison of the relative NRMSE values computed by the proposed
approaches on the test samples by considering the imaginary part
of the S21 parameter of the serpentine delay line structure for an
increasing number of training samples (i.e., L = 50, 250, 500). . . . 71

4.5 Schematic of the high-speed interconnect link. 72

4

4.6 Comparison of the relative NRMSE values computed by the proposed
approaches and a feed-forward multi-output neural network on the
test samples by considering the real part of the transfer function of
a high-speed link for an increasing number of training samples (i.e.,
L = 20, 100, 150 and 500) . 73

4.7 Comparison of the relative NRMSE values computed via the pro-
posed approaches and a feed-forward multi-output neural network
on the test samples by considering the imaginary part of the trans-
fer function of high-speed link for an increasing number of training
samples (i.e., L = 20, 100, 150 and 500). 74

4.8 Three-dimensional plot of the relative NRMSE computed on the real
part of the test samples at a single frequency point selected as the
one providing the maximum error via the proposed approaches (see
top left panel for the DCK, top right for CVCF and central bottom
panel for PCF) for different values of the noise standard deviation
σn and the number of training samples L. 75

4.9 Three-dimensional plots of the relative NRMSE computed on the
imaginary part of the test samples at a single frequency point selected
as the one providing the maximum error via the proposed approaches
(see top left panel for the DCK, top right for CVCF and central
bottom panel for PCF) for different values of the noise standard
deviation σn and the number of training samples L. 76

5.1 ANN interpretation of a scalar-output kernel regression (the picture
is inspired by [60]). 80

5.2 Graphical interpretation of the resulting block-diagonal (left panel),
weakly coupled (central panel) and strongly coupled (right panel)
kernel Gram matrix. Dark color is used for matrix entries with
smaller values and bright color is used for matrix entries with higher
values. 89

5.3 Schematic of the high-speed link considered as illustrative example
in Sec. 5.6. 90

5.4 Parametric behavior of the magnitude of transfer function y(x; f) of
the high-speed link in Fig. 5.3 computed on 1000 test samples for
CASE A, B and C. 90

5.5 Parametric and scatter plots comparing the prediction of the pro-
posed vector-valued KRR with block-diagonal and coupled kernel
with the corresponding ones obtained from the computational model
for CASE A, B and C on 1000 test-samples. 91

5.6 Parametric plots comparing the frequency responses predicted by
the proposed method and the PCA+LS-SVM surrogate models for
2 different realizations of the input parameters. 95

5

5.7 Comparison of the PDFs computed from the predictions of the sur-
rogate models built via the proposed and PCA+LS-SVM regression
with Tol.= 0.6% and 0.01% on 1000 test samples and for all the
frequency points. 95

5.8 Schematic of the Doherty amplifier considered in Sec. 5.7 (inspired
by [71]). 97

5.9 Scattering parameters of the Doherty amplifier presented in Sec. 5.7
obtained from the initial design (dashed black line) and after opti-
mization carried out via the ADS random optimizer (solid red line)
and the proposed model (solid blue line). 98

5.10 2-GHz BJT LNA. 99
5.11 S11 parameter of the LNA in Fig. 5.10. Top panel: the gray lines

show the magnitude of the S11 computed from a 1000-sample MC
simulation. The blue solid and the red dashed lines are the mag-
nitude of the average S11 obtained from the MC samples and the
proposed model, respectively. Bottom panel: the blue solid and the
red dashed lines are the magnitude of the S11 variance obtained from
the MC samples and the proposed models, respectively. 100

5.12 S21 parameter of the LNA in Fig. 5.10. Top panel: the gray lines
show the magnitude of the S21 computed from a 1000-sample MC
simulation. The blue solid and the red dashed lines are the mag-
nitude of the average S21 obtained from the MC samples and the
proposed models, respectively. Bottom panel: the blue solid and the
red dashed lines are the magnitude of the S21 variance obtained from
the MC samples and the proposed models, respectively. 101

5.13 Comparison of the PDFs of the S11 and S21 parameters at the fre-
quency f0 = 2 GHz computed from the predictions of the surrogate
models built via the proposed vector-valued KRR evaluated on 1000
test samples and the corresponding ones computed from a 1000-
sample MC simulation. 102

6

List of Tables

2.1 Design parameters for the hybrid copper graphene interconnect in
Sec. 2.5.2. 39

2.2 Accuracy and time cost comparison between the considered surrogate
models for a training dataset with L = 35, 140, and 700 samples . . 40

3.1 Statistical analysis of the correlation among the prediction of the
considered high- and low-fidelity models. 50

3.2 Accuracy and time cost comparison between different metamodels
for training dataset with L = 35, 140, and 700 samples 53

3.3 Table for the quantities for PKBML metamodels 57

4.1 Serpentine delay line parameters for the training and test dataset. . 70
4.2 High-speed interconnect link parameters for the training and test

datasets. 72

5.1 Mean value and corresponding relative range of variation of the 11
parameters considered for the illustrative example in Sec. 5.6. . . . 89

5.2 Comparison of training time ttrain, and relative L2- and L∞- error
computed for the coupled and uncoupled kernel implementation of
the proposed vector-valued KRR. The study was conducted on the
illustrative example of Fig. 5.3, for 1000 test samples. 92

5.3 Relative L2-error and training time computed from the predictions
in dB obtained by the proposed vector-valued KRR and PCA+LS-
SVM regression trained with increasing number of noisy training
samples. 94

5.4 Mean value and corresponding relative range of variation of the pa-
rameters considered for the optimization of the Doherty amplifier in
Sec. 5.7. 96

5.5 Training time and relative L2-error computed from the frequency-
domain samples of the predictions of the surrogate models trained
with an increasing number of training samples via the proposed im-
plementation of the vector-valued KRR for the S11 and S21 parame-
ters by considering 1000 test samples. 100

7

List of Acronyms

UQ: Uncertainty Quantification
PDF: Probability Density Function
MC: Monte Carlo
ML: Machine Learning
PKBML: Prior Knowledge-Based Machine Learning
P.U.L.: Per-Unit-Length
KRR: Kernel Ridge Regression
RKHS: Reproducing Kernel Hilbert Space
ERM: Empirical Risk Minimization
LHS: Latin Hypercube Sampling
OLS: Ordinary Least Squares
MSE: Mean Square Error
CV: Cross-Validation
LOO: Leave-One-Out
ADAM: Adaptive Moment Estimation
SVM: Support Vector Machine
RBF: Radial Basis Function
LHS: Latin Hypercube Sampling
CV: Cross-Validation
NRMS: Normalized Root Mean Square
SD: Source Difference
PKI: Prior Knowledge Input
MTL: Multi-Conductor Transmission Line
FEM: Finite Element Method
MoM: Method of Moments
SI: Signal Integrity
CVCF: Complex Valued Complex Function
PCF: Pseudo Complex-Valued Function
DCK: Dual Channel Kernel
PCA: Principal Component Analysis
SVD: Singular Value Decomposition
PCB: Printed Circuit Board

8

NRMSE: Normalized Root Mean Square Error
GD: Gradient Descent
LNA: Low-Noise Amplifier

9

Contents

List of Figures 3

List of Tables 7

List of Acronyms 8

1 Introduction 17
1.1 Introduction . 17

1.1.1 Computational Model and Uncertainty Quantification 18
1.1.2 Computational Model and Optimization 19

1.2 Surrogate Models . 20
1.2.1 What is a Surrogate Model? 20
1.2.2 Modeling Challenges and Thesis Motivations 21

1.3 Thesis Organization . 22

2 State-of-the-art Supervised Machine Learning Regressions 23
2.1 Learning from Data: Learning Paradigm & Surrogate Model 23
2.2 Standard Regressions based on Basis Function 25

2.2.1 Ordinary Least Squares (OLS) Regression 25
2.2.2 Ridge Regression . 26
2.2.3 Hyperparameter Tuning . 27
2.2.4 Validation Set . 27
2.2.5 Cross Validation . 28

2.3 Artificial Neural Network . 29
2.4 Kernel Based Regressions . 31

2.4.1 Support Vector Machine Regressions 31
2.4.2 Least Square Support Vector Machine Regressions 34

2.5 Example . 36
2.5.1 Example I: Skin permittivity Dataset 36
2.5.2 Example II: Hybrid Copper-Graphene On-Chip Interconnects 38

2.6 Summary . 42

10

3 Prior Knowledge Based Machine Learning Surrogate Models 45
3.1 PKBML Methods . 45

3.1.1 Source Difference (SD) Technique 46
3.1.2 Prior Knowledge Input (PKI) Technique 47

3.2 Example: Surrogate Models for Hybrid Copper-Graphene On-Chip
Interconnects . 48
3.2.1 Appropriate Low Fidelity Model for Copper Graphene Inter-

connects . 49
3.2.2 Numerical Validations . 51

3.3 Summary . 57

4 Kernel-Machine Regressions in Complex- and Vector-Output Re-
gression Problems 59
4.1 Challenge #1: Complex-Valued LS-SVM Regression 60

4.1.1 Complex-Valued Kernel . 64
4.1.2 Dual Channel Kernel (DCK) LS-SVM for Complex-Valued

Data . 65
4.2 Challenge #2: Vector-valued Surrogate model based on data-Compression 66
4.3 Application Examples . 68

4.3.1 Example I . 69
4.3.2 Example II . 72

4.4 Summary . 75

5 Bridging the Gap between ANNs and Kernel-Machine Regressions
in Vector-Value EM Applications 77
5.1 Scalar-Output Kernel Ridge Regression 77
5.2 ANNs vs. Scalar Kernel-Machine Regressions 79
5.3 From Scalar- to Vector-Valued KRR 80

5.3.1 Separable Multi-Output Kernels for Vector-Valued Regression 82
5.3.2 Matrix Formulation for Vector-Valued KRR with Separable

Kernel . 83
5.4 Training Algorithms . 84

5.4.1 Kronecker formulation & Gradient Descent 84
5.4.2 Diagonalization Procedure 85

5.5 Separable Kernels for Vector-Valued KRR 86
5.5.1 Block-diagonal Multi-Output Kernel Matrix 86
5.5.2 Coupled Multi-Output Kernel Matrix 87

5.6 Illustrative Example . 88
5.6.1 Performance Analysis . 90
5.6.2 Comparison with State-of-the-art Techniques 93

5.7 Application Example: Doherty Amplifier 95
5.8 Application Example: 2-GHz Low-Noise Amplifier (LNA) 99

11

5.9 Summary . 101

6 Conclusions & Future Work 103

References 105

12

Dedicated to
My Lovely Mom

Acknowledgements

Fist of all, I would like to express my special thanks to my supervisor Prof.
Flavio Canavero, who gave me the opportunity to come to Italy and study at Po-
litecnico di Torino and supporting me during my whole Ph.D.

The completion of this study could not have been possible without my other su-
pervisor Prof. Riccardo Trinchero, who gave me a lot of valuable help during this
journey and without him it was almost impossible to I find my way.

A big debt of my life is also owed to my perfect Mom for teaching, loving and
supporting me.

Last but not least, I would like to thank my sister and my brother (Nazanin and
Amir Soleimani), my colleagues: Prof. Igor Simone Stievano, Felipe Treviso, Tom-
masso Brade, Marco De Stefano, Antonio Carlucci, Paolo Manfredi and my friends
who have been kind with me and have supported me during this journey.

14

Summary

The availability of mathematical tools for understanding the actual relationship
between the parameters and the outputs of complex dynamical system has become
an important resource for the design of next-generation electrical and electronic
equipment. The accurate knowledge of the relationship among inputs, outputs
and parameters of the systems under analysis can be used to heavily speed up
computational expensive design tasks, such as: uncertainty quantification (UQ)
and optimization. Indeed, such knowledge can be used to guide the design space
exploration and to reduce the number of experiments required by the above tasks.

Unfortunately, in realistic applications, the relationship between the parame-
ters and the outputs of a generic electronic device or circuit is rather complicated
and usually not explicit. For the above reason, UQ and optimization are usually
performed via brute force approaches based on repeated experiments with the so-
called computational model (i.e., physical experiments or computer simulations).
However, physical experiments can be expensive and time consuming, since they
would require the construction of several prototypes. Therefore, during the early
design phase, parametric simulations are usually adopted.

In the above scenario, a surrogate model, also known as metamodel, allows
to provide a closed-form and fast-to-evaluate approximation of the actual input-
output relationship of the computational model. Among the several regression and
interpolation techniques developed and used for the surrogate model construction,
this dissertation mainly focuses on supervised machine learning (ML) regression
techniques. Specifically, state-of-the-art ML regressions, such as: linear expansion
of basis functions, artificial neural network (ANN) and kernel-machine regression
are briefly presented with the aim of investigating their advantages and drawbacks
for the surrogate model construction.

The above analysis shows that ANNs and kernel-machine regressions provide
an effective solution for the surrogate model construction in regression problems
with a “large” number of input parameters, since they allow mitigating the curse of
dimensionality affecting conventional regression techniques based on linear expan-
sion of basis functions. Also, kernel-machine regressions seem to provide the best
accuracy with respect to the number of training samples, in regression problems
in which small number of training samples is available, even if their applicability

15

is limited to real-valued scalar-output problem. However, for all the regression
techniques considered in this dissertation, the computational cost required by the
surrogate construction is dominated by the training set generation.

According to the above observations, this dissertation discusses and tries to
address some relevant challenges related to the surrogate modeling construction in
electronic applications.

First of all, an unconventional training scheme based on prior knowledge based
machine learning approaches, in which the surrogate models are trained via a het-
erogeneous training set combining the predictions of a high- and low-fidelity model,
is proposed with the aim of reducing the computational cost for the training set
generation.

Then, a generalized mathematical framework is presented to extend the appli-
cability of kernel-machine regressions to complex-valued problems.

Finally, data compression strategies and multi-output kernel formulations are
developed with the aim of bridging the gap between ANN structures and kernel-
machine regressions for the construction of vector-valued surrogate models.

The effectiveness, the strength and the performance of the above methodolo-
gies are investigated and discussed on several application examples by considering
the UQ, the optimization and the parametric modeling of realistic electromagnetic
structures and electronic devices.

16

Chapter 1

Introduction

1.1 Introduction
Understanding the link between the parameters and the responses of complex

electrical and electronic systems and devices is a key aspect during the design phase.
A deep knowledge of the system functioning can be used along with optimization
and uncertainty quantification (UQ) tools, to optimize the product performance,
to meet the design constraints and to assess the product reliability [1, 2]. Unfor-
tunately, for realistic applications the relationship between the parameters and the
outputs of the system is rather complicated and usually not explicit. Therefore, the
above design tasks must be carried out by means of either physical (measurements)
or computer experiments (simulations).

Computer experiments are usually preferred during the early design phase.
Physical experiments can be expensive and time consuming, since they require the
construction of several prototypes. As computing power increases, it has become
possible to model and mimic the actual behavior of electronic circuits via sophis-
ticated computer codes. Hence, computer experiments are now heavily adopted
during the design phase [3].

Indeed, computer experiments also known as simulations, allow to synthetically
explore the design space (i.e., the configurations of the input parameters) with the
aim of evaluating their impact on the system performance and reliability. They
rely on the so-called computational model. The computational model must provide
an accurate parametric description of the actual behavior of the system under
modeling, able to virtually compute, without the need of expensive prototypes, a
prediction of the outputs of interest for any configuration of the system parameters.

As illustrated in Fig. 1.1, a computational model provides a forward map be-
tween the parameter space and the output of interest. Without loss of generality,
the computational model can be interpreted as a function:

17

Introduction

Figure 1.1: Computational model determining the relative contribution of input
variables

y = M(x) + ε0, (1.1)

such that M(·) : X → Y where X ⊆ Rd represents the domain of d input param-
eters, Y ⊆ R represents the corresponding scalar1 output and ε0 is the noise term
corrupting the actual output values (e.g. numerical noise).

The computational model can have different levels of fidelity going from a simple
closed-form analytical solution (usually available for simple devices) to the more
sophisticated cases of physical-based models (e.g., the ones based on 3D full-wave
solvers). It goes without saying that the model complexity heavily impacts its
computational cost. A detailed physical-based computational model can be com-
plicated to manage and analyze, thus making the design process lengthy [2, 3, 4,
5, 6].

1.1.1 Computational Model and Uncertainty Quantifica-
tion

Uncertainty quantification (UQ) represents an essential task in the early-stage
design of electronic components and devices, since it allows to account for the
impact of process variation. In the above scenario, Monte Carlo (MC) simulation
can be seen as the most straightforward way to deal with the inherently statistical
nature of the problem at hand.

An illustration of the MC method is shown in Fig. 1.2. The MC sampling allows
analyzing the impact of random input variables on a given set of outputs of interest
by considering the results of a large number of parametric simulations (usually in
the order of thousands), in which the value of the stochastic parameters is drawn

1A scalar output formulation is used for the sake of simplicity.

18

1.1 – Introduction

according to their probability density function (PDF). Such brute force approach
turns out to be extremely robust and easy to implement within the simulation
flow used by most of the commercial circuital and full-wave solvers, but it is also
characterized by a low efficiency and by a non-negligible computational cost [7].

As an example, if a single simulation with the computational model requires 1h,
the computational cost of a Monte Carlo (MC) simulation with 10k samples will
be 1 month!!!

Figure 1.2: Illustration of the Monte Carlo method for calculating probabilities of
the model output of interest in an uncertain process via repeated random sampling.

1.1.2 Computational Model and Optimization
Undoubtedly, optimization can be considered as the crucial step during the de-

sign of electrical and electronic devices, since it allows to optimize the product
performance and to meet the design constraints. The underlying idea is to explore
the parameter space seeking a configuration of the design parameter able to maxi-
mize or minimize a given cost function. As an example, we can think of optimizing
the electrical parameters of an amplifier to get a given gain in a specific bandwidth
or to optimize the parameters of a filter to keep the conductive emissions of a device
below a given threshold.

Figure 1.3 provides a simple illustration of the optimization process. It is usually
based on an iterative scheme. During the first iteration, an initial configuration x0
of the optimization parameters is randomly or quasi-randomly chosen according
to their range of variation, indeed such parameters can be interpreted as uniform
distributed random variables. Then the initial guess x0 is used as input for a
simulation run with the computational model providing as a result the output or
a set of outputs of interest. If we are so lucky that the simulation result meets the
optimization constraints, the algorithm can be stopped. However, in most of the
cases the optimization algorithm requires several iterations in which the simulation
results obtained in the previous steps are used together with an optimization scheme
(e.g., gradient descent algorithm, particle swarm optimizer, etc...) in order to

19

Introduction

generate a new configuration of the input parameters to be simulated until all the
optimization constraints have been satisfied.

It is important to remark that the number of iterations, and thus the number
of simulations to be run with the computational model can be huge (e.g. in the
order of 1000) for complicated problem [3]. This makes the optimization proce-
dure described above rather expensive in term of computational time, especially
when accurate and computational expensive models are used to carried out the
simulations at each iteration.

Figure 1.3: Illustration of a generic optimization scheme based on the computa-
tional model.

1.2 Surrogate Models

1.2.1 What is a Surrogate Model?
Surrogate models, also known as metamodels, provide an efficient alternative to

the computational model in computationally expensive tasks such as UQ and opti-
mization, thus providing an effective solution able to alleviate their computational
cost [3].

A surrogate model is “a model of a model”. It allows to provide a closed-form and
fast-to-evaluate model able to mimic the actual input-output relationship provided
by the computational model. Once the surrogate model for a given structure is
available, it can be easily embedded within UQ and optimization tasks presented
in Sec. 1.1.1 and 1.1.2 as an efficient alternative to the computational expensive
computational model.

As depicted in Fig. 1.4, a surrogate model is built via a regression or interpola-
tion technique based on the information provided by a small set of training samples
calculated via the computationally expensive computational model. The data set
used for training the surrogate model is referred to as training set. The samples

20

1.2 – Surrogate Models

belonging to the training set are carefully selected in order to explore the design
space (i.e., the domain of the input parameters) as much as possible [3, 8].

Figure 1.4: Surrogate model training by using a data-driven approach

After the training, since the resulting surrogate model is known in a closed-
form, it can be suitably embedded with the optimization and UQ framework as an
efficient alternative to the plain computational model. It is important to stress that
the performance of the resulting surrogate model, in terms of accuracy with respect
to the number of training samples, unavoidably depends on the model structure
and the regression technique used to build it [7].

1.2.2 Modeling Challenges and Thesis Motivations
Without loss of generality, the “ideal” interpolation or regression technique for

constructing the above-mentioned surrogate models should have the following fea-
tures [3]:

• Learn complex non-linear input-output relationship;

• Handle a large number of input variables with large parameter variations;

• Deal with possible multi-output or vector-valued problems;

• Converge fast in terms of accuracy w.r.t. the number of training samples;

• Deal with complex-valued problems.

Despite the enormous efforts which have been spent by the academic community
in order to develop advance regression and interpolation techniques, no state-of-
the-art technique exists complying with all the aforementioned features, since each
technique has its own advantages and drawbacks.

In the above scenario, Machine Learning (ML) inspired and data-driven tech-
niques have shown some interesting performance and features for the surrogate
model construction [9, 10] and macromodels [11, 12]. The aim of this thesis is to

21

Introduction

explore and in same cases to enhance state-of-the-art ML techniques with the aim
of providing a set of effective and unconventional solutions to the above challenges.

1.3 Thesis Organization
The thesis is organized as follows. Chapter.2 presents a quick overview of state-

of-the-art supervise machine learning regressions with the aim of highlighting their
advantages and drawbacks for the surrogate modelling construction. Chapter.3 in-
vestigates the performance of prior knowledge-based machine learning (PKBML)
surrogate modeling technique for the prediction of the per-unit-length (p.u.l.) pa-
rameters of the hybrid copper-graphene on-chip interconnects. Chapter.4 discusses
an extension of the mathematical framework of the least-square support vector ma-
chine (LS-SVM) regression with the aim of extending its applicability to complex-
and vector-valued problems via data compression. Chapter.5 presents an alter-
native generalized vector-valued formulation of a well-consolidated kernel-machine
regression, such as the kernel ridge regression (KRR). The proposed methodology is
based on a generalized definition of the reproducing kernel Hilbert space (RKHS)
and kernel functions to the case of vector-valued learning problem. And finally,
conclusion and future work are drawn in Chapter.6.

22

Chapter 2

State-of-the-art Supervised
Machine Learning Regressions

This chapter presents an overview of state-of-the-art supervised machine learn-
ing regressions for the surrogate modeling construction. Specifically, three types of
regression techniques, classified according to their model structure, will be discussed
along this chapter, such as:

• Linear basis function regression

• Artificial neural network

• Kernel machine regression

The above regression techniques will be briefly presented to highlight their ad-
vantages and drawbacks for the construction of surrogate models. The performance
of the considered methods in terms of efficiency and accuracy with respect to the
number of training samples are investigated and discussed on realistic applications
with the help of two illustrative examples.

2.1 Learning from Data: Learning Paradigm &
Surrogate Model

The aim of this section is to address in a rigours way the problem of constructing
a surrogate model. First of all, let us briefly recall the definition of the computa-
tional model provided in the previous chapter. From a mathematical point of view,
a generic scalar-valued computational model M, provides a forward map describing
the input-output behavior of parametric system, such as:

y = M(x) + ε0, (2.1)

23

State-of-the-art Supervised Machine Learning Regressions

where x = [x1, . . . , xd]T ∈ X , with X ⊆ Rd, represents the input design parameters,
M(x) ∈ Y with Y ⊆ R is the actual noiseless system output, ε0 represents a
possible random noise superimposed to the actual system output and y ∈ R is
corresponding noisy response.

Our goal is to use a regression or interpolation technique in order to estimate the
optimal values of the unknown coefficients collected in the vector w∗ characterizing
a surrogate model M̃(x; w), such that:

M(x) ≈ M̃(x; w∗), (2.2)
for any x ∈ X .

The meaning of the above equation is rather quantitative, but also quite weak
from the mathematical point of view due to the symbol “≈”. Indeed, what does it
mean approximating a function?

The above training process can be recast in a more rigorous way in terms of an
optimization problem. Specifically, all the regression and interpolation techniques
can be formulated in terms of the so-called empirical risk minimization (ERM).
Given a set of training pairs D = {(xl, yl)}L

l=1, where xl ∈ X ⊆ Rp represents
the configuration of the training input and yl ∈ Y ⊆ R are the corresponding
scalar outputs computed via the computational model in. (2.1), we seek the optimal
configuration of the coefficient vector w, characterizing a generic surrogate model
M, as the solution of the following ERM [13]:

w∗ = arg min
w

L∑︂
l=1

ℓ
(︂
M̃(xl; w), yl

)︂
, (2.3)

where ℓ(·) is generic loss function measuring the “error” between the training out-
puts and the predictions of the surrogate model M̃ evaluated on the corresponding
training inputs.

The above ERM estimates the best set of model coefficients w as the ones that
minimizes the empirical mean of the cost function ℓ computed on the available
training set D. Several loss-function are available in the literature. Among them,
the most common one is the squared loss, which measure the square of the model
error on the training set, i.e.,

ℓS

(︂
M̃(xl; w), yl

)︂
= (yl − M̃(xl; w))2, (2.4)

for l = 1, . . . , L.
The training set D is obtained by drawing samples xi of the input variables ran-

domly or pseudo-randomly, and computing the corresponding system responses yi.
As an example, the latin hypercube sampling (LHS) represents a widely used and

24

2.2 – Standard Regressions based on Basis Function

effective strategy to randomly sample the design space with good exploration prop-
erties [8]. Once the model M̃(x; w∗) is built via the training set D, its accuracy
is investigated on the test set T = {(x1, y1), . . . , (xT , yT)}, which collects an un-
seen set of sample pairs, which were not been used during the training phase, i.e.,
D ∩ T = ∅ [14].

2.2 Standard Regressions based on Basis Func-
tion

Regression models based on basis function can be seen as the most straightfor-
ward way to built a surrogate model. The underlying idea is to apply the ERM
minimization of Eq. (2.3), in order to estimate the coefficient of a regression model
M(x; w) defined as a linear combination of basis function and regression coeffi-
cients, such as:

M̃(x; w) =
D∑︂

n=1
ϕn(x)wn = ⟨w, Φ(x)⟩, (2.5)

where ϕn(x) are the basis functions and wn are the corresponding regression coef-
ficients (i.e., w = [w1, . . . , wD]T).

2.2.1 Ordinary Least Squares (OLS) Regression
Ordinary Least Squares (OLS) regression undoubtedly represents the most intu-

itive and well-known technique for the construction of a surrogate model in terms of
a weighted linear combination of basis functions. For the case of the OLS regression,
the ERM in 2.3 writes:

min
w

L∑︂
l=1

(yl − ⟨w, Φ(xl)⟩)2 . (2.6)

The above optimization problem can be rewritten in its matrix form as:

min
w

(︂
y − ΦT w

)︂T (︂
y − ΦT w

)︂
, (2.7)

where ΦT ∈ RL×D is a matrix collecting the basis functions evaluated on the
training inputs, i.e.,:

ΦT = [ϕ(x1), . . . , ϕ(xL)]T , (2.8)
and y = [y1, . . . , yL]T ∈ RL is a vector collecting the training outputs. According
to the above definition the l-th training output is approximated as:

25

State-of-the-art Supervised Machine Learning Regressions

yl ≈
[︂
ΦT w

]︂
l
= ϕ(xl)T w. (2.9)

The solution of Eq. (2.7) leads to the well-known closed-form solution of the
OLS regression based on the pseudo inverse matrix [4]:

w = (ΦΦT)−1Φy. (2.10)
The OLS regression is extremely flexible, since the only restriction for the se-

lection of the basis functions is that the squares matrix (ΦT Φ) must be invertible.
Moreover, the model parameters for the OLS regression can be estimated in a closed
form via the simple matrix relation in Eq.(2.10). The above features motivate the
popularity of the OLS techniques. On the other hand, such simple approach has
two main limitations, restricting its applicability and effectiveness in complex re-
gression problems. First of all, the OLS regression provides a parametric model
in which the number of regression unknowns (i.e., the regression coefficients wn) is
equal to the number of basis functions (i.e., the dimensionality of ϕ). This leads to
the infamous curse of dimensionality [4] (i.e. a reduction of the model efficiency,
when the model complexity increases), thus making the application of such method
impractical for systems with many input parameters or requiring a large set of basis
functions. In addition to that, the OLS metamodels suffer from high variance and
are usually affected by overfitting.

2.2.2 Ridge Regression
Ridge regression shares the same model structure used by the OLS regression,

but it allows to limit the overfitting issue of the OLS via a regularization process.
The regularization process or regularizer is a penalty, which is added to the loss
function to limit the value of the regression coefficients, thus improving the model
generalization and limiting its variance, mitigating the overfitting issue [15].

The regression training reduces to the solution of the following penalized ERM:

min
w

L∑︂
l=1

(yl − ⟨w, ϕ(xl)⟩)2 + λ∥w∥2, (2.11)

where the extra term ∥w∥2 is the Tikhonov regularizer used to limit the L2-norm
of the regression coefficients and λ ≥ 0 is the regularizerd parameters acting as a
weight for the regularizer contribution. Such parameter λ is usually referred to as
hyperparameter, since, different from the regression coefficients w, its value cannot
be estimated via the training set.

From Eq. (2.11), it is easy to see that by increasing the value of the hyperpa-
rameter λ, we are limiting the maximum norm allowed by the regression coefficients
in w, thus penalizing the error on the training samples. In such a way, by changing
the value of λ, we are able to tune the model bias and variance.

26

2.2 – Standard Regressions based on Basis Function

Similar to the OLS, for any given value of λ, the optimal coefficients w∗(λ) can
be computed in a closed form as:

w∗(λ) = (ΦΦT + λI)−1Φy, (2.12)

where I ∈ R(N+1)×(N+1) is the identity matrix.
Thanks to the regularizer, Ridge regression allows to overcome the overfitting

issue, even if a dedicated algorithm must be implemented for the tuning of the
regularizer hyperparameters. However, similar to the OLS, the obtained model is
still a parametric one.

2.2.3 Hyperparameter Tuning
The tuning of the hyperparameter λ is a key step of the training phase since it

allows to reduce the overfitting and to improve the model robustness to the noise.
The tuning of hyperparamaters, such as the λ in Eq. (2.12) must be carried out via
dedicated algorithms based on two different strategies: the validation set and the
cross-validation [15].

2.2.4 Validation Set
The underlining idea used by the validation set is to partition the available data

into 3 sets: the training set D = {(xi, yi)}L
i=1, the validation set V = {(xi, yi)}V

i=1
and the test set T = {(xi, yi)}T

i=1 such that D∩V ∩T = ∅, and to use the validation
set to tune the hyperparameters of the model.

For doing that, a possible set of values for the hyperparameter λ (e.g., log-spaced
values λ = 10−2,10−1,1, . . . ,105) is defined. In the next step, the training set is used
to build a metamodel M̃(λ)(x) for each value of λ defined in the previous step. For
each metamodel M̃(λ)(x), the error on the validation set V is calculated by using
a given figure of merit, e.g., for the mean square error (MSE) writes:

MSE
(λ)
validation = 1

V

∑︂
(x,y)∈V

(y − M̃(λ)(x))2. (2.13)

The optimal value λ∗ of gthe hyperparameter is chosen as the one which mini-
mizes the above validation error, such as:

λ∗ = arg min
λ

MSE
(λ)
validation. (2.14)

The main limitation of the above approach is that by partitioning the available
data into three sets, we are drastically reduce the number of samples which can be

27

State-of-the-art Supervised Machine Learning Regressions

used for learning the model, and the results can depend on a particular random
choice for the samples pairs in the train and validation set [15, 16].

2.2.5 Cross Validation
Cross-validation (CV) can be seen as an effective alternative strategy in which

the validation set is no longer needed. The basic approaches are the k-fold and
Leave-one-out CV. Such strategies can be computationally expensive, but they
do not waste too many data, which is a major advantage in problems where the
number of samples is “small”. In the k-fold CV, the training set is split into k
smaller sets, called “folds”. For each of the k folds, a metamodel is trained using
k − 1 folds as training data and the remaining fold is used as validation set. The
above scheme is iterated for all the k-fold. For each value of the hyperparameter
λ, the overall model performance calculated by the k-fold CV as the average of the
values computed during the k iterations. The common choice for k is usually 5 or 10,
as these values have been shown empirically to yield test error rate estimates that
suffer neither from excessively high bias nor from very high variance. When k = 1
the k-fold validation is called leave-one-out (LOO) cross-validation. An illustration
of the k-fold CV for the case in which we have L = 100 training samples and 5
folds (i.e., k = 5) is shown in Fig. 2.1.

20 20 20 20 20

20 20 20 20 20

Step 1

Step 2

Step 5 20 20 20 20 20

test fold train foldlegend

fold 1 fold 2 fold 3 fold 4 fold 5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Figure 2.1: Illustration of the k-fold cross-validation with K=5 and L=100 training
samples.

Specifically, the step-by-step procedure for the above algorithm can be summa-
rized as follows. At first, the training data D = {(xi, yi)}L

i=1 is split into K separate
datasets of equal size Dk = {(xk,i, yk,i)}L̃

i=1 with L̃ = L/K, such that D = ∪K
k=1Dk.

Then for each k = 1 . . . , K, we fit the model M̃(λ)
−k by considering the training set

D excluding the k-th fold. We use the model M̃(λ)
−k to compute the fitted values on

the observations Dk. The latter can be considered as the validation set, since the
model M̃(λ)

−k has been trained excluding this fold.
The CV error can computes for the k-fold as following:

28

2.3 – Artificial Neural Network

CV
(λ)

error,k = 1
L̃

∑︂
(x,y)∈Dk

(︃
y − M̃(λ)

−k(x)
)︃2

. (2.15)

The overall model CV error for a given value of the hyperparameter λ is defined
as the average of the CV error computed on the available folds, and writes:

CV (λ)
error = 1

K

K∑︂
k=1

CV
(λ)

error,k (2.16)

The optimum value of the hyperparameter λ∗ is selected as the one that minimizes
the corresponding overall CV error CV (λ)

error, i.e.,

λ∗ = arg min
λ

CV (λ)
error. (2.17)

After selecting the optimal value λ∗, the performances of the metamodel M̃(λ∗)

are evaluated by computing the error on the test samples.

2.3 Artificial Neural Network
ANN regressions can be seen as viable way to overcome to the inherent para-

metric nature shared by regression models based on linear basis function expansion.
Indeed, ANN allows to train non-parametric models in which the model parameters
to be estimated during the training phase depends on the network structure and
turns out to be independent from the number of input parameters.

According to the universal approximation theorem [17], ANN structures can
approximate any non-linear function, or a set of functions for the multi-output case,
via a collection of artificial neurons connected together and organized in layers. In
such structure the role of regression unknowns is played the bias term b and by
the synaptic weights wij. The overall structure turns out to be extremely flexible,
without any limitation in terms of number of layers, neurons per layer, number
of outputs, etc... The first and last layers are called the input and output layer,
respectively, while the other layers in between are named hidden layers. If there is
more than 1 hidden layer the neural network is called deep neural networks.

As an example, a generic NN structure with ni = d input parameters and a
single hidden layer with nh = 3 neurons is depicted in Fig. 2.2. For the proposed
example, the input-output map obtained by the ANN writes [18]:

M̃ANN(x; w) = σo

⎛⎝nh=3∑︂
j=0

w
(2)
j σh

⎛⎝ni=d∑︂
i=0

w
(1)
ji xi

⎞⎠⎞⎠ , (2.18)

29

State-of-the-art Supervised Machine Learning Regressions

Figure 2.2: Basic ANN architecture with a single hidden layer.

where the vector w collects the set of weights w
(1)
ji and w

(2)
j of the input and

hidden layer, respectively, and the corresponding bias parameters (i.e., w
(1)
j0 = bj

and w(2)
o = b(2)) to be estimated during the training phase. The functions σh(·) and

σo(·) are the activation functions (usually non-linear functions) associated to each
neuron belonging to the hidden and output layer, respectively.

Several activation functions are available in the literature, such as: linear, sig-
moid, tangent hyperbolic, rectified linear unit and softmax function [18]. For in-
stance, one of the activation function is the logistic sigmoid function [17, 19, 20],
which writes:

σ(s · v) = 1
1 + e−s·v . (2.19)

Similar to the previous methods, the model training can be written in terms of
the following ERM:

w∗ = argmin
w

L∑︂
i=1

Ei(w) = argmin
w

1
2

L∑︂
i=1

(︂
yi − M̃ANN (xi; w)

)︂2
. (2.20)

However, different from the OLS and ridge regression presented in the previous
section, the above optimization can not be solved in a closed-form. Indeed, the
mathematical model describing the input-output map obtained by the ANN is usu-
ally not linear with respect to the model unknowns (i.e., the weights and bias),
since they appear within the argument of the activation functions. This allows
learning very complex non-linear behaviors, but on the other hand, the non-linear
structure of the ANN model makes the ERM in Eq. (2.20) a non-convex optimiza-
tion problem with several local minima. Such optimization is usually solved with
the help of advance optimization algorithms, such as:

30

2.4 – Kernel Based Regressions

• Gradient Descent [18]: w(τ+1) = w(τ) − η∇E
(︂
w(τ)

)︂
• Stochastic Gradient Descent [21]: w(τ+1) = w(τ) − η∇Ei

(︂
w(τ)

)︂
• ADAM (Adaptive Moment Estimation) [21]: adaptive algorithm (in which η

can be different at each iteration) for stochastic optimization

in which the gradients are calculated via the Back propagation algorithm [22].
It is important to remark that the non-convex nature of the ERM associated

to the ANN makes the training phase rather complicated and data-hungry [23,
24]. Thus limiting the accuracy of ANN-based regression in surrogate modeling
applications in which a small set of training sample is available. On the other
hand, ANN structures are extremely flexible, since users can easily add or remove
neurons and layers.

2.4 Kernel Based Regressions
Similar to ANN regression, kernel-machine regressions allow overcoming the

curse of dimensionality shared by regression models based on basis functions, since
they allow to build non-parametric models. Kernel methods in machine learning
owe their name to the use of kernel functions. The kernel quantifies similarities
between input samples and thanks to the kernel tricks, they allow to build non-
parametric models in which the number of regression unknowns to be estimated
turns out to be independent from the model complexity and thus from the number
of input parameters.

2.4.1 Support Vector Machine Regressions
Support vector machine (SVM) represents one of the most popular machine

learning tool for both classification and regression. Within the proposed regression
scenario, SVM regression has shown interesting features such as: robustness to
noise and model sparsity.

The primal space formulation for the SVM regression can be written as a stan-
dard basis function expansion, i.e., [25, 26]:

M̃SV M(x) = ⟨w, Φ(x)⟩ + b =
D∑︂

n=1
wiΦi(x) + b (2.21)

where w ∈ RD is a vector collecting the regression coefficients, b ∈ R is the bias
term and Φ(x) = [ϕ1(x), . . . , ϕD(x)]T is a nonlinear map Φ(·) : Rd → RD which
maps the parameter space of dimension d into the feature space of dimension D.

31

State-of-the-art Supervised Machine Learning Regressions

It is important to remark that the definition of the primal space formulation
of the SVM regression in Eq. (2.21) turns out to be equivalent to a classical linear
regression, like the ones presented in the previous Sections (e.g., OLS and ridge
regressions). Indeed, also in this case, the number of regression unknown (i.e., the
cardinality of w) is equal to the dimensionality of the feature space (i.e., D) defined
by the nonlinear map Φ(x).

For the primal space formulation of the SVM regression, the unknowns (w, b)
in Eq. (2.21) is obtained via the following regularized ERM:

min
w,b

1
2∥w∥2

2⏞ ⏟⏟ ⏞
Regularizer

+ C

L

L∑︂
i=1

|yi − M̃SV M(xi; w, b)|ε⏞ ⏟⏟ ⏞
Empirical Risk

(2.22)

= min
w,b

1
2∥w∥2

2 + C

L

L∑︂
i=1

|yi − (⟨w, Φ(xi)⟩ + b) |ε, (2.23)

where, different from the Ridge regression, the above optimization uses as loss
function the linear ε-insensitive loss function denoted as | · |ε, defined as [25]:

|yi − M̃SV M(xi)|ε =
⎧⎨⎩0, if |yi − M̃SV M(xi)| ≤ ε

|yi − M̃SV M(xi)| − ε, otherwise.
(2.24)

Figure 2.3 (left panel) provides a graphical interpretation of the above opti-
mization problem. The underlying idea is to minimize the upper ξi and lower ξ∗

i

deviations of the training samples which lay outside the ε-insensitive zone (gray
area), but at the same time with the help of a ridge regularizer, we are also maxi-
mizing the model flatness to avoid overfitting.

Minimizing the risk function Eq. (2.24) with respect to the ε-norm is equivalent
to find the pair (w, b) in Eq. (2.23), that minimizes the deviation of the model
from the training samples outside the ε-insensitive zone. Therefore, the ERM in
Eq. (2.23), can be recast as [26]:

minimize 1
2∥w∥2 + C

L∑︂
i=1

(ξi + ξ∗
i)

subject to

⎧⎪⎪⎨⎪⎪⎩
yi − ⟨w, xi⟩ − b ≤ ε + ξi

⟨w, xi⟩ + b − yi ≤ ε + ξ∗
i

ξi, ξ∗
i ≥ 0,

(2.25)

where ξi, ξ∗
i are slack variables that indicate a positive and negative deviation of

the training samples lying outside of the ε-intensive zone, whereas C is the hy-
perparameters of the regularizer (i.e, it is equivalent to the 1

λ
used in the Ridge

32

2.4 – Kernel Based Regressions

regression) providing a trade-off between the accuracy of the model and its flatness
empirically chosen by the user [27].

The optimization problem with inequality constraints in Eq. (2.25) is trans-
formed into its dual problem [26, 27] and then solved by minimizing the corre-
sponding Lagrangian function. The solution allows estimating the optimum w via
a linear combination of the training patterns Φ(xi), and writes,

w =
L∑︂

i=1
(αi − α∗

i)Φ(xi), (2.26)

where αi, α∗
i ∈ [0, C] are the pertinent Lagrange multipliers related to the con-

straints of the optimization problem. Additional details on the Lagrangian mini-
mization and on the dual problem formulation are available in [26, 28].

x

y

q

q
q

q

q

q q

q

q

q q

ξ∗
l

ξi

+ε
0
−ε

Error

Penality

q
q

-ε +ε

ξ∗
l

ξi

Figure 2.3: Graphical interpretation of the minimization problem Eq. (2.23) and of
the role of ε-intensive loss function in Eq. (2.24) (inspired by [27, 29]).

Substituting Eq. (2.26) in Eq. (2.21) leads to

M̃SV M(x) =
#SV∑︂
i=1

βi⟨Φ(xi)Φ(x)⟩ + b

=
#SV∑︂
i=1

βiK(xi, x) + b, (2.27)

where βi = (αi − α∗
i), #SV is the number of the support vectors (i.e., the training

configurations xi for which either αi or α∗
i do not vanish) which are always less or

equal to the number of training samples L and K(xi, x) = ⟨Φ(xi), Φ(x)⟩ is the
so-called kernel functions defined as the inner product between the basis functions
Φ(x) evaluated at a given training sample xi and the same function at a generic
point x ∈ Rd.

Equation (2.27) does not require an explicit calculation of the inner product
⟨Φ(xi), Φ(x)⟩ which is extremely inefficient when the dimensionality of the D-
space increases. Indeed, the SVM regression is completely defined by the kernel K

33

State-of-the-art Supervised Machine Learning Regressions

without requiring an explicit definition of the nonlinear transformation Φ(x). This
is the so-called kernel trick.

The SVM regression is already implemented within the MATLAB machine
learning toolbox, which includes the following three classes of kernels:

• linear: K(xi, x) = xT
i x;

• polynomial (of order q): K(xi, x) = (1 + xT
i x)q, where q is the kernel hyper-

parameter;

• Gaussian Radial Basis Function (RBF): K(xi, x) = exp (−∥xi − x∥2/ σ),
where σ is the kernel hyperparameter.

In he above
Thanks to the kernel trick, the number of regression unknowns in Eq. (2.27)

(i.e., the coefficients βi) to be estimated by solving the SVM optimization is always
equal to the number of support vectors #SV . In fact, the dual space formulation
of the SVM regression of Eq. (2.27) provides non-parametric model in which the
number of model unknowns are independent from the number of input parameters
d and the dimensionality of the feature space D. Such property can be extremely
useful, since it alleviates the effects of the curse of dimensionality. Also, it is
important to note, the resulting SVM expansion turns out to be sparse. Indeed,
when |yi − MSV M(xi)| ≤ ε, the corresponding Lagrange multipliers αi, α∗

i turn out
to be equal to 0 [28].

The parameter ε in SVM can be introduce as the regression tolerance. As a
result, this kind of regression can be extremely useful to deal with noisy dataset.

2.4.2 Least Square Support Vector Machine Regressions
The LS-SVM regression provides an alternative solution with respect to the

standard SVM regression, which allows recasting the quadratic optimization prob-
lem used by the SVM regression, in terms of a more standard least squares formu-
lation [30].

Similar to the SVM regression, the primal space formulation of the LS-SVM
regression writes:

M̃LS−SV M(x) = ⟨w, Φ(x)⟩ + b. (2.28)

Like the Ridge regression, the minimization problem for the LS-SVM regression
uses a squared loss function and a Tihkonov regularization:

min
w,b

1
2∥w∥2

L2⏞ ⏟⏟ ⏞
Regularizer

+ γ

L

L∑︂
i=1

(︂
yi − M̃LS−SV M(xi; w, b)

)︂2

⏞ ⏟⏟ ⏞
Empirical Risk Function

, (2.29)

34

2.4 – Kernel Based Regressions

The formulation is equivalent to the following one:

min
w,b,e

1
2∥w∥2

L2 + γ
1
2

L∑︂
i=1

e2
i (2.30)

subject to yi = ⟨w, Φ(xi)⟩ + b + ei, for i = 1, . . . , L,

where the terms ei = yi − M̃LS−SV M(xi; w, b) with i = 1, . . . , L are the er-
ror variables and γ is the regularizer hyperparameters which provides a trade-off
between the accuracy of the model and its flatness, playing the same role of the
parameter C in the SVM primal optimization of Eq. (2.25).

x

y

q

q
q

q

q

q

q

q

q

q

q

ξ∗
l

ξi

+ε
0
−ε

(a)
x

y

q

q

q

q

q

q

e1

e2
e3

e4

e6

e7

(b)

Figure 2.4: Panel (a): graphical interpretation of the SVM regression optimiza-
tion problem in Eq. (2.25) (inspired by [27, 29]). Panel (b): illustration of the
corresponding least square formulation in Eq. (2.30) for the LS-SVM regression.

The LS-SVM regression admits a dual space formulation, which writes:

M̃LS-SV M(x) =
L∑︂

i=1
αiK(xi, x) + b, (2.31)

where αi and b are the regression coefficients and bias term, respectively and K is
the kernel function.

Similar to the SVM regression, the above LS-SVM formulation in the dual
space is a non-parametric model in which the number of regression unknowns αi

is independent from both the dimensionality of the dual space D and from the
number of parameters d, but it is equal to the number of training samples L.
However, since a square loss function is used in the penalized ERM, such regression
unknowns can be computed in closed-form as the solution of the following linear
system of equations:

35

State-of-the-art Supervised Machine Learning Regressions

[︄
0 1T

1 Ω + I/γ

]︄ [︄
b
α

]︄
=
[︄
0
y

]︄
(2.32)

where α = [α1, . . . , αL]T , y = [y1, . . . , yL]T , 1T = [1, . . . ,1] ∈ R1×L, I ∈ RL×L

is the identity matrix and Ω ∈ RL×L is the Gram kernel matrix for which the
element Ωij = K(xi, xj) for any i, j = 1, . . . , L. Similar to the SVM regression,
the most common kernel functions adopted in the dual space formulation of the
LS-SVM regression are the linear, polynomial and Gaussian RBF kernel functions.

The LS-SVM regression is already implemented within LS-SVM Lab Toolbox
version 1.8 [31], which is fully compatible with the MATLAB environment.

2.5 Example
The performances of the state-of-the-art regression techniques presented in the

previous Sections are investigated on two different applications consisting of a real
dataset for the wet human skin permittivity [32] and of a hybrid copper-graphene
on-chip interconnect.

2.5.1 Example I: Skin permittivity Dataset
First of all, let us compare standard linear regressions (i.e., OLS and ridge

regression) with kernel machine regressions (i.e., SVM and LS-SVM regression) to
better understand the role of the regularizer. Without loss of generality, the features
of above techniques are investigated on an illustrative example with a single input
parameter. Indeed, working with a 1D-input space will allow us to provide a clear
understanding of the model features via graphical illustrations.

Specifically, the accuracy of OLS, ridge, LS-SVM and SVM regressions are com-
pared on an experimental dataset gathered from [32], collecting the measurements
of the wet human skin permittivity as a function of frequency. The dataset in-
cludes 171 permittivity values in a frequency bandwidth from ∼ 20 Hz to 20GHz
with a large amount of variability. A small subset of 10 measurement data has been
used as training samples, and the remaining 161 samples are used as test samples.
The selected samples have been organized in the training set D = {(xi, yi)}i=1,...,10,
in which xi and yi are the log base 10 of the frequency and permittivity values,
respectively.

The training set D is then used to train surrogate models based on a polynomial
expansion for the OLS and ridge regression and Gaussian RBF kernel expansion
for the LS-SVM and SVM regression. Figure 2.5 shows the prediction obtained
by the above surrogate models. The results highlight the detrimental effect of the
overfitting for the OLS surrogate when a high-order polynomial expansion (order

36

2.5 – Example

101 104 107 1010

f, [Hz]

102

103

104

105

OLS Regression

Actual Function
Training Samples
OLS Model (poly order 3)
OLS Model (poly order 9)

101 104 107 1010

f, [Hz]

101

102

103

104

105

106 Ridge Regression

Actual Function
Noisy Training Samples
Ridge Model (poly order 9)

SVM Regression

101 104 107 1010

f, [Hz]

102

103

104

105

Actual Function
Training Samples
SVM Model

101 104 107 1010

f, [Hz]

102

103

104

105

LS-SVM Regression

Actual Function
Training Samples
LS-SVM Model

Figure 2.5: Permittivity of the wet human skin vs frequency predict by the OLS,
Ridge, SVM and LS-SVM surrogate models

9) is considered. In particular, when a order 9 polynomial expansion is used, the
obtained model fits perfectly the training set, but does not generalized well on the
test set. On the other hand, the plots show the capability of the Ridge, LS-SVM
and SVM regression to provide accurate surrogate models, since the over fitting
issue is limited by the regularizer.

As a further validation, the outputs of the training set are corrupted by an
additive Gaussian noise mimicking measurement error, as follows:

ỹi = yi × (1 + ε), (2.33)

where ε ∼ N (0, σ2
ε) is a Gaussian variable with zero mean and standard deviation

σε = 0.05.
The predictions obtained by the surrogate models built with the noisy training

set are shown in Fig. 2.6. The plots show again the loss of accuracy of the surrogate
model based on OLS with order 9, as well as the beneficial effect introduced by the

37

State-of-the-art Supervised Machine Learning Regressions

101 104 107 1010

f, [Hz]

101

102

103

104

105

106 OLS Regression

Actual Function
Noisy Training Samples
OLS Model (poly order 3)
OLS Model (poly order 9)

101 104 107 1010

f, [Hz]

101

102

103

104

105

106 Ridge Regression

Actual Function
Noisy Training Samples
Ridge Model (poly order 9)

SVM Regression

101 104 107 1010

f, [Hz]

101

102

103

104

105

106

Actual Function
Noisy Training Samples
SVM Model

101 104 107 1010

f, [Hz]

101

102

103

104

105

106 LS-SVM Regression

Actual Function
Noisy Training Samples
LS-SVM Model

Figure 2.6: Permittivity of the wet human skin vs frequency which corrupted by
noise predicted by the OLS, SVM and LS-SVM surrogate models .

regularizer adopted by the Ridge, SVM and LS-SVM. Due to the overfitting, the
model trained via the OLS fits perfectly the noisy training samples, but it does not
generalize well on the test samples. Also, the ε-insensitive loss function (light red
area in Fig. 2.6) makes the SVM regression to be more effective and accurate with
noisy samples.

It is important to remark, that the above analysis does not investigate the curse
of dimensionality issue affecting standard linear regressions, being the latter issue
harder to illustrate (i.e., the dimensionality of the input space must be heavily
increased) and already addressed in several publications [32].

2.5.2 Example II: Hybrid Copper-Graphene On-Chip In-
terconnects

This section aims at comparing the performance of the ANN and kernel-machine
regressions (i.e., the SVM and LS-SVM regression) based on a realistic test case

38

2.5 – Example

consisting of a hybrid copper-graphene on-chip interconnect. Specifically, the above
techniques are hereafter adopted in order to build a surrogate model able to predict
the impact of 8 geometrical parameters on the p.u.l. resistance (R), inductance
(L), and capacitance (C) matrices characterising the 3-conductor hybrid copper
graphene interconnect shown in Fig. 2.7. The considered 8 geometrical parameters
and their range of variation are provided in Tab. 2.1.

For the considered structure, the computational model consists in a parametric
implementation in ANSYS Q3D. Additional detail on this regard will be given in
Chap. 3. The ANSYS Q3D implementation allows computing the p.u.l. parameters
specified above for any configuration of the considered input parameters within their
range of variability and it is used together with a latin hypercube sampling (LHS)
to generate the training and test samples.

Figure 2.7: Cross-section view of the hybrid interconnect structure considered in
this example.

Table 2.1: Design parameters for the hybrid copper graphene interconnect in
Sec. 2.5.2.

Design Parameters Nominal Values (nm) Variation
1 Width (w) 18 30%
2 Thickness (t) 37.8 30%
3 Spacing between Line 1 and 2 (S1) 13 30%
4 Spacing between Line 2 and 3 (S2) 17 30%
5 Height of Interconnect from GND Layer (h1) 37 30%
6 Total Height of Dielectric (H) 113.8 20%
7 Barrier Layer Thickness (tgr) 1 30%
8 Dielectric Constant (ϵr) 3.9 30%

The training set has been used to train three different surrogate models based
on the ANN, SVM and LS-SVM regressions. The ANN surrogates used a single

39

State-of-the-art Supervised Machine Learning Regressions

hidden layer and are trained using the Levenberg-Marquardt optimizer with back-
propagation as available in the ML toolbox in MATLAB. The SVM and the LS-
SVM based surrogate models are trained in MATLAB via built-in functions and
the LS-SVM lab v1.8 toolbox [33]. Specifically, the SVM-based surrogates are
optimized using a Bayesian optimizer with 5-fold cross-validation (CV) error [34] for
a maximum of 30 iterations, while the LS-SVM surrogates use the same Bayesian
optimizer with a leave-one-out CV error [33] for a maximum of 25 optimization
steps.

For each of the above regression techniques, the corresponding surrogate model
has been trained by considering an increasing number of training samples, i.e., L =
35, 140 and 700 samples. Then, the model performance are evaluated on the same
test set consisting of 500 samples. Table 2.2 provides an exhaustive comparison
among the considered techniques in terms of training time, average and maximum
normalized root mean square (NRMS) computed on the 9 p.u.l. parameters for
L = 35, 140, and 700 training samples. The NRMS error is computed as:

εNRMS = 1
Ntest

⌜⃓⃓⎷∑︁Ntest
l=1 (y (xl) − ỹ (xl))2∑︁Ntest

l=1 y (xl)2 × 100, (2.34)

where y(xl) is the true result obtained from the full-wave EM solver and ỹ(xl) is
the result predicted by the considered surrogate model.

The results highlight the improved convergence of the test error with respect to
the number of training samples (i.e., L) achieved by the surrogate model trained
via kernel-machine regressions (i.e., SVM and LS-SVM) compared to the ANN.
Moreover, the training time for the kernel-machine regressions turns out to be ex-
tremely faster compared to the corresponding models trained via ANNs, especially
when a relatively small training set is considered. Such training costs can be con-
sidered negligible compared to the ones related to the training set generation via
the computational model (see the first row in Tab. 2.2). It is important to remark
that after the training, the evaluation of each of the proposed surrogate models on
500 configuration is in the order of seconds, with a huge speed up compared to the
corresponding evaluations with the computational model.

Table 2.2: Accuracy and time cost comparison between the considered surrogate
models for a training dataset with L = 35, 140, and 700 samples

Methods L=35(Cost=105 Minutes) L=140(Cost=420 Minutes) L=700(Cost=2100 Minutes)
Ave

RMSE(%) Max
RMSE

Training
Time (s)

Ave
RMSE(%) Max

RMSE
Training
Time (s)

Ave
RMSE(%) Max

RMSE
Training
Time (s)

SVM 0.85 1.57 190 0.63 1.43 241 0.63 1.42 1804
LS-SVM 0.81 1.5 2.38 0.62 1.41 5.47 0.64 1.46 57.6

ANN 2.28 4.5 3468 1.38 2.79 5994 1.16 2.45 8554

40

2.5 – Example

Moreover, Fig. 2.8 and Fig. 2.9 shows the accuracy of the proposed surrogate
models in terms of NRMSE computed on the test set for an increasing number
of training samples. The results highlight again the improved convergence of the
test error with respect to the number of training samples (i.e., L) achieved by the
surrogate model trained via kernel-machine regressions (i.e., SVM and LS-SVM)
compared to the ANN.

Figure 2.8: Scaling of the testing NRMSE with increasing number of training points
for the values of the L11,L12,R11 and C11 p.u.l. parameters using the different
machine learning metamodel.

The improved performance of the kernel-machine regressions compared with the
ANN in terms of accuracy and computational training cost is motivated by the dif-
ferent complexity of the optimization problem to be solved during the model train-
ing. Indeed, as pointed out in the previous Sections, the training of kernel-machine
regressions requires the solution of a convex optimization, which is unavoidably
simpler to solved compared to the non-convex optimization required by the ANN.

41

State-of-the-art Supervised Machine Learning Regressions

Figure 2.9: Scaling of the testing NRMSE with increasing number of training points
for the values of the C12, C20, C23 and C30 p.u.l. parameters using the different
machine learning metamodel.

2.6 Summary
This Chapter presented an overview of three state-of-the-art regression tech-

niques for the construction of surrogate models such as: linear basis function regres-
sions, artificial neural network and kernel machine regressions. The mathematical
formulation of the above techniques has been briefly presented to highlight their
advantages and drawbacks. Moreover, the performance of the above techniques is
quantitatively investigated on two illustrative examples.

The obtained results can be summarized as follows:

• linear basis function regressions are easy to code, but their performance in
regression problems with several input parameters are limited by the curse of
dimensional and for the OLS regression by overfitting issue;

• ANN-based regression is extremely flexible and allows to lean complex non-
linear input-output behavior providing as a result a non-parametric model.
On the other hand, due to the non-convex nature of the optimization to
be solved during the training phase, the convergence of the ANN accuracy

42

2.6 – Summary

with respect to the number of training samples is usually quite slow. Thus
compromising its applicability in regression problem in which a “small” set
of training data is available;

• kernel machine regressions can be seen as a good compromise between the pre-
vious two techniques. Similar to the ANN, they allow building non-parametric
models, thus mitigating the curse of dimensionality. Moreover, similar to lin-
ear basis function regressions, the linear structure of the regression model
leads to a convex training problem, which sometimes admits a closed-form
solution. For the above reasons, kernel machine regressions are character-
ized by a promising error convergence with respect to the number of training
samples and by a fast training time. Thus making such techniques a good
candidate for the construction of surrogate models in the considered modeling
scenario.

43

44

Chapter 3

Prior Knowledge Based Machine
Learning Surrogate Models

As shown in Sec. 2.5.2, for realistic applications the computational cost related
to the construction of a surrogate model is not dominated by the actual model train-
ing, but by the generation of the training samples. The latter task is usually carried
out via a design space exploration based on several simulations performed with the
computational expensive computational model. As an example, for EM applica-
tions, the training set is usually generated by using many repeated high-fidelity and
detailed full-wave EM simulations, thus leading to a possible high computational
cost. Therefore, reducing the computational cost for the training set generation
can be seen as one of the most important challenge to be addressed in order to
efficiently construct a surrogate model.

To this aim, this Chapter presents a promising solution to the above problem
based on prior knowledge-based machine learning (PKBML) metamodels. Without
loss of generalities, the PKBML surrogate modeling technique is applied on the
example presented in Sec. 2.5.2 by considering the prediction of the per-unit-length
(p.u.l.) parameters of a hybrid copper-graphene on-chip interconnect as a function
of several input parameters. Two different implementations of PKML are considered
and combined with the LS-SVM, SVM and ANN regression.

3.1 PKBML Methods
PKBML methods can be seen as a viable solution for reducing the computational

cost required by the generation of the training set. The underlying idea is to work
with a training set generated as the combination of the results obtained with an
accurate high-fidelity computational model and the ones provided by a course low-
fidelity one. In the considered application, simulations carried out with accurate
and computationally expensive full-wave EM solver will be used as the high-fidelity

45

Prior Knowledge Based Machine Learning Surrogate Models

models, while computationally cheap and approximate empirical formulas will be
used as low-fidelity models [24, 35, 17, 36]. The key idea behind PBKML is to
develop advanced regression solutions aimed at working in an efficient and accurate
way with an heterogeneous training set combining the results obtain by the high-
and low-fidelity computational model.

Indeed, since data generation with the low-fidelity model is unavoidably cheaper
than a corresponding simulation carried out with the high-fidelity one, the possibil-
ity of combining data extracted from both of them enables a better accuracy versus
training time compared with conventional training approaches using data from the
high-fidelity model alone. The metamodels constructed from such PKBML frame-
works are called PKBML metamodels. Specifically, this work presents two PKBML
frameworks for hybrid copper-graphene interconnect modeling based on the source
difference (SD) technique and the prior knowledge input (PKI) technique.

3.1.1 Source Difference (SD) Technique
The source difference (SD) technique uses the predictions of the low-fidelity

model as prior knowledge to accelerate the training of the ML-based surrogate
models. In particular, the surrogate model is trained to learn the difference between
the predictions of the high-fidelity model M(x) and the low-fidelity model Fy(x),
as illustrated in Fig. 3.1.

To this aim, let us define the training set used by the SD technique as:

DSD = {(xl, E (xl))}L
l=1 (3.1)

with
E (xl) = yl − Fy (xl) (3.2)

where yl = M (xl) is the prediction computed via the high-fidelity model and
Fy(xl) is the corresponding output calculated via the low-fidelity model for the
same input parameters xl. This means that both the high- and low-fidelity models
should be evaluated on the same set of training input samples.

The error data of Eq. (3.2) is then used as output training samples to train the
metamodels. It is important to point out that the variance of the training output
samples (i.e., E (xl)) in (3.1), writes:

Var(E(x)) = Var(y(x)) + Var (Fy(x)) − 2 Cov (y(x), Fy(x)) (3.3)
where Var(y(x)) is the variance of the actual output samples predicted by the
high-fidelity model, Var (Fy(x)) is the corresponding one related to the low-fidelity
model and Cov (y(x), Fy(x)) is covariance between them.

Equation (3.3) shows that as the covariance between the predicted outputs of the
low and high-fidelity models increases, the variance of the error quantity in (3.2)

46

3.1 – PKBML Methods

decreases. This, in turn, implies that a smaller number of training samples in
the dataset DSD will be sufficient to capture the variability of the error quantity of
Eq. (3.2). So, for an appropriate low-fidelity model, the number of training samples
required to train a ML metamodel able to emulate the error quantity of Eq. (3.2)
will be much lower than required to emulate the true output y = M(x).

Figure 3.1: Block diagram illustrating how a low-fidelity model and a ML meta-
model can be utilized in a SD technique.

Once the error quantity of Eq. (3.2) is emulated by any surrogate model, the
true output can be recovered simply as the sum of the predicted outputs from the
surrogate and the low-fidelity model as shown Fig. 3.1.

y(x) = E(x) + Fy(x) (3.4)

Therefore, in summary, when the correlation between the high-fidelity model and
the low-fidelity model Fy(x) is high, the SD approach enables a dramatic reduction
of the number of training samples required during the training phase [17, 35, 36].

3.1.2 Prior Knowledge Input (PKI) Technique
Based on Eq. (3.4), it is observed that the SD technique assumes a linear correla-

tion between the low and high-fidelity models. However, such a strong assumption
might lead to loss of convergence of the SD technique when the correlation be-
tween the low and high-fidelity models is actually nonlinear. In such scenarios, the
PKI framework shown in Fig. 3.2 provides a promising alternative to SD able to
overcome the above limitation [23]. The underlying concept of the PKI technique
is to represent the true output as a nonlinear function of the predictions of the
low-fidelity model Fy(x) to which is added the error quantity previously defined
in (3.2), such as:

47

Prior Knowledge Based Machine Learning Surrogate Models

y(x) = G (Fy(x)) + E(x), (3.5)
where G(.) is an appropriate nonlinear function to be learn during the regression
model training. The expression of (3.5) can be expressed even more compactly
using a new nonlinear function H(.) as

y(x) = H (Fy(x), x) , (3.6)
in which the output of the high-fidelity model y = M(x) is obtained as a nonlinear
combination of the input parameters x and the output of the low-fidelity model
Fy(x). The nonlinear map H(·) in (3.6) can be learnt via a generic ML regression
using a new training dataset:

DP KI = {(x̃l, yl)}L
l=1 , (3.7)

where the new input space x̃ is augmented as:

x̃l =
[︄

xl

Fy (xl)

]︄
. (3.8)

Figure 3.2: Block diagram illustrating how a low-fidelity model and a ML meta-
model can be utilized in a PKI technique.

As illustrated in Fig. 3.2, and in (3.6) and (3.8), the PKI formulation uses
the prior knowledge of the low-fidelity model as an additional input for the ML
surrogate model. This prior knowledge guides the ML metamodel to learn the
nonlinear function of Eq. (3.6) using much fewer training data points than what is
conventionally required.

3.2 Example: Surrogate Models for Hybrid Copper-
Graphene On-Chip Interconnects

In this section, the numerical example of Sec. 2.5.2 is used to demonstrate
the advantages of the proposed PKBML techniques of Sec. 3.1, over conventional

48

3.2 – Example: Surrogate Models for Hybrid Copper-Graphene On-Chip Interconnects

ML metamodels and full-wave EM simulations for the signal integrity verification
of hybrid copper-graphene interconnects. In this example, at the first step, the
SD and PKI metamodels are applied to predict the p.u.l. parameters of hybrid
copper-graphene interconnects. Then, the obtained p.u.l. parameters are embedded
in SPICE multi-conductor transmission line (MTL) models to perform transient
analysis and signal integrity verification of the interconnects.

The performance and the capability of the proposed PKBML modeling frame-
work has been investigated by considering the impact of 8 geometrical parameters
on the p.u.l. resistance (R), inductance (L), and capacitance (C) matrices of the
3-conductor hybrid copper graphene interconnect structure shown in Fig. 2.7. Ad-
ditional details on the considered input parameters are provided in Sec. 2.5.2.

The above structure has been implemented as a parametric simulation in AN-
SYS Q3D. The ANSYS Q3D Extractor employs a quasi-static 2D EM solver using
the finite element method (FEM) technique to extract the p.u.l. capacitance pa-
rameters of the network. Next, it employs a quasi-static 3D EM solver using the
method of moments (MoM) technique accelerated by the fast multiple method to
extract the p.u.l. inductance parameters of the network. For all these calculations,
the tool ensures that the calculated values are accurate up-till a user-defined maxi-
mum frequency limit of operation. The maximum frequency limit of operation was
chosen to be 50GHz. The above implementation will be use hereafter as a high-
fidelity computational model and as reference model for the assessing the model
accuracy.

3.2.1 Appropriate Low Fidelity Model for Copper Graphene
Interconnects

Figure 3.3: Left panel: schematic of the hybrid interconnect network showing the
driver and load circuits modeled as linear RC circuits. Right panel: cross-sectional
view of the hybrid interconnect structure.

The use of PKBML requires the availability of a low-fidelity computational
model. For the considered test case, such low-fidelity model for the R, L, and C

49

Prior Knowledge Based Machine Learning Surrogate Models

p.u.l. parameters have been built by using the results available in [37]. Specifically,
the results presented in [37] allow constructing a closed-form analytical approxi-
mation able to efficiently predict the p.u.l. matrices of the considered in hybrid
copper-graphene interconnects [35]. The resulting empirical model is then used
as low-fidelity model together with the PKI and SD techniques. For the sake of
brevity, the detailed description of the empirical models [35, 37] have been avoided.

In order to evaluate the degree of accuracy of the p.u.l. matrices predicted
by the considered low-fidelity model, it is important to assess its correlation with
the results of the high-fidelity one. Indeed, as pointed out in Sec. 3.1, a higher
correlation between the high-fidelity and low-fidelity model will lead to beneficial
effects on the performance and effectiveness of the proposed PKBML framework.

Table 3.1: Statistical analysis of the correlation among the prediction of the con-
sidered high- and low-fidelity models.

Parameters High-Fidelity Model Low-Fidelity Model Corr.CoefMean Std. Mean Std.
R11 108.9 10.39 86.08 13.37 0.99
C10 77.37 8.06 61.58 8.67 0.67
C12 114.24 15.2 148.6 22.34 0.97
C20 62.9 7.14 61.25 8.59 0.66
C23 90.80 12.36 110.66 17.08 0.97
C30 84.89 9.01 69.03 9.54 0.69
L11 4.02 0.03 3.48 0.17 -0.2
L12 3.67 0.02 1.86 0.01 0.93
L13 3.45 0.02 1.71 0.01 0.99

Table 3.1 investigates the correlation between the two models by considering
500 random configurations of the input parameters. While the accuracy of the
low fidelity models is far from perfect, it can be seen that for R11, C12, C23, L12
and L13, there is a very large correlation between the predictions obtained by the
two models, while for C10, C20 and C30, this correlation is good, and for L11 it
is poor. The poor correlation observed for the p.u.l. inductance parameters is
motivated by a standard deviation of less than 1% of its mean value, thus highlight
a small variability of the inductance p.u.l. parameter value as a function of the
considered input parameters. Moreover, Fig. 3.4 shows the resulting scatter plots
providing a visual understanding of the correlation between low-fidelity and high-
fidelity models computed for the same 500 configurations of the input parameters.
The scatter plots confirm the observations made before by showing a strong linear
correlation between the high- and low-fidelity models for the p.u.l. parameters
associated to R11, C12, C23, L12 and L13, a quite strong nonlinear correlation for

50

3.2 – Example: Surrogate Models for Hybrid Copper-Graphene On-Chip Interconnects

the C10, C20 and C30 p.u.l. parameters and a weak non-linear correlation for the
L11 p.u.l. parameter.

Figure 3.4: Scatter plots showing the correlation between the predictions of the
low- and high- fidelity model for the RLC p.u.l. parameters.

3.2.2 Numerical Validations
This section quantifies the benefits of the proposed PKBML metamodels over

conventional ML metamodels and full-wave EM simulations for the signal integrity
verification of hybrid copper-graphene interconnects by considering the scenario
presented in Sec. 2.5.2.

51

Prior Knowledge Based Machine Learning Surrogate Models

For this purpose, several modeling techniques have been considered and com-
pared, such as: conventional ANN, SVM, and LS-SVM metamodels trained by us-
ing the data generated with the high-fidelity model only, and the proposed SD and
PKI variants of the ANN, SVM, and LS-SVM metamodels trained using a combi-
nation of data obtained from the ANSYS Q3D Extractor tool and the low-fidelity
model [37]. All the ML-based metamodels are trained using the same training
dataset, where the number of points in the dataset is progressively increased as
L = {15, 25, 35, 70, 140, 350, 700}. All these training points are selected using the
LHS scheme. For all of the models, the accuracy has been assessed on the same
test set generated via the high-fidelity model consisting of 500 points uniformly
distributed over the entire input parameter space.

Figure 3.6 and 3.5 show the the decay of the testing errors computed as the
NRMSE, defined in (2.34), for the L11, L12, R11, C11, C12, C20, C23 and C30 p.u.l.
parameters achieved by the considered modeling schemes. From Figure 3.6 and 3.5,
we can draw the following observations:

Figure 3.5: Scaling of the testing NRMSE with increasing number of training points
for the values of the L11 and L12 p.u.l. parameters using the different ML metamodel
and their PKI and SD variants.

• the SD and PKI formulations converge much faster than their conventional
formulations presented in Sec. 2.5.2. This is to be expected given that the
SD and PKI approaches exploit the correlation between the results of the
low-fidelity model and the full-wave EM simulations.

• For most ML metamodels, the PKI approach shows a faster convergence
than the SD approach, except for ANNs. This is also expected given that the
PKI approach assumes a general nonlinear correlation between the results of
the low-fidelity model and the full-wave EM simulations as opposed to the
restrictive linear correlation assumed by the SD approach.

52

3.2 – Example: Surrogate Models for Hybrid Copper-Graphene On-Chip Interconnects

Table 3.2: Accuracy and time cost comparison between different metamodels for
training dataset with L = 35, 140, and 700 samples

Methods L=35(Cost=105 Minutes) L=140(Cost=420 Minutes) L=700(Cost=2100 Minutes)
Ave

RMSE(%) Max
RMSE

Training
Time (s)

Ave
RMSE(%) Max

RMSE
Training
Time (s)

Ave
RMSE(%) Max

RMSE
Training
Time (s)

CON 0.85 1.57 190 0.63 1.43 241 0.63 1.42 1804
SVM PKI 0.77 1.56 205 0.62 1.42 253 0.62 1.41 1790

SD 0.82 1.61 220 0.63 1.41 285 0.62 1.40 2645
CON 0.81 1.5 2.38 0.62 1.41 5.47 0.64 1.46 57.6

LS-SVM PKI 0.77 1.56 2.38 0.62 1.41 5.96 0.62 1.41 154
SD 0.81 1.61 2.07 0.62 1.40 5.41 0.64 1.46 145

CON 2.28 4.5 3468 1.38 2.79 5994 1.16 2.45 8554
ANN PKI 1.24 2.42 3213 1 1.84 6287 0.92 1.8 8175

SD 1.17 2.71 3435 0.90 1.69 5948 0.89 1.68 8329

• For a fixed number of training samples, the SVM and LS-SVM metamodels,
whether of the conventional or the SD and PKI variety, are much more ac-
curate than their ANN counterparts. Thus confirming the conclusions drawn
in Sec. 2.5.2.

As further proof of the above observations, Tab. 3.2 provides an exhaustive
comparison among all the considered surrogate models and p.u.l. parameters in
terms of their average and maximum NRMSE computed over all the entries of the
p.u.l. matrices and their training time costs for L = 35, 140, and 700 samples. The
training time costs are divided into two parts: the computational time required to
generate the training dataset (given at the top of the table) and the training time.
The results of Tab. 3.2 clearly show that for the same number of training samples,
the proposed PKI and SD techniques provide a lower testing error compared to the
conventional metamodels. This clearly underlines the universal improved conver-
gence of the proposed PKI and SD techniques. In fact, the PKI and SD variants
of ANN metamodels are sufficiently well trained using only 35 training samples
as opposed to the conventional ANN metamodel that requires roughly 140 (i.e., 4
times larger) number of training samples.

Regarding the computational time costs, Tab. 3.2 shows that the computa-
tional cost for the construction of the proposed surrogate models is dominated by
the generation of the training set. Indeed, the computational cost required for the
generation of the training dataset is undoubtedly higher than the one required for
the model training. This is motivated by the fact that for the generation of the
training dataset repeated computationally expensive simulations with the high-
fidelity modes (i.e., full-wave EM simulations) have to be performed. For example,
the computational time cost required by the ANSYS Q3D Extractor tool for gen-
erating 35 training samples is around 6300 seconds, which is more than 2 times the
time required to train the slowest metamodel. On the other hand, the remarkable

53

Prior Knowledge Based Machine Learning Surrogate Models

Figure 3.6: Scaling of the testing NRMSE with increasing number of training points
for the values of the R11, C11, C12, C20, C23 and C30 p.u.l. parameters using the
different ML metamodel and their PKI and SD variants.

54

3.2 – Example: Surrogate Models for Hybrid Copper-Graphene On-Chip Interconnects

Figure 3.7: Comparison of the scatter plots for the C12 and R12 p. u. l. parameters
computed from the prediction of the proposed metamodels by using as reference
the corresponding values computed via a full-wave EM simulation in ANSYS Q3D
Extractor.

fact of all these techniques is that the time taken by the metamodels to predict
their outputs is extremely small. Indeed, once trained, all of the metamodels take
less than one second for predicting the p.u.l. parameter at any design point. This
makes these metamodels far better suited than full-wave EM simulators for tasks
that require several evaluations, e.g., uncertainty quantification, design space ex-
ploration, sensitivity analysis, etc. The results of Tab. 3.2 are further validated
using the scatter plots of Fig. 3.7.

The accuracy of the resulting model is then investigated with a SPICE transient
analysis of the interconnects structure in Fig. 3.3. To this aim the values of the
p.u.l. parameters predicted by the different ML metamodels showing an accuracy
below 2% NRMS error threshold for ANN metamodels and 1.5% testing error for the
SVM and LS-SVM metamodels are used as input parameters for a SPICE transient
analysis. For this purpose, lines 1 and 3 of the interconnects are excited by voltage
sources with saturated ramp wave forms of rise time Tr = 0.1 ps and amplitude
1 V. Line 2 is the victim line. In Fig. 3.3 (left panel), the values of resistance,
Rs1 = Rs1 = Rs1 = 138.6 Ω. The values of capacitor, Cs1 = Cs2 = Cs3 = 9.4 fF and

55

Prior Knowledge Based Machine Learning Surrogate Models

Figure 3.8: Transient responses at the end of line 1 and crosstalk in the at the end
of line 2 simulated in SPICE and based on the p. u. l. parameters predicted by
the different metamodels for the two different design points.

the values of the capacitor, CL1 = CL2 = CL3 = 7.78 fF. They provide a suitable
linear model for the CMOS driver and load according to the technology node of
the interconnects considered. The length of interconnects is set to be 500 µm.
Outputs of interest for this example are the transient responses at the far-end of
line 1 and 2. Figure 3.8 shows the transient responses of the interconnects by
using the p.u.l. parameters predicted by the ML metamodels is illustrated for two
arbitrary points in the input parameter space. In addition, Fig. 3.8 also includes the
transient responses obtained using the p.u.l. parameters extracted from full-wave
EM simulations for the same two configurations.

It is noted from Fig. 3.8 that the results obtained from ML metamodels exhibit
very good agreement with the corresponding ones obtained from the full-wave EM
simulations. This demonstrates that the accelerated training of the ML metamodels
provided by the proposed SD and PKI approaches does not lead to any loss in model
accuracy either when predicting the p.u.l. parameters of the interconnects or when
performing the SPICE simulations.

Further to go into greater detailed analysis of the transient responses shown in
Fig. 3.8, with the SPICE simulation setup, a design space exploration is performed
using 1000 randomly sampled points. Regarding signal integrity (SI) quantities, the
SPICE simulations compute the 50% delay in line 1, 50% delay of line 3 and peak
crosstalk of line 2. A summary of this SI data extracted from the transient simula-
tion for all the metamodels is shown in Tab. 3.3. This table shows the minimum and
maximum values of the investigated SI quantities obtained among the 1000 simu-
lations. Data shown in Tab. 3.3 clearly indicates that all the proposed metamodels
are in good agreement with the full-wave simulation results. Results predicted by
conventional metamodels also matches with full wave simulation results as plotted

56

3.3 – Summary

in Fig. 3.8, but are omitted from Tab. 3.3 for the sake of brevity.

Table 3.3: Table for the quantities for PKBML metamodels

SI Quantity ANSYS PKI-ANN SD-ANN PKI-ASVM SD-SVM PKI-LSSVM SD-LSSVM
min max min max min max min max min max min max min max

50%
Delay Line 1

(ns)
1.39 2.19 1.38 2.21 1.32 2.25 1.38 2.22 1.31 2.28 1.38 2.22 1.37 2.22

50%
Delay Line 3

(ns)
1.30 2.15 1.32 2.06 1.26 2.20 1.29 2.13 1.31 2.13 1.27 2.14 1.31 2.15

Peak Crosstalk
Line 2

(V)
0.34 0.44 0.35 0.42 0.34 0.44 0.34 0.43 0.34 0.44 0.34 0.43 0.34 0.44

3.3 Summary
This chapter investigated two PKBML techniques aimed at improving the per-

formance in terms of accuracy with respect to the number of training samples of
ML-based surrogate models, and to reduce overhead and the computational cost
required by the generation of the training set. Specifically, two implementations
of the PKBML have been investigated, such as the PKI and SD techniques. The
improved performance of the proposed modeling framework, as well its advantages
over conventional ML approaches have been investigated together with the SVM,
LS-SVM and ANN regression for the signal integrity verification of hybrid copper-
graphene interconnects for which a low-fidelity model is available. The results
clearly highlight the capability of the proposed solution of reducing the compu-
tational cost of the training phase. Remarkable results have been achieved for
ANN-based regressions.

57

58

Chapter 4

Kernel-Machine Regressions in
Complex- and Vector-Output
Regression Problems

As pointed out in Chapter 2 and 3, kernel-machine regressions have shown in-
teresting features in terms of accuracy and convergence with respect to the number
of training samples. Indeed, thanks to their linear structure and to the beneficial
effect of the kernel trick, such approaches can be seen as a promising candidate for
the development of surrogate models in EM applications with dozens of parameters
by using a limited number of training samples. Moreover, as discussed in Chap. 2,
for the specific case of kernel-machine regressions with a square loss-function, the
regularized ERM can be recast in terms of a standard least-square problem for
which the unknowns can be estimated in closed-form, thus making such technique
easy to implement and fast to train.

On the other hand, plain formulations of kernel regressions are restricted to real-
valued single-output problem. Indeed, a conventional formulation of kernel-based
regressions allows to learn any possible nonlinear map between real input param-
eters and a generic real-valued scalar output of interest. Unfortunately, complex-
and vector-valued data are quite common in electronic applications. As an example
we can think about building a surrogate model able to approximate the real and
imaginary part of the scattering parameters defined at several frequency points of
an EM structure as a function of its geometrical and material parameters.

This chapter aims at addressing the above two challenges shared by kernel
machine regressions:

• Challenge #1 - Complex Output: presenting a possible generalization of the
mathematical framework for kernel-machine regressions to complex-valued
problems. The proposed formulation, based on the results presented in [38,
39, 40], is applied to the LS-SVM regression introduced in Chap. 2, even if it
can be possible extended to a generic kernel-machine regression.

59

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

• Challenge #2: Vector-Valued Output: discussing an efficient modeling scheme
for adopting scalar-valued regressions in vector-valued problems based on data
compression.

The above aspects will be formally presented and discussed along the Chapter.
Moreover, the effectiveness and performance of the proposed solutions will be then
investigated on two application examples.

4.1 Challenge #1: Complex-Valued LS-SVM Re-
gression

The simplest strategy for extending the applicability of real-valued ML tech-
niques to the case of complex-valued data is based on the so-called dual-channel
formulation [38, 39, 41]. The underlying idea is to recast the complex-valued prob-
lem into two uncorrelated real-valued ones, by stacking the real and imaginary
part of the complex input and output values. The main advantage of the above
procedure is that plain real-valued ML techniques can be directly adopted without
requiring any generalization or improvement. However, even if such approach looks
quite intuitive, it is usually adopted in a naive way, without any rigorous proof or
explanation. Moreover, such approach completely ignores any possible correlation
among the real and imaginary part of the complex-valued output, thus leading to
possible accuracy and robustness to noise issues [38, 42]. For the above reasons,
alternative pure complex-valued formulations have been proposed for several ML
techniques, such as ANN [42], SVM regression [43], kernel Ridge regression [38, 39,
41, 44, 40], LS-SVM regression [45] and Gaussian process regression [46].

This Section discusses a possible generalization of the real-valued LS-SVM re-
gressions presented in Chapter 2 to the more general case of complex-data problem.
It is important to remark that the proposed mathematical formulation can be easily
extended to the case of kernel Ridge regression, and some considerations apply to
the SVM regression as well.

Starting from a set of complex-valued dataset D = {(xl, yl)}L
l=1 where xi ∈ Cd

and y (xi) ∈ C, the primal space formulation of the LS-SVM regression writes:

M̃(x) =
N∑︂

i=1
wiϕ

∗
i (x) + b = ⟨w, Φ(x)⟩ + b, (4.1)

where w = [w1, . . . , wN]T = wR + jwI ∈ CN are complex regression coefficients
(i.e., wi = wi,R + jwi,I) , Φ(x) = ΦR(x) + jΦI(x) = [ϕ1(x), . . . , ϕN(x)]T), is a
vector-valued complex function Φ(·) : Cd → CN collecting the complex-valued
basis functions ϕi(x) that provide a map between the parameter space and the
feature space, b = bR + jbI is the bias term, and ⟨w, Φ(x)⟩ = ΦH(x)w = wT Φ∗(x)
is the inner product in the complex domain.

60

4.1 – Challenge #1: Complex-Valued LS-SVM Regression

The primal space formulation of the complex-valued regression in Eq. 4.1 can
be written in term of its real and imaginary components:

M̃(x) = M̃R(x) + jM̃I(x)
=
(︂
wRΦT

R(x) + wIΦT
I (x) + bR

)︂
+ j

(︂
wIΦT

R(x) − wRΦT
I (x) + bI

)︂
. (4.2)

In the above primal space formulation, the regression unknowns (i.e., the co-
efficients wR and wI and the bias terms bR and bI) are estimated by solving the
following convex optimization problem:

min
wR,wI ,bR,bI ,eR,eI

1
2wT

RwR + 1
2wT

I wI + γR

2

L∑︂
l=1

e2
R,l + γI

2

L∑︂
l=1

e2
I,l, (4.3)

such that, for l = 1, . . . , L:

eR,l = ℜ{yl − ˜︂M (xl)} = yR,l − (wRΦR (xl) + wIΦI (xl) + bR) (4.4)
eR,l = ℑ{yl − ˜︂M (xl)} = yI,l − (wIΦR (xl) − wRΦI (xl) + bI) (4.5)

where wT
RwR + wT

I wI = ∥w∥2
2 is the L2 regularizer and the terms e2

R,l and e2
I,l

provide the error of a squared loss function.
The Lagrangian for the above constraint optimization problem writes:

L (wR, wI , bR, bI , eR, eI ; αR, αI) =

= 1
2wT

RwR + 1
2wT

I wI + γR

2

L∑︂
l=1

e2
R,l + γI

2

L∑︂
l=1

e2
I,l+

−
L∑︂

l=1
αR,l

{︂
eR,l − yR,l +

(︂
wT

RΦR (xl) + wT
I ΦI (xl) + bR

)︂}︂
+

−
L∑︂

l=1
αI,l

{︂
eI,l − yI,l +

(︂
wT

I ΦR (xl) − wT
RΦI (xl) + bI

)︂}︂
,

(4.6)

where αl = αR,l + jαI,l are the Lagrangian multipliers such that αR,l, αl,l ≥ 0 for
l = 1, . . . , L.

By computing the partial derivatives of the Lagrangian L (wR, wI , bR, bI , eR, eI ; αR, αI)
with respect to its parameters:

∂L
∂wR

= 0 → wR =
L∑︂

l=1
[αR,lΦR (xl) − αI,lΦI (xl)] (4.7)

∂L
∂wI

= 0 → wI =
L∑︂

l=1
[αR,lΦI (xl) + αI,lΦR (xl)] (4.8)

61

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

∂L
∂bR

= 0 →
L∑︂

l=1
αR,l = 0 (4.9)

∂L
∂bI

= 0 →
L∑︂

l=1
αI,l = 0 (4.10)

∂L
∂eR,l

= 0 → γReR,l = αR,l (4.11)

∂L
∂eI,l

= 0 → γIeI,l = αI,l (4.12)

∂L
∂αR,l

= 0 → eR,l − yR,l +
(︂
wT

RΦR (xl) + wT
I ΦI (xl) + bR

)︂
= 0 (4.13)

∂L
∂αI,l

= 0 → eI,l − yI,l +
(︂
wT

I ΦR (xl) − wT
RΦI (xl) + bI

)︂
= 0 (4.14)

for l = 1, . . . , L.
By substituting Eq. 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12 in Eq. 4.13 and 4.14, we

get the following linear system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αR,l

γR
− yR,l +∑︁L

i=1 [αR,iΦR (xi) − αI,iΦI (xi)]T ΦR (xl) +
+∑︁L

i=1 [αR,iΦI (xi) + αI,iΦR (xi)]T ΦI (xl) + bR = 0
αI,l

γI
− yI,l +∑︁L

i=1 [αR,iΦI (xi) + αI,iΦR (xi)]T ΦR (xl) +
−∑︁L

i=1 [αR,iΦR (xi) − αI,iΦI (xi)]T ΦI (xl) + bI = 0∑︁L
l=1 αR,l = 0∑︁L
l=1 αI,l = 0

(4.15)

for l = 1, . . . , L.
The above system of equations is the dual-form representation of the optimiza-

tion problem in Eq. 4.3, in which the original regression coefficients collected in
the vectors wR and wI are replaced by the Lagrangian multipliers αR and αI . It
is important to remark that similar to the plain real-valued LS-SVM regression,
although the number of unknowns in the primal space (i.e., the dimensionality of
|w| = N) is given by the number of basis functions, for the above dual formulation
the number of unknowns (i.e., the Lagrangian multipliers collected in the vectors
α = αR + jαI) is always equal to the number of the training samples L. This means
the resulting model is non-parametric, i.e., a model in which its complexity is inde-
pendent from the number of both the input parameters and the basis functions. In
order to define the kernel function and the dual formulation of the complex-valued
LS-SVM, the first two equations in Eq. 4.15 can be rewritten as follows:

62

4.1 – Challenge #1: Complex-Valued LS-SVM Regression

αR,l

γR

− yR,l +
L∑︂

i=1
αR,i

[︂
ΦT

R (xi) ΦR (xl) + ΦT
I (xi) ΦI (xl)

]︂
+

+
L∑︂

i=1
α1,i

[︂
ΦT

R (xi) ΦI (xl) − ΦT
I (xi) ΦR (xl)

]︂
+ bR = 0 (4.16)

and
αI,l

γI

− yI,l +
L∑︂

i=1
αR,i

[︂
ΦT

I (xi) ΦR (xl) − ΦT
R (xi) ΦI (xl)

]︂
+

+
L∑︂

i=1
αI,i

[︂
ΦT

R (xi) ΦR (xl) + ΦT
I (xi) ΦI (xl)

]︂
+ bI = 0 (4.17)

For l = 1, . . . , L.
Now, let us define a complex-valued kernel kc (x, x′):

kc (x, x′) = ⟨Φ(x), Φ (x′)⟩
= ΦT(x) · Φ∗ (x′)
= (ΦR(x) + jΦI(x))T · (ΦR (x′) − jΦI (x′))
=
[︂
ΦT

R(x)ΦR (x′) + ΦT
I (x)ΦI (x′)

]︂
+ j

[︂
ΦT

I (x)ΦR (x′) − ΦT
R(x)ΦI (x′)

]︂
= kR (x, x′) + jkI (x, x′)

(4.18)
Similar to the real-valued formulation, the kernel function is defined as the inner

product in the complex feature space of the basis functions evaluated at x and x′,
where kR (x, x′) = ΦT

R(x)ΦR (x′) + ΦT
I (x)ΦI (x′) and kI (x, x′) = ΦT

I (x)ΦR (x′) −
ΦT

R(x)ΦI (x′).
Using the above definition, Eq. 4.16 and Eq. 4.17 can be rewritten as follows:

αR,l

γR

− yR,l +
L∑︂

i=1
[αR,ikR (xi, xl) − αI,ikI (xi, xl)] + bR = 0 (4.19)

αI,l

γI

− yI,l +
L∑︂

i=1
[αI,ikR (xi, xl) + αR,ikI (xi, xl)] + bI = 0 (4.20)

for l = 1, . . . , L.
In the above equations, the regression unknowns can be computed by solving

the following linear system:⎡⎢⎢⎢⎢⎣
KRR + IL

γR
KRI 1 0

KIR KII + IL

γI
0 1

1T 0T 0 0
0T 1T 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

αR

αI

bR

bI

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
yR

yI

0
0

⎤⎥⎥⎥⎦ (4.21)

63

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

where IL is the identity matrix of size L × L, 1T = [1, . . . , 1]T ∈ R1×L, 0T =
[0, . . . , 0]T ∈ R1×L, αR, αI ∈ RL×1 are vectors collecting the real and imaginary part
of the regression coefficients, b = bR+jbI is the bias term and KRR, KRI , KIR, KII ∈
RL×L are kernel matrices defined as:

K
(i,j)
RR = K

(i,j)
II = kR (xi, xj) (4.22)

K
(i,j)
IR = −K

(i,j)
RI = kI (xi, xj) (4.23)

for any i, j = 1, . . . , L, where the parameters γR and γI are the regularizer hyper-
parameters tuned by the user and provide a trade-off between the model flatness
and its accuracy [25].

Similar to the real-valued case, the dual space formulation for complex-valued
of LS-SVM regression writes:

y(x) =
L∑︂

l=1
αlkC (xl, x) + b. (4.24)

By substituting Eq. 4.18, this gives:

y(x) =
L∑︂

l=1
(αR,lkR (xl, x) − αI,lkI (xl, x) + bR) (4.25)

+ j (αR,lkI (xl, x) + αI,lkR (xl, x) + bI) . (4.26)

From the above formulation, it is clear that by means of the complex kernel
kC , the complex-valued LS-SVM regression in the dual space is able to account for
possible correlation between the real and imaginary part of y(x).

4.1.1 Complex-Valued Kernel
There are several strategies to construct a complex kernel kC . Here, we will

investigate two of them, the independent kernel, referred as the complex valued
complex function (CVCF) [38], and the pseudo kernel, referred to as the pseudo
complex-valued function (PCF) [47, 48]. A generic CVCF kernel can be constructed
starting from a real-valued kernel kR as follows:

kC (x, x′) = kR (xR, x′
R) + kR (xI , x′

I) + j (kR (xR, x′
I) + kR (xI , x′

R)) , (4.27)

The above complex kernel is fully compliant with the definition provided in
Eq. 4.18. The real kernel kR can be any real kernel function, e.g., linear, radial
basis function (RBF) and polynomial kernel. Hereafter, for the CVCF kernel we
will use kR as the RBF kernel, i.e.,

64

4.1 – Challenge #1: Complex-Valued LS-SVM Regression

kR (x, x′) = exp
(︃

− 1
2σ2 ∥x − x′∥2

)︃
(4.28)

where σ is the kernel hyperparameter, which will be tuned, along with the regu-
larizer hyperparameters, during the model training by combining cross validation
(CV) with a Bayesian optimizer [49, 50]. As an alternative, a family of kernels
based on the PCF can be suitably generated from the isotropic complex covariance
function, such that (additional mathematical details are provided in [38, 48]):

kc (x, x′) = cos (c ∥x − x′∥) kR (x, x′) + j sin (c ∥x − x′∥) kR (x, x′) , (4.29)

where kR (x, xk) can be selected as any kernel function and c is a new hyperparam-
eter.

In this specific case, a rational quadratic kernel is adopted:

kR (x, x′) = σ2
(︄

1 + ∥x − x′∥2

2al2

)︄−a

(4.30)

where a, l and σ are additional hyperparameters.

4.1.2 Dual Channel Kernel (DCK) LS-SVM for Complex-
Valued Data

The dual channel kernel (DCK) formulation can be seen as a special case of the
general mathematical framework presented in the Section. 4.1.1. The underlying
idea is to recast the complex variables in terms of their real and imaginary part
and to work with a standard real kernel, i.e., kc = kR : Rd×d → R.

Under the above assumption, the regression problem in Eq. 4.21 can be simpli-
fied as follows:⎡⎢⎢⎢⎢⎣

KRR + IL

γR
0L 1 0

0L KRR + IL

γI
0 1

1T 0T 0 0
0T 1T 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

αR

αI

bR

bI

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
yR

yI

0
0

⎤⎥⎥⎥⎦ , (4.31)

where 0L is the L × L null matrix, KRR ∈ RL×L, such that K
(i,j)
RR = kR (xi, xj),

whilst the matrices KIR = −KRI = 0L.
It is important to remark that, in the above formulation, there is no coupling

between the real and imaginary coefficients αR and αI , and bias terms bR and bI .
Indeed, the solution of the above linear system is equivalent to solving two decou-
pled ones, accounting for the real and imaginary parts of the regression unknowns
independently, such as:

65

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

[︄
KRR + IL

γR
1

1T 0

]︄ [︄
αR

bR

]︄
=
[︄

yR

0

]︄
(4.32)

[︄
KRR + IL

γI
1

1T 0

]︄ [︄
αI

bI

]︄
=
[︄

yI

0

]︄
. (4.33)

In this chapter, a standard RBF Gaussian kernel is considered as real kernel
kR (xi, xj). In the above scenario, the dual space formulation of the LS-SVM is
written [51]:

yR(x) =
L∑︂

l=1
αR,lkR (xl, x) + bR, (4.34)

and
yI(x) =

L∑︂
l=1

αI,lkR (xl, x) + bI . (4.35)

It is important to note that, in the above formulation, the model for the real
and imaginary part of y are built separately, thus ignoring any possible correlation
between them. Furthermore, the above models can be trained using the LS-SVM
Lab toolbox for the LS-SVM available in MATLAB [31].

4.2 Challenge #2: Vector-valued Surrogate model
based on data-Compression

Let us now consider a training set D = {(xi, yi (fk))}L,K
i,k=1, where xi = [xi,1, . . . , xi,d]T ,

with X ∈ Cd, is a vector collecting the i-th configuration of the input parameters
and yi(fk) ∈ C is the corresponding output computed by a full-computational
model (i.e., yi(fk) = M(fk; xi)) for a set of values of the independent variable fk

(e.g., the frequency points or time instants). Given the information provided by
the training set, our goal is to build a surrogate model M̃ that approximates the
training data and is able to generalize well on the “unseen” test samples, such as:

y (fk; x) ≈ M̃ (fk; x) , (4.36)
for k = 1, . . . , K.

It is important to remark that also in this case the symbol “≈” has been used in
an informal way with the aim of providing a more “practical” and “engineering ori-
ented” understanding of the problem. The problem in Eq. (4.36) can be interpreted
in term of learning K complex-valued functions M̃(fk; x), with k = 1, . . . , K.

In the above scenario, a possible modeling solution consists of considering the
free variable fk as an extra input parameter. This means that we are seeking a
“single” model able to represent in a closed-form, the impact of both the input

66

4.2 – Challenge #2: Vector-valued Surrogate model based on data-Compression

parameters x and the frequency points fk on the system output. As an example,
such a model can be obtained via a plain or recurrent ANN [19, 9]. However, as
pointed out in Chap. 2 despite their flexibility, the training of ANN-based structures
requires the solution of a non-convex optimization leading to training issues such
as: expensive training time and/or huge number of training samples [9, 23].

As an alternative, the above problem can be tackled via a scalar-valued re-
gression, but it would require to train a possible huge number of uncorrelated
scalar-output models, one for each output components, thus making the training
process extremely expensive and cumbersome when a large number of frequency or
time points are considered. Moreover, the above approach unavoidably ignores any
correlation among output components, compromising its accuracy and robustness
to noise [38].

A clever workaround to the above issues consists in compressing the output-
dimension via a compression technique such as the principal component analysis
(PCA). The resulting compressed representation of the output components allows
to heavily reduce the number of single output regression problems to be solved,
with beneficial effects on the training cost [52]. Specifically, the PCA [53, 54, 55,
56] allows extracting the inherent correlation existing among several realizations of
output data samples at different frequency or time points, thus leading to a com-
pressed representation of the frequency spectra or wave forms. In such a scenario,
the number of actual single-output models required to represent the data can be
heavily reduced.

To this aim let us recast the output dataset {yi (fk)}L,K
i,k=1 collecting L realizations

computed for different configurations of the input parameters (i.e., the number of
training outputs), each having K output components as K × L matrix Y, such
that the element Yi,k = yi(fk). For normalization purposes, a zero-mean matrix is
considered:

˜︂Y = Y − µ (4.37)
where µ is the mean value of Y, calculated row-wise and subtracted column-wise.

The new rectangular matrix ˜︂Y ∈ CK×L can be decomposed via the singular
value decomposition (SVD) [54, 56]:

˜︂Y = USVH (4.38)
where, assuming that there are L columns of U and V associated with non-zero
singular values, U = [u1, . . . uL] ∈ CK×L,V = [v1, . . . , vL] ∈ CL×L are orthogonal
matrices, such that UHU = VHV = IL×L, collecting the left and right singular
vectors, and S = diag {(σ1, . . . σL)} ∈ CL×L is a diagonal matrix collecting the
singular values sorted in a decreasing order σ1 ≫ σ2 ≫ · · · ≫ σL.

Now, a compressed approximation of the actual matrix ˜︂Y can be obtained as
follows:

67

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

˜︂Y ≈ ˜︂U˜︁S˜︂VH (4.39)
where ˜︂U = [u1, . . . , un] ∈ CK×ñ with ui ∈ CK×1 and ˜︂V = [v1, . . . , vn] ∈ Cñ×L with
vi ∈ CL×1 are the reduced left and right-eigenvector matrices collecting only the
first ñ components (i.e., the first ñ columns of the original matrices U and V, and˜︁S = diag {(σ1, . . . , σñ)} is a reduced diagonal matrix containing the first ñ singular
values.

The above relationship can be used to obtain a compressed representation Z ∈
Cñ×L of the original matrix Y, such that:

Z = ˜︂UH˜︂Y = ˜︁SVH . (4.40)
It is important to note the resulting compressed matrix Z ∈ Cñ×L is smaller than

the original matrix ˜︂Y, since usually ñ ≪ K. Moreover, the rows of the compressed
matrix Z can be considered to be the realizations of a new set of output variables
{z (xl)}L

l=1, with z (xl) ∈ Cñ×1, which can be considered as the collection of L
samples of a compressed ñ-dimensional output variable.

Specifically, the (i, j)-element of the matrix Z, corresponds to the i-th output
of the compressed representation evaluated at the j-th configuration of the input
parameters, i.e., Zij = zi (xj). This means that only ñ single-output models need
to be trained to represent the whole dataset provided by the matrix Y, thus leading
to a substantial improvement in the training time.

Once a surrogate model for each of the ñ components of the compressed multi-
output representation in Z is available, the overall compress surrogate can be inex-
pensively used to predict the system output y(x) ∈ CK×1 for a generic test sample
x ∈ X as follows:

y(x) ≈ µ + ˜︂UZ̄ (4.41)
where Z = [z1(x), . . . , zñ(x)] ∈ C1×ñ.

It is important to remark that the compressed representation z(x) provided by
the PCA compression allows approximating the actual data y(x) with a tunable
accuracy depending on the number of PCA components ñ, such that [54]:(︃

σñ+1

σ1

)︃2
≤ ε2 (4.42)

where ε is a given error threshold tuned by the user.

4.3 Application Examples
This section compares the accuracy and the robustness against noise of the three

implementations of the complex- and vector-valued LS-SVM regression provided

68

4.3 – Application Examples

in this Chapter by considering two different application examples. Specifically, the
proposed approaches are applied to predict the scattering parameters of a serpentine
structure with three parameters and the transfer function of a high-speed link with
four parameters.

4.3.1 Example I
As a first test case, the complex-valued LS-SVM regression is applied to cal-

culate the scattering parameters of a serpentine delay line structure is presented.
Serpentine lines are widely used in printed circuit board (PCB) design to compen-
sate time delays introduced by the trace routing. However, the frequency-domain
behavior of such a structure is heavily affected by its geometrical and electrical pa-
rameters and should be carefully assessed during the design phase to avoid signal
and power integrity issues and to meet design constraints [57].

The structure of the serpentine delay line considered in this example is shown in
Figure 4.1 (inspired by [57]). The S21 scattering parameters of the above structure
are investigated as a function of three parameters (i.e., x = [εr, LL, SW]T) in a
frequency bandwidth from 1 MHz to 1 GHz. Table 4.1 shows the range of variabil-
ity serpentine delay line parameters that are simulated to produce the training and
test data. The whole dataset consists of 3000 samples (1000 training data and 2000
test samples). The samples were generated via LHS by assuming a uniform vari-
ability between their maximum and minimum value. For each configuration of the
geometrical parameters, the corresponding scattering parameters were computed
for 5000 linearly spaced frequency sample points. The samples were generated via
a set of parametric simulations with the full-wave solver available in CST.

Figure 4.1: Panel (a): design parameters of the serpentine line to be analyzed;
Panel (b): cross-sectional view of the serpentine line.

The PCA compression is then used to compress the number of frequency compo-
nents in the training set with the aim of simplifying the model training. Figure 4.2
shows the behavior of the normalized singular values of the frequency points of

69

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

Table 4.1: Serpentine delay line parameters for the training and test dataset.

Training Ranges Test Ranges
4.5 mm ⩽ LL ⩽ 5.1 mm 4.5 mm ⩽ LL ⩽ 5.1 mm

3.9 ⩽ ϵr ⩽ 4.5 3.9 ⩽ ϵrv ⩽ 4.5
0.13 mm ⩽ SW ⩽ 0.17 mm 0.13 mm ⩽ SW ⩽ 0.17 mm

1 MHz ⩽ f ⩽ 3 GHz 1 MHz ⩽ f ⩽ 3 GHz
1000 samples for each frequency 2000 samples for each frequency

the training dataset. The plot shows that n̄ = 9 is enough to represent the whole
training set with a 0.001% threshold.

Figure 4.2: Normalized singular value plot of the serpentine delay line for the
considered dataset with 5000 frequency points (blue line). The horizontal line
shows the 0.001% threshold for the PCA truncation

After applying the PCA, the performances of the LS-SVM regression using the
PCF and the CVCF complex kernel function (see Sec. 4.1.1), and the DCK LS-SVM
regression (see Sec. 4.1.2), were assessed on the test samples for the S21 parameter.
To investigate the performance of the mentioned methods, the normalized root
mean square error (NRMSE), which writes:

70

4.3 – Application Examples

Figure 4.3: Comparison of the relative NRMSE values computed by the proposed
approaches on the test samples by considering the real part of the S21 parameter
of the serpentine delay line structure for an increasing number of training samples
(i.e., L = 50, 250, 500)

Figure 4.4: Comparison of the relative NRMSE values computed by the proposed
approaches on the test samples by considering the imaginary part of the S21 pa-
rameter of the serpentine delay line structure for an increasing number of training
samples (i.e., L = 50, 250, 500).

NRMSE% = 100 ·
1
T

√︂∑︁T
t=1 (xy − Xŷ)2

1
T

√︂∑︁T
t=1 X2

y

(4.43)

where Xy can be either the real or imaginary part of the actual test samples, Xŷ is
the corresponding prediction estimated via the proposed metamodels, and T is the
number of test samples.

Figures 4.3 and 4.4 show the normalized error for real and imaginary parts
of these three regression approaches for an increasing number of training samples
(i.e., L=50, 250, and 500). The plots highlight the improved accuracy of the CVCF
and PCF with respect to the DCK. Indeed, with the DCK-based model, we are
implicitly neglecting any kind of correlation between the real and imaginary parts
of the S-parameters, and this lack of complexity becomes even more evident when

71

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

a low number of training samples is used to train the model.

Figure 4.5: Schematic of the high-speed interconnect link.

Table 4.2: High-speed interconnect link parameters for the training and test
datasets.

Training and Test ranges
C1(x1) (1 ± 0.5 x1)pF
C2(x2) (0.5 ± 0.25 x2)pF
L1(x3) (10 ± 5 x3)nH
L2(x4) (10 ± 5 x4)nH

4.3.2 Example II
The second application example is based on the high-speed link depicted in

Figure 4.5. The link represents a signal distribution on a PCB. Similar to the
previous example, the frequency response of the link, and thus its performance,
can be greatly influenced by possible variations of its internal parameters [58].

The proposed modeling approaches are here adopted to build a surrogate model
for the frequency-domain behavior of the complex-valued transfer function, in which
y(x; f) = Vout(f ;x)

E(f) , as a function of the values of four lumped components C1 (x1),
C2 (x2), L1 (x3), L2 (x4) defined by four uniformly distributed normalized random

72

4.3 – Application Examples

Figure 4.6: Comparison of the relative NRMSE values computed by the proposed
approaches and a feed-forward multi-output neural network on the test samples
by considering the real part of the transfer function of a high-speed link for an
increasing number of training samples (i.e., L = 20, 100, 150 and 500)

variables x = [x1, x2, x3, x4]T with a variation of ±50% around their central value
(additional details are provided in Table 4.2).

Four input sets with L = 20, 100, 150 and 500 training input configurations were
generated via an LHS and used as input for a computational model implemented in
MATLAB, which provides as output the corresponding transfer function evaluated
at 200 frequency points. The PCA is applied to remove redundant information,
leading to a compressed representation of the original dataset with only n̄ = 10
components using a threshold of 0.01%. The compressed training sets are then
used to train three different surrogate models based on the DCK, PCF, and CVCF
LS-SVM regressions.

Figures 4.6 and 4.7 show the performance of each method on a test set consisting
of 1000 samples assessed via the relative NRMSE in (4.43) for the real and imaginary
parts, respectively. The results clearly highlight the improved accuracy achieved
via the PCF. Moreover, as expected, due to its simplified formulation, the DCK
again provides the lowest accuracy.

73

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

Figure 4.7: Comparison of the relative NRMSE values computed via the proposed
approaches and a feed-forward multi-output neural network on the test samples by
considering the imaginary part of the transfer function of high-speed link for an
increasing number of training samples (i.e., L = 20, 100, 150 and 500).

Moreover, in order to stress the reliability of the proposed techniques, the train-
ing output {yl}L

l=1 was corrupted with Gaussian noise, such that:

yl, noisy (xl) = yl (xl) × (1 + ζn) , (4.44)
where ζn ∼ N (0, σ2

n) is a Gaussian random variable with standard deviation σn =
[0.01,0.03].

Figures 4.8 and 4.9 compare the relative NRMSE computed at a single frequency
point selected as the one providing the maximum error via the proposed approaches
for different values of the noise standard deviation σn and the number of training
samples L for the real and imaginary parts, respectively. Among the introduced
methods, CVCF shows the better performance and robustness against noise, both
for real and imaginary parts.

74

4.4 – Summary

Figure 4.8: Three-dimensional plot of the relative NRMSE computed on the real
part of the test samples at a single frequency point selected as the one providing
the maximum error via the proposed approaches (see top left panel for the DCK,
top right for CVCF and central bottom panel for PCF) for different values of the
noise standard deviation σn and the number of training samples L.

4.4 Summary
This Chapter addressed two challenges related to the constructions of surrogate

model in electronic applications with a complex- and vector-valued output. First
of all, it provided a generalized complex formulation of the LS-SVM regression by
investigating the performance of several real and complex-valued kernel functions.
Then, it presented an efficient and effective solution based on data compression
aimed at extending the applicability of standard single-output kernel regression
to vector-valued regression problems. The performance of the above techniques
have been investigated on two examples: a serpentine EM structure with three
parameters and a high-speed link with four parameters.

75

Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems

Figure 4.9: Three-dimensional plots of the relative NRMSE computed on the imag-
inary part of the test samples at a single frequency point selected as the one pro-
viding the maximum error via the proposed approaches (see top left panel for the
DCK, top right for CVCF and central bottom panel for PCF) for different values
of the noise standard deviation σn and the number of training samples L.

76

Chapter 5

Bridging the Gap between ANNs
and Kernel-Machine Regressions
in Vector-Value EM Applications

This chapter presents an alternative strategy for the employment of the kernel
machine regression in multi- or vector-output regression problems with the aim
of building closed-form and efficient vector-valued surrogate models for electronic
devices and circuits. In contrast to the data compression strategy presented be-
fore (see Sec. 4.2), this chapter proposes a generalized vector-valued formulation
of the kernel ridge regression (KRR). Such approach can be directly applied to
tackle multi-output regression problems without requiring any data manipulation
or compression, thus mitigating possible generalization issues due to the selection
of the model components and improving the robustness to noise [59]. Moreover,
the proposed mathematical framework allows at bridging the gap in terms of flex-
ibility between kernel-based regressions and multi-output ANN structures. The
effectiveness and the performance of the proposed vector-valued K-formulation of
the KRR will be investigated on several examples and compared with the perfor-
mance achieved by state-of-the-art techniques such as the PCA+LS-SVM presented
in Chapter. 4.

5.1 Scalar-Output Kernel Ridge Regression
Kernel Ridge Regression (KRR) is a kernel-machine regression having several

similarities with the LS-SVM regression presented in Sec. 2.4.2.
Similar to the LS-SVM regression, let us consider the problem of building a

function f̃ by approximating a set of training pairs S = {(xl, yl)}L
l=1, where xl ∈

X ⊆ Rp represents the training input and yl ∈ Y ⊆ R are the corresponding scalar
outputs. In particular, knowing the training set, we seek the “best” structure of a

77

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

generic function f̂(x) able to approximate f(x) for any x ∈ X by minimizing the
following penalized ERM [13]:

f̂ = arg min
f̃∈H

L∑︂
l=1

(yl − f̃(xl))2 + λ∥f̃∥2
H, (5.1)

where, similar to the LS-SVM regression, we are using a squared loss function
together with a Tickonov regularizer and λ is the hyperparameter associated to it.

According to the representation theorem [13], any optimal solution f̂(x) of (5.1)
can be written as:

f̂(x) =
L∑︂

l=1
αlk(xl, x), (5.2)

where k(·, ·) : Rp×p → R is the kernel function (additional details are provided in
Sec. 2.4).

Plugging (5.2) into (5.1), we can write:

min
α

L∑︂
l=1

(yl −
L∑︂

m=1
αmk(xm, xl))2 + λ∥

L∑︂
l=1

αlk(xl, x)∥2
H, (5.3)

where according to the kernel properties [13]:

∥f̂∥2
H = ∥

L∑︂
l=1

αlk(xl, x)∥2
H

=
L∑︂

l,m=1
αlαmk(xl, xm) = αT Kα. (5.4)

In the above equation K ∈ RL×L is the empirical kernel matrix, also known as
kernel Gram matrix, defined by evaluating the kernel function on each configuration
pairs belonging to the training input set, such that:

[K]ij = k(xi, xj), (5.5)
for any xi and xj in the training input set.

The optimization problem in (5.1) can be written in its matrix form as:

min
α

(y − Kα)T (y − Kα) + λαT Kα, (5.6)

78

5.2 – ANNs vs. Scalar Kernel-Machine Regressions

where y = [y1, . . . , yL]T is a vector collecting the training outputs, whereas Kα
represents the corresponding predictions computed via (5.2).

Also for the KRR, the above optimization admits a closed-form solution, which
writes:

−Ky + K2α + λKα = 0, (5.7)

which can be recast in terms of the following linear system:

(K + λIL)α = y, (5.8)

where IL refers to the L × L identity matrix.
Therefore, the model coefficients in the vector α can be suitably computed by

solving the above linear system of equations, i.e.,

α = (K + λIL)−1y. (5.9)

It is important to point out that the KRR turns out to be equivalent to the
dual space formulation of the LS-SVM regression presented in Sec. 2.4.2 with a null
bias term (i.e., b = 0).

5.2 ANNs vs. Scalar Kernel-Machine Regres-
sions

As briefly presented in Sec. 2.3, ANN structures can approximate any set of
non-linear functions via a collection of artificial neurons connected together and
organized in layers [18]. The overall structure turns out to be extremely flexible,
without any limitation in terms of number of layers, neurons per layer, number of
outputs, etc. Moreover, the mathematical model describing the input-output map
obtained by the ANN is usually not linear with respect to the model unknowns
(i.e., the weights and bias), since they appear within the argument of non-linear
functions (i.e., the activation functions). This allows learning very complex non-
linear behaviors, but on the other hand, the non-linear structure of the ANN model
leads to a non-convex optimization with several local minima. Such non-convex
optimization makes the training phase for the ANN rather complicated and data-
hungry [23, 24].

As shown in Fig. 5.1, a generic kernel model is equivalent to an ANN structure
with a single hidden layer and in which the unknown weights (i.e., {α1 . . . , αL})
appear linearly as the connection between the hidden and the output layer [25, 60].
It is important to remark that in such structure the number of both weights and

79

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

𝒙

𝑘 𝒙, 𝒙!

𝑦(𝒙)

𝑘 𝒙, 𝒙"

𝛼!

𝛼"

Input Layer
Hidden Layer

Output
Layer

Figure 5.1: ANN interpretation of a scalar-output kernel regression (the picture is
inspired by [60]).

neurons in the hidden layer are fixed, and turns out to be equal to the number of
training samples [60] (or less for the support vector machine regression [25, 26]).
This means that the overall model complexity in terms of regression unknowns,
turns out to be independent of the number of input parameters [25]. Unlike ANNs,
the linear model structure adopted by kernel regressions (i.e., the model unknowns
appear linearly) has the key advantage of heavily simplifying the training phase,
which reduces to the solution of a standard convex optimization [61], thus leading
to several advantages in terms of training time and accuracy with respect to the
number of training samples [23, 24, 61, 62].

Conversely, in the advocated scalar kernel regressions, the lack of flexibility
needed to guarantee the linear structure leads to some limitations with respect to
ANN. In fact, their implementations are usually limited to scalar-output regression
problems [63].

5.3 From Scalar- to Vector-Valued KRR
This Section aims at providing a generalized formulation of the scalar-output

KRR presented in Sec. 5.1 for vector-valued output or multi-task regression prob-
lems. For the sake of simplicity, we will focus on the specific case of vector-valued re-
gressions for which the training set is defined as S = {(xl, yl)}L

l=1, in which x ∈ X ⊆
Rp is a vector collecting the configurations of the input parameters (e.g., geometri-
cal and electrical parameters of an EM structure) and yi = [y(1)

i , . . . , y
(D)
i]T ∈ RD is

80

5.3 – From Scalar- to Vector-Valued KRR

a vector collecting the corresponding vector-valued training outputs (e.g., the fre-
quency samples of a frequency response). The above training set can be rewritten
in its compact form as S = {(X, Y)} where X = [x1, . . . , xL]T is a L × p matrix
collecting the configurations of the training input and Y = [y1, . . . , yL]T is a L×D
matrix associated to the training outputs.

Given the information available in the training set S, our goal is to learn D

scalar functions f̂
(d) : X → R with d = 1, . . . , D, able to provide an accurate

prediction of the actual output vector y(x) for any configuration of the parameters
x ∈ X . 1 In order to deal with the above vector-valued regression problem, the
learning problem in Eq. (5.1) must be generalized as follows:

f̂ = arg min
f̃∈H

D∑︂
d=1

L∑︂
l=1

(y(d)
l − f̃

(d)(xl))2 + λ∥f̃∥2
H, (5.10)

where y
(d)
l and f̃

(d)(xl) represent the d-th component of the l−th training output
and the corresponding model prediction, respectively.

According to the represented theorem for vector-valued regression problem pre-
sented in [64], any solution f̂ of Eq. (5.10) takes the form:

f̂(x) =
L∑︂

l=1
K(x, xl)cl, (5.11)

where K(·, ·) : Rp×p → RD×D is a matrix multi-output kernel acting on the column
vectors cl ∈ RD collecting the regression unknowns for l = 1, . . . , L. For a generic
output n, the above equation writes:

f̂
(n)(x) =

L∑︂
l=1

[K(x, xl)][n,:]cl

=
D∑︂

d=1

L∑︂
l=1

[K(x, xl)][n,d]cd,l, (5.12)

where [K(x, xl)][n,:] and [K(x, xl)][n,d] denotes the n-th row and the (n, d)-element
of the matrix kernel K(·, ·), respectively, and cd,l is the d-th element of the vector
cl.

Equation (5.12) can be rewritten in its scalar form, i.e.,

1The proposed formulation can be extended to the more general case of multi-task formulation
in which the number of training samples Ld can vary for each output d, as well as the number of
parameters pd.

81

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

f (n)(x) =
D∑︂

d=1

L∑︂
l=1

k((x, n), (xl, d))cd,l, (5.13)

where k((x, n), (xl, d)) : Rp×p × R{1,...,D}×{1,...,D} → R represents the (n, d) entry of
the multi-output kernel matrix K(x, xl), such that k((x, n), (xl, d)) = [K(x, xl)][n,d].

5.3.1 Separable Multi-Output Kernels for Vector-Valued
Regression

The kernel structure in Eq. (5.12) and Eq. (5.13) was introduced by [65]. The
multi-output kernel should be able to account for the correlation in both the param-
eter space and output components. Unfortunately, there do not exist off-the-shelf
kernel functions which can be directly applied in such context. The simplest so-
lution is to work on a specific class of multi-output kernels such as the separable
kernel or sum of separable kernels [65, 64]. Specifically, we will consider matrix ker-
nel functions K(x, x′), obtained as the product between two scalar kernels acting
either on the input space or on the output dimensions, such that:

[K(x, x′)][d,d′] = k((x, d), (xl, d′))
= kx(x, x′)ko(d, d′), (5.14)

where kx and ko are scalar kernels acting independently on the input space (i.e.,
kx : X × X → R) and output dimensions (i.e., ko : {1, . . . , D} × {1, . . . , D} → R).

Therefore, for each pairs x and x′ belonging to the input space X , the resulting
multi-output kernel matrix K(x, x′) can be written as:

K(x, x′) = kx(x, x′)B, (5.15)

where B ∈ RD×D is a symmetric semi-definite matrix completely independent from
the input parameters x and x′, in which its elements are obtained by evaluating
the scalar kernel ko on the output dimensions (i.e., {1, . . . , D} × {1, . . . , D}). The
overall kernel matrix K(x, x′) is a D × D symmetric matrix by construction, since
it is the product of a symmetric function kx(x, x′) with a symmetric matrix B.

By combining the optimal solution in Eq. (5.11) for the vector-output scenario,
with the separable kernel structure in Eq. (5.14), we can write:

f̂(x) =
L∑︂

l=1
K(x, xl)cl =

L∑︂
l=1

kx(x, xl)Bcl. (5.16)

82

5.3 – From Scalar- to Vector-Valued KRR

5.3.2 Matrix Formulation for Vector-Valued KRR with Sep-
arable Kernel

Let us now consider the following matrix formulation of the ERM in Eq. (5.10)
developed for the vector-valued scenario:

min
f∈H

∥Y − F∥2
F + λ∥f∥2

H, (5.17)

where F = [fT
1 , . . . , fT

L] is a L × D matrix collecting the model predictions for the
samples in the training set, such that [F]ij = f (j)(xi), and ∥ · ∥F is the Frobenius
norm defined as:

∥A∥2
F =

∑︂
i=1

∑︂
j=1

a2
ij = Tr(AAT). (5.18)

According to Eq. (5.12) and Eq. (5.15), the n-row of the matrix F in Eq. (5.17)
writes:

[F][n,:] = f̂(xn)T =
L∑︂

l=1
kx(xn, xl)cT

l BT

=
L∑︂

l=1
kx(xn, xl)cT

l B. (5.19)

Since B is a symmetric matrix (i.e., B = BT), the matrix F can be rewritten
as [66]:

F = KxCB, (5.20)

where Kx ∈ RL×L with [Kx][ij] = kx(xi, xj) is the Gram matrix associated to
the kernel kx evaluated on the input training samples and C ∈ RL×D is a matrix
collecting the regression unknowns cl, such that C = [c1, . . . , cL]T

By substituting the above model structure in Eq. (5.17), we get the following
optimization problem:

min
C

∥Y − KxCB∥2
F + λ⟨CT KxC, B⟩F , (5.21)

in which ⟨·, ·⟩F is the inner Frobenius product, which for the case of matrices A
and B writes:

83

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

⟨A, B⟩F =
∑︂
i,j

AijBij = Tr(AT B). (5.22)

According to [67] and the references within, the optimal values for the entries of
the coefficient matrix C can be estimated as the ones which satisfied the following
discrete-time Sylvester equation:

KxCB + λC = Y. (5.23)

After computing the unknown matrix C by solving the above equation, Eq. (5.16)
use to make predictions for a generic input configuration x ∈ X :

f̂(x) =
L∑︂

l=1
kx(x, xl)Bcl =

L∑︂
l=1

K(x, xl)cl. (5.24)

5.4 Training Algorithms

5.4.1 Kronecker formulation & Gradient Descent
The simplest way to solve the discrete-time Sylvester equation in (5.23) comes

from its Kronecker formulation [68], which writes [66]:

(B ⊗ Kx + λILD)⏞ ⏟⏟ ⏞
A

vec(C) = vec(Y), (5.25)

where ⊗ is the Kronecker product, ILD refers to the LD × LD identity matrix
and the vec(·) operator stacks column of its argument matrix into a column vector
and therefore vec(C) ∈ RLD is a vector collecting the regression coefficients cl in
Eq. (5.11), with C = [c1, . . . , cL]T ∈ RL×D. Like the scalar case, the above equation
can be rewritten in terms of the Gram vector-valued matrix K, such that:

(K + λILD) vec(C) = vec(Y), (5.26)

where the Gram vector-valued matrix K ∈ R(LD)×(LD) associated to the whole input
training dataset X and output components writes:

K = K(X, X) = B ⊗ kx(X, X) = B ⊗ Kx. (5.27)

84

5.4 – Training Algorithms

It is straightforward to see that the unknown coefficients collected in the vector
vec(C) can be computed by solving a linear system of equations, which writes:

vec(C) = (B ⊗ Kx + λILD)−1 vec(Y). (5.28)

Therefore, the model training can be recast as the solution of a linear system
of equations with LD equations in LD unknowns. A direct solution of such linear
systems requires the inversion of a possible coupled matrix A in Eq. (5.25) of
dimension LD × LD, for which the computational complexity scales as O(L3D3).
This makes the direct inversion of the matrix A extremely inefficient or intractable
in a standard laptop when the product between the number of training samples L
and the output dimensionality D, becomes in the order of thousand.

To mitigate the above limitation, the linear system in Eq. (5.25) can be solved
in a more efficient way via an iterative procedure based on the gradient descent
(GD) algorithm [61, 69]:

vec(C)k = vec(C)k−1 − α[A vec(C)k−1 − vec(Y)], (5.29)

where vec(C)k represents the unknown regression coefficients estimated at the k-th
step and α is a scalar number, known as the learning rate, defining the step-size at
each iteration.

Specifically, the proposed modeling framework implements the conjugate gradi-
ent method [69], which provides an efficient version of the above algorithm tailored
for semi-definite matrices, such as the matrix A [59]. Such implementation allows
reducing the computational complexity of the training phase from O(L3D3) to
O(KL2D2), where K is the number of iterations required by the GD algorithm to
converge. It is important to remark that thanks to the benefits in terms of compu-
tational cost of the GD algorithms with respect to the plain inversion algorithms,
the above inversion scheme implemented in standard laptop allows to deal with
regression problems in which LD ≤ 10k.

5.4.2 Diagonalization Procedure
Diagonaliazation can be seen as an more efficient way with respect to the Kro-

necker formulation presented in the previous Section for the solution of the discrete-
time Sylvester equation (5.23) based on a representation of the Gram kernel ma-
trices Kx and B in terms on their eigenvector and eigenvalue matrices [70], i.e.,:

Kx = UΛUT and B = TMTT , (5.30)

where U ∈ RL×L and T ∈ RD×D are matrices collecting the eigenvectors of the
matrices Kx and B, respectively, whereas Λ ∈ RL×L and M ∈ RD×D are diagonal
matrices collecting the corresponding eigenvalues.

85

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

Using the definitions in Eq. (5.30), the discrete-time Sylvester equation in
Eq. (5.23) can be rewritten as:

ΛC̃M + λC̃ = Ỹ, (5.31)

where C̃ = UT CT and Ỹ = UT YT are new transformed matrices collecting a
transformed version of regression unknowns and source term, respectively.

Due to the diagonal structure of Eq. (5.31), a generic entry of the unknown
matrix [C̃]ij = cij can be suitably computed via a scalar equation defined by the
diagonal eigenvector matrices Λ and M, such as:

c̃ij =
ỹij

[Λ]ii[M]jj + λ
. (5.32)

Once the entries of the matrix C̃ has been computed via the above equation, the
original unknown matrix C can be reconstructed as:

C = UC̃TT . (5.33)

The above approach for solving the discrete-time Sylvester equation turns out
to be more efficient than its equivalent solution based on the Kronecker formula-
tion [68] presented in [59]. Indeed, since the diagonalization is applied on the ma-
trices Kx and B separately, the computational cost required for the model training
reduces from O(L3D3) to O(L3 +D3 +L2D+LD2), thus leading to beneficial effect
on the training time when the product L × D is large.

5.5 Separable Kernels for Vector-Valued KRR
This Section aims at discussing possible solutions for the design of separable

kernel functions tailored for vector-valued KRR.

5.5.1 Block-diagonal Multi-Output Kernel Matrix
The discussion starts considering a special case of the separable kernel function

in Eq. (5.14), in which the kernel acting on the output dimensions ko(d, d′) = δd,d′ ,
such that:

kx(x, x′)ko(d, d′) = kx(x, x′)δd,d′ , (5.34)

where δd,d′ is the Kronecker delta. This means that in Eq. (5.16) we are considering
B = ID (i.e., the identity matrix).

86

5.5 – Separable Kernels for Vector-Valued KRR

In the above case, the overall regression problem turns out to be equivalent to
train D scalar regression problems using the same kernel function kx. Therefore,
the associated Gram kernel matrix K(X, X) becomes a LD × LD block diagonal
matrix:

K(X, X) = diag(Kx, . . . , Kx) =

⎡⎢⎢⎢⎣
Kx 0 ...
0 . . . 0
... 0 Kx

⎤⎥⎥⎥⎦ . (5.35)

Such decoupled interpretation of the vector-valued KRR has several advantages
with respect to the standard modeling scheme in which a plain scalar kernel re-
gression is applied to construct a set of independent surrogate models, one for each
output dimensions. Indeed, even if the multi-output kernel in Eq. (5.34) still con-
siders the output dimensions to be independent, it allows to learn them in one
shoot via the solution of single optimization problem. This means that the number
of hyperparameters to be tuned during the model training is independent from the
number of output dimensions, since it is determined by the structure of scalar kernel
kx, only. Also, possible correlations among the output dimensions are inherently
accounted during the training phase by means of the hyperparameters tuning, since
the latter operation is carried out on the whole training set and output dimensions.

It is important to notice that thanks to the block-diagonal structure of the
Gram kernel matrix K(X, X) in Eq. (5.35), the regression training turns out to be
extremely efficient. Indeed, the overall inversion of the LD × LD Gram matrix K
reduces to invert a L × L matrix, i.e.,

[K + λILD]−1 = [diag((Kx + λIL), . . . , (Kx + λIL))]−1

= diag([Kx + λIL]−1, . . . , [Kx + λIL]−1)
= ID ⊗ [Kx + λIL]−1. (5.36)

Due to the block diagonal structure of the vector-valued kernel matrix K in
Eq. (5.35), the overall computational complexity required by the matrix inversion
is O(L3) (i.e., the computational cost required to invert the sub-matrix [Kx +λIL]),
since the hyperparameters of the kernel kx and λ are shared by all the output
dimensions.

5.5.2 Coupled Multi-Output Kernel Matrix
A possible alternative for the kernel ko acting on the output dimensions is

provided by the so-called mixed kernel [65], which writes:

ko(d, d′) = ω + (1 − ω)δd,d′ , (5.37)

87

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

or equivalently to a matrix B in Eq. (5.16):

B = ω1 + (1 − ω)ID, (5.38)

where 1 is a D × D matrix whose entries are equal to 1 and ω ∈ [0,1] is the kernel
hyperparameter.

The resulting Gram kernel matrix K(X, X) is a coupled matrix accounting for
a possible uniform correlation among all the output components. It is important
to point out that by setting ω = 0, the learning problem turns out to be equivalent
to the block diagonal formulation presented before.

A separable kernel structure based on the product of standard radial basis func-
tion (RBF) kernels [59] can be used as a trade-off between the uncoupled and mixed
kernel function. In this case, the scalar kernels kx and ko write:

kx/o(θ, θ′) = exp
(︄

−∥θ − θ′∥
σx/o

)︄2

, (5.39)

where the pair (θ, θ′) can be any combination of input or output pairs, σx and σo

are the hyperparameters of the scalar kernels kx and ko, respectively. Such hyperpa-
rameters are shared by all the output dimensions and can be tuned once via either
cross validation or validation set [14], for instance via Bayesian optimization [49].

The idea of using a Gaussian RBF function for the kernel ko acting on the
output components allow to account for possible correlation in the input and output
dimension, thus providing an interesting alternative to the uncoupled and mixed
kernel functions. Indeed, a large value of σo will lead to a strong coupling among
the output components, while a small value leads to a block diagonal problem.
For the sake of illustration Fig. 5.2 provides a graphical interpretation of block-
diagonal (left panel), weakly coupled (central panel) and strongly coupled (right
panel) kernel Gram matrices. In such scenario, the coupled matrix A in Eq. (5.25)
of dimension LD × LD can be inverter via the algorithms presented in Sec. 5.4.1
and Sec. 5.4.2.

5.6 Illustrative Example
This Section provides a more practical interpretation of the mathematical for-

mulation presented from Sec. 5.3 to Sec. 5.5.2 by means of an illustrative example,
with the aim of discussing the advantages and drawbacks of the proposed vector-
valued KRR. Without loss of generality, the proposed results will focus on the
high-speed link in Fig. 5.3.

Specifically, the proposed vector-valued KRR is applied to predict the para-
metric behavior of the magnitude of the frequency response y(x; f) = |H(f ; x)| =
|Vout(f ; x)/E(f)|, as a function of 11 normalized parameters collected in the vec-
tor x = [x1, . . . , x11]T , in which each parameter xi ∼ U([−1, +1]) is modeled as

88

5.6 – Illustrative Example

Block- Diagonal Weakly Coupled Strongly Coupled

Figure 5.2: Graphical interpretation of the resulting block-diagonal (left panel),
weakly coupled (central panel) and strongly coupled (right panel) kernel Gram
matrix. Dark color is used for matrix entries with smaller values and bright color
is used for matrix entries with higher values.

a normalized uniformly distributed random variable. Additional details about the
variability and mean value of the 11 parameters are provided in Tab. 5.1. The high-
speed link has been implemented by means of a parametric simulation in MATLAB.
Such implementation is then used to generate the training, validation and test set
based on a latin hypercube sampling (LHS).

Table 5.1: Mean value and corresponding relative range of variation of the 11
parameters considered for the illustrative example in Sec. 5.6.

Parameter Mean Value Uniform Variation
C1(x1) 1 pF 20%
C2(x2) 0.5 pF 20%
L1(x3) 10 nH 20%
L2(x4) 10 nH 20%
εr(x5) 4.1 1%
w(x6) 252 µm 1%
t(x7) 35 µm 1%
h(x8) 60 µm 1%

Len1(x9) 5 cm 5%
Len2(x10) 3 cm 5%
Len3(x11) 3 cm 5%

89

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

E(f)

75Ω L1(x3)

1pF

25Ω

6nH

1pF

10nH

0.5pF 5Ω

C1(x1)

L2(x4)

C2(x2) 50Ω
Vout(f)

εr(x5) h(x8)

w(x6)

t(x7)

Len2(x10)

Len1(x9)

Len3(x11)

Figure 5.3: Schematic of the high-speed link considered as illustrative example in
Sec. 5.6.

Figure 5.4: Parametric behavior of the magnitude of transfer function y(x; f) of
the high-speed link in Fig. 5.3 computed on 1000 test samples for CASE A, B and
C.

5.6.1 Performance Analysis
The performance of the proposed KRR are investigated on three different con-

figurations of the proposed test-case:

• CASE A: noise-free training set in a frequency band from 1MHz to 2GHz;

90

5.6 – Illustrative Example

• CASE B: noisy training set2 in a frequency band from 1MHz to 2GHz;

• CASE C: noise-free training set in a wider frequency band from 1MHz to
5GHz.

Figure 5.5: Parametric and scatter plots comparing the prediction of the proposed
vector-valued KRR with block-diagonal and coupled kernel with the corresponding
ones obtained from the computational model for CASE A, B and C on 1000 test-
samples.

For each of the above configurations, the parametric behavior of the magnitude
of the frequency response H(f ; x) is investigated for 100 equally spaced frequency
points (i.e., the number of outputs is D = 100). For the sake of illustration,

2Uniformly distributed and uncorrelated noise terms affecting the real and imaginary part of
the frequency response H(f ; x) with an absolute level of 0.05.

91

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

Table 5.2: Comparison of training time ttrain, and relative L2- and L∞- error com-
puted for the coupled and uncoupled kernel implementation of the proposed vector-
valued KRR. The study was conducted on the illustrative example of Fig. 5.3, for
1000 test samples.

Kernel
Matrix Error Case A

(L = 150)
Case B

(L = 150)
Case C

(L = 300)

Block-Diagonal L2 0.43% 5.77% 4.1%
Kernel L∞ 15.69% 31.66% 35%

(see Sec. 5.5.1) ttrain 13s 16s 23s
Coupled L2 1.32% 2.54% 6.7%
Kernel L∞ 11.51% 16.74% 48%

(see Sec. 5.5.2) ttrain 812s 1547s 1527s

Fig. 5.4 shows the spread of 1000 realizations (use as test samples) of the frequency
responses for the three considered configurations: CASE A, B and C. The plots
highlight the complexity of the three datasets, as well as the strong sensitivity of
the model output to the considered parameters.

Two vector-valued KRRs with a block-diagonal and a coupled kernel are trained
with L training samples by merans of the GD alghoritm. A validation set [14]
with 150 samples is used within a Bayesian optimization [49] to tune the regres-
sion hyperparmaters by considering the following intervals: σx = [10−2,102], σo =
[10−4,10−2] and λ = [10−3,10−1] for the coupled kernel matrix and σx = [10−2, 102],
σo = [10−11,2 · 10−11] and λ = [10−5,10−2] for the block-diagonal one.

Figure 5.5 provides a comparison between the predictions obtained by the pro-
posed vector-valued KRR trained with a block-diagonal and coupled kernel matrix
(see Fig. 5.2) for three different configurations of the input parameters x and the
corresponding scatter plots computed on the 1000 test samples. The comparison
highlights the excellent capability of trained models to capture the actual variation
of the transfer function under modeling for the three considered test-case configura-
tions. Moreover, Table 5.2 presents a quantitative comparison among the proposed
implementations in terms of training time ttrain, relative L2- and L∞-error com-
puted in linear scale from the predictions in dB provided by the proposed models
on 1000 test samples. The figures of merit provided in the table lead to the following
observations:

• Training time: as shown in the rows labeled with ttrain in Tab. 5.2, the compu-
tational cost for the training of the vector-valued KRR with coupled kernel is
higher than the one required by the block-diagonal implementation. Indeed,
as discussed in Sec. 5.5, the computational complexity of the model training

92

5.6 – Illustrative Example

depends on the structure of the matrix A to be inverted in Eq. (5.25), and it
is proportional to O(KL2D2) for the implementation of the proposed vector-
valued KRR with a coupled kernel and reduces to O(KL2) for the uncoupled
one based on the GD.

• Model accuracy: the KRR implementation based on the block diagonal kernel
provides the most accurate model for CASE A and C with a L2-error below
5%. The high value of the L∞-error (i.e., the worst-case error) for the CASE
C is motivated by the inherently resonance behavior of the frequency response
under modeling in the considered frequency bandwidth. On the other hand,
the results for CASE B highlight the benefits of the regularization effect on the
output dimension introduced by the coupled kernel [70]. Such regularization
allows to suppress the sharp fluctuations induced by the noise, thus leading
to a more accurate prediction on the noiseless test set.

Summarizing, the block diagonal kernel provides the best trade-off between
efficiency and accuracy for noiseless multi-output regression problems, but it is
also extremely sensitive to noise. Indeed, the block-diagonal formulation does not
directly account for a possible correlation among the output dimensions (i.e., the
frequency points of the frequency response), thus increasing the model variance
and leading to overfitting issue in the output space. On the contrary, the coupled
formulation introduces a regularization effect on the output dimensions, leading to
a smoother model in the output space able of heavily suppressing noise fluctuations.

5.6.2 Comparison with State-of-the-art Techniques
The training and validation set generated for the CASE B, are hereafter used

to compare the performance of the proposed vector-valued KRR with the ones of a
corresponding surrogate model constructed via the combination of the PCA+LS-
SVM regression. Also in this case the vector-valued KRR is trained by using a
Gaussian RBF kernel for both input parameters and output dimensions and the
model hyperparameters are tuned via a 3-fold cross-validation. For the model based
on the PCA+LS-SVM regression two different compression levels have been con-
sidered by using the relative tolerance of 0.6% and 0.01% for the PCA compression,
leading to a compressed model with either 2 or 100 components, respectively.

Table 5.3 provides an exhaustive comparison between the above methods in
terms of training time and relative L2-norm error computed in dB on 1000 test
samples for an increasing number of the training samples (i.e., L = 30, 90 and
150). The results show that the computational cost required to built a vector-
valued model with the proposed efficient implementation of the multi-output KRR
turns out to be comparable with the one required by the PCA+LS-SVM with a

93

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

Table 5.3: Relative L2-error and training time computed from the predictions in
dB obtained by the proposed vector-valued KRR and PCA+LS-SVM regression
trained with increasing number of noisy training samples.

Methods L = 30 L = 90 L = 150
εL2 ttrain εL2 ttrain εL2 ttrain

KRR 4.0% 25s 2.8% 38s 2.5% 51s(Proposed)
PCA+LS-SVM 7.5% 6s 5.0% 33s 4.3% 63s(Rel.Tol.=0.01%)
PCA+LS-SVM 6.8% 1.5s 5.9% 1.5s 4.6% 2s(Rel.Tol.=0.6%)

relative tolerance of 0.01%. It is important to notice that the proposed implemen-
tation of the vector-valued KRR has a speed up of ×30 with respect to its GD
implementation proposed in the previous session and in [67].

Concerning the model accuracy, the errors reported in the table clearly highlight
the improved performance of the proposed vector-valued KRR with respect to the
ones achieved by the PCA+LS-SVM for all the considered training sets. The above
statement is further supported by the parametric plot in Fig. 5.6 computed from
the predictions of the considered methods trained with L = 150 training samples
for two random configurations of the input parameters belonging to the test set.
The plot clearly highlights the limited capability of the PCA compression to learn
the actual correlation among the output components when the data are corrupted
by noise. Indeed, the compressed representation of the training set obtained from
the PCA still contains a non-negligible level of noise, which cannot be filtered out
even if a small number of components is considered. On the other hand, thanks
to the output dimension regularization provided by the kernel ko in Eq. (5.14), the
corresponding model trained via the proposed vector-valued KRR turns out to be
more accurate and robust to noise.

Moreover, Figure 5.7 shows a statistical comparison among the methods in terms
of the probability density functions (PDFs) computed on 1000 test samples for all
the frequency points. Also in this case, it is possible to notice the detrimental effect
of the noise on the predictions obtained by the PCA+LS-SVM models, which is
responsible for the spurious peaks visible in the corresponding PDFs around -18
and -16 dB.

94

5.7 – Application Example: Doherty Amplifier

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Frequency (GHz)

-26

-24

-22

-20

-18

-16

-14

-12

-10

M
a

g
n

it
u

d
e

 (
d

B
)

Ref

PCA+LS-SVM (RelTol=0.01%)

PCA+LS-SVM (RelTol=0.6%)

Vector KRR

Figure 5.6: Parametric plots comparing the frequency responses predicted by the
proposed method and the PCA+LS-SVM surrogate models for 2 different realiza-
tions of the input parameters.

Figure 5.7: Comparison of the PDFs computed from the predictions of the surrogate
models built via the proposed and PCA+LS-SVM regression with Tol.= 0.6% and
0.01% on 1000 test samples and for all the frequency points.

5.7 Application Example: Doherty Amplifier
This Section discusses the performance of the proposed method by consider-

ing the optimization of the power splitter of the Doherty amplifier illustrated in
Fig. 5.8 [71]. Specifically, the proposed vector-valued KRR is used to train a para-
metric model able to predict the S11 and S21 of the amplifier, as a function of several
coupled and uncoupled parameters listed in Tab. 5.4, characterizing the working

95

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

point of the amplifier and the geometry of the power splitter (see the red square in
Fig. 5.8).

Table 5.4: Mean value and corresponding relative range of variation of the param-
eters considered for the optimization of the Doherty amplifier in Sec. 5.7.

Parameter Mean Value Uniform Variation
WT L1 29.44 mil 50%
WT L2 50.78 mil 50%
WT L3 29.44 mil 50%
WT L4 29.44 mil 50%
WT L5 50.78 mil 50%
WT L6 29.44 mil 50%
WT L7 29.44 mil 50%
WT L8 29.44 mil 50%

LT L1 & LT L2 646.85 mil 2.5%
LT L4 & LT L6 620.9 mil 2.5%
LT L3 & LT L5 646.85 mil 2.5%
LT L7 & LT L8 646.85 mil 2.5%

Vdc1 2.45 v 5%
Vdc2 7 v 5%

Vdc3 & Vdc4 28 v 5%

First of all, the schematic in Fig. 5.8 has been implemented as a parametric
simulation in ADS. For any configuration of the input parameters, the ADS sim-
ulation provides the frequency responses of the scattering parameters S11 and S21
computed for D = 1101 frequency points in a bandwidth from 1.9 GHz to 3 GHz.
A set of L = 700 training samples and 100 validation samples have been generated
via a LHS.

Such samples have been used to train a parametric model for the scattering
parameters of interest via the KRR with the block-diagonal kernel. The model
training takes 220 s. The obtained models are then used together with a “brute
force” optimization algorithm based on a random grid search [72] implemented in
MATLAB, with the aim of optimizing the amplifier parameters in order to meet
the following constraints:

S11 ≤ −10dB for 2.4GHz ≤ f ≤ 2.6GHz (5.40a)
10dB ≤ S21 ≤ 12dB for 2.1GHz ≤ f ≤ 2.9GHz. (5.40b)

Figure 5.9 compares the S11 and S21 scattering parameters estimated after the
optimization via the proposed vector-valued model with those obtained from the

96

5.7 – Application Example: Doherty Amplifier

Figure 5.8: Schematic of the Doherty amplifier considered in Sec. 5.7 (inspired
by [71]).

97

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

2 2.2 2.4 2.6 2.8 3

Frequency (GHz)

-20

-15

-10

-5

0

S
1
1

Initial Design
Opt (Proposed Method)
Opt (ADS)

2 2.2 2.4 2.6 2.8 3

Frequency (GHz)

0

5

10

15

S
2

1

Initial Design
Opt (Proposed Method)
Opt (ADS)

Figure 5.9: Scattering parameters of the Doherty amplifier presented in Sec. 5.7
obtained from the initial design (dashed black line) and after optimization carried
out via the ADS random optimizer (solid red line) and the proposed model (solid
blue line).

initial design. Moreover, the plots show the corresponding results obtained from the
random optimizer (default option) in ADS after 2800 iterations. The results clearly
highlight the strong agreement and consistence between the optimization results
obtained via the proposed modeling scheme and the ones obtained from the ADS
optimization. Concerning the computational cost, the overall optimization with
our advocated model takes 25s. On the other hand, the corresponding optimization
in ADS requires 2800 iterations and takes 386 seconds. The proposed simulation
approach leads to a speed up 15× with respect to ADS. It is important to stress that
the obtained speed up is mitigated by the relatively fast simulation time required
by the ADS circuital solver when it is used in small-signal analysis. Moreover,
unlike the ADS optimizer, the obtained model turns out to be independent from
the optimization constraints and therefore can be suitably adopted as it is to meet
different optimization constraints, as well as for the stochastic analysis within the
uncertainty quantification scenario [7, 59].

98

5.8 – Application Example: 2-GHz Low-Noise Amplifier (LNA)

5.8 Application Example: 2-GHz Low-Noise Am-
plifier (LNA)

The performance of the proposed technique has been further evaluated on the
UQ of the scattering parameters of the 2-GHz low-noise amplifier (LNA) shown
in Fig. 5.10 by considering 25 Gaussian stochastic variables affecting the parasitic
resistances, capacitances and inductances of the BJT, its forward current gain, all
the lumped components in the amplifier schematic, and the widths of the microstrip
lines, each with a 10% relative standard deviation [73, 74].

4.7 pF

5.6 pF

100 nF 100 Ω

BFG425W

15 kΩ

5.6 pF 1 nF

22 Ω 82 Ω

2.7 pF

RF in
50Ω

+4.5 V

RF out
50Ω

TL1

TL2

TL3

TL4 TL4

Figure 5.10: 2-GHz BJT LNA.

The considered test case has been implemented as a parametric small-signal AC
analysis in HSPICE. Such implementation allows computing the two-port scattering
parameters S11 and S21 of the LNA at 201 frequency points for any configuration of
the 25 random parameters. The HSPICE simulations have been used to generate
three training sets with an increasing number of samples (i.e., L = 30, 50, and 100)
based on a LHS and to run a 1000-sample MC simulation that is used hereafter as a
reference for the proposed statistical analysis. Two independent surrogate models,
one for S11 and one for S21, have been trained via the proposed implementation of
the vector-valued KRR presented in Section 5.3.

Table 5.5 reports the performance of the obtained surrogate models in terms
of training time and relative L2-norm error computed on a test set collecting the
results of a 1000-sample MC simulation for the parameters S11 and S21 by consid-
ering an increasing number of the training samples (i.e., L = 30, 50, and 100). The
results show a constant reduction of the model error (i.e., the relative L2-error) with
respect to the number of training samples (i.e., L), thus highlighting the capability
of the proposed vector-valued KRR of learning the actual information provided by
the training set. Concerning the computational cost, the training time required to
build the proposed vector-valued surrogate models is less than 7 min for all the

99

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

Table 5.5: Training time and relative L2-error computed from the frequency-domain
samples of the predictions of the surrogate models trained with an increasing num-
ber of training samples via the proposed implementation of the vector-valued KRR
for the S11 and S21 parameters by considering 1000 test samples.

Parameter
L = 30 L = 50 L = 100

ttrain L2-error ttrain L2-error ttrain L2-error
S11 74s 6.15% 115s 3.58% 205s 2.70%
S21 78s 1.96% 118s 1.54% 216s 1.16%

considered modeling scenarios. After the training, the evaluation of the obtained
model on the 1000 test samples required less than 20s, while the corresponding MC
simulation requires 1131s.

Figure 5.11: S11 parameter of the LNA in Fig. 5.10. Top panel: the gray lines show
the magnitude of the S11 computed from a 1000-sample MC simulation. The blue
solid and the red dashed lines are the magnitude of the average S11 obtained from
the MC samples and the proposed model, respectively. Bottom panel: the blue
solid and the red dashed lines are the magnitude of the S11 variance obtained from
the MC samples and the proposed models, respectively.

Figures 5.11 and 5.12 compare the mean (top panels) and the variance (bot-
tom panels) of the magnitude value of the S11 and S21 parameters predicted by
the proposed surrogate models trained with L = 50 training samples against the
corresponding results computed via the MC samples. The results show an excellent

100

5.9 – Summary

Figure 5.12: S21 parameter of the LNA in Fig. 5.10. Top panel: the gray lines show
the magnitude of the S21 computed from a 1000-sample MC simulation. The blue
solid and the red dashed lines are the magnitude of the average S21 obtained from
the MC samples and the proposed models, respectively. Bottom panel: the blue
solid and the red dashed lines are the magnitude of the S21 variance obtained from
the MC samples and the proposed models, respectively.

agreement between the mean value and the variance predicted by the proposed sur-
rogate model and the ones computed from the MC samples, being the two sets of
curves almost perfectly overlapped. Furthermore, Fig. 5.13 shows the probability
density function (PDF) of the S11 and S21 parameters computed at f0 = 2 GHz.
Also in this case, the histograms predicted by the proposed models are in perfect
agreement with the corresponding ones calculated from the MC simulation, thus
confirming the excellent performance of the proposed approach in the UQ scenario.

5.9 Summary
This Chapter presented a generalized vector-valued formulation of the KRR,

able to deal with the inherently multi-output nature shared by most of the elec-
tronic applications. The proposed vector-valued KRR provides a generalization
of the mathematical framework used by state-of-the-art scalar kernel regressions
and can be seen as an alternative to the data compression strategy presented in
Chapter 4. The mathematical framework of the vector-valued KRR has been dis-
cussed in detail, together with possible alternatives for the kernel functions and
training schemes. The feasibility and the strength of the proposed approach have
been investigated on an illustrative example consisting of an high-speed link, the

101

Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications

Figure 5.13: Comparison of the PDFs of the S11 and S21 parameters at the frequency
f0 = 2 GHz computed from the predictions of the surrogate models built via the
proposed vector-valued KRR evaluated on 1000 test samples and the corresponding
ones computed from a 1000-sample MC simulation.

optimization of a Doherty amplifier and the UQ of the scattering parameters of a
LNA.

102

Chapter 6

Conclusions & Future Work

This dissertation focused on the development of modeling techniques for the
construction of efficient and accurate surrogate models for the outputs of interest in
electronic devices and circuits. The problem statement and the considered modeling
framework have been introduced in Chapter. 1. A brief overview of state-of-the-art
regression approaches such as: standard regressions based on linear model, kernel
machines regression and ANN has been presented in Chapter. 2, along with several
considerations about their advantages and drawback supported by two examples.

Chapter 3 addressed a very relevant issue for the surrogate modeling construc-
tion such as the possibility of reducing the computational cost arising from the
training set generation. The proposed solution is based on the idea PKBML. the
underlying idea is to train the surrogate model with an heterogeneous training set
combining the prediction of a computational expensive high-fidelity model and the
ones of a more efficient low-fidelity model. The obtained dataset, after some ma-
nipulation, can be used as a training set for any regression algorithm. Two different
implementation of the PKBML have been investigated, such as the PKI and SD,
and their performance have been evaluated on a realistic example consisting of a
hybrid copper-graphene on-chip interconnects.

Chapter 4 provides an unconventional solutions for two main limitations re-
lated to the use of kernel-machine regression in EM applications. Indeed, despite
the advantages shown by kernel-machine regressions with respect to other regres-
sion techniques, in regression problems with dozens input parameters and with a
“small” number of training samples, such as: their cheap computational cost and
improved accuracy, their plain implementation is limited to scalar- and real-valued
problems. The above issues motivated the complex formulation of the LS-SVM
regression and the data compression strategy developed within the above Chapter.
The performance and the effectiveness of the proposed solutions are then inves-
tigated on two realistic examples consisting of a serpentine EM structure and a
high-speed link.

Chapter 5 presents a generalized vector-valued formulation of the KRR able to

103

Conclusions & Future Work

address the inherent vector-valued structure characterizing most of the electronic
and EM applications, thus bridging the gap in terms of flexibility with respect to
ANN structures. The proposed formulation has been widely discussed along the
Chapter, together with several training schemes and multi-output kernel functions.
Also in this case, the effectiveness of the proposed methodology has been investi-
gated via several examples such as: the parametric modeling of an high speed link,
the optimization of a Doherty amplifier and the UQ of a LNA.

Summarizing, this dissertation discussed and tried to address some relevant
issues and challenges encountered during the construction of surrogate models of the
responses of electronic devices and circuits with the help of ML-based techniques.
Despite the encouraging results, additional work must be done in order to provide
completely automatic, general purpose and robust modeling framework, such as:

• is there any clever strategy to understand how many training and testing
samples must be used and how to select them?

• what is the limitation of the proposed techniques in terms of number of input
parameters?

• how large can be the range of variability of the input parameters?

• can the multi-output kernel be automatically adapted to the training dataset?

The above questions are rather challenging and can be seen as stimuli for future
works and research activities.

104

References

[1] Robert Spence and Randeep Singh Soin. Tolerance design of electronic cir-
cuits. World Scientific, 1997.

[2] Bobak Shahriari et al. “Taking the human out of the loop: A review of
Bayesian optimization”. In: Proceedings of the IEEE 104.1 (2015), pp. 148–
175.

[3] Kai-Tai Fang, Runze Li, and Agus Sudjianto. Design and modeling for com-
puter experiments. Chapman and Hall/CRC, 2005.

[4] Jean-Marc Bourinet. “Reliability analysis and optimal design under uncertainty-
Focus on adaptive surrogate-based approaches”. PhD thesis. Université Cler-
mont Auvergne, 2018.

[5] Bruno Sudret et al. “Surrogate models for uncertainty quantification and
design optimization”. In: 14ème colloque national en calcul des structures
(CSMA 2019). ETH Zurich, Chair of Risk, Safety and Uncertainty Quantifi-
cation. 2019.

[6] RY Rubinstein. Simulation and monte carlo method. new york: John & wiley
& sons. 1981.

[7] Riccardo Trinchero and Flavio Canavero. “Machine learning regression tech-
niques for the modeling of complex systems: An overview”. In: IEEE Electro-
magnetic Compatibility Magazine 10.4 (2021), pp. 71–79.

[8] Michael D McKay, Richard J Beckman, and William J Conover. “A compar-
ison of three methods for selecting values of input variables in the analysis of
output from a computer code”. In: Technometrics 42.1 (2000), pp. 55–61.

[9] Jing Jin et al. “Deep neural network technique for high-dimensional mi-
crowave modeling and applications to parameter extraction of microwave
filters”. In: IEEE Transactions on Microwave Theory and Techniques 67.10
(2019), pp. 4140–4155.

[10] Slawomir Koziel, Anna Pietrenko-Dabrowska, et al. “Design-oriented two-
stage surrogate modeling of miniaturized microstrip circuits with dimension-
ality reduction”. In: IEEE Access 8 (2020), pp. 121744–121754.

105

REFERENCES

[11] Tommaso Bradde et al. “Data-driven extraction of uniformly stable and pas-
sive parameterized macromodels”. In: IEEE Access 10 (2022), pp. 15786–
15804.

[12] Alessandro Zanco and Stefano Grivet-Talocia. “Toward fully automated high-
dimensional parameterized macromodeling”. In: IEEE Transactions on Com-
ponents, Packaging and Manufacturing Technology 11.9 (2021), pp. 1402–
1416.

[13] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. “A generalized repre-
senter theorem”. In: Computational Learning Theory: 14th Annual Conference
on Computational Learning Theory, COLT 2001 and 5th European Confer-
ence on Computational Learning Theory, EuroCOLT 2001 Amsterdam, The
Netherlands, July 16–19, 2001 Proceedings 14. Springer. 2001, pp. 416–426.

[14] Benyamin Ghojogh and Mark Crowley. “The theory behind overfitting, cross
validation, regularization, bagging, and boosting: tutorial”. In: arXiv preprint
arXiv:1905.12787 (2019).

[15] Trevor Hastie et al. The elements of statistical learning: data mining, infer-
ence, and prediction. Vol. 2. Springer, 2009.

[16] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer, 2013.
isbn: 978-1-4614-6848-6.

[17] Qi-jun Zhang and Kuldip C Gupta. Neural networks for RF and microwave
design (Book+ Neuromodeler Disk). Artech House, Inc., 2000.

[18] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and ma-
chine learning. Vol. 4. 4. Springer, 2006.

[19] Madhavan Swaminathan et al. “Demystifying machine learning for signal and
power integrity problems in packaging”. In: IEEE Transactions on Compo-
nents, Packaging and Manufacturing Technology 10.8 (2020), pp. 1276–1295.

[20] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Tech. rep. California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

[21] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[22] DE Rumelhart. “GE H inton, and RJ Williams”. In: Learning internal rep-
resentations by error propagation. InD. E. Rumelhart and JL McClelland,
editors, Parallel Distribu ted Processing: Ex plorations in the Microstr u ct u
reof C ognition. B radford B ooks/MITPress, Cambridge, Mass (1986).

106

REFERENCES

[23] Suyash Kushwaha et al. “Fast extraction of per-unit-length parameters of
hybrid copper-graphene interconnects via generalized knowledge based ma-
chine learning”. In: 2021 IEEE 30th Conference on Electrical Performance of
Electronic Packaging and Systems (EPEPS). IEEE. 2021, pp. 1–3.

[24] Suyash Kushwaha et al. “Comparative Analysis of Prior Knowledge-Based
Machine Learning Metamodels for Modeling Hybrid Copper–Graphene On-
Chip Interconnects”. In: IEEE Transactions on Electromagnetic Compatibility
64.6 (2022), pp. 2249–2260.

[25] Vladimir Vapnik. The nature of statistical learning theory. Springer science
& business media, 1999.

[26] Vladimir N Vapnik. “An overview of statistical learning theory”. In: IEEE
transactions on neural networks 10.5 (1999), pp. 988–999.

[27] VR Kohestani and M Hassanlourad. “Modeling the mechanical behavior of
carbonate sands using artificial neural networks and support vector machines”.
In: International Journal of Geomechanics 16.1 (2016), p. 04015038.

[28] Alex J Smola and Bernhard Schölkopf. “A tutorial on support vector regres-
sion”. In: Statistics and computing 14 (2004), pp. 199–222.

[29] Vladimir Cherkassky and Yunqian Ma. “Practical selection of SVM param-
eters and noise estimation for SVM regression”. In: Neural networks 17.1
(2004), pp. 113–126.

[30] Johan AK Suykens and Joos Vandewalle. “Least squares support vector ma-
chine classifiers”. In: Neural processing letters 9 (1999), pp. 293–300.

[31] version 1.8 LS-SVMlab. Available online: http://www.esat.kuleuven.be/sista/lssvmlab/.
Department of Electrical Engineering (ESAT), Katholieke Universiteit Leu-
ven: Leuven, Belgium, 2011.

[32] Camelia Gabriel. Compilation of the dielectric properties of body tissues at RF
and microwave frequencies. Tech. rep. King’s coll london (United Kingdom)
dept of physics, 1996.

[33] Kris De Brabanter et al. LS-SVMlab toolbox user’s guide: version 1.7. Katholieke
Universiteit Leuven, 2010.

[34] Anand Veluswami, Michel S Nakhla, and Qi-Jun Zhang. “The application of
neural networks to EM-based simulation and optimization of interconnects in
high-speed VLSI circuits”. In: IEEE transactions on Microwave Theory and
Techniques 45.5 (1997), pp. 712–723.

[35] Joongheon Kim, Giuseppe Caire, and Andreas F Molisch. “Quality-aware
streaming and scheduling for device-to-device video delivery”. In: IEEE/ACM
Transactions on Networking 24.4 (2015), pp. 2319–2331.

107

REFERENCES

[36] PM Watson, KC Gupta, and RL Mahajan. “Development of knowledge based
artificial neural network models for microwave components”. In: 1998 IEEE
MTT-S International Microwave Symposium Digest (Cat. No. 98CH36192).
Vol. 1. IEEE. 1998, pp. 9–12.

[37] Zi-Han Cheng et al. “Analysis of Cu-graphene interconnects”. In: IEEE Access
6 (2018), pp. 53499–53508.

[38] Rafael Boloix-Tortosa et al. “Widely linear complex-valued kernel methods
for regression”. In: IEEE Transactions on Signal Processing 65.19 (2017),
pp. 5240–5248.

[39] Rafael Boloix-Tortosa, Juan José Murillo-Fuentes, and Sotirios A Tsaftaris.
“The generalized complex kernel least-mean-square algorithm”. In: IEEE
Transactions on Signal Processing 67.20 (2019), pp. 5213–5222.

[40] Tokunbo Ogunfunmi and Thomas Paul. “On the complex kernel-based adap-
tive filter”. In: 2011 IEEE International Symposium of Circuits and Systems
(ISCAS). IEEE. 2011, pp. 1263–1266.

[41] Felipe A Tobar, Anthony Kuh, and Danilo P Mandic. “A novel augmented
complex valued kernel LMS”. In: 2012 IEEE 7th Sensor Array and Multi-
channel Signal Processing Workshop (SAM). IEEE. 2012, pp. 473–476.

[42] Akira Hirose. “Complex-valued neural networks: Advances and applications”.
In: (2013).

[43] Pantelis Bouboulis et al. “Complex support vector machines for regression
and quaternary classification”. In: IEEE transactions on neural networks and
learning systems 26.6 (2014), pp. 1260–1274.

[44] Simone Scardapane et al. “Widely linear kernels for complex-valued kernel
activation functions”. In: ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 8528–
8532.

[45] Felipe Treviso, Riccardo Trinchero, and Flavio G Canavero. “Multiple delay
identification in long interconnects via LS-SVM regression”. In: IEEE Access
9 (2021), pp. 39028–39042.

[46] Rafael Boloix-Tortosa et al. “Complex Gaussian processes for regression”. In:
IEEE Transactions on Neural Networks and Learning Systems 29.11 (2018),
pp. 5499–5511.

[47] Donato Posa. “Parametric families for complex valued covariance functions:
Some results, an overview and critical aspects”. In: Spatial Statistics 39 (2020),
p. 100473.

108

REFERENCES

[48] Sandra De Iaco, Monica Palma, and Donato Posa. “Covariance functions
and models for complex-valued random fields”. In: Stochastic Environmental
Research and Risk Assessment 17 (2003), pp. 145–156.

[49] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian opti-
mization of machine learning algorithms”. In: Advances in neural information
processing systems 25 (2012).

[50] Jing Geng et al. “Support vector machine regression (SVR)-based nonlin-
ear modeling of radiometric transforming relation for the coarse-resolution
data-referenced relative radiometric normalization (RRN)”. In: Geo-Spatial
Information Science 23.3 (2020), pp. 237–247.

[51] Nastaran Soleimani, Riccardo Trinchero, and Flavio Canavero. “Application
of different learning methods for the modelling of microstrip characteris-
tics”. In: 2020 IEEE Electrical Design of Advanced Packaging and Systems
(EDAPS). IEEE. 2020, pp. 1–3.

[52] Paolo Manfredi and Riccardo Trinchero. “A data compression strategy for
the efficient uncertainty quantification of time-domain circuit responses”. In:
IEEE Access 8 (2020), pp. 92019–92027.

[53] Athanasios Papaioannou and Stefanos Zafeiriou. “Principal component anal-
ysis with complex kernel: The widely linear model”. In: IEEE Transactions
on Neural networks and Learning systems 25.9 (2013), pp. 1719–1726.

[54] Paolo Manfredi and Stefano Grivet-Talocia. “Compressed Stochastic Macro-
modeling of Electrical Systems via Rational Polynomial Chaos and Princi-
pal Component Analysis”. In: 2021 Asia-Pacific International Symposium on
Electromagnetic Compatibility (APEMC). IEEE. 2021, pp. 1–3.

[55] Mohsen Ahmadi et al. “Detection of brain lesion location in MRI images using
convolutional neural network and robust PCA”. In: International journal of
neuroscience 133.1 (2023), pp. 55–66.

[56] René Vidal et al. Principal component analysis. Springer, 2016.
[57] Wei-Shan Soh et al. “Comprehensive analysis of serpentine line design”. In:

2009 Asia Pacific Microwave Conference. IEEE. 2009, pp. 1285–1288.
[58] Riccardo Trinchero et al. “Machine learning and uncertainty quantification for

surrogate models of integrated devices with a large number of parameters”.
In: IEEE Access 7 (2018), pp. 4056–4066.

[59] Nastaran Soleimani, Riccardo Trinchero, and Flavio Canavero. “Vector-Valued
Kernel Ridge Regression for the Modeling of High-Speed Links”. In: 2022
IEEE MTT-S International Conference on Numerical Electromagnetic and
Multiphysics Modeling and Optimization (NEMO). IEEE. 2022, pp. 1–4.

109

REFERENCES

[60] JAK Suykens et al. “Least squares support vector machines, World Scientific
Publishing, Singapore”. In: (2002).

[61] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. “Falkon: An optimal
large scale kernel method”. In: Advances in neural information processing
systems 30 (2017).

[62] Nastaran Soleimani and Riccardo Trinchero. “Compressed complex-valued
least squares support vector machine regression for modeling of the frequency-
domain responses of electromagnetic structures”. In: Electronics 11.4 (2022),
p. 551.

[63] Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. “Kernels for
vector-valued functions: A review”. In: Foundations and Trends® in Machine
Learning 4.3 (2012), pp. 195–266.

[64] Charles A Micchelli and Massimiliano Pontil. “On learning vector-valued
functions”. In: Neural computation 17.1 (2005), pp. 177–204.

[65] Charles Micchelli and Massimiliano Pontil. “Kernels for Multi–task Learn-
ing”. In: Advances in neural information processing systems 17 (2004).

[66] Francesco Dinuzzo et al. “Learning output kernels with block coordinate
descent”. In: Proceedings of the 28th International Conference on Machine
Learning (ICML-11). 2011, pp. 49–56.

[67] Nastaran Soleimani, Riccardo Trinchero, and Flavio G Canavero. “Bridg-
ing the Gap Between Artificial Neural Networks and Kernel Regressions for
Vector-Valued Problems in Microwave Applications”. In: IEEE Transactions
on Microwave Theory and Techniques (2023).

[68] Roger A Horn, Roger A Horn, and Charles R Johnson. Topics in matrix
analysis. Cambridge university press, 1994.

[69] Magnus R Hestenes, Eduard Stiefel, et al. “Methods of conjugate gradients
for solving linear systems”. In: Journal of research of the National Bureau of
Standards 49.6 (1952), pp. 409–436.

[70] Luca Baldassarre et al. “Multi-output learning via spectral filtering”. In: Ma-
chine learning 87 (2012), pp. 259–301.

[71] Andrei Grebennikov and James Wong. “A dual-band parallel Doherty power
amplifier for wireless applications”. In: IEEE Transactions on Microwave
Theory and Techniques 60.10 (2012), pp. 3214–3222.

[72] Antonio Guarino et al. “A fast fuel cell parametric identification approach
based on machine learning inverse models”. In: Energy 239 (2022), p. 122140.

[73] Paolo Manfredi et al. “Generalized decoupled polynomial chaos for nonlinear
circuits with many random parameters”. In: IEEE Microwave and Wireless
Components Letters 25.8 (2015), pp. 505–507.

110

REFERENCES

[74] Paolo Manfredi. “Probabilistic Uncertainty Quantification of Microwave Cir-
cuits Using Gaussian Processes”. In: IEEE Transactions on Microwave The-
ory and Techniques (2022).

111

REFERENCES

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

112

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Introduction
	Computational Model and Uncertainty Quantification
	Computational Model and Optimization

	Surrogate Models
	What is a Surrogate Model?
	Modeling Challenges and Thesis Motivations

	Thesis Organization

	State-of-the-art Supervised Machine Learning Regressions
	Learning from Data: Learning Paradigm & Surrogate Model
	Standard Regressions based on Basis Function
	Ordinary Least Squares (OLS) Regression
	Ridge Regression
	Hyperparameter Tuning
	Validation Set
	Cross Validation

	Artificial Neural Network
	Kernel Based Regressions
	Support Vector Machine Regressions
	Least Square Support Vector Machine Regressions

	Example
	Example I: Skin permittivity Dataset
	Example II: Hybrid Copper-Graphene On-Chip Interconnects

	Summary

	Prior Knowledge Based Machine Learning Surrogate Models
	PKBML Methods
	Source Difference (SD) Technique
	Prior Knowledge Input (PKI) Technique

	Example: Surrogate Models for Hybrid Copper-Graphene On-Chip Interconnects
	Appropriate Low Fidelity Model for Copper Graphene Interconnects
	Numerical Validations

	Summary

	Kernel-Machine Regressions in Complex- and Vector-Output Regression Problems
	Challenge #1: Complex-Valued LS-SVM Regression
	Complex-Valued Kernel
	Dual Channel Kernel (DCK) LS-SVM for Complex-Valued Data

	Challenge #2: Vector-valued Surrogate model based on data-Compression
	Application Examples
	Example I
	Example II

	Summary

	Bridging the Gap between ANNs and Kernel-Machine Regressions in Vector-Value EM Applications
	Scalar-Output Kernel Ridge Regression
	ANNs vs. Scalar Kernel-Machine Regressions
	From Scalar- to Vector-Valued KRR
	Separable Multi-Output Kernels for Vector-Valued Regression
	Matrix Formulation for Vector-Valued KRR with Separable Kernel

	Training Algorithms
	Kronecker formulation & Gradient Descent
	Diagonalization Procedure

	Separable Kernels for Vector-Valued KRR
	Block-diagonal Multi-Output Kernel Matrix
	Coupled Multi-Output Kernel Matrix

	Illustrative Example
	Performance Analysis
	Comparison with State-of-the-art Techniques

	Application Example: Doherty Amplifier
	Application Example: 2-GHz Low-Noise Amplifier (LNA)
	Summary

	Conclusions & Future Work
	References

