
Doctoral Dissertation

Doctoral Program in Electronics Engineering (35thcycle)

Exploration of Beyond von Neumann
Computing to solve the

Memory-Wall issue

By

Andrea Coluccio

Supervisor(s):
Prof. M. Graziano, Supervisor

Doctoral Examination Committee:
Prof. Alberto Bosio, Full Professor, INL – Ecole Centrale de Lyon, Lyon, France
Prof. Giovanni Finocchio, Associate Professor, Università degli studi di Messina,
Dipartimento di Scienze matematiche e informatiche, scienze fisiche e scienze della
terra, Italy

Politecnico di Torino

2023

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Andrea Coluccio
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to all the people who have been with me on this
journey, supporting me and giving me the motivation to face the difficulties.

Abstract

The impressive growth in complexity of transistor technology has been the driving
force behind modern electronics. Many applications (e.g., Neural Networks), which
have become increasingly popular over the years, require processing enormous
datasets quickly, placing stringent requirements on the hardware. Many computer
architectures employed today are mainly based on a Central Processing Unit (CPU)
and memories: the CPU executes the instructions composing programs, takes data
from memory, and, once the processing is over, stores back the outcomes in the
memory. As a result, these CPU-Memory structures, known as von Neumann archi-
tectures, require frequent data exchanges, wasting time and power. In addition, CPU
and memory have not followed the same trend, resulting in an increasingly wider
performance gap that requires the CPU to wait for memory constantly. This prob-
lem, known as Memory-Wall, is the most significant bottleneck preventing modern
systems from keeping up with the performance demands of the latest applications.
Therefore, a complete redefinition of the computing paradigms is required to over-
come the limitations of von Neumann structures. A possibility lies in Beyond von
Neumann Computing (BvNC), where part of the computational elements is moved
close or even inside the memory, aiming to reduce the data traffic and execute tasks
in parallel, achieving energy and time savings. However, developing new computing
methods often requires a comprehensive rethinking of the design paradigm: for
this reason, researchers have developed specialized software and CADs to assist
designers with new computing paradigms or technologies. These tools generally
specialize in one or more types of BvNCs and state-of-the-art architectural templates
and focus either on simulations, performance estimations, or both. This thesis work
presents a tool known as Design Explorer for In-Memory Architectures (DExIMA).
Differently from existing tools, the idea is to define the architecture with high flexi-
bility, going through the whole design flow up to automatic simulation, performance
estimation, and comparison with von Neumann architectures. DExIMA maintains

v

architectural-level descriptions, so estimations can be done on any technology if
implemented inside the tool. The framework allows the designer to develop BvNC
architectures in a simple and guided manner by providing a schematic editor, sup-
ported implementation of algorithms and control units, Register Transfer Level (RTL)
simulation, circuit performance estimation with DExIMA-Backend (an ad-hoc tool
implemented in C++), and comparisons with von Neumann architectures using the
Gem5 and Cacti by HP tools. At the end of the design flow, DExIMA will give
an indication of the performance obtained in the BvNC case to understand how
effective this type of solution is compared to a classical implementation. DExIMA
also provides the architecture’s RTL code that can be synthesized with classical EDA
tools. Each step is guided by DExIMA, equipped with a PyQT5-based Graphical
User Interface that implements all the previous routines. On the user side, the effort
is significantly reduced and consists of defining the algorithm and the architecture.
Different benchmarks are proposed that confirm the effectiveness of BvNC and show
how, with DExIMA, the user has the possibility to control every step of the design
with simplicity, considerably speeding up the whole procedure. The contributions of
this work include a study of the state-of-the-art on BvNC proposals, an overview of
existing EDA tools applied to BvNC, proposals of standalone BvNC architectures
with demonstrated effectiveness, implementation of the DExIMA tool capable of
modeling BvNC structures and estimating performance, validation of DExIMA com-
pared to commercial EDA tools, and evaluation of the tool’s versatility through the
implementation of various benchmarks and analysis of their impact on von Neumann
architectures.

Contents

List of Figures xi

List of Tables xviii

I Background and previous works 1

1 Introduction 4

1.1 State-of-the-art . 5

1.1.1 Beyond von Neumann concept 7

1.1.2 BvNC application example: neural networks 15

1.2 Electronic Design Automation applied to BvNC 20

1.2.1 Overview of the standard tools 20

1.2.2 Tools for BvNC . 21

1.3 Promoting BvNC: results and discussions 23

1.4 Conclusions . 29

2 Previous works and architectural models 30

2.1 General-Purpose and Application Specific 30

2.1.1 Application Specific implementations 31

2.1.2 General Purpose approach 50

2.2 Conclusions . 67

Contents vii

II DExIMA tool for LiM design exploration 69

3 Overview of DExIMA software 71

3.1 DExIMA architectural reference structure 72

3.1.1 Control part and design templates 74

3.2 DExIMA-GUI: Graphical User Interface 77

3.3 LiM design phases . 80

3.3.1 Near-Memory design phase 82

3.4 Conclusions . 84

4 LiM design flow with DExIMA 85

4.1 Definition of the LiM template . 87

4.2 Definition of the LiM Cell . 87

4.3 Definition of the IRL . 87

4.4 LiM array definition . 87

4.5 Definition of the uRAM content 88

4.6 Clock and default toggle rate definitions 89

4.7 Simulation . 90

4.8 Performance estimation . 90

4.9 Visualization of the results . 95

4.10 Comparison CPU-Mem and CPU-Mem-LiM. 97

4.11 Conclusions . 101

5 Front-end code description: DExIMA-GUI 102

5.1 MainWindowItems . 103

5.1.1 Graphical elements . 103

5.1.2 Functions and routines . 111

5.2 CONNECTBlocks . 113

viii Contents

5.3 Interconnections . 114

5.4 LiMTEMPLATES . 116

5.5 MEMORYARRAYHandlers . 116

5.6 PERFORMANCE . 117

5.7 SCENEElements . 118

5.8 SIMCnfg . 122

5.9 TOOLS, VCDAnalyzer and VHDLGenerators 125

5.9.1 VCD file format . 125

5.9.2 Conversion to Wavedrom 126

5.10 Available blocks: LIBRARY folder and SPICE description 127

5.11 OUTPUT and Documentation folders 129

5.12 Project files . 130

5.12.1 Main folder . 132

5.12.2 Gem5 output directory . 134

5.13 Conclusions . 137

6 Automatic RTL simulation 138

6.1 Simulation script . 139

6.2 Universal Verification Methodology testbench 140

6.3 Interface . 141

6.4 Sequence Item . 142

6.5 Driver . 143

6.6 The Register Environment . 146

6.7 Sequences . 147

6.7.1 Reset sequence . 148

6.7.2 Write and read sequences 148

6.7.3 Set LiM operation sequence 149

Contents ix

6.7.4 Algorithm execution sequence 149

6.8 The UVM main test . 151

6.9 Conclusions . 153

7 DExIMA-Backend 154

7.1 Main classes overview . 156

7.2 DExIMA-Backend input file . 158

7.2.1 The Technology class . 165

7.2.2 Concept of the Printer class 171

7.2.3 The STDCell class . 174

7.2.4 The CompositeGate and MultibitBlock classes 183

7.2.5 The Module class . 188

7.2.6 The Lim and the Architecture classes 188

7.2.7 The Performance class and its inherited classes 189

7.3 Computational model . 191

7.3.1 Model for parallel and series transistors 191

7.3.2 Short circuit current . 192

7.3.3 Modeling the static power 197

7.3.4 MOS capacitance model 200

7.3.5 Switching activity propagation model 210

7.3.6 Dynamic energy and power models 212

7.3.7 Area model . 212

7.3.8 Delay model . 213

7.3.9 Bus model . 214

7.3.10 DExIMA output file . 223

7.4 Conclusions . 226

x Contents

8 Inserting LiM in a von Neumann system 227

8.1 Comparison between CPU-Mem and CPU-Mem-LiM systems . . . 227

8.2 Conclusions . 232

9 DExIMA-Backend validation 233

9.1 Procedural steps for validation . 234

9.1.1 Comparisons with Liberate datasheet 235

9.1.2 Comparisons with Synopsys Design Compiler 241

9.2 Conclusions . 248

10 Testing DExIMA: benchmarking and comparisons 249

10.1 XNOR-Net: a binary neural network 249

10.2 Matrix-Vector Multiplication . 251

10.3 K-Nearest Neighbor . 253

10.4 Bitmap Indexing . 255

10.5 Mean-Variance . 260

10.6 Results comparison . 262

10.7 DExIMA-Backend vs. Synopsys Design Compiler: complex archi-
tectures . 270

10.7.1 Investigating the worst outcomes: MVM case 272

10.7.2 Investigating even more the problem: DExIMA-Backend
known issues . 275

10.8 SRAM vs flip-flop memories . 278

10.9 Evaluating the impact of the bus on CPU-Mem and CPU-Mem-LiM 279

10.10Conclusions . 281

11 Conclusions and future works 282

References 284

List of Figures

1.1 CPU-memory performance comparison. Non-shaded data are taken
from [1]. The shaded bars are obtained through predictions and com-
parisons with existing qualitative graphs in the literature, particularly
found in the reference [2]. 6

1.2 Examples of Logic-in-Memory computing using (a) SRAM-based
[3], (b) memristor-based [4] and (c) DRAM-based architectures [5]. 8

1.3 Schematic of a neuron. Example with 9 inputs. 15

1.4 Convolution computation example with a 3×3 kernel. 16

1.5 Structure of LeNet 5 CNN [6], composed of 2 convolutional, 2
pooling and 3 fully connected layers and their sizes are indicated in
the model. 16

1.6 TOP5 accuracy comparison between different binary approximations
[7] . 18

1.7 Speed-up and energy improvements between non-LiM and LiM
solutions. Data are taken from [8]. 24

2.1 LiM design approaches. 31

2.2 Overview of the Application Specific implementations. (a) RISC-
VLiM data memory. [9, 10] (b) Fixed point LiM implementation
of a neural network. [11, 12] (c) XNOR-Net binary neural network
implemented in LiM. [13] . 32

2.3 Layout view of the LiM Cell . 40

xii List of Figures

2.4 Comparison of relative levels of efficiency. The numbers have been
rescaled in the plot to be shown in percentage form. Above each bar
is an indication of the value in absolute terms. In comparison to the
XNOR-POP, for instance, the efficiency of the WINNER algorithm
is 70% [14]. 45

2.5 Multiple input channels neural network design. 47

2.6 Ones counter integrated in-memory. 48

2.7 Hybrid-SIMD LiM array and Cell structures. 52

2.8 Smart row structure implementing all the proposed benchmarks. . . 58

2.9 Number of instructions required for RISC-V/Hybrid-SIMD architec-
tures . 59

2.10 Number of memory accesses for RISC-V and Hybrid-SIMD systems. 61

2.11 MeMPA system. [15, 16] (a) MeMPA top-level view. (b) Processing
Matrix structure, with Standard Blocks (only memory) and Smart
Blocks (memory and computation), and M-SIMD implementation.
(c) Smart Block architecture. (d) Structure of the arithmetic cell
composing the Block Word. 62

2.12 MeMPA vs Hybrid-SIMD: (a) reports the Execution time/# Samples,
while (b) evaluates the Energy/# Samples for both structures. CPU-
Mem-MeMPA: Comparison of execution time (c) and energy (d)
between CPU-Mem and CPU-Mem-MeMPA solutions. 66

3.1 Overview of the DExIMA software 72

3.2 Reference architectural model for the LiM Memory Array. 73

3.3 Base templates of the LiM Cell and IRL. 74

3.4 Microprogrammed Control Unit implemented in DExIMA to support
general and flexible driving. 76

3.5 Main window of the DExIMA tool. (a) Schematic capture. (b)
Comparison CPU-Memory and the text editor widget. 78

3.6 High-level scheme of DExIMA software interface. 80

3.7 DExIMA high-level structure . 83

List of Figures xiii

4.1 (a) LiM template example. (b) LiM array cell pattern. (c) IRL
organization. 85

4.2 (a) LiM Cell and (b) IRL block examples. (c) Top-level entity scheme. 86

4.3 Selector values defined for the LiM architecture example using the
Define uRAM selectors tool. 89

4.4 (a) Schematic of the Flip-Flop-based memory cell. (b) Timing dia-
gram example obtained from the output .vcd file: LiMCELL_0_0
data precharging during the initial phase. (c) Top-level testbench
waveforms during the data precharge phase. (d) Example of the
computational phase. 91

4.5 (a) VCD parsing phase: progress bar indicating the percentage of
completion of the operation. (b-c) Start-stop time instants selection
dialogs. (d) Start and stop times selection for VCD parsing with
GTKWave. 92

4.6 Bus(es) selection and parameters definition. 93

4.7 Tabular format results after DExIMA-Backend estimation. 95

4.8 Plot format results after DExIMA-Backend estimation. 96

4.9 Steps required for CPU-Mem and CPU-Mem-LiM comparison. (a)
L1 I/D cache sizes. (b) L2 shared cache size. (c) Number of LiM
memory rows. 98

4.10 Steps required for the performance of the caches. (a) L1 I/D cache
associativity. (b) L2 shared cache associativity. (c) Technology node. 99

4.11 Estimation of the number of instructions for both CPU-Mem-LiM
(a) and CPU-Mem (b) codes. 99

4.12 L2SCache: memory statistics. 100

4.13 Final comparison between CPU-Mem and CPU-Mem-LiM systems. 101

5.1 Folders organizations of the DExIMA project. 103

5.2 Contents of the MainWindowItems folder. (a) Dialogs, progress bars,
and graphical widgets and elements. (b) Python files performing
specific routines or functions related to the graphical part. 104

xiv List of Figures

5.3 Overview of the implemented dialogs. From left to right and top
to bottom: CustomDialog, DialogBus, DialogBusProperties,
FileDialog, EditItem, TemplateConfigurator, dialogSetClock
and uRAMGenerator. 108

5.4 Main toolbar of DExIMA software. 109

5.5 Top-most menu entries of DExIMA. 110

5.6 (a) ConnectDialog window, where the user specifies, bit-per-bit,
the connections between two ports having different parallelisms.
(b) Example of a circuit having a connection between ports with
different parallelisms. 114

5.7 Lee algorithm example applied to a 5x5 grid. 115

5.8 Contents of SIMCnfg directory. 122

5.9 Declaration format of the signal values in a VCD file. 126

5.10 Example of a rendered waveform in Wavedrom. 127

5.11 (a) Content of the LIBRARY folder. (b) Corresponding SPICE file
descriptions of the standard cells for DExIMA-Backend. 129

5.12 (a) OUTPUT folder organization. (b) Documentation folder organi-
zation. 130

5.13 Screenshot of the HTML documentation file. 131

5.14 Typical content of a DExIMA project directory. (a) Main folder. (b)
Gem5 results directory. 131

5.15 Statistics extracted from Gem5 simulation. 136

6.1 (a) High-level scheme of a generic UVM testbench. (b) High-level
scheme of the UVM testbench employed in the DExIMA project. . . 140

7.1 DExIMA-Backend estimation steps 156

7.2 (a) UML high-level scheme of the DExIMA-Backend tool: collab-
oration diagram of Dexima class. (b) Collaboration diagram of
Simulator class. 157

List of Figures xv

7.3 Toy example of a LiM architecture and the associated DExIMA file
in Listing 37. 160

7.4 Collaboration diagram of the Compiler class. 163

7.5 UML class diagram of the Technology class. 165

7.6 Inheritance graph of the Printer class. 172

7.7 UML diagram representation of the STDCell class. 174

7.8 Related class elements of the STDCell class. 175

7.9 Fanout evaluation example: two inverters. 179

7.10 Call tree of the compute_performance method. 182

7.11 Collaboration diagram for the CompositeGate class. 183

7.12 Collaboration graph of the BlockUtilities class. 185

7.13 (a) Call graph of the void BlockUtilities::createComponent
function. (b) Call graph of the void BlockUtilities::connectGraph
function. 186

7.14 Module class collaboration diagram. 189

7.15 Lim object: high-level scheme . 190

7.16 Collaboration graph of the Architecture class. 190

7.17 Performance class inheritance graph. 191

7.18 AND2_X1 gate reduction example for the short circuit power com-
putation. 193

7.19 (a) Measurement of the static power for all input combinations. (b)
Leakage currents model used in DExIMA-Backend for the NMOS
transistor. 198

7.20 MOS capacitance model used in Cadence Spectre [17]. 200

7.21 Self capacitances of the MOS device 201

7.22 BSIM3.3, BSIM4 capacitance models comparisons with SPICE
measurements for the triode region. 203

xvi List of Figures

7.23 Schematic of the inverter used in Cadence Virtuoso for intrinsic
capacitance validation. 207

7.24 Comparison between reference and computed Cgg, Css and Cdd in-
trinsic capacitances. 208

7.25 Schematic of the And-Or-Invert 2-1 gate. 211

7.26 (a) Schematic of a flip-flop with the equivalent logic gates. (b)
Equivalent graph of the flip-flop. 213

7.27 Bus estimation. External (a) and internal (b) bus contributions. . . . 215

7.28 Simulation window in which the average transition power of a bus is
computed. 215

7.29 Equivalent netlist of an external bus, used for the bus performance
estimation. The number of lines is associated to the number of bits
of the bus. 216

7.30 LiM internal equivalent model for the bus estimation. 218

7.31 Ngspice-based bus estimation waveforms. (a) Transition example
for the bit-0 of the BL bus. (b) Transition example for the bit-1 of
the BL bus. 218

7.32 Collaboration graph of the BusParser class. 219

9.1 Example of a typical characterization steps for a standard cell library. 237

9.2 Dynamic and Static powers comparisons between DExIMA and
Synopsys Design Compiler. 246

9.3 Total power and critical path comparisons between DExIMA and
Synopsys Design Compiler. 247

10.1 XNOR-Net basic LiM Cell (cell00). 250

10.2 LiM cell (bordered in blue) and IRL circuits for the MVM algorithm.
IRL contains a multiplier, an adder and a register. 252

10.3 IRL block implementing the K-NN computation. 254

List of Figures xvii

10.4 LiM Cells used to implement the K-NN algorithm. (a) Cell 00, used
to connect the selectors on the SHO bus. (b) Standard memory cells
that simply hold data. 255

10.5 LiM Cells for BMP implementation. (a) Standard memory cells
(st_memory_cell) and (b) LiM computational cells (compute_cell00).257

10.6 IRL circuit for OneCounting operation. 259

10.7 Mean-Variance LiM cells and IRL circuits. Selectors pins are not
shown for clarity. 262

10.8 DExIMA-Backend results for the MVM algorithm. The evaluation
with back-annotation during the algorithm evaluation phase. 266

10.9 Results of the MVM algorithm. The evaluation with back-annotation
during the algorithm evaluation phase. (a-b) Instructions profiling
for the MVM of the CPU-Mem and CPU-Mem-LiM architectures,
respectively. (c) Comparison between CPU-Mem and CPU-Mem-
LiM for the MVM (axes are in logarithmic scale). 267

10.10BL Bus estimation of the MVM algorithm during data precharging. 268

10.11Performance comparison between Synopsys Design Compiler and
DExIMA-Backend for MVM, XNOR-Net and BMP. 271

10.12Comparison between DExIMA-Backend and Synopsys Design Com-
piler performance results. The parallelism and the number of rows
of the LiM array are swept. 274

10.13DExIMA-Backend vs Synopsys Design Compiler Execution Time
speed-up ratio. 275

10.14(a) Two parallel adders circuit example. (b) Three serial adders
circuit example. 276

10.15Dynamic, Total Powers and Critical Path comparisons between
DExIMA-Backend and Synopsys Design Compiler. (a) Serial Adders
analysis. (b) Parallel Adders analysis. 277

List of Tables

1.1 Results of execution cycles and usage percentage for BMP, MVM
and Linear Algebra algorithms on the architectures used in Sim2PIM.
The numerical values are extracted from the graph in Figure 8 on
page 9 of the Sim2PIM article [18]. 25

2.1 Simulation results comparison . 38

2.2 Estimated Post Place&Route performance of the RISC-V core, stan-
dard (MEMORY), and LiM memory with a 4kB size. 40

2.3 Number of memory operations comparison between Memory and
LiM cases . 41

2.4 Memory energy comparisons using a clock period of 3ns. 41

2.5 AlexNet structure with the necessary number of steps for the refer-
ence architecture consisting of 64 inputs per neuron. 43

2.6 State-of-the-art performance comparison with AlexNet model. Pro-
cess time is rescaled to batch size equal to 1. The data of this table
are partially taken from [19]. 46

2.7 Post place&route estimation for two neural network models. 49

2.8 CAM-based XNOR-Pop [20] and our LiM architectures performance
parameters comparison. 49

2.9 The frequency of occurrence of each instruction for SPLASH-2
benchmarks. barnes, fmm, ocean-contiguous-partitions, ocean-
non-contiguous-partitions, radiosity, water-nsquared, and water-
spatial are the algorithms examined. 51

List of Tables xix

2.10 Available operations performed by the LiM Cell’s full adder. 53

2.11 Place&Route results of the Hybrid-SIMD using CMOS 45nm tech-
nology [21]. 58

2.12 Energy comparison between caches energy accesses and Hybrid-SIMD. 60

2.13 Data initialization cycles, parameters, execution cycles and post-
Place&Route back-annotated power of each algorithm 65

2.14 Comparison of the number of L1 and L2 cache memory accesses for
CPU-Mem and CPU-Mem-MeMPA. 67

7.1 Parameter list of the 45nm CMOS technology. 166

7.2 Off and gate current measured with Cadence Virtuoso for a NMOS
transistor of the 45nm CMOS technology. 199

7.3 Parameters required for Abulk computation. Values are extracted
from the NMOS model file. 204

7.4 Parameters used in the overlap capacitances calculations for the
NMOS transistor. 209

9.1 Standard cells performance comparison between Liberate and DExIMA-
Backend. 240

9.2 CPU usage time comparison between DExIMA-Backend and Syn-
opsys DC. 248

10.1 Performance values of each benchmark and comparison CPU-Mem
and CPU-Mem-LiM. 264

10.2 Back-annotation/worst-case power estimation comparison during
algorithm evaluation. 265

10.3 Toggle rate impact evaluation in terms of dynamic and total powers.
Comparison between Synopsys Design Compiler and DExIMA-
Backend. 273

10.4 SRAM-based and flip-flop based memory arrays performance com-
parisons. 278

xx List of Tables

10.5 BL bus performance comparison between SRAM-based and flip-
flop-based memories. 279

10.6 Bus impact results and comparisons. 280

Part I

Background and previous works

At the end of this document, a glossasy listing acronyms and abbreviations

used in this thesis can be found.

Chapter 1

Introduction

Summary

This chapter introduces the concept of Beyond von Neumann Computing, a new
computing approach that aims to solve the problems associated with classical archi-
tectures based on central processing units and physically separated memories. These
architectures are widely used because of their extreme versatility, but they suffer from
performance bottlenecks that limit their effectiveness. The section 1.1, introduces
the topic and shows the limitations in von Neumann architectures, providing the
rationale for why a new computation approach is needed. A study of the state of the
art of these architectures is made in the subsection 1.1.1, reporting the most signif-
icant cases and providing a categorization of the Beyond von Neumann approach,
which appears to be widely used and employed. The subsection 1.1.2 provides an
example of an application in which Beyond von Neumann architectures, namely
neural networks, with a few examples of architectural implementations provided
in the literature. As will be shown in later parts, performing the design of these
types of architectures can be extremely complex and tedious, so in this introductory
chapter, an overview of tools developed to simplify the design procedures is given.
All this is addressed in section 1.2. Finally, in section 1.3, the reason why Beyond von
Neumann architectures are so important is presented. Quantitative state-of-the-art
results are presented, showing the positive impact this approach has on computing
architectures.

1.1 State-of-the-art 5

1.1 State-of-the-art

Nowadays, electronic devices have rapidly spread in many aspects of human life.
Computers, in particular, gained notable improvements over time, becoming fun-
damental devices for various applications. These applications (such as Machine
Learning algorithms or neural networks) have become more and more complex over
the years, requiring a massive amount of data (or datasets) to be processed in no
time, imposing strict requirements on the hardware or a complete redefinition of the
computing paradigms [22]. For this reason, the driving force of the architectural
design has focused on integrating more transistors in a single chip by reducing
their sizes, especially the channel length, or by investigating new technologies or
manufacturing processes like the consolidated Fin-Field Effect Transistors (FinFET)
or Gate-All-Around FETs (GAAFET) [23]. However, integrating more transistors
will no longer be sufficient to stem the continuous demand for computing power in
the near future because of the end of Moore’s Law [24, 25]. Moore’s Law states
that transistors in an Integrated Circuit (IC) double every two years. Up to the
present, the silicon industries have followed this trend. Transistor size reduction
and technological evolution reduced power and allowed to fit more transistors in the
same area. Unfortunately, this trend is about to end, probably reaching a plateau by
2025 [26, 27]. The cause is mainly due to the physical limitations of the channel
length and the intrinsic difficulty in controlling the current flow in deep nanoscale
transistors. Two directions are possible to overcome CMOS limitations and improve
performance: exploring emerging technologies and new computing paradigms and
architectures.

The most common architectures used nowadays are based on a Central Process-
ing Unit (CPU), where most operations occur. Each program, application, or task is
automatically decomposed in a series of simpler operations (or instructions), that
are executed by the CPU, producing results in output. These results and instructions
are saved inside memories. These CPU-memory architectures are the most diffused
ones and constitute all modern computers. Two main structures are used: the von
Neumann architecture [28–30], in which there is only one memory that contains in-
structions and data into different address spaces, and the Harvard architecture [28], in
which data and instruction memories are separated. In both cases, the computational
part is located in the CPU, which executes calculations extracting data from memory
and saving the results again into the memory itself. This organization achieves a

6 Introduction

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

100

101

102

103

104

7.23 ·10−20.240.40.670.861.11.311.772.162.592.963.423.814.244.665.115.466
6.336.837.37.638.068.468.879.129.129.129.129.129.129.129.129.129.129.129.219.279.379.379.419.469.59.54

3.09 ·10−27.23 ·10−20.130.180.240.30.360.490.510.610.630.730.80.880.981.021.081.171.231.251.331.371.521.541.621.721.771.791.891.912.032.12.162.22.262.32.352.42.442.482.532.562.62.64

Time

Pe
rf

or
m

an
ce

CPU-Memory performance comparison

CPU
Memory

Fig. 1.1 CPU-memory performance comparison. Non-shaded data are taken from [1]. The
shaded bars are obtained through predictions and comparisons with existing qualitative
graphs in the literature, particularly found in the reference [2].

high degree of flexibility and supports a wide variety of algorithms that can be easily
written and compiled for such architectures. However, von Neumann and Harvard
architectures are affected by a huge bottleneck: the Memory-Wall [31–33]. CPUs are
becoming more efficient and faster, but the memories cannot follow the same trend,
implying a performance reduction of the overall system [1]. This effect is confirmed
in Fig. 1.1, where the performance of the CPU and the memory are reported over
time. The gap between the two elements has started to grow exponentially since
the 1980s. Referring to the von Neumann architectures, this effect is also called
von Neumann Bottleneck [34], which is particularly evident in memory-intensive
applications. Several techniques have been exploited to reduce the effects of the
Memory-Wall. For example, Out-Of-Order (OOO) scheduling, concurrent instruc-
tions execution during a memory operation, caching (which consists of inserting
several levels of small and very fast SRAMs close to the CPU), and prefetching
[35] try to recover the latency of the main memory. However, this bottleneck still
persists even in the most recent CPU-centric architectures. For this reason, in recent
years, new design concepts have been born that specifically aim to reduce or solve
the Memory-Wall.

1.1 State-of-the-art 7

1.1.1 Beyond von Neumann concept

One promising technique to solve the Memory-Wall consists of the Beyond von
Neumann Computing (BvNC) [36]. The idea of the BvNC focuses on moving part of
the computation inside or close to the memory, consequently reducing the data traffic.
However, embedding calculations In-Memory is a challenging task and usually
requires a redefinition of the existing memory design paradigms or the employment
of exotic emerging technologies.

BvNC can be distinguished into two categories: if the computation is performed
inside the memory array, the methodology is called Logic-in-Memory (LiM) Com-
puting, otherwise Near-Memory Computing. LiM approaches are generally based
on using different memory technologies. In standard CMOS, the most frequently
adopted solutions are based on SRAM [37–41] and DRAM [5, 42] arrays. By en-
abling multiple wordlines (WLs) at the same time and sensing the voltage potentials
on the bitlines (BLs), the BL voltages will depend on the contents of the enabled
cells, so by choosing appropriate threshold voltages, the sense amplifiers’ outputs
will coincide with logic functions. Considering the example in Fig. 1.2 (a), proposed
in [3], by precharging RBLF and RBLT to VDD and by enabling both A and B
lines simultaneously, the resulting voltage on the bitlines will be proportional to the
NOR and AND operation. The sense amplifiers are equipped with additional logic to
perform different operations. Similarly, the BL current can also be used to perform a
current-based computation. The BL current is proportional to the conductance on
the path, so it depends on the state of the transistors inside the cell [43]. Moreover,
SRAM-based computing is an advantageous technique exploited in [44] to empower
cache memories, allowing logical computations within the array and arithmetic
operations with a small Near-Memory computational unit. Content Addressable
Memories (CAMs) can also be used to perform calculations since they execute the
XOR (or XNOR, depending on the CAM type) operation between the search line
(SL) and the cell content. The result will be written on the Match Line (ML), which
is initially precharged to VDD: if there is no match, the XOR result is 0, and the
ML will be discharged to 0. CAMs, as the name suggests, are addressed for data
to perform search operations and are divided into two categories, namely Binary
CAMs (BCAMs) and Ternary CAMs (TCAMs), which possess 10 and 16 transistors,
respectively. BCAMs take care of searching for the exact word within the array,
while TCAMs can also handle don’t care cases [45]. In detail, the CAM functionality

8 Introduction

6T
SRAM

A
RWLF_A
RWLT_A
WWL_A

RBLF RBLT

6T
SRAM

B
RWLF_B
RWLT_B
WWL_B

A+B A·B

...

(a)

V0

V1

V2

V3

V4

V5

V6

V7

I0 I1 I2(b)

WL0 = 0

WL1 = 0

WL2 = 0

WL3 = 0

WL4 = 0

EN=0
1
2VDD

WL0 = 1

WL1 = 1

WL2 = 1

WL3 = 1

WL4 = 1

EN=0
1
2VDD +∆V

WL0 = 1

WL1 = 1

WL2 = 1

WL3 = 1

WL4 = 1

EN=1
0

VDD(c)
Fig. 1.2 Examples of Logic-in-Memory computing using (a) SRAM-based [3], (b) memristor-
based [4] and (c) DRAM-based architectures [5].

relies on several XNOR(XOR)-bitwise operations between cell contents and SLs,
followed by word-level AND that produces the search result on the ML [46]: this
working principle is adopted in works like [47, 48]. Moreover, taking advantage
of this important feature, CAMs can also be used for other in-memory operations:
in [45], a memory is constructed mimicking the functionality of CAM, but also
extending its operations to AND and NOR between two or more words within

1.1 State-of-the-art 9

the array. Specifically, the authors propose a modified version of classical CAM
memory using only 6 transistors (i.e., equivalent to SRAM) but still allowing search
operations and reducing the area of the array. This memory can be dynamically
reconfigured into three modes: BCAM, TCAM and SRAM, respectively. Taking
advantage of different storage modes, the words can be stored by columns in the
BCAM and TCAM modes, exploiting classical bitlines to perform logic operations,
while they are stored by rows when using the memory in SRAM mode. In order
to perform search operations, the authors divided the WLs of cells into right WL
and left WL to which search line and negated search line are applied, respectively.
When there is a match between the data in the cell and the value on the SL, the
bitline and the bitline bar remain high. Otherwise, at least one of them is grounded.
For each bitline, a modified sense amplifier is placed, which compares the voltage
value with a reference voltage. Finally, each pair of sense amplifiers are ANDed
to identify the match. In order to write the data in the column, the authors propose
a data writing scheme based on the left and right WLs. Unlike the BCAM mode,
TCAM instead needs a pair of columns to store a single word, as an additional bit is
needed to represent the don’t care value, thus "01" don’t care, "00" and "11" for 0
and 1, respectively. In fact, the value "01" will always produce a match, whatever
the value of the input search string is. Taking advantage of the BCAM mode of
operation, it is also possible to perform bitwise AND operations between two or
more rows; by enabling multiple right WLs, AND values can be directly obtained on
sense amplifiers; similarly, a NOR operation can be obtained by enabling only left
WLs. Another example of a BvNC implementation based on the CAM approach is
the one presented in [46], where a methodology is developed to perform additions
directly within CAM, which is implemented with different technologies: traditional
SRAM and Ferroelectric FET (FeFET). The authors then propose a CAM-based
architectural solution for searching within a homomorphically encrypted database,
which involves the insertion of additional logic near the memory array that is respon-
sible for computing the sum operation. Moreover, to perform the accumulation, the
architecture is provided with in-place copy buffers that allow the rewriting of the
sum result directly inside the memory. Another example is the work proposed in
[49], where the authors propose an implementation of the Nearest Neighbor search
algorithm using a CAM, which performs the computation of the hamming distance
directly within the array. This time, the CAM is based on nanoelectromechanical
switch technology, a new promising technology for the proposed implementation.

10 Introduction

Regarding the DRAM-based computing, a solution is proposed in [5] and shown
in Fig. 1.2 (c). The working principle is similar to the SRAM one, but this time the
sensing is performed on the capacitors inside the DRAM cells. The computation
starts by precharging the BL on V DD

2 , keeping all the WLs disabled. Then, the WLs
are enabled, and the capacitors inside the cells share their charges on the BL, which
voltage potential results to be shifted by ∆V , proportional to the contents of the
enabled cells. Finally, the sense amplifiers are enabled, and the resulting ∆V voltage
will be translated to VDD or 0V, realizing the 5-inputs majority voting function
(MAJ5). The majority voting logic can be exploited to compute the 1-bit sum by
performing a MAJ3(A,B,Cin) to compute the Cout and a MAJ5(A,B,Cin,Cout,Cout).
Another important LiM approach consists of the use of emerging resistive technolo-
gies, very popular in the LiM field, such that they become a promising alternative to
CMOS arrays. Technologies like Magnetic Tunnel Junction (MTJ) [50–52, 36, 53],
memristor [54–57] and Phase Change Memory (PCM) [36, 58, 59] are often used
instead of CMOS-based memory cells. They are capable of storing data and per-
forming computations within the array, maintaining low operating power and high
efficiency simultaneously. Such devices store data through their intrinsic resistance,
which can assume a high or low value depending on the applied voltage or current:
high resistance (RH) is usually associated with logic ’0’, while low resistance (RL)
with logic ’1’. Usually, the computation is performed by exploiting Kirchhoff’s
current laws, similar to current-based computation in standard technologies. In the
example shown in Fig. 1.2 (b) and proposed by [4], a memristor-based crossbar
structure is used both as memory and computation array. The voltages are applied
to one end of the memristor devices, which acts as a resistor and provides a current
that is proportional to the value of the resistance. The current is sensed by the
sense amplifier, which outputs the corresponding value. By enabling multiple word-
lines simultaneously, the current will be proportional to the equivalent resistance on
the path, performing analog multiply-and-accumulate operations that are useful in
applications like neural networks.

The categories explained so far can execute simple logical or arithmetical compu-
tations in a highly parallelized fashion. More complex operations must be delegated
to an external processing unit: this happens in Near-Memory computing architectures,
such as Hybrid Memory Cubes (HMCs), where a processing unit is put very close
to the memory. Usually, HMCs are based on DRAM memories, and the intrinsic
cell structure is kept unaltered. DRAM arrays are organized in vertically stacked

1.1 State-of-the-art 11

layers connected utilizing Through Silicon Vias (TSVs) to a logical one [60]. Using
TSVs shortens the data path and achieves a very high bandwidth. The concept of
Near-Memory and In-Memory computing can also be extended to Single-Instruction-
Multiple-Data (SIMD) accelerators as in [61, 47, 62], where SIMD processing units
are put very close or inside a memory array. In [47], authors presented an associative
processor that replaces the last level of cache, enabling both SIMD computation
and storage capabilities at the same time, and [61] realizes a SIMD unit closely
connected to a cache, improving parallel computations and enabling re-usability of
the design. The architecture is called GP-SIMD [61], optimized to run algorithms
made up of highly parallelizable functions that process a vast amount of data (e.g.,
Machine Learning algorithms). Apart from efficiently performing parallel workloads,
GP-SIMD uses a common core to handle also sequential activities, making use of
Reduction Tree Interconnections. The GP-SIMD infrastructure solves data synchro-
nization using a regular CPU and a SIMD co-processor that shares two-dimensional
memory, providing a collection of bit-serial processing units near the memory array,
each associated with a different memory row. These bit-serial processing units (PUs)
with In-Memory-like operations contain a full adder (FA), a logic function bit block,
and four 1-bit registers. Together with a modified SRAM structure, the GP-SIMD
forms a huge computational memory with SIMD capabilities. The CPU can also
launch the SIMD co-processor in a non-blocking way to complete a job while per-
forming tasks that cannot be accelerated by the GP-SIMD in an efficient manner.
This co-processor has two components. The Reduction Tree Network connects all
processor units directly linked to the shared memory array in the datapath and a
microprogrammed sequencer, driven by the CPU, that is used to operate the SIMD
array and initiate parallel processes. The CPU processes the remaining sequential
sections once the sequencer finishes the requested tasks.

Summarizing, BvNC can be cathegorized in [63, 13]:

1. Near-Memory: where a portion of the computing blocks is relocated in the
neighborhood of memory. Belonging to this category, there are WIDE-IO2
and 3D stacked DRAM memories [64], HMCs and frameworks like GP-SIMD
[61].

2. Logic-in-Memory (LiM): three different families belong to this category,
differing essentially in the type of computation performed. (1) Computation
is performed by physically inserting logic elements inside the memory cell

12 Introduction

and LiM array. These elements carry out sparse, distributed, and parallel
computation. (2) Memory arrays are themselves used as computation elements.
Memory is addressed and provides the result of the computation. Look-
Up Tables and CAMs belong to this family. (3) Memory arrays, through
analog operations, perform computations on data. These arrays can be SRAM,
DRAM, or Non-Volatile Memories (NVM) especially based on emerging
resistive technology.

A note about MemComputing

One approach that has been gaining popularity is MemComputing (https://www.
memcpu.com/). Like the approaches reported earlier, processing and storage occur
in the same physical location [65]. Taking inspiration from the human brain model
of computation, MemComputing-based machines are able to self-organize, building
the solution pathway themselves, in fact, calculations are performed on devices
that exhibit properties of temporal non-locality, thus having memory. Memristors
[66] (but also Memcapacitors and Meminductors), for example, are mainly used
in this type of approach because, in addition to storing data, they are capable of
performing calculations that, as mentioned earlier, are based on current/voltage
measurements, which can vary because of their inherent ability to reprogram their
intrinsic state values (resistance, capacitance or inductance). MemComputing ma-
chines have essential differences from classical von Neumann machines, and their
main characteristics are intrinsic parallelism, i.e. all the MemComputing units (or
MemProcessors) work simultaneously; functional polymorphism, i.e., the ability
to compute different functions without changing the network topology; and infor-
mation overhead, i.e., the ability of a network of interconnected and interacting
MemProcessors to store more information than the same number of non-interacting
MemProcessors. Because of its computational capabilities, MemComputing can
be used to solve non-polynomial (NP) problems in polynomial time. The number
of MemProcessors in solving NP problems in polynomial time can increase expo-
nentially or linearly if they take advantage of the information overhead property, as
demonstrated in the article [65]. These kinds of solutions are proposed in works such
as [65], which implements the algorithm of the subset sum problem, i.e., locating
a subset of integers that form exactly a given sum value. The authors propose a
detailed explanation and mathematical modeling of the MemComputing approach,

https://www.memcpu.com/
https://www.memcpu.com/

1.1 State-of-the-art 13

providing an ideal implementation with a DCRAM (Dynamic Computing Random
Access Memory), which is a memory composed of MemCapacitors [67], which
has an infinite set of states and thus implements analog rather than digital memory
cells. Computations are implemented within memory by simply taking advantage
of row and column activations; by applying the activation signal to the different
rows, the MemProcessors change their state according to the chosen operation, thus
promoting massively parallel computations with the application of a small number
of input control signals by implementing, in this specific case, sum or, similarly,
data movement operations within the array. By taking advantage of these operations,
the DCRAM array is able to implement the subset sum problem algorithm in n-1
iterations. However, this approach requires an exponential number of MemProcessor,
as it does not exploit the information overhead. Therefore, a second solution to the
subset sum problem [68] is proposed, exploiting the Discrete Fourier Transform
(DFT) algorithm. Considering a subset of integers G = {a1, a2, ..., an} and the
following formula:

g(x) =−1+
n

∏
j=1

(
1+ ei2πa jx

)
(1.1)

And by expanding the products as ei2πx∑ j∈P a j , the function g(x) contains all the sums
of all possible subsets of G. Now applying the Fourier transform to the function g(x)
as:

F(fh) =
1
N

N

∑
k=1

g(xk)ei2π fhxk (1.2)

The spectrum of this function will exhibit peaks at values of fh, where fh are the
values of the sums and the amplitude of the harmonics is equal to the number
of subsets of G. This type of implementation is definitely different from those
presented so far, in fact it does not include the use of a memory array to implement
computations, but still exploits the concept of nontemporal locality to perform NP
algorithms in polynomial time. Another attractive MemComputing-based solution
to an NP-Complete algorithm is the one proposed in [66], in which the authors
implement a memristor-based MemComputing architecture that solves the Ant
Colony problem, consisting of finding the most convenient path within a maze. The
maze can be reduced to a graph, and a similar method to the one used by the ants
is used to find the path. The flow of ants, in fact, can be analogized to a stream
of electric current flowing through memristors that, in turn, model the physical
system. If, for example, there are two paths leading from point A to a point B, where

14 Introduction

L2 = 2L1, the equivalent model will be two parallel branches of memristors, where
in the first branch, there will be only one memristor, and in the second branch there
will be two memristors in series. By applying a constant current to this circuit, the
conductance of the devices, as time changes, will change by modeling the amount of
pheromones within the two paths, all done in a single algorithmic step.

A nexus with classical logic MemComputing is a completely different way of
performing computation based on a physical system that exploits temporal non-
locality, so it is a much broader physical concept that can also be applied in classical
logic as we currently know it. As shown in [69], an OR port can be transformed
into a MemComputing OR port by transforming its digital inputs into continuous
variables (e.g., voltages and currents) and, along with them, also "memory variables"
are associated. The OR gate, in the digital domain, has 4 different equilibrium states
that are analogous to local minimum points in the analog world. By associating
memory variables, it is possible to transform these local minimum points into saddle
points, where MemComputing performs computations in search of equilibrium.
Logic gates used in MemComputing are therefore named Self-Organized Logic
Gates (SOLGs) [70], and are devices whose terminals can be either input or output,
so the current can flow in both directions. Within a SOLG, Dynamic Correction
Modules (DCMs) ensure the Boolean satisfiability of the logic gate. By combining
multiple SOLGs, a SOLC (Self-Organized Logic Circuit) [71] can be constructed,
and because of the ability of the current to flow in both directions, a SOLC can "run
in reverse," solving problems that are simpler in the opposite direction (e.g., Prime
Factorization). Starting with SOLCs, Self-Organized Algebraic Gates (SOAGs)
[72] were developed, which are based on the same principle of operation as SOLCs.
However, this time they self-organize to model algebraic expressions, aiming to
solve problems such as Integer Linear Programming. In [72], the authors compared
a solution implemented with SOAGs using the MemCPU solver with Gurobi 8.0,
which is a commercial solver of mathematical programming problems based on
classical computation, showing that the MemComputing approach was able to find
much better solutions, regardless of size and structures, and, for some of these,
MemCPU’s convergence was extremely faster than Gurobi 8.0 (5 minutes vs. >
1 hour). The MemComputing paradigm turns out to be very efficient in solving
NP problems due to the use of memory variables and the ability of the circuit to
reorganize itself. This concept, however, differs from what has been covered so

1.1 State-of-the-art 15

far in that one does not necessarily have a memory array in which computation
takes place, but instead exploits the memory that certain devices possess to perform
computations: quoting the article [69], "By memory, however, I don’t mean storage,
but rather time nonlocality - the ability of a physical system to remember its past
dynamics in order to perform necessary tasks." The concept of BvNC covered in
this thesis refers to computation devices composed of memory elements or arrays
connected to computation logic to keep as much data as possible thereby reducing
communication with the CPU.

1.1.2 BvNC application example: neural networks

The BvNC technique is used most often in the acceleration of neural networks (NN).
A NN is a computational model capable of carrying out highly difficult assignments.
It is made up of "neurons," which are the fundamental building elements; by arrang-
ing these "neurons" in an interconnected network, the NN can make decisions and
potentially learn from its mistakes [73].

I0
W0

I1
W1I2

W2I3
W3

I4 W4

I5
W5

I6

W6

I7

W7

I8

W8

I9

W9

net

f(
ne

t)

Bias

Out

Fig. 1.3 Schematic of a neuron. Example with 9 inputs.

The diagram shown in Fig. 1.3 provides a good illustration of an artificial neuron.
It is composed of two primary components, which are net, which is in charge of
computing the weighted sum, and f (net), which is an activation function applied to
the output. In most cases, the term net is expressed as follows:

net =
N

∑
i=0

Ii ×Wi +Bias (1.3)

16 Introduction

I0 I1 I2

I5I4I3

I6 I7 I8

*
W0 W1 W2

W5W4W3

W6 W7 W8

net = ∑
8
i=0 Ii ×Wi +Bias

Fig. 1.4 Convolution computation example with a 3×3 kernel.

14×14×6

10×10×16

32×32

Input image

28×28×6 5×5×16
12

0

84 10
Convolutional layer
Pooling layer
Fully connected layer

Fig. 1.5 Structure of LeNet 5 CNN [6], composed of 2 convolutional, 2 pooling and 3 fully
connected layers and their sizes are indicated in the model.

Where Ii is the input value, Wi is the corresponding weight and Bias is an additive
term. Weights and biases can be adjusted to achieve the desired output with a
procedure called training. Usually, the activation function is non-linear. The most
important activation functions are Rectified Linear Unit (ReLU), hyperbolic tangent
(tanh), and the sigmoid function [74]. NNs are made up of layers composed of a set of
arranged neurons and the most common structures that can be found in the literature
are Convolutional Neural Networks [6, 75] (CNNs) and Multi-Layer Perceptrons
(MLP). In CNNs, convolutional layers perform the convolution operation of the
input feature map (IFMAP) with a set of weights called kernels. An example of a
convolution computation is depicted in Fig. 1.4: the parameters to take into account
in a convolution are the weights, the input feature map to be convolved, and the stride.
After the first convolution, the kernel window is moved by a step equal to stride,
and a new convolution can start. As it is possible to notice by this tiny example,
the convolution computation perfectly matches the equation of the neuron reported
in Equation 1.3, in which usually an activation function is applied to normalize
the results obtained. A real example of a CNN is the LeNet 5 [6], in which all the

1.1 State-of-the-art 17

convolutional layers have the same kernel size of 5×5 pixels. The first one produces
6 output feature maps (OFMAPs), meaning that the same IFMAP is convolved with
6 different kernels. The second convolutional layer instead produces 16 OFMAPs,
starting from 6 IFMAPs: for each input, 16 kernels produce 16 outputs, so 16 from
the first IFMAP, 16 for the second IFMAP and so on, implying a total number of
OFMAPs equal to 6×16. These considerations bring to the general formulation of
convolution in a convolutional layer, derived from [76, 13]:

yo(j, i) = Biaso +
#Cin−1

∑
cin=0

Wy−1

∑
k=0

Wx−1

∑
p=0

Wo,cin(k, p)× Io,cin(j× s+ k, i× s+ p) (1.4)

Where i, j are the indexes for the OFMAP corresponding pixel, cin is the input
channel index, #Cin the total number of input channels, Wx,Wy are the sizes of the
kernel matrices indicating the number of rows and columns, respectively, o refers to
the OFMAP considered, s is the stride and lastly p,k are the indexes of the kernel.
Pooling layers have similar behavior to convolutional layers. In literature, different
kinds of pooling layers are used, such as max or average pooling [77]. Similarly to
convolution, they perform the maximum (or the average) of the selected input pixels
and return only one value, performing the so-called subsampling operation. Pooling,
specifically max pooling, is widely used to reduce the size of the CNN, preventing
overfitting behaviors. In the example depicted in Fig. 1.5, the pooling kernel size is
2×2 for all the cases. Fully Connected (FC) layers are MLP subnetworks included
in the CNN to perform the classification operation, usually made of neurons fully
interconnected straightforwardly, as shown in Fig. 1.5.

NN are complex and computation-intensive models that can be power-hungry:
implementing them on low-energy budget systems like embedded contexts can
be challenging [78]. Therefore NN binary approximations are proposed in the
literature, trying to reach good trade-offs between complexity and accuracy. Binary
Neural Networks are particularly used in LiM-like architectures. Usually, Binary
Neural Networks introduce normalization layers: one of the most used is the Batch
Normalization (BatchNorm) [79] that is very useful to recover a portion of the
accuracy lost from the binarization procedure [80]. Recalling its equation from [79]:

X̃ =
X −µ√
σ2 + ε

× γ +β (1.5)

18 Introduction

0 10 20 30 40 50 60 70 80 90 100

FP (reference)

BWN

XNOR-Net

BC

80.2

79.4

69.2

50.4

TOP5 Accuracy [%]

Type
Accuracy comparison of different approximations

Fig. 1.6 TOP5 accuracy comparison between different binary approximations [7]

Where µ,σ are the batch mean and batch variance, while γ,β are correction variables.
These four variables are trainable, meaning that during the training procedure, they
are modified in order to increase accuracy. The value of ε is usually added to the
variance to avoid 0 division if the variance is 0.

In [7], an interesting comparison between some possible Binary Neural Network
approximations is proposed, also introducing XNOR-Net as a possible alternative:
the values are recalled in Fig. 1.6. In the plot, TOP5 is intended as the accuracy
classification rate to hit 1 out of 5 most probable classes. The Binary Neural Networks
are compared with the original floating point implementation (FP) of AlexNet neural
network [75], and accuracies are reported for each case.
All the weights are binarized in the approximation considered, meaning that w ≈
wb ∈ {−1,1} where wb is the binarized weight value. Some binarization techniques
are now briefly recalled from [7].

• Binary Weight Network binarizes only weights of the NN, keeping the ac-
tivations and the inputs at full precision. By binarizing only weights, the
convolution operation can be performed only with adds and subtractions,
avoiding multiplication as reported in Equation 1.6.

Convout,BWN = X ∗w+Bias ≈ α(X ∗wb)+Bias (1.6)

1.1 State-of-the-art 19

An extra factor α is multiplied by the convolution result in order to compensate
for precision losses:

α =
∑

N
i=0 ∥wi∥

N
(1.7)

Where wi is the considered full precision weight and N is the number of
weights. Binary Weight Network represents a very good alternative to reduce
NN’s complexity. However, it requires full precision inputs and activations.

• XNOR-Net binarizes both weights and inputs. The convolution result is
obtained by performing the binary convolution, which is multiplied by a
correction factor α (the same in Equation 1.7) and a matrix K. K is obtained
as shown in Equation 1.8.

K =

First term︷ ︸︸ ︷
∑

#Cin−1
cin=0 |X(:, :,cin)|

#Cin
∗

Second term︷ ︸︸ ︷
1

Wx ×Wy

1
Wx ×Wy

...

1
Wx ×Wy

1
Wx ×Wy

...

...
... . . .

 (1.8)

In Equation 1.8, the first term indicates the absolute punctual sum of the
multiple IFMAPs divided by the number of input channels, and so the number
of IFMAPs. The second term is a regular matrix of Wx ×Wy size, which is
made of the same term repeated in all the positions. Finally, the XNOR-Net
convolution can be rewritten as:

Convout,XNOR−Net ≈ (Xb ⊛wb) ·K×α (1.9)

Where Xb is the binarized input, ⊛ is the binary convolution, · is puntual
multiplication between matrices and × is the simple product. In [7], it is
demonstrated that the binary convolution can be performed by considering the
XNOR pop-counting of binary inputs/weights. XNOR truth table matches the
multiplication if -1 is mapped to logic ’0’ and +1 is logic ’1’. Pop-counting
computes the difference between the number of 1s and 0s of the input sample.

• Binary Connect (BC) [81] binarizes both inputs and weights without apply-
ing any correction factor to the final convolutional equation, implying less
recognition accuracy as shown in Fig. 1.6.

20 Introduction

BvNC approach is especially applied in NNs’ implementations. Some consider
binary approximations by choosing an implementation based on emerging technolo-
gies. Some works like [82, 19] are based on MTJ technology while [83, 14] used
RRAM. In each of these works, the resistive element is used to perform simple
logical operations based on the current sensing technique. In [82, 19, 84, 85], several
Binary Convolutional Neural Networks (BCNNs) implementations are discussed:
they achieve very good results in terms of energy and power, thanks to the intrinsic
low power nature of the MTJ and RRAM devices. In [83], a Binary Neural Network
design based on SRAM array is proposed, where the logic parts in charge of doing
the computations are disposed below the memory array. The memory parts allow
to store the required parameters for the NN computation (like weights and biases),
and the logic parts perform the results for the next layer of the NN, which are useful
for addressing the following memory part, forming an alternation between memory-
logic. This architecture achieves very good performance in terms of energy and
speed thanks to its pipeline-like structure. In [14], the NN is mapped in a Wide-IO2
DRAM, using TSVs as high-speed communication link obtaining remarkable results
in terms of execution time.

1.2 Electronic Design Automation applied to BvNC

All of the designs presented so far have been realized and simulated using tools like
SPICE (for transistor-level circuit design and simulation), synthesizers (from the
Register-Transfer Level functional model to the standard cell netlist description),
Register-Transfer Level (RTL) simulators, and Place&Route software. This section
delivers an overview of various tools, providing an understanding of the complexity
and tools involved in the design process. An emphasis is also placed on state-of-the-
art tools developed expressly for the BvNC approach.

1.2.1 Overview of the standard tools

Technological evolution has brought notable improvements in Computer-Aided
Design (CAD) software, requiring more computational capabilities and advanced
features. In Electronic Design Automation (EDA) field, for example, a wide selection
of tools are provided, assisting the designer in the synthesis and functional verifica-

1.2 Electronic Design Automation applied to BvNC 21

tion of Application-Specific Integrated Circuits (ASICs), Field-Programmable Gate
Arrays (FPGAs) or, differently, in the design of Printed Circuit Boards (PCBs) [86].
Regarding the ASIC world, the most advanced tools start from the implementation
and simulation of transistor-level circuits using engines like SPICE, then going to the
direction of the RTL description using languages like VHDL, Verilog, or System Ver-
ilog, functional verification by means of RTL simulation and, once everything works
as expected, finishing with the synthesis and Place&Route phase of the final circuit,
obtaining what is called the Graphical Data System II (GDS-II) description. This
process is called Very Large Scale Integration (VLSI) flow. In VLSI flow, several
very complex commercial and industrial tools are used. A possible list of tools in a
typical VLSI process starts with Cadence Virtuoso and Spectre for transistor-level
simulation and design, Synopsys Design Compiler/Cadence Genus for the RTL
synthesis, Mentor QuestaSim/Synopsys VCS/Cadence Incisive or NC-Verilog for the
functional simulation and Cadence Innovus for the Place&Route and GDS-II imple-
mentation of the circuit [87–89]. In the end of the Place&Route phase, a netlist made
of standard cells is obtained, and it is functionally equivalent to the original RTL.
Then, the netlist can be simulated again with the intrinsic delays of the standard cells
and the back-annotated switching activity to check the circuit functionality and to
estimate the performance precisely. In the literature, it is possible to find other EDA
tools that belong to open source or academic category. Examples can be ABC [90], a
software for logic synthesis and verification that makes use of And-Inverter Graphs
(AIGs) logic transformations; Cacti by HP [91], that estimates the performance of
modern memory systems; Verilator [92], a Verilog/SystemVerilog simulator similar
to Synopsys VCS able to achieve overwhelming speed-ups in particular applications;
OpenRAM [93], a memory compiler framework for the physical implementation of
Random Access Memories (RAMs); Ngspice [94], a CLI-based SPICE simulator
and many others.

1.2.2 Tools for BvNC

Unfortunately, performing the design of BvNC architectures is extremely complex
because it requires, for every minimal change within the architecture or algorithm
to be implemented, a revisit from scratch of the entire design, starting with the
structure, the type of BvNC, the interface, and ending with the functional simulation,
performance estimation, and circuit implementation. For this reason, in recent years,

22 Introduction

engineers have started to design very specific software or CADs, intending to assist
the designers in emerging computing paradigms or technologies. For example, mod-
ern tools implementing Near-Memory solutions are CLAPPS [95], or HMC-Sim [96].
CLAPPS, for instance, is based on System C and creates, simulates, and generates
synthesizable RTL of custom Hybrid Memory Cube solutions. Furthermore, it relies
on Gem5 [97], a very accurate and robust simulator of computer-system architectures.
Another example is Sim2PIM [18] (Simple Simulator for PIM Devices), which inte-
grates and simulates any Near-Memory architecture based on 3D stacked DRAMs
with the host processor and memory hierarchy. In this tool, an algorithm written in
C is compiled and simulated on the Near-Memory part. For In-Memory architectural
solutions, several tools are proposed, such as Eva-CiM [8] that, given a program,
the technology, the processor architecture, and the memory array characteristics, is
able to provide performance results on SRAM or FeFET arrays. The tool considers
data dependencies and relies on the instruction dependency graph (IDG) model that
has been supplemented with memory access data. The analyzer is incorporated
into Gem5 [97]. The architectural performance estimations rely on McPAT [98],
on which authors incorporated the In-Memory module. Eva-CiM quantifies the
system speedup and analyzes the energy savings of the In-Memory approach, demon-
strating the reduction in memory accesses and lower computational demands on
the host. Other remarkable tools are NVSim [99], which focuses on Non-Volatile
In-Memory technologies like Spin Transfer Torque-Magnetic RAMs (STT-MRAM),
PCMs, RRAMs and NAND-Flash; PIMSim [100] that integrates both Non-Volatile
technologies and DRAM Hybrid Memory Cubes. Similarly to Cacti, DESTINY
[101] is a modeling tool for 2D/3D memories created using SRAM, RRAM, STT-
RAM, PCM, and embedded DRAM (eDRAM) and 2D memories developed using
spin-orbit torque RAM (SOT-RAM), domain wall memory (DWM), and Flash mem-
ory. DESTINY enables modeling Multi-Level Cell (MLC) designs for NVMs in
addition to Single Level Cell (SLC) designs for all of these memories. DESTINY
is useful for performing design-space exploration across multiple dimensions, such
as optimizing for a target (e.g., latency, area, or energy-delay product) for a given
memory technology, selecting the appropriate memory technology or fabrication
method (e.g., 2D vs. 3D) for a given optimization target. Another interesting work
is the one developed in [102], which extends two other existing works, respectively
Accelergy [103], which is an architectural performance estimator, and Timeloop
[104], which is a specific infrastructure for exploring accelerators for deep neural

1.3 Promoting BvNC: results and discussions 23

networks. The tool focuses on In-Memory architectures implemented with memristor
technology. The arrays estimated in [102] perform MAC operations. This tool’s
great advantage is allowing the designer to have performance estimations of each
component belonging to the architecture (so ADCs, buffers, memory arrays, etc.)
without having to go through the whole tedious design phase of BvNC architectures.
Following a similar approach, MNEMOSENE [105] is another tool that takes care
of compiling, mapping, generating LiM-compatible instructions, and estimating
the performance of the chosen algorithm on the memory array. It has a compiler
built in C++ that translates the algorithm into a new instruction set specifically for
handling each component of the LiM design (peripheral circuits, arrays, etc.). The
performance estimation is implemented in System C. This is only part of the tools
proposed in the literature that focus on the LiM approach and, more generally, on
BvNC. The goal of the tools mentioned above is to provide a simulative framework,
in some cases also capable of estimating the performance of BvNC devices, with
the intention of quantifying the impact of these innovative architectures. In the next
part, some of the most significant results of the state-of-the-art BvNC tools and
architectures are reported and discussed.

1.3 Promoting BvNC: results and discussions

From the analysis and considerations so far, the BvNC approach is very promising
and increasingly used in the literature. However, what are the results obtained, and to
what extent does BvNC bring benefits? Analyzing the effect of BvNC architectures
on the von Neumann bottleneck is surely the best way to give validity to the concept.
If BvNC architectures are able to reduce the effects of constant processor-memory
communication, then the BvNC approach may be a good solution. This part reports
some results and case studies from previous works in the literature.

In Eva-CiM [8], an estimation of the LiM impact in a processor-memory system
is provided. The authors show how the inclusion of a LiM module based on SRAM-
type implementation within a memory hierarchy has a positive impact on the total
energy and speed-up of the system. LiMs used in Eva-CiM can perform bitwise
operations, including AND, NOR, XOR, and addition. The study is carried out for
several benchmarks, which are Naive Bayes (NB), Decision Tree (DT), Support
Vector Machine (SVM), Linear Regression (LiR), K-means (KM), Longest Common

24 Introduction

Subsequence (LCS), MPEG-2 decode (M2D), Breadth-First Search (BFS), Depth-
First Search (DFS), Betweennes Centrality (BC), Shortest Path (SSSP), Connected
Component (CCOMP), Page Rank (PRANK) and some algorithms from the SPEC
2006 benchmark-suite (Astar, h264ref, hmmer, Mcf). Results are reported in Fig. 1.7.
In all cases, through LiM, the authors demonstrated energy and speed-up benefits for

NB DT
SVM LiR KM

LCS
M

2D BFS
DFS BC

SSSP

CCOM
P PR

ast
ar

h2
64

ref

hm
mer mcf

0

2

4

6

Benchmark

Im
pr

ov
em

en
t(
×

)

Performance improvement of LiM

Speed up Energy improvement

Fig. 1.7 Speed-up and energy improvements between non-LiM and LiM solutions. Data are
taken from [8].

selected applications, promoting Eva-CiM and demonstrating the effectiveness of
the LiM approach.

Sim2PIM [18] implements different versions of BvNC architectures. The first
is a DRAM memory that exploits the concept of shared charge to perform bitwise
calculations on bitlines [106], called ComputeDRAM. The second is a memristor-
implemented memory that accelerates a Convolutional Neural Network algorithm
[107], called ISAAC. On the other hand, the last one implements a 3D stacked mem-
ory [108], called RVU. These architectures differ in structure and in the applications
they can implement. The authors simulated the three systems with different bench-
marks that best fit the chosen memory architecture. For the ComputeDRAM solution,
the algorithm chosen is Bitmap Indexing (BMP), which consists of searching for
elements having certain characteristics within a database through simple bitwise

1.3 Promoting BvNC: results and discussions 25

operations. The data are represented as strings of bits, where zeros indicate the lack
of a feature, while ones vice versa. ISAAC, on the other hand, being set up for the
computation of Convolutional Neural Networks, underwent an algorithm consisting
of Matrix-Vector Multiplication (MVM). The calculation operation takes place on a
matrix of size 4x4x64. Finally, RVU is employed to perform the operations involved
in linear algebra equations (in this case, multiplication, addition, and subtraction),
using vectors of size 8kB operating on 8MB of data. The authors demonstrated the

Table 1.1 Results of execution cycles and usage percentage for BMP, MVM and Linear
Algebra algorithms on the architectures used in Sim2PIM. The numerical values are extracted
from the graph in Figure 8 on page 9 of the Sim2PIM article [18].

Architecture Algorithm
Cycles

% BvNC % HostHost BvNC
ComputeDRAM [106] BMP 20 78 79.66 20.34

ISAAC [107] MVM 560 188 25.17 74.83

RVU [108] Linear Algebra 856 36 4.07 95.93

effectiveness of the Sim2PIM tool in accurately modeling different BvNC architec-
tures, showing data such as execution time and utilization rates. In addition, with the
results obtained with the tool, summarized in Table 1.1, another of the strengths of
the LiM approach and, more generally, of BvNC is revealed. These architectures
are particularly useful when employed as accelerators for specific data-intensive and
parallel applications, reducing CPU effort and moving part of the computation core
to the BvNC architecture.

The work presented in [102] provides estimations of the performance impact
of each component belonging to the memristor-based LiM design. These data are
particularly interesting in getting an idea of each element’s area occupancy and
energy consumption, which should not be underestimated at the design stage. In
the example proposed by the authors, 80 tiles having a size of 64x64 memristor are
evaluated. The results proposed in [102] show that the impact of memristor arrays
from the energy point of view accounts for only 17% of the total. The remaining
83% is caused by ADC/DACs, Near-Memory logic accumulation, and input buffers.
There is a similar trend from an area perspective, where memristor arrays account
for only 1.5% of the total area, and the vast majority is instead occupied by ADCs
(73.5%).

26 Introduction

MNEMOSENE [105] provides performance estimations on the linear algebra
GEMM benchmark proposed in Polybench [109]. The memristor array is responsible
for performing MAC operations. The study is carried out on several technologies,
including PCM, RRAM and STT-RAM providing, for each of them, data on the
energy contribution of the various components of the design (crossbar, drivers,
ADC, Sample&Hold, digital Near-Memory units), execution time with different
numbers of ADCs, and the latency contribution of each simulation phase for LiM
and Near-Memory components (setup, read, execute and Near-Memory processing)
at different clock frequencies. Interestingly, the authors demonstrate that, with higher
frequencies, the impact of the latency of the analog computation part performed by
the array (execute stage) increases because the latency of the analog circuits becomes
a predominant contribution with respect to the others. Despite this, the execution
phase has a significantly low duration compared to the other phases (max. 20%),
demonstrating the LiM’s effectiveness in performing calculations.

Considering now only architectural solutions, several approaches proposed in the
literature demonstrate the strengths of BvNC. One of these is DIVA (Data IntensiVe
Architecture) [110], which proposes an SRAM-based Near-Memory architecture in
which the memory array is directly connected to the logical computation layer. The
authors also suggest modifications needed to implement the memory architecture on
a DRAM array in the discussion. Unlike 3D Stacked approaches, DIVA implements
memory and computation units on the same plane, thus treating memory as an
accelerator. The architecture consists of 32 memory-computation chips linked by
an interconnected network that allows data to be moved from one array to another
without involving the host processor. The interface with the DIVA memory follows
the Synchronous DRAM (SDRAM) standard so that from the outside, this appears to
be the same as a standard memory. Inside the DIVA unit, there is a translation layer
between the SDRAM protocol, needed to drive the modules. Within a node of the
DIVA architecture, apart from a scalar datapath and a pipelined control logic, there is
a unit called WideWord that operates on words composed of very long bit strings (i.e.,
256 bits) that allows it to do, in addition to classical arithmetic operations, a whole
range of useful functions for data manipulation (e.g., permutation, data transfer, or
selective execution). The DIVA architecture has been tested with several benchmarks,
operating on large datasets or implementing image-processing algorithms. In order
to simulate DIVA, the authors developed a simulator called DSIM that implements
all the features of the DIVA architecture. The host processor is a MIPS 1000 with

1.3 Promoting BvNC: results and discussions 27

two-level caches. In the paper, the authors show a comparison in terms of speed-up
between a host without a DIVA module and one with, obtaining values averaging
3.3 times on the considered benchmarks (which are template matching, corner turn,
conjugate gradient, transitive closure, natural join, neighborhood, pointer random
walk, and OO7), confirming again the strengths of the BvNC approach.

In RIME [111], the authors propose another memristor LiM architecture capable
of implementing floating-point calculations. Computation is done starting from the
bitwise logic implementable by RRAM devices, thus minority function, NAND and
NOR. The concept of a memristor-implemented logic function has been employed
in other work in the past, as explained in [112], such as IMPLY [113] and MAGIC
[55], and consists of appropriately driving a group of memristors placed on the
same memory row. Some of these are used as "input" memristors, while others
are used as "output" memristors. The memristors have two terminals, one positive
and one negative. When the voltage applied between the positive and negative is
greater than the absolute value of the memristor’s ON threshold voltage, its state
changes from OFF to ON. Conversely, if a voltage is applied between the negative
and positive terminals and it is greater than the OFF threshold. For the calculation
of a NOR, for example, n-input memristors are connected in parallel: the positive
terminals are connected to the positive terminal of another memristor used as output,
while the negative terminals are connected to the ground. The negative terminal
of the output memristor is connected to an input voltage. Suppose all parallel
memristors are in a low resistance state (i.e., logic ’1’). In that case, it means that
the voltage between the negative and positive terminals of the output memristor
is high enough to switch to a high resistance state. From the realization of basic
gates, one can then move on to implementing full adders through the execution of
multiple NOR and NAND operations, requiring 6 clock cycles with this scheme.
One can implement architectures such as an integer or a floating point multiplier
from the full adder building block. These architectures were simulated with SPICE,
while the control logic part was synthesized with Synopsys Design Compiler and
compared with a von Neumann-like architecture. The results of area (3523 µm2

vs. 12975 µm2), energy (7 pJ vs. 10326 pJ), and latency (2ns vs. 3793ns) for a
single floating point multiplication are all favorable in the case of the von Neumann
multiplier, highlighting the negative performance impact of serial execution of
individual logic functions of the LiM case. These comparisons, however, are made
without considering the contribution of memory accesses, which is very impactful

28 Introduction

from the standpoint of latency and energy for the von Neumann-like architecture.
The authors also show that considering multiple floating point multiplications in
parallel, the memristor implementation outperforms compared to a parallel von
Neumann implementation.

The impact of the BvNC approach can also be evaluated against other standard
architectural solutions, such as GPUs. In fact, GPUs are particularly affected by the
von Neumann bottleneck, which is why the authors propose a 3D stacked DRAM
Near-Memory accelerator specifically for image-processing applications, called
iPIM [114]. To control iPIM, the authors have created an ad-hoc instruction set
that enables operations on the memory array, and calculations on the logic die,
including operations on vectors/scalars, 2D access patterns on memory (for image-
processing applications), data movement, control flow, and synchronization. Within
the logic die, there are also memory elements (such as scratchpad memories) to avoid
structural (resource) hazards and share data among the various processing elements.
The performance evaluation of iPIM was done with the architecture as a standalone
object in mind. However, it can still be integrated with the processor using a standard
bus such as AMBA or PCIe. For 3D RAM modeling, Cacti-3DD [115] was used,
while the logic part was synthesized. iPIM achieved an average speed-up of 11×
on the benchmarks analyzed in the paper, compared to an Nvidia Tesla V100 GPU,
an advantage essentially due to the large memory bandwidth and memory-intensive
nature of the proposed algorithms. The advantages of iPIM are not only related to
execution time but also energy, with savings averaging up to 79.49%.

Belonging to the category of Near-Memory computing, the work presented by
researchers in pPIM [116] is based on the use of LiM arrays used as Look-Up
Tables combined with a DRAM memory array. The use of LUTs brings many
advantages, including lower dynamic power consumption due to less switching of
logic circuits, the possibility of employing approximate computing, and reconfiguring
their functions. The proposed architecture is used to accelerate machine learning
applications, including Convolutional Neural Networks and Deep Neural Networks,
by integrating within the computation cores MAC units and units for computing
activation functions. LUTs perform computations on 8-bit words and have 256 entries
(or function words). This architecture is organized as a 2D memory composed of
multiple sub-arrays: the logical computation elements explained earlier are inserted
between one sub-array and another. Performance comparison is made with several
standard and non-standard architectures, including an Intel Knights Landing CPU

1.4 Conclusions 29

and an Nvidia Tesla P100 GPU and other works belonging to the BvNC category in
the state-of-the-art. The power of the pPIM architecture is found to be 98.6% lower
than that of the GPU and 98.4% lower than that of the CPU. The throughput, on the
other hand, increases dramatically for pPIM, showing a gain of about 9 times and 33
times for the GPU and CPU, respectively.

1.4 Conclusions

From the considerations so far, based on prior work presented in the state-of-
the-art, the BvNC approach is promising and effective in reducing the effects of
the von Neumann bottleneck. From works reported in the literature, there is a
general tendency to quantify the impact of BvNC architectures with certain figures
of merit, including speed-up (and thus execution time) and overall system energy.
These figures of merit are often compared with von Neumann-like architectures. In
general, they are expected to have optimal values in the BvNC case because they are
architectures capable of reducing memory accesses, thus avoiding data transport
to the computational unit. Furthermore, one of the strong aspects of BvNC is the
locality of computation; in addition to reducing communication with external logic
units, data can be transmitted to the In-Memory/Near-Memory logic with extremely
high bandwidth, thus reducing the execution time of an algorithm. With this in
mind, this thesis aims to analyze the BvNC approach (and more specifically LiM),
proposing case studies, the design flow adapted for the LiM structures investigated,
and demonstrating the goodness of the results obtained and the validity of the LiM
concept. As will become clear from the discussion of the proposed case studies, it
is definitely complex to design a LiM architecture. For this reason, a tool called
DExIMA, dedicated to architectural exploration in the LiM domain, was developed
starting from these architectural models. DExIMA, unlike other tools proposed
in the literature, gives the designer high flexibility, maintaining an architectural-
level description of the LiM. DExIMA makes it possible to carry out the design of
LiM cells and internal memory logic, realize the top-level architecture, simulate,
estimate performance, and make direct comparisons with von Neumann architectures,
allowing the designer to evaluate the effectiveness of the LiM studied for a given
application.

Chapter 2

Previous works and architectural
models

Summary

This chapter describes LiM architectures and case studies proposed in the past in
our working group. It is of fundamental importance to define a design approach for
LiM architectures, which, as will be reported later, can be distinguished into two
categories: Application Specific and General Purpose. Furthermore, the proposed
case studies highlight a recurring pattern in the architectural structure of LiMs for
both General Purpose and Application Specific, thus defining the architectural model
implemented within DExIMA.

2.1 General-Purpose and Application Specific

How can a LiM be designed? Two possible approaches can be followed: the
Application Specific, so starting from an algorithm, the LiM is designed with the
needed blocks and hardware to accelerate that particular application, or the General-
Purpose, in which LiM is designed to accommodate more calculations as possible.
In previous works developed during this doctoral program, both approaches have
been followed, bringing to the realization of different architectural solutions.

2.1 General-Purpose and Application Specific 31

How can LiM
architectures
be designed?

Algorithm-driven: based on
the algorithm LiM is designed

Algorithm profiling: studying
different algorithms a recon-
figurable LiM is defined

ASIC
approach

General
Purpose
approach

Fig. 2.1 LiM design approaches.

2.1.1 Application Specific implementations

An overview of the Application Specific LiM architectures developed in this thesis
work is shown in Fig. 2.2. Their aim is to accelerate a specific algorithm by paral-
lelizing as much as possible calculations; specifically, the RISC-VLiM, which LiM
Cell is depicted in Fig. 2.2 (a), accelerate simple bitwise operations, while the LiM
solutions in Fig. 2.2 (b-c) implement two neural networks: a fixed point and binary
solutions, respectively.

RISC-VLiM: a modified RISC-V data memory empowering in-situ calculations
[9, 10]

RISC-V is an Instruction Set Architecture (ISA) that was initially created to help
research and teaching in computer architecture. RISC-V ISA has grown in popularity
over the years because it is an open standard suitable for hardware implementa-
tion in any technology (such as ASIC or FPGA) and is highly customizable. The
RISC-V ISA is structured using standard and non-standard extensions. Each im-
plementation must provide the basic integer ISA between the standard extensions,
offering a limited number of instructions, which are adequate to give a decent target
for compilers, assemblers, linkers, and operating systems, and are comprehensive
enough to construct a software toolchain skeleton. Around the RISC-V integer
basis, it is possible to construct more specialized processor ISAs [117]. The other
additions to the fundamental ISA provide additional architectural features that en-

32 Previous works and architectural models

Application Specific
approach

WL0

BL0
w0 w1 w2 w3

WL1

WL2

X0 X1

BL1

X4

BL2

X5

BL3

In
co

m
in

g
bi

t 0
X1 X2 X5 X6

In
co

m
in

g
bi

t 1

Interface decoder

X2 X3 X6 X7

In
co

m
in

g
bi

t 2

...

LiM

Memory
Cell

Mask bitBL

Output

WL

Wired-or
input

Wired-or
output

Operation
type

OR Out

XOR Out

AND Out

(b)
(c)

(a)

Fig. 2.2 Overview of the Application Specific implementations. (a) RISC-VLiM data memory.
[9, 10] (b) Fixed point LiM implementation of a neural network. [11, 12] (c) XNOR-Net
binary neural network implemented in LiM. [13]

hance code density and performance. This computer system was selected for this
LiM investigation primarily because of its adaptability: the given memory model is
replaced with a LiM model with additional logic inside to support new In-Memory

2.1 General-Purpose and Application Specific 33

operations. The framework relies on the existing interface between the processor
and the memory with new instructions to control the new LiM, enlarging the de-
coder of the Instruction Fetch stage (IF) and defining a new immediate type for
handling the different formats of the LiM instructions, consequently modifying the
sign-extension block. The RISC-VLiM framework is openly available at the link
https://github.com/vlsi-nanocomputing/risc-v-lim-architecture.

The RISC-V core has a single memory for both instructions and data, so the in-
struction and data sections share the same physical space with no specific separation.
The compiler is responsible for managing the separation between them. As with the
normal RISC-V memory model, the new one is a dual-port memory so that fetch
and load-store operations may occur during the same clock cycle, and two decoders
corresponding to the two ports provide access to all memory locations. In addition,
the constructed LiM includes some logic around and inside the memory array. The
new LiM is capable of performing simple load/store operations, bitwise operations
(AND, OR, XOR) between a given range of memory locations and an input mask,
and minimum/maximum computation of a vector stored inside the memory. To
do this, the memory cell is enlarged with some extra logic operators, as shown in
Fig. 2.2 (a): the additional OR port is needed for max and min computation, while
the multiplexer is needed to feed back the operation result directly to the cell itself.
The bitwise operations require only one clock cycle to be accomplished.

Minimum-Maximum computation LiM computes the maximum and minimum
on unsigned values using a very simple procedure. In the maximum search, the
algorithm begins by performing AND bitwise between the content of the selected
rows and an external mask initially set to "10...0". Then, by comparing the values
of the MSBs of the AND results, if there are words with MSB equal to 1, the
corresponding words with MSB values of 0 are eliminated, meaning that these
numbers do not represent the maximum. Otherwise, all the values are kept for the
successive iteration. The procedure continues by setting the mask to "01...0" and
checking the MSB-1-th bit and so on, requiring iterations as many times as the
number of bits in words under consideration. Minimum computation works in the
same way, but this time the exclusion is performed on words when the considered
bit is set to 1 rather than 0. Extra logic blocks are required, both inside the LiM
Cell and outside the memory array (Near-Memory architecture). In particular, the
Near-Memory architecture produces a 32-bit mask with just one bit set in each clock

https://github.com/vlsi-nanocomputing/risc-v-lim-architecture

34 Previous works and architectural models

cycle. The AND gate inside the LiM Cell receives the bit cell content and the input
mask as inputs, and its output is fed to the LiM Cell’s additional OR gate, which
performs a 32-bit wired-or operation between the AND gates’ outputs on the same
row. Then, the results of the wired-or are analyzed: only words with a wired-or bit of
’1’ will be examined. If not, such rows will be omitted from the comparison. When
calculating the minimum, the reverse approach is used. The information about the
memory rows that must be kept for the next iteration is saved in the Enabled Words
register and, at the end of the process, the rows that this register has kept correspond
to the memory words with the maximum/minimum value.

To execute all words in parallel, the whole process needs N+1 clock cycles,
where N is the number of bits. The extra cycle is necessary to initialize the Enabled
Words data, and N cycles are required to evaluate N-bit words.

Interface Bus In the new design, the connection between the CPU and the new
memory posed the greatest challenge. Unlike the typical memory-processor interface,
the LiM needs information regarding the sort of operation to conduct differently
from a basic memory. Therefore, a system that supports the new LiM operations
while maintaining the regular RISC-V core’s memory interface is selected. This is
done to prioritize the core’s adaptability and reusability on various platforms. By
writing a word to a particular memory region, the LiM configures itself to execute a
particular LiM operation: this allows us to support any kind of in-memory activity
without modifying the RISC-V bus. To perform a LiM operation, the CPU will
conduct a store to this memory location to program the memory, so any subsequent
load or store will be interpreted based on the memory’s preset behavior.

RISC-V compiler ISA expansion To implement these additional capabilities, the
RISC-V ISA includes the following new instructions:

• STORE_ACTIVATE_LOGIC. This new instruction programs the LiM to
function in a given mode by writing to a special memory address. The instruc-
tion format includes details about the operation type and the range size. The
implemented operation types are NONE, AND, OR, XOR, MAX, and MIN.

• LOAD_MASK. The base integer ISA load instruction does not provide the
option to transmit the input mask to memory. The primary purpose of the

2.1 General-Purpose and Application Specific 35

LOAD_MASK instruction is to get the input mask from the Register File. The
read value will be written to memory through the write data bus. This instruc-
tion must always be placed after activating the in-memory logic operations.

• STORE. If the memory is programmed as LiM, the value received from the
Register File corresponds to the input mask in the case of a logic store. In
contrast, if the LiM is used as a standard memory, this instruction is interpreted
as a regular store.

To increase the flexibility of the RISC-VLiM system, similar to what is done
in [118], the original RISC-V compiler was changed to include the new custom in-
structions. Using the RISC-V Opcodes (https://github.com/riscv/riscv-opcodes) tool
in conjunction with the RISC-V-GNU-Toolchain (https://github.com/riscv-collab/
riscv-gnu-toolchain), the additional instructions were added. To do this, the file
opcodes-rv32i inside the riscv-opcodes repository is modified, including the new
custom LiM instructions. For instance, the sw_active_or instruction is described as
follows:

Listing 1 Declaration of a new instruction inside the opcodes-rv32i file.

1 sw_active_or rd rs1 imm12 14..12=3 6..2=0x0E 1..0=3

The fields of an instruction specify, from left to right, the instruction’s name, the
operands (rd: destination register; rs1: source register 1; imm12: 12-bits immediate),
and the remaining bit values. The function field (bits 14 to 12) is 3, the opcode field
is 0x0E (bits 6 to 2), and the LSBs are equal to 3 (bits 1 down to 0). Subsequently,
by executing the parse_opcodes program, a header file including MASK, MATCH,
and DECLARE_INSN directives for the new custom instruction is created, as shown
in Listing 2.

Listing 2 Generated RISCV_ENCODING for sw_active_or instruction.

1 #ifndef RISCV_ENCODING_H
2 #define RISCV_ENCODING_H
3 /*...*/
4 #define MATCH_SW_ACTIVE_OR 0x303b
5 #define MASK_SW_ACTIVE_OR 0x707f
6 /*...*/
7 DECLARE_INSN(sw_active_or, MATCH_SW_ACTIVE_OR, MASK_SW_ACTIVE_OR)
8 /*...*/

https://github.com/riscv/riscv-opcodes
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain

36 Previous works and architectural models

After setting RISCV-GNU-TOOLCHAIN with the —with-arch=rv32ima and
—with-abi=ilp32 options, two files in the riscv-binutils directory are updated. The
code created by the riscv-opcodes tool (Listing 2) is copied into ./include/opc ⌋

odes/riscv-opc.h. The other is ./opcodes/risc-opc.c, where the code lines
in Listing 3 are added, indicating the instruction’s name, class, operands, match, and
mask values.

Listing 3 Modified riscv-opc.c file, with sw_active_or custom instruction.

1 /*...*/
2 const struct riscv_opcode riscv_opcodes[] =
3 {
4 /* name, xlen, isa, operands, match, mask, match_func, pinfo. */
5 {"sw_active_or",0, INSN_CLASS_I, "d,s,j",MATCH_SW_ACTIVE_OR,

MASK_SW_ACTIVE_OR, match_opcode, 0 },↪→

6 /*...*/

Inserting LiM operations in a C program Once the toolchain is complete, the
user may declare the custom assembly instruction directly inside the C code using
the asm volatile statement, as shown in Listing 4. The destination register (rd)
of the custom LiM instruction specifies the total number of active memory lines,
i.e., how many rows perform the LiM operation. In the source register 1 (rs1), the
configuration address is supplied, i.e., the reserved address used to configure the
memory function (which in this instance is an XOR), hence correctly establishing
the selection value of the LiM Cell multiplexer (see Fig. 2.2 (a)). The immediate
value specifies the offset to be added to the value of rs1. One can observe that there
is a store operation between the two custom LiM instructions: after the memory
is configured to execute a LiM operation from the corresponding memory location
with a range specified by rd, the specified logic function is executed, and the result is
saved in the corresponding memory lines. In the end, sw_active_none restores the
standard memory function after the LiM section.

2.1 General-Purpose and Application Specific 37

Listing 4 Fragment of C code for the XNOR-Net algorithm.

1 //activate the xor operation on N_ACTIVE_LINES rows
2 asm volatile("sw_active_xor %[rd], %[rs1], 0"
3 : [rd] "=r" (N_ACTIVE_LINES)
4 : [rs1] "r" (cnfAddress), "[rd]" (N_ACTIVE_LINES)
5);
6 //store operation to run the xor in-memory
7 (*ofmap)[0][0] = bWeight;
8 //restore the normal function of the memory.
9 asm volatile("sw_active_none %[rd], %[rs1], 0"

10 : [rd] "=r" (zero)
11 : [rs1] "r" (cnfAddress), "[result]" (zero)
12);

Benchmarks Using the ideal model of the LiM, the initial findings are gathered to
examine the performance gains that the new memory architecture would provide over
a von Neumann system. The new ISA extensions can reduce the number of memory
accesses during program execution, hence speeding up RISC-V’s execution time. A
series of programs are built and simulated to demonstrate the efficacy of the RISC-
VLiM framework. The testing phase starts by programming a C code and compiling
it using a RISC-V compiler: in this phase, no special LiM instructions are included
in the C program. The output is the program.hex file containing machine instructions.
Then, the RTL simulation of the RISC-V system starts, in which the LiM is used as a
standard memory. After that, the C program is written again, this time incorporating
the custom LiM instructions using asm volatile statements. The outcomes of
both simulations are then compared, considering different algorithms having the
following characteristics:

• High data demand. LiM is ideal for applications with a large data demand
since it reduces data transportation to/from memory.

• Data manipulation with supported LiM operations. The implemented LiM
is capable of performing a limited number of operations without a CPU. To
take use of LiM capabilities, a selection of algorithms using these operations
is required.

Based on these assumptions, the chosen algorithms are the following:

38 Previous works and architectural models

Table 2.1 Simulation results comparison

Algorithm Memory (cc) LiM (cc) Speed-up (cc) Speed-up (%)
bitwise.c 416 332 84 20.2

max_min.c 479 381 98 20.5

bitmap_search.c 453 454 -1 -0.2

aes128_arkey.c 554 529 25 4.5

transport_cost.c 1920 1698 222 11.6

xnor_net.c 464765 461316 3449 0.7

• bitmap_search.c. An index search technique for bitmaps. A bitmap index is a
unique kind of data structure that utilizes bitmaps to expedite the processing
of stored data.

• aes128_arkey.c. This method implements a portion of the Advanced Encryp-
tion Standard, the AddRoundKey step, executed eleven times over the whole
encryption process. AddRoundKey consists of element-by-element XOR oper-
ations between the bytes of the states matrix and the key matrix. The outcome
is the next state matrix utilized in the remaining encryption-related procedures.

• transport_cost.c. Transport problem is an algorithm that minimizes the cost of
delivering a commodity from several origins or sources to multiple destina-
tions.

• xnor_net.c. XNOR-Net is a Binary Neural Network model that reduces com-
putation complexity by approximating weight and inputs to just two values
(-1,+1) depending on their signs. -1 corresponds to logic ’0’ while +1 corre-
sponds to logic ’1’. This approximation simplifies convolution into bitwise
XNOR and pop-counting operations. In a bitstream, pop-counting is the dif-
ference between the number of ones and zeros. The proposed LiM enables
concurrent XOR computation while the CPU does pop-counting. Due to the
lengthy simulation period, just one convolutional layer with an input of 28x28
pixels (the size of the MNIST dataset) and a filter of 5x5 is implemented.

Table 2.1 compares the execution time of a certain algorithm for all the versions
implemented, where cc stands for clock cycles.

2.1 General-Purpose and Application Specific 39

In almost all the proposed programs, the RISC-V processor with LiM instructions
exhibits an improvement, in some cases up to 20%. Due to the fact that the programs
are optimized to take use of the new LiM instructions, the improvement is rather
significant. In terms of execution time, the XNOR-Net scenario shows a decrease
of 3449 clock cycles, despite a minor increase in speed bacause of its small dimen-
sions. However, by increasing the size of the neural network by inserting several
convolutional and fully connected layers, LiM significantly reduces the execution
time because of parallel execution. In general, real-world applications must deal
with enormous volumes of data, so the new LiM ISA additions would perform much
better in this context. In Table 2.3, a comparison is made between the Memory
and LiM cases about the number of memory accesses. As can be seen, memory
operations decrease for almost all benchmarks, with the exception of the bitmap
search. This benchmark was created with a small sample size, resulting in ineffi-
ciency for LiM. However, even with bitmap search, the trend is favorable because,
for more sophisticated algorithms (such as max/min computation or XNOR-Net),
the LiM paradigm reduces the influence of the Memory-Wall by leveraging parallel
processing and decreasing CPU-Memory communication.

Evaluating the LiM impact Evaluating the impact of LiM architectures in a
standard structure is fundamental. This can be done by assessing the performance
of both the standard and the LiM solutions in terms of power, area, energy, and
execution time. The traditional digital design flow for the standard memory case was
used. The flow begins with the description of the architecture in HDL language, then
moves on to the synthesis with Synopsys Design Compiler, and finally concludes
with Place&Route with Cadence Innovus. For the LiM case, the design flow starts
with the definition of the custom cell, implemented at the transistor-level, and then
realized with a custom layout. The process starts with Cadence Virtuoso, where the
transistor-level LiM cell is realized and simulated. After verifying the functionality,
the cell layout view is built and simulated, including the parasitic effects. Next, the
layout view undergoes Design Rule Check (DRC), Layout-Vs-Schematic (LVS),
and Parasitics EXtraction (PEX). After PEX, a Spectre netlist is generated, which
describes the LiM Cell with transistors and parasitic components. The Spectre netlist
is then elaborated by Cadence Liberate, which generates a Liberty file with cell
power, area, and timing of the cell. The Liberty file is compatible with Synopsys
Design Compiler, which is used for performing the synthesis. The final step consists

40 Previous works and architectural models

Fig. 2.3 Layout view of the LiM Cell

Table 2.2 Estimated Post Place&Route performance of the RISC-V core, standard (MEM-
ORY), and LiM memory with a 4kB size.

Parameter MEMORY LiM RISC-V Core
Power (mW)* 452.77 252.09 17.65

Area (µm2) 432777.7 1610215.1 146709.6
Critical path (ns) 1.816 2.534 1.002

* Power levels are calculated using the worst-case scenario of maximal switching
activity, i.e. no back annotation procedure and a clock period of 3ns.

in creating the Abstract view of the LiM cell and Library Exchange Format (LEF) file
production with Cadence Abstract: with the Abstract view, it is possible to proceed
to the Place&Route phase with Cadence Innovus. The LiM Cell layout is provided
in Fig. 2.3. Standard and LiM flows are based on the 45nm CMOS technology of
FreePDK. After the LiM process, the Liberty file is compiled using Library Compiler
by Synopsys, and the newly created custom library is available for usage.

At this phase, the power, area, energy, and critical path of LiM and standard
solutions are compared: the outcomes of a full memory array constructed of LiM
Cells following synthesis and Place&Route processes are compared to those achieved
in a normal memory scenario. Both memories contains 1024 rows with 32 bits of
parallelism and employ a D flip-flop with enable (DFFEn) as a basic cell. Employing
a D flip flop as a fundamental memory element is not ideal, but the goal is to
understand the relative performance difference between conventional memory and a
memory containing logic components. The results are shown in Table 2.2. Because
of the greater number of logical components needed in the design, the area, and
critical path are worst in the LiM case; however, power is reduced in the LiM scenario
because the optimal arrangement of the LiM Cell (given in Fig. 2.3) keeps near parts
close together. Even when the Place&Route in the conventional memory case is
done without flattening the hierarchy, the LiM architecture is more efficient because
the interconnections are shorter than in normal memory, resulting in power savings.
However, it is important to underline that in this situation, power decreases, but this
may not be the case with different LiM architectures. A comparison of dissipated

2.1 General-Purpose and Application Specific 41

energy is used to assess the effect of the LiM paradigm, in fact energy takes into
account both the architecture’s power consumption and the algorithm’s execution
time, providing a comprehensive assessment of system performance. Only the energy
consumption of the memory is considered for the examined instances (MEMORY
and LiM), which is calculated as follows:

Energy = Power×Number of memory operations×
×Clock period

(2.1)

The number of memory operations for each architecture can be found in Table 2.3,
with the clock period set to 3ns.

Table 2.3 Number of memory operations comparison between Memory and LiM cases

Algorithm
Number of memory operations (LW+SW)

Reduction (%)MEMORY LiM
bitwise.c 114 89 21.9

max_min.c 126 85 32.5

bitmap_search.c 164 166 -1.2

aes128_arkey.c 144 130 9.7

transport_cost.c 336 286 14.9

xnor_net.c 65091 63942 1.8

Table 2.4 Memory energy comparisons using a clock period of 3ns.

Algorithm MEMORY (nJ) LiM (nJ) Energy reduction (%)
bitwise.c 154.85 67.31 56.5

max_min.c 171.15 64.28 62.4

bitmap_search.c 222.76 125.54 43.6

aes128_arkey.c 195.60 98.32 49.7

transport_cost.c 456.39 216.29 52.6

xnor_net.c 88413.82 48357.42 45.3

As indicated in the Table 2.4, LiM decreases energy consumption by at least ∼ 43%
due to both the considerable influence of the custom layout on power consumption
and the overall reduction of memory operations, which is shown in the Table 2.3. This
comparison demonstrates how the LiM paradigm applied with CMOS technology

42 Previous works and architectural models

increases system performance, especially for algorithms that can be accelerated by a
LiM solution, showing a decrease in both energy and execution time.

A more complex case: fixed-point implementation of a neural network [11, 12]

WINNER (Weight In Memory Neural Network Embedded RAM) is the proposed
name for a particular LiM implementation of a fixed-point neural network that is
described in this study. The word "neuron" refers to a computational building com-
ponent that carries out the task of performing the sum-of-products of the inputs
with the weights that are associated with them. Along with simple multiplication
and sum operations, activation functions are often applied to the neuron’s output
to model complex problems that require the introduction of non-linearities into the
neural network. Some of the most widely used are the Rectified Linear Unit (ReLU),
sigmoid and hyperbolic tangent. Because neurons are mostly made up of multiply-
and-accumulate (MAC) PEs, the number of these PEs has to be maximized to reach
acceptable Frame-per-Second (FPS) values, but also considering trade-offs with
power and area. AlexNet [75] is the chosen neural network for this implementation,
which structure is reported in Table 2.5. WINNER implements 384 neurons which
can be used to perform the convolution operation with the AlexNet kernels. However,
in AlexNet, the maximum kernel size is 9216 (6×6×256, the dimension of the first
fully connected input), meaning that a single neuron should have at least 9216 fixed
point inputs, which is impracticable. A trade-off between the number of inputs and
parallelization must be considered. In order to decrease complexity, the number of
contemporary inputs is set to 64, and for layers needing more than 64 contemporary
inputs, the method is serialized, requiring #stepsneuron = #inputsneuron/64 to be fin-
ished. The reference architecture is shown in Fig. 2.2 (b).

Architecture overview Fig. 2.2 (b) illustrates the portion of the architecture where
the neural computation is conducted. It includes all 384 neurons, each having 64 input
bytes and 384 output bytes. Data are represented on 8 bits using fixed-point notation.
Neurons take many resources to be implemented; as a result, each neuron has 64
"WordLines" (WLi in Fig. 2.2 (b)), where each "WordLine" is a 2595-byte register
holding the values of the weights. Multiplying the size in bytes of these registers by
64 "WordLines" and 384 neurons yields the total number of stored weights inside the

2.1 General-Purpose and Application Specific 43

Table 2.5 AlexNet structure with the necessary number of steps for the reference architecture
consisting of 64 inputs per neuron.

Layer Kernel size #inputsneuron #stepsneuron #stepslayer TOTsteps
CONV 1 11x11x3 363 6 3025 18150
CONV 2 5x5x48 1200 19 729 13851
CONV 3 3x3x256 2304 36 169 6084
CONV 4 3x3x192 1728 27 169 4563
CONV 5 3x3x192 1728 27 169 4563

FC 1 4096 9216 144 11 1584
FC 2 4096 4096 64 11 704
FC 3 1000 4096 64 3 192
TOT - - - - 52902

architecture. Multiplexers in Fig. 2.2 (b) are implemented as wired-or to decrease the
size of the design, while Parallel Prefix Units (PPUs) calculate the multiplications
using a radix-2 modified Booth encoding structure. Adders are used to assess the
intermediate convolution result by adding two "WordLines" contributions. Each
partial sum is added in the final adder tree to get the partial convolution result. Lastly,
a multiplexer selects between σ and Bias, based on the evaluation step, to compute
the final result by means of an accumulation adder. Other layers like pooling,
cross-channel normalization, and zero-padding are implemented in a Near-Memory
unit.

Results and comparisons In contrast to the previous case study, the findings
of this one are examined in light of other state-of-the-art implementations. The
performance estimation method begins with a circuit synthesis using Synopsys
Design Compiler and a functional simulation using QuestaSim, which writes to
a SAIF file all the information on the switching activity of each network node.
This technique permits a more accurate calculation than assuming the worst-case
maximum activity. The technology used is 45nm Nangate CMOS. The synthesis
also provides the critical path delay, which is 3.55ns, so the maximum frequency is
281MHz. Memories are synthesized as registers in the design, therefore the power
and area produced indicate an overestimation of a real-world scenario with a more
accurate memory model. With performance results coming from the synthesis, a
comparison with state-of-the-art AlexNet implementations is offered. WINNER
can process a frame in a relatively small time (0.75ms), which is a good measure
to determine the computation efficiency of the architecture, but alone is not enough.

44 Previous works and architectural models

In fact, to measure performance, a cost function Energy/FPS is considered: it
represents the architecture’s ability to reduce energy consumption while being as fast
as possible. Thus it should be as small as possible. Table 2.6 highlights WINNER’s
performance compared to state-of-the-art AlexNet neural network implementations.
Some implementations use a fixed point representation [119, 120, 19, 121], while
others utilize a floating point representation [120]. Also investigated are binary
implementations [19, 14, 122], and others are based on emerging technologies [19].
As shown by the data in Table 2.6, WINNER is the third-fastest implementation,
surpassed only by binary implementations that sacrifice precision for speed. Fig. 2.4
depicts the relative energy efficiency of each architecture, where the function f on
the y-axis is used to obtain a more clear graphical comparison by transforming the
values of Energy/FPS into percentages relative to the XNOR-POP [14], which has
the highest efficiency according to Table 2.6. WINNER has the fourth highest value:
two binary implementations are better, but at the expense of accuracy, while the only
non-binary design with a higher value is the Chain-NN [121], which is much slower.
As can be observed, WINNER has around 70% of the relative energy efficiency of
the XNOR-POP while having an accuracy of 84.7%. Overall, WINNER is excellent
for any applications that need a fast rate of data capture while preserving a high level
of energy efficiency. In more detail, the architectures considered have the following
key features: the SOT MRAM [19] consists of a 1024× 256 size memory array
simulated with 45nm NCSU CMOS technology in combination with NVSim for
nonvolatile memory modeling. XNOR-Pop [14] is a DRAM-based Near-Memory
Wide-IO2 implementation with a memory size baseline of 1 GB. The memory part
is simulated with Cacti, while the logic die is implemented in Cadence Virtuoso
with 32nm PTM technology. YodaNN, Eyeriss, and Chain NN [122, 119, 121], on
the other hand, are classic CNN accelerators, i.e., not implemented with a BvNC
solution. Therefore, they are included in the comparison to assess the impact of
standalone and application-specific architectures, unlike CPUs and GPUs. The
YodaNN architecture consists of a shift register bank for filters (1024 7×7 filters), a
10.5 kB image memory, a 2.3 kB image bank, 32 multiply-and-accumulate units, and
another 32 accumulation units. Synthesis and estimations are performed on UMC
65nm technology. Eyeriss, on the other hand, is composed of an off-chip DRAM
and a core of 14×12 = 168 processing elements, implemented with TSMC 65nm
technology. Inside each processing element, there are scratch-pad memories for
the input image, the filter, and the partial accumulation, together with multiplexers,

2.1 General-Purpose and Application Specific 45

adders, I/O FIFOs, and optimized hardware like gating logic and pipelined multiplier.
Lastly, Chain NN is synthesized with TSMC 28nm technology with 576 pipelined
processing elements, each containing a multiply-and-accumulate unit and registers.

Fig. 2.4 Comparison of relative levels of efficiency. The numbers have been rescaled in
the plot to be shown in percentage form. Above each bar is an indication of the value
in absolute terms. In comparison to the XNOR-POP, for instance, the efficiency of the
WINNER algorithm is 70% [14].

46 Previous works and architectural models

Table 2.6 State-of-the-art performance comparison with AlexNet model. Process time is
rescaled to batch size equal to 1. The data of this table are partially taken from [19].

Architecturea Process time (ms) FPS (1/s) Energy (mJ/frame) Impl.b

Intel XEON E5-2637 [120] 195.00 5.0 25400.00 *
GPU1 [120] 1.30 769.0 325.00 *
GPU2 [19] 90.00 11.1 324.00 **
GPU3 [19] 0.73 1369.9 237.25 **

SOT MRAM [19] 10.70 93.5 0.31 **
XNOR-POP [14] 0.29 3390.0 0.66 **

YodaNN [122] 2000.00 0.5 0.35 **
Eyeriss [119] 28.825 34.7 8.01 ***
FPGA1 [120] 21.61 46.3 402.00 ***
FPGA2 [120] 20.10 50.0 384.00 ***
FPGA3 [120] 2.56 391.0 77.00 ***
FPGA4 [19] 5.94 168.4 27.92 ***

Chain NN [121] 3.07 325.4 1.74 ***
Our Work 0.75 1326.5 52.77 ***

aGPU1 = GTX Titan X, GPU2 = NVIDIA Jetson TK1, GPU3 = NVIDIA Tesla K40,
FPGA1 = Virtex-7 VX485T, FPGA2 = Stratix-V GSD8, FPGA3 = Virtex-7 VC709,

FPGA4 = Xilinx Zynq-7000
bImpl. implementation type. *, ** and *** indicate floating point, binary

approximation and fixed point architectures, respectively.

A Binary Neural Network LiM case study [13]

This study uses a binarized NN. Binary Neural Networks (BNNs) approximations
like BinaryConnect (BC)[81], Binary-Weight Network (BWN), and XNOR-Net
[7] reduce computational complexity by binarizing weights-inputs precision, as
already discussed. Since a single XNOR gate can perform binary multiplication,
the XNOR-Net approximation is best for LiM solutions and has a high accuracy
rate compared to the floating-point model. In order to investigate the features
of a LiM implementation in greater depth, two architectures were designed: an
Out-Of-Memory (OOM) architecture that adheres to a standard approach (i.e., a
computational core receiving data from external memory) and a derived LiM novel
alternative, with the intention of comparing the levels of performance achieved by
each of these configurations. By using the XNOR-Net as a case study, it is possible
to deduce that the most important component of the BNN is the computation of
the XNOR products paired with pop-counting to identify the outcome of the binary
convolution. According to Equation 1.9, the OOM and LiM architectures’ cores
are composed of XNOR gates and pop-counters. Based on the kernel size of the
considered network, the total number of XNORs must be equal to kernel size, as

2.1 General-Purpose and Application Specific 47

each performs a multiplication. A worst-case analysis must be done to correctly
design a neural network circuit since hardware versatility relies on kernel size. In
the LiM design, each LiM Cell contains an XNOR gate with binary inputs/weights
sent straight to the XNOR inputs (Fig. 2.2 (c)). Each row in LiM comprises all the
input items necessary for a single convolutional window calculation, assuming a
bitwidth dimension of Wx×Wy bits, where Wx and Wy are the X-Y sizes of the kernels,
respectively. The number of rows must be at least equal to the needed total number
of convolutional windows Dout , which is also the dimension of the OFMAP. Dout

may be determined when the kernel, IFMAP size (Din), and stride are considered.

Dout =
Din −Wx

stride
+1 (2.2)

Regarding the pop-counting calculation, processing a large number of inputs in
parallel can be rather complex in hardware. Therefore, the outputs of the XNOR
gates are multiplexed, and only one XNOR result is processed every clock cycle,
as shown in Fig. 2.2 (c). Since most CNNs may accept multiple IFMAPs in input,
each convolutional window must be independently calculated and afterward added
to provide the OFMAP. This may be achieved by instantiating multiple XNOR-
Popcounting architectures and, specifically, adding the contributions together with
a Near-Memory processing unit. The design of a neural network must account for

Counter

D
ec

od
er

W
L

XNOR Popcounting
Unit

Cin

A
cc

um
ul

at
io

n

Fig. 2.5 Multiple input channels neural network design.

some scheduling when a large number of neurons must be processed since each
neuron is associated with a memory column with additional logical gates inside the
cell. A high number of neurons occurs in fully connected layers. For instance, in

48 Previous works and architectural models

LeNet5 [6], the first fully connected layer contains 120 output neurons, requiring
120 columns, hence it is possible to process all neurons simultaneously. However,
for more complex algorithms such as AlexNet [75], which has a maximum number
of output neurons equal to 4096, having 4096 columns is unacceptable. Therefore,
to implement layers with a large number of neurons, the algorithm is serialized,
allowing reuse of existing undersized hardware.

Two LiM arrays capable of conducting XNOR bitwise and pop-counting oper-
ations are created. The structure of the XNOR LiM array is shown in Fig. 2.2 (c),
which depics a basic 2×2 convolution example. Four pixels of IFMAP stored in the
LiM must be convolved with the kernel provided to the XNORs’ inputs, applying the
bitwise multiplication between the binary input (X) and the corresponding weight
(w):

Incoming bit0 = pop-count(X0 ⊕w0,X1 ⊕w1,X4 ⊕w3,X5 ⊕w3) (2.3)

Regarding pop-counting technique, it is possible to simplify the pop-count equation
as follows to lower the complexity of the LiM Cell:

pop-count = #1s−#0s = 2×#1s− length(word) (2.4)

Where length(word) represents the size of the bitstring entering the pop-counter. A
OneCounter is simply composed of half adders (HA), thus there will be one HA for
each memory cell in the pop-counting section, as shown in Fig. 2.6.

WL0 M

BL0

HA
Ci Co

O

M

BL1

HA
Ci Co

O

M

BL2

HA
Ci Co

O

M

BL3

HA
Ci Co

O

In
co

m
in

g
bi

t 0

on
es

(0
)

. . .
Fig. 2.6 Ones counter integrated in-memory.

Comparison OOM-LiM Two NN models were selected as case studies for both
OOM and LiM implementations. These models were built, trained, and verified using
the Keras framework [123] and a Matlab script. Then, both designs were synthesized

2.1 General-Purpose and Application Specific 49

using Synopsys Design Compiler and Place&Routed with Cadence Innovus, using
45nm CMOS technology, yielding results for power, area, Critical Path Delay (CPD),
execution time, and energy consumption. In Table 2.7, energy and delay of LiM
and OOM solutions are evaluated. For both NN implementations, LiM uses less
energy and is quicker, although having a larger power value. Hence from an energy
perspective, LiM design is more efficient for that specific implementation. Then, the

Table 2.7 Post place&route estimation for two neural network models.

Type Area (mm2) Power (mW) CPD (ns) Execution time (ms) Energy (µJ)

LiM - NN1 1.70 328.3 4.11 0.21 68.9
OOM - NN1 1.07 142.3 4.14 0.92 130.91
LiM - NN2 0.1033 13.06 4.22 0.132 1.72

OOM - NN2 0.086 10.68 4.32 1.62 17.30

discrepancies between our LiM model, based on flip-flops memory elements, and a
more realistic LiM model were next analyzed. In [20], a CAM-based XNOR-Pop
implementation is presented, which is a very comparable XNOR-Net implementation.
Since the authors constructed a customized memory array using 65nm CMOS
technology, the LiM architecture proposed was re-synthesized using 65nm CMOS
technology @ 1.0V, attempting to apply the same metrics as [20] in order to determine
how a true and accurate memory model differ from the aquired findings. Authors
implemented the second convolutional layer of the LeNet5 NN model. To do this,
they used five arrays of 30×10 size. To have a fair comparison with [20], the same
contraints were applied to our LiM design: just the XNOR-Popcounting component,
was synthesized with a dimension of 30× 10 for the XNOR part. To provide the
energy estimation, the second convolutional layer of the LeNet5 CNN is mapped,
yielding the execution time which is multiplied by the worst-case power provided
by Synopsys. In Table 2.8, the energy ratio relative to the CAM reference is around
4.22, while the ratio for the Bank Area is almost 4.50. Implementing a LiM solution
at the transistor-level that is highly optimized and customized for a specific purpose
improves performance in comparison to a flip-flop-based solution. However, creating

Table 2.8 CAM-based XNOR-Pop [20] and our LiM architectures performance parameters
comparison.

Design Technology Bank size # of Banks Bank Area (µm2) Energy (nJ)

[20] 65 nm 30×10 5 2456.6 ∼ 9
LiM 65 nm 30×10 5 12090.6 ∼ 38

50 Previous works and architectural models

a LiM from the realization of the transistor-level architecture involves much work
and simulations at the SPICE level. As a conclusion of this study, LiM and OOM
designs were created in order to compare them and highlight the primary benefits
of an In-Memory implementation. Due to a greater degree of parallelization of
the algorithm, the LiM architecture achieves exceptional results in terms of energy
dissipation. Neural networks, and more specifically BNNs, are excellent applications
for LiM benchmarking due to the fact that their computational requirements are
well-suited for an In-Memory implementation.

2.1.2 General Purpose approach

Algorithm Profiling

To create a LiM architecture geared toward implementing General Purpose applica-
tions, an examination of numerous different algorithms is being carried out to find
out which kind of basic operations are most frequently used. A look was given to
the SPLASH-2 benchmark suite [124], which consists of a collection of complicated
and parallel algorithms normally used to assess the performance of CPU-centric
systems. In this investigation, each algorithm was profiled by evaluating the kind and
frequency of instructions needed. The objective was to create an architectural model
consisting of elements with both logic and memory capabilities so that the most
frequently used operations could be executed and the results written directly inside
the memory, thereby decreasing the number of memory accesses and increasing
execution efficiency. Following are the steps used to profile each algorithm:

1. Definition of the Instruction Set Architecture (ISA). Since a RISC-V system is
being investigated, the benchmarks for a RISC-V Instruction Set Architecture
need to be cross-compiled. LiM architectures do not enable floating-point
computations, so the riscv-gnu-toolchain from [125] was set with the base
integer, multiplication/division, and atomic extensions but not with the floating-
point one.

2. Execute the benchmarks and monitor the algorithm’s execution. The Gem5
Simulator was used in system-call emulation mode for these specific appli-
cations. With the instructions tracing functionality enabled, Gem5 executes
SPLASH-2 benchmarks. In this manner, the simulator outputs a deconstructed

2.1 General-Purpose and Application Specific 51

version of each algorithm, detailing the exact instructions performed by the
core. These data are stored in a file titled program.out.

3. Estimate the instructions occurrences. A Python script analyzed the prog ⌋

ram.out file and counted the number of instructions for each algorithm. In
Table 2.9, all of the instruction counts contributions of each benchmark in
percentage are shown. For example, the store double (sd) instruction’s value
was calculated as the sum of the number of sd instructions for each benchmark
(or test) divided by the total number of instructions for each benchmark (which
is ∼ 64M).

Table 2.9 The frequency of occurrence of each instruction for SPLASH-2 benchmarks.
barnes, fmm, ocean-contiguous-partitions, ocean-non-contiguous-partitions, radiosity,
water-nsquared, and water-spatial are the algorithms examined.

Instructions Instruction occurence (%)
sub 0.8
blt 0.9
srl 1.2

subw 1.3
jalr 1.4
mul 1.7
bge 1.9
add 2.7
bne 2.7
and 3.0
jal 3.2
or 4.5
ld 7.0

beq 7.0
sd 7.3

andi 7.6
slli 8.7
srli 12.0
addi 21.0

According to the findings in Table 2.9, the most often used instructions are
arithmetic (addi, add, mul, subw, and sub, etc.) and logical (srli, slli, andi, or,
etc.). Based on these data, a plausible subset of hardware blocks can be included in a
LiM architectural model. As a result, a considerable portion of the CPU operations
may be transferred directly within the LiM co-processor. Furthermore, Table 2.9

52 Previous works and architectural models

demonstrates a considerable contribution of memory operations (sd, ld), indicating
von Neumann Bottleneck’s severe influence on conventional systems.

Hybrid-SIMD: a LiM architecture enabling Single Instruction Multiple Data
operations [126, 127]

The LiM array shown in Fig. 2.7, is the central component of the Hybrid-SIMD
architecture. It calculates and saves data, minimizing data flow between the CPU

Memory row

LiM
Cell

IRL0 ... IRLN

I/O buffer

Smart rowi

STD Row

STD Row

Smart rowi+1

LiM
Array

IOBufExt BL CLKReset

Mem WL

Full Adder CinCout

OMem Sum

memOUT

Invert_A Invert_B

up-row /
down-row

A B

A* B*

Fig. 2.7 Hybrid-SIMD LiM array and Cell structures.

and memory. The LiM array is composed of LiM Cells (shown in Fig. 2.7), Intra
Row Logic (IRL) blocks, and a memory interface. The structure is hierarchically
organized: multiple LiM Cells create memory rows, which, when paired with IRLs
and I/O buffers, form a smart row. Multiple smart and standard rows are stacked to
build the LiM array. A standard row memorizes data without alteration, hence it can
be categorized as a traditional memory. Standard rows play a crucial part in LiM
computing by storing the local data utilized by smart rows. As seen in Fig. 2.7, the
LiM array is constructed with interleaved smart and standard rows: this arrangement
facilitates communication between two adjacent smart rows, which share a standard
row in between.

LiM Cells, IRLs and the memory interface LiM Cells are the array’s finer-
grained building elements. The structure is shown in the figure Fig. 2.7: the storage

2.1 General-Purpose and Application Specific 53

Table 2.10 Available operations performed by the LiM Cell’s full adder.
Operations Cin value Output pin
A* OR B* 1 Cout

A* AND B* 0 Cout
A* ⊕ B* 0 Sum
A*⊕B* 1 Sum
A* + B* Cout(i-1) Sum/Cout

element (shown in the diagram as Mem) is a flip-flop that accepts three different
input values: bitline (BL) that comes from the CPU, Input/Output Buffer (IOBuf) and
external (Ext) that come from the array itself. IOBuf is linked to the Input/Output
buffer of the same smart row, which holds temporary results. Ext is coupled to
the memory interface, enabling retrieval of data from any memory location of the
array. Each LiM Cell has two XOR gates, a full adder, and several multiplexers,
allowing to perform the operations listed in Table 2.10. The output pin defines
which of the full adder’s outputs between Cout and Sum corresponds to the target
operation. Other logical and arithmetic functions (NAND, NOR, subtraction, etc.)
can be achieved with relative ease using Invert_A and Invert_B. The arithmetic
memory row, seen in Fig. 2.7, is created by instantiating Nbit cells, where Nbit is the
data parallelism defined during the design process. The IRL conducts computations
that cannot be performed by an arithmetic memory row (different operations from
arithmetic addition/subtraction and logical functions). The IRLs are selected based
on the algorithm’s needed operations but also considering the Algorithm Profiling
methodology explained in section 2.1.2. One may see that IRLs, I/O buffers, and
memory rows must be built to be interconnected; hence, a common interface becomes
a requirement in design. To improve the connections between LiM array blocks,
a memory interface is used to manage the data flow between smart and standard
sections. Fundamentally, the ability to access the whole memory address space is
required to get data from any potential LiM array position and associate it with the
Ext operand.

Control logic Control logic is an explicitly addressed microprogrammed machine
comprising a micro-Control Unit (uCU) and a nano-Control Unit (nCU). The uCU re-
ceives high-level assembler-like instructions for each procedural step, which are then
converted into low-level signals by the nCU to manage the LiM array. This arrange-
ment simplifies the implementation and debugging of algorithms on Hybrid-SIMD

54 Previous works and architectural models

by limiting design complexity to selecting architectural metrics (data parallelism,
LiM array size, etc.) and writing high-level instructions. In particular, the micro-
programmed machine relies on a micro-ROM (uROM), in which the instructions
are written, together with the address of the next instruction: more details about this
structure are given in subsection 3.1.1. An instruction is composed of different fields:
an operational code (identifying the operation to perform), the source operands, the
destination where results are written, an address (when the source operand comes
from a particular location in the array), and a function (logical or arithmetical). To
lower the design’s dynamic power consumption, the LiM array was separated into
blocks that may be turned off when they are not doing computations. Each block has
N smart rows, where N is determined by the user during the design process. If, for
example, N equals 1, it denotes the finest design granularity level since a single row
can complete the calculation.

Implemented algorithms & Hybrid-SIMD derived structure Different applica-
tions are used as benchmarks to evaluate Hybrid-SIMD capabilities. Starting with
the application, the smart row structure is created, and the algorithm is manually
derived and written inside the uROM.

• Discrete Fourier Transform. The algorithm consists of performing the follow-
ing computation:

Xk =
N−1

∑
i=0

xi ×
[

cos
(

2πik
N

)
− jsin

(
2πik

N

)]
(2.5)

Where N is the overall sample count, and k represents the element being
evaluated. The structure of the smart row has a Look-Up Table (LUT) to store
cosine-sine values, a multiplier, and an arithmetic memory row to calculate the
total. Regarding the division, including the divider in the smart row structure
reduces performance since it is a fairly complicated computing element. For
this reason, N is chosen so that N = 2p : ∀p ∈ N, to implement the division as
a simple right shifting. However, this poses a limiting operational restriction
for the Hybrid-SIMD. The procedure begins by calculating all

(2πik
N

)
terms

and storing the results in output buffers. There are two multiplications and a
right shift carried out. The first multiplication is 2π × i. These operands are
correspondingly stored in ADDRESS_2PI and the arithmetic memory rows.

2.1 General-Purpose and Application Specific 55

The second multiplication includes the previous results (stored in the output
buffers) and the term k (stored in the LiM array’s ADDRESS_K). In this
instance as well, the results of the calculation are kept in the output buffers,
which are then utilized by the arithmetic right shifter block to calculate the
divisions. The LiM array smart section is divided in half to yield the real and
imaginary components. The first section is allocated for the real terms of the
DFT and computes the cosine of

(2πIk
N

)
, while the second one computes the

sine of the same value for the imaginary part. The splitting action may be
managed by using the uCU’s Block signal. At this time, the output buffers of
the first half include cosine terms, whereas the output buffers of the second half
contain sine terms. In real and imaginary cases, the samples xi are multiplied,
with the results stored in the up-rows. The contents of the output buffers, which
hold the multiplication results, are now placed into the arithmetic memory
rows.

Hybrid-SIMD previously conducted the procedures necessary to compute each
contribution to the total in Equation 2.5. To determine the final Xk outcome,
it is necessary to sum all contributions. To do this, the up-row/down-row
mechanism is utilized: the down-row of the i-th smart row becomes the up-row
of the i+1-th smart row, allowing data flow between two neighboring smart
rows. However, the sum computed via the up-row/down-row technique loses
the needed data of the up-rows xi for further iterations. To prevent data loss, a
load operation is done, saving the contents of the up-rows in the input buffers
of the I/O buffer IRL. Then, a store operation is executed so that the contents
of the output buffers are moved into the down-rows. The first sum iteration
is computed: the up-row/down-row method adds rows and up-rows. As a
result, the output buffers contain the sum between the i-th and (i-1)-th element.
According to Equation 2.5, by simply iterating N-1 times this routine, the final
sum of Equation 2.5 can be achieved.

• K-Means. K-means is the second proposed benchmark [128]. K-means seeks
to identify Nc specified groupings. The distances between each dataset point
and Nc centroids are calculated, and the cluster member with the shortest
distance is determined. The following is the pseudo-code of the algorithm:

56 Previous works and architectural models

Listing 5 K-Means pseudo-code.

1 d(:,0) = MAX_N;
2 for j in Nc centroids {Xc(j), Yc(j)}:
3 for i in 0 to #nodes:
4 d(i,j+1) = (X(i) - Xc(j))^2 + (Y(i) - Yc(j))^2;
5 if d(i,j+1) < d(i,j):
6 clusterID(X(i),Y(i)) = j;
7 else:
8 d(i,j+1) = d(i,j);
9 end

10 end
11 end

The algorithm description is used to derive the smart row structure, which
comprises an arithmetic memory row, a multiplier (for power-2 calculation),
and a conditional block. This last consists of a comparator, which returns the
smallest value among its two inputs. Therefore it computes output = (A<B)?
A:B. One may see that, for each point in the dataset, a set of distances from Nc
centroids must be calculated, and if each point is recorded for each smart row,
there are not enough storage elements to hold all the necessary local data. To
overcome this issue, the TemporaryStorage IRL is implemented. It is a register
that functions as a storage element, storing all the needed data inside each
smart row: if there are Nc centroids, then Nc TemporaryStorages are required
to store Nc distances.

• Matrix Vector Multiplication. The following calculation is done in Matrix
Vector Multiplication (MVM) algorithm:

Z = X ×Y where X ∈ RN×M,Y ∈ RM×1,Z ∈ RN×1 (2.6)

The smart rows from Equation 2.6 only include an arithmetic memory row, a
multiplier, and I/O buffer IRLs. The up-rows and arithmetic memory rows are
initial storage locations for Y and X . Next, the algorithm begins storing all
Y values inside the input buffers in order to release the up-rows/down-rows.
The punctual multiplication between Y and X is then done, memorized in
the output buffers, and relocated within the rows/down-rows. Using the up-
row/down-row technique, the multiplications are propagated down the LiM
array to calculate the partial sums.

2.1 General-Purpose and Application Specific 57

• K-NN. K-Nearest Neighbor is a basic classification and regression approach
that seeks to identify the k points nearest to a reference node. Di = |xs − xi|+
|ys − yi| computes the distance between the considered point and the reference
node, where (xi,yi) is the considered point, and (xs,ys) is the reference node.
This method can be efficiently executed using Hybrid-SIMD by using an
absolute value IRL (ABS).

• Bitmap indexing. Bitmap indexing (BMP) is a strategy for quick database
searches, according to [129]. It involves altering the data representation
in order to search for information inside the database using simple bitwise
operations. Each bit represents a field in bit arrays (also known as bitmaps),
which may be true or false. If the record corresponds to a certain field,
the corresponding bit is set to true. The smart row structure includes the
OneCounter IRL, which implements the samples count.

• Mean & variance. This procedure, abbreviated as VAR, calculates the mean
and variance for an N-point set X. These points are stored in the arithmetic
memory rows, and Hybrid-SIMD implements the following code:

Listing 6 Mean-variance pseudo-algorithm.

1 sum1, sum2, sum3 = 0;
2 for i in 0 to N: sum1 += X(i);
3 mean = sum1/N;
4 for i in 0 to N:
5 sum3 += (X(i) - mean);
6 sum2 += (X(i) - mean)*(X(i) - mean);
7 end
8 variance = (sum2-sum3*sum3/N)/N;

There are two for loops accumulating the same data, necessitating the employ-
ment of the up-row/down-row mechanism and Hybrid-SIMD in sequential
computing mode. This algorithm highlights the limitations of Hybrid-SIMD,
which results in being inefficient in sequential jobs. In this instance, the smart
row includes an arithmetic memory row, a multiplier, an arithmetic right shifter,
and two TemporaryStorages.

The final structure of the Hybrid-SIMD’s IRLs is shown in Fig. 2.8. The implemented
algorithms also yield the sizes for LiM arrays: for instance, if MVM has 256 elements,

58 Previous works and architectural models

Arithmetic memory row

Multiplier

LUT

Right shift

ABS

Comparator

Temporary Storage 0/1/2

OneCounter

I/O Buffer

Fig. 2.8 Smart row structure implementing all the proposed benchmarks.

to complete all the concurrent calculations, the total number of smart rows should be
256. Moreover, the number of rows has been fixed to 1024, with NSmartRow = 256,
NBit = 32, and nBlocks = 4 in each test. Finally, the memory size is calculated by
multiplying NRow by Nbit, and it is equivalent to 4 kB.

Results and comparisons with von Neumann Post Place&Route results are
shown in Table 2.11. Due to the fact that it analyzes both the speed and power
consumption of the Hybrid-SIMD, comparing the findings in terms of total energy
might be advantageous. Energy is equal to the product of the execution time of the al-
gorithm and the total power of the circuit. As expected, VAR gets the greatest energy
value for the inability to parallelize the two for loops. In contrast, the BMP scenario
yields the lowest energy since its algorithm is simpler than that of the other instances.

Table 2.11 Place&Route results of the Hybrid-SIMD using CMOS 45nm technology [21].

Test
Place&Route: backannotation

Clock (ns)Power (mW) Area (mm2) Critical path (ns) #clock cycles Energy (nJ)
DFT 212.90

2.15 6.79

1033 2639.11

12.00

K-Means 93.85 554 623.91

K-NN 84.79 522 531.12

MVM 114.20 546 748.24

BMP 86.12 13 13.44

VAR 181.40 1799 3916.06

Hybrid-SIMD is also investigated in a CPU-Memory context: the previously
described algorithms are analyzed and implemented on a RISC-V processor, which
is emulated using the Gem5 simulator [97]. The RISC-V von Neumann architecture

2.1 General-Purpose and Application Specific 59

DFT K-Means K-NN MVM BMP VAR

101

102

103

104

105

106

519

23374

33

96529

8

11605

34

9255

5

783
1545

14145

Benchmark

N
um

be
ro

fi
ns

tr
uc

tio
ns

Instructions (in log scale)

Hybrid-SIMD
RISC-V

Fig. 2.9 Number of instructions required for RISC-V/Hybrid-SIMD architectures

consists of two cache levels, DRAM and an In-Order single-core CPU. Level-
1 is separated into 4kB data and instruction caches. Level-2 cache is 256kB in
capacity and is shared between data and instructions. Lastly, the DRAM is 512 MB
DDR3 @ 1600MHz. The CPU-Memory system performance is compared with the
Hybrid-SIMD architecture by analyzing this basic setup. Since memory is slower
than the CPU, time and energy are lost waiting for data. Beyond von Neumann
designs attempt to decrease these quantities, which often lowers the performance of
conventional systems. Different figures of merit are considered:

• Number of required instructions. The amount of instructions needed by al-
gorithms in RISC-V and Hybrid-SIMD architectures is the first comparison
offered, which is shown in Fig. 2.9. C is used to implement apps on RISC-V.
The source files are built and statically linked using the —static option, and
then a trace-based simulation is performed to generate the instruction list of the
algorithm. The total number of instructions needed in Hybrid-SIMD case is far
less than that of the CPU. This is because Hybrid-SIMD is capable of SIMD
calculations, making it significantly quicker and efficient than a CPU-based
implementation.

• Number of memory accesses. Gem5 is used to give execution statistics
for RISC-V algorithms. These values can be obtained in the output file

60 Previous works and architectural models

stats.txt, which includes the total number of memory accesses of the pro-
gram. In the Hybrid-SIMD case, memory access calculations consider the size
of the algorithm’s data: for example, K-Means uses 256 coordinates, Nc=3
centroids, and Nc masks to determine clusterIDs. The total number of memory
accesses for K-Means is thus 521 (256× 2+ 3× 2+ 3). For RISC-V, the
results are shown in Table 2.12, where L1DCache, L1ICache, and L2SCache,
respectively, represent Level-1 Data/Instruction caches and Level-2 Shared
cache. The amount of memory accesses is one of the most influential contribu-
tors to the von Neumann bottleneck. In every scenario, Hybrid-SIMD is more
efficient than RISC-V, minimizing memory accesses and presenting itself as a
suitable coprocessor in a conventional system.

• Classical memory hierarchy consumption vs Hybrid-SIMD. Table 2.12 and
Fig. 2.10 report the amount of energy of the memories and the number of
memory accesses for each benchmark, respectively.

Table 2.12 Energy comparison between caches energy accesses and Hybrid-SIMD.

Test

Total energy (nJ)
RISC-V Hybrid-SIMD

Improvement (%)
Caches: accesses Entire architecture

DFT 2826.42 2704.83 4.30

K-Means 11077.19 628.09 94.33

K-NN 1434.12 532.14 62.89

MVM 1210.60 752.54 37.84

BMP 105.18 14.07 86.62

VAR 1997.46 4111.46 -105.83

Cacti [91] is used to estimate the caches’ energy: Cacti is a tool created by
HP Laboratories that can accurately simulate the performance of caches and
memories. L1D/ICache, L2SCache, and uROM are modeled with Uniform
Cache Access (UCA), and one read/one write port using CMOS 45nm technol-
ogy. Using the energy/access values, the energy consumption of caches for the
analyzed algorithms is evaluated and compared to that of Hybrid-SIMD. This
is a worst-case scenario for Hybrid-SIMD since the total energy consumption
of the design is examined (memory operations and computation). In contrast,
RISC-V calculations are made in the best-case scenario, i.e., only the cache

2.1 General-Purpose and Application Specific 61

DFT K-Means K-NN MVM BMP VAR

101

102

103

104

105

106

Benchmark

N
um

be
ro

fm
em

or
y

ac
ce

ss
es

memory accesses (in log scale)

L1ICache L1DCache L2SCache
uROM LiM array

Fig. 2.10 Number of memory accesses for RISC-V and Hybrid-SIMD systems.

energies are examined, and the core consumption is ignored. In Table 2.12,
the instruction cache contributes the most energy to the RISC-V architecture,
as it is accessed often in all benchmarks. At first glance, the contribution of
the Hybrid-SIMD architecture (provided by the total of uROM and LiM array
energy consumptions) to the suggested benchmarks looks to be more energy
efficient. VAR achieves the minimal figure of ∼ -100% energy improvement
because, as described before, the Hybrid-SIMD architecture is very inefficient
at implementing sequential algorithms, resulting in a deterioration of energy
and execution time. As predicted, DFT achieves the second-worst value since it
is slower than the others, although Hybrid-SIMD is still more energy-efficient.
Other benchmarks provide very promising performance outcomes, with an
energy improvement of at least 94% compared to RISC-V memory hierarchy.
Moreover, compared to caches, Hybrid-SIMD memory accesses are dramati-
cally decreased since the LiM array can simultaneously store and process data,
reducing data traffic. Utilizing Hybrid-SIMD as a coprocessor enables the
CPU to outsource massively parallel tasks to Hybrid-SIMD, hence enhancing
performance.

62 Previous works and architectural models

MeMPA: Memory Mapped Programmable Architecture [15, 16]

Architecture In Fig. 2.11(a) the system environment hosting the MeMPA is shown.
Since MeMPA functions as a memory-mapped co-processor, the CPU requires two

PE
Array

Memory
Interconnections

Memory

nCUµCU

Address
Decoder

Reduction Tree
Interconnections

......

...

...

...

... ...

CPUIMem
MeMPA

WORD_CPU
WORD_MeMPA

Read_Address

Wen_CPU

Wr_Address

Program_END
Start

Program_Address

Instr. PC

MeMPA
Framework

...

...

...

...

...

...

...

Instr.
Decoder0

Instr.
Decoder1

Instr.
Decoder2

ci ci

Block Word

ACell0 ...ACellN

RShifter ALU × LUT
16x4

insturction

Bypass
Storage

Register
File

(4 registers)

BL
In

Rshifter

Out
Rshifter

Out
Bypass

Col
Int

Mem
Int

Row
Int

(c)

(b)

(a)

Fig. 2.11 MeMPA system. [15, 16] (a) MeMPA top-level view. (b) Processing Matrix
structure, with Standard Blocks (only memory) and Smart Blocks (memory and computation),
and M-SIMD implementation. (c) Smart Block architecture. (d) Structure of the arithmetic
cell composing the Block Word.

sets of signals at its interface in order to interact correctly with it: one for exchanging
data and another for initiating MeMPA to execute the data-intensive portions of

2.1 General-Purpose and Application Specific 63

the code loaded into the MeMPA Instruction Memory. In particular, the former set
utilizes the standard double port data memory protocol (1 asynchronous reading port
and 1 synchronous writing port). The internal structure of MeMPA consists of three
macro sections: the control section, the datapath, which is comprised of a matrix of
fully interconnected PEs (i.e., the Processing Matrix) and is where data processing
occurs within MeMPA, and the section responsible for data exchange with the CPU.
This last element links the first set of CPU external pins to the Processing Matrix
using an address decoder and multiplexer to identify the PE where data must be
written or read. The control portion works exactly as the Hybrid-SIMD case, in
fact MeMPA’s control unit is a microprogrammed machine as well. The datapath is
represented by the Processing Matrix, which is the MeMPA entity responsible for
data storage and processing. The Processing Matrix is composed of 256 PEs with
memory capabilities, referred to as Smart Blocks, arranged in a grid of 16 columns
and 16 rows. In addition, 80 Standard Blocks, which are standard registers that
provide MeMPA with additional storage capacity, are inserted underneath the Smart
Blocks. Due to the nCU structure, which consists of three instruction decoders, the
Processing Matrix may concurrently execute up to three distinct instructions, each
on a separate piece of data. Specifically, each instruction decoder (ID) receives as
input a separate sub-portion of the MeMPA instruction and transforms it into control
signals that drive a particular set of Smart Blocks rows. The mesh-like architecture
of the Processing Matrix is used to construct a battleship-like enabling mechanism.

Routing Network Memory Interconnections and Reduction Tree Interconnections
are the two types of interconnections in the routing network. All of them are imple-
mented by a well-organized collection of multiplexers. Each Row Interconnection
permits the transmission of data between Smart Blocks in the same row, while each
Column Interconnection, which extends to Standard Blocks as well, enables Smart
Blocks to receive data from any block in the same column. In contrast, Memory
Interconnections span the whole Processing Matrix, allowing any Smart Block to
obtain data from any block. However, the two kinds of interconnections are not dis-
tinguished by the collection of blocks they connect but rather by the manner in which
they transfer data among the various blocks. Each Row or Column Interconnection
enables all connected Smart Blocks to take different data simultaneously, even if
they are controlled by the same instruction, whereas Memory Interconnections are

64 Previous works and architectural models

used when multiple Smart Blocks controlled by the same instruction must select the
same data from a random block of the Processing Matrix.

Smart Block Each Smart Block (refer to Fig. 2.11 (c)) includes all the storage
components and computational blocks required to perform the most frequent oper-
ations detected by the Algorithm Profiling technique. Inside a Smart Block, there
are a Right Shifter (RShifter) to perform division-by-two, an ALU to perform most
common arithmetic-logic operations, a multiplier, a Register File to hold temporary
values, a Bypass Storage to provide the input data for the Reduction Tree Inter-
connections, a few multiplexers to select the data, and a programmable Look-Up
Table (LUT) to implement specific functions. The Block Word consists of 32 1-
bit arithmetic cells, as seen in Fig. 2.11 (c), which are the finer-grained entities
of the MeMPA Processing Matrix and are equipped with memory and processing
capabilities. The arithmetic cells deal with ALU, Multiplier, and LUT in order to
provide the right operand or execute certain preliminary bitwise operations. For a
generic operation, the Smart Block may operate on data stored within the Smart
Block itself, within the Block Word or Register File, or coming from a block on the
same row, a block on the same column, or an arbitrary block within the Processing
Matrix. To enable MeMPA to perform a finite number of divisions by powers of
2, the RShifter has a separated input to allow the cascade connections of all the
RShifters belonging to the Smart Blocks on the same row. Therefore, the Processing
Matrix may perform up to 16 divisions in parallel on data coming from Memory or
Reduction Tree Interconnections.

Benchmark mapping For a straightforward evaluation of MeMPA’s performance,
the same benchmarks used for the Hybrid-SIMD evaluation [127] are used. In addi-
tion, the absence of a proper compiler for MeMPA prevented the implementation
of complicated algorithms, such as SPLASH-2 benchmarks used for the profiling
operation, for which manual mapping would have been very difficult. Table 2.13
summarizes the algorithms in terms of the quantity of processed data, the number of
clock cycles required for algorithm execution, and the associated post Place&Route
power consumption. These results are achieved using fixed dimensions of 16×16
Smart Blocks and 5× 16 Standard Blocks with an M-SIMD degree of 3. How-
ever, performance is directly proportional to MeMPA scalability, which means that
increasing the total number of Smart Blocks, Standard Blocks, their parallelism,

2.1 General-Purpose and Application Specific 65

Table 2.13 Data initialization cycles, parameters, execution cycles and post-Place&Route
back-annotated power of each algorithm

Benchmark
Data Algorithm

Parameter
Power

Initialization Execution (mW)
clock cycles # clock cycles @4ns

K-NN with N samples 2×N +2 7 N = 160 72.95
K- with K centroids 2×N+

15×K −11
N = 160

74.48means and N samples 3×K +2 K = 3
MVM Z = X ×Y ,X ∈ Ru×v,Y ∈ Rv×1,Z ∈ Ru×1 v× (u+1) ⌈u/3⌉+ log2v+1 u = v = 16 62.64
µ&σ2 with N samples N 3× log2N +13 N = 256 65.77
DFT with N samples 2×N +1 log2N +39 N = 128 94.44

or the degree of M-SIMD enhances processing power. In contrast, surpassing the
MeMPA size diminishes crucial metrics for benefits such as area, power, time, and
energy. The mapping of any algorithm on MeMPA consists of two major phases:
the Processing Matrix initialization phase, during which the CPU feeds all data to
be processed into the Processing Matrix, and the algorithm execution phase, during
which the algorithm is executed. Regarding the MVM mentioned in Table 2.13, each
matrix element is stored in a unique Block Word of the Smart Blocks, whilst all
vector components are put into the first row of Standard Blocks. Then, the data from
the Block Words is moved into the first location of the Register Files, to avoid losing
the initial data when the MeMPA saves the results into the Block Words to make
them visible to the CPU. After then, the 256 products between each matrix element
and the vector are executed, in particular by considering 3 rows at the same time.
The results are stored in the corresponding Bypass Storages. Once all the products
are ready in the Bypass Storages of the Processing Matrix, all sums are executed
in four instructions. To do this, the reduction tree of the Row Interconnections is
fully used, reducing the number of instructions required to compute 16 simultaneous
additions from 15 to 4. After the conclusion of the last instruction, all the final values
are accessible in the Block Words column of the first Processing Matrix column.

Performance comparisons Firstly, comparisons of MeMPA and Hybrid-SIMD’s
energy and execution time are offered. Due to the fact that Hybrid-SIMD and
MeMPA have different sizes and memory space, the energy and execution time are
normalized by the number of samples evaluated for each case (# Samples) for a more
accurate comparison. Secondly, and most crucially, MeMPA is implemented in a
traditional CPU-memory architecture, and the performance of the algorithms in two
unique instances is examined. In the first, labeled CPU-Mem, the structure of the von
Neumann architecture is preserved, thus algorithms are run exclusively by the CPU

66 Previous works and architectural models

Fig. 2.12 MeMPA vs Hybrid-SIMD: (a) reports the Execution time/# Samples, while (b)
evaluates the Energy/# Samples for both structures. CPU-Mem-MeMPA: Comparison of
execution time (c) and energy (d) between CPU-Mem and CPU-Mem-MeMPA solutions.

and evaluated in a traditional context. The second proposal, CPU-Mem-MeMPA,
examines the incorporation of MeMPA into the von Neumann architecture.

In Fig. 2.12 (a-b), the execution time and energy comparisons between MeMPA
and Hybrid-SIMD are shown. With clock periods of 12ns and 4ns, respectively,
the values for Hybrid-SIMD and MeMPA are determined. MeMPA has a smaller
addressable area than Hybrid-SIMD, thus a lower number of data can be handled.
MeMPA’s reduced memory size is balanced by its high degree of programmability
and capacity to conduct several complicated tasks simultaneously. With restricted
flexibility, the Hybrid-SIMD architectural model can implement a narrower range of
programs, with worse performance in sequential algorithms. As shown in Fig. 2.12
(a-b), MeMPA surpasses Hybrid-SIMD for all suggested execution time and energy
benchmarks. In addition, MeMPA has a shorter critical path (3.88ns vs. 6.79ns) and
uses less power (worst case of MeMPA: 102.18mW vs. 212.18mW for the DFT
method).

2.2 Conclusions 67

Following a similar methodology of the Hybrid-SIMD case, a comparison in
terms of energy and execution time between CPU-Mem and CPU-Mem-MeMPA
frameworks is presented. A published RTL model is utilized to predict the RISC-
V core’s performance properly, Pulpino [130], an In-Order single-core RISC-V
processor. Following the same process as MeMPA, the core is synthesized and
Place&Routed. At the conclusion of the Place&Route phase, the algorithms are
simulated, and the annotated switching activity is reused by Cadence Innovus for
power estimation. The results are shown in Fig. 2.12 (c-d), with a clock period set to
6 ns, representing the worst critical path value between MeMPA and the RISC-V
core. In terms of execution speed and energy consumption, the CPU-Mem-MeMPA
framework surpasses the traditional CPU-Mem in all benchmarks. Thanks to the
M-SIMD computing mode of MeMPA and the dense interconnections network,
algorithms can be easily accelerated, resulting in improved performance, particularly
for parallel algorithms such as K-Means and algorithms that can heavily exploit
the Reduction Tree computing mechanism. It is important to note that the addition
of MeMPA also minimizes memory accesses and energy consumption, as seen in
Table 2.14 since once data are loaded into MeMPA, the calculation is conducted
directly inside the Processing Matrix. Once the process is complete, data may be

Table 2.14 Comparison of the number of L1 and L2 cache memory accesses for CPU-Mem
and CPU-Mem-MeMPA.

Algorithm Memory Accesses (L1&L2) Reduction (%)CPU-Mem CPU-Mem-MeMPA
KNN 19799 16702 15.6

K-Means 103362 16946 83.6
MVM 24153 15479 35.9
µ&σ2 36606 15090 58.8
DFT 26599 15133 43.1

read from MeMPA. MeMPA reduces energy, execution time, and memory accesses
up to 81.2%, 68.9%, and 83.6%, respectively, for the K-Means method.

2.2 Conclusions

With these previous works, the goal is to prove the effectiveness of the LiM approach
applied to a standard von Neumann system. In both Application Specific and

68 Previous works and architectural models

General Purpose approaches, LiM demonstrates the ability to reduce the effects of
the von Neumann bottleneck, both reducing the memory accesses and the energy
of the system. Application Specific implementations are more power efficient and
faster than General Purpose Hybrid-SIMD and MeMPA, however they are able to
implement a very small set of algorithms and operations. On the other hand, Hybrid-
SIMD, and especially MeMPA, focus on a heavy parallelization, on different levels,
of the algorithm execution. Moreover, the core parts of Hybrid-SIMD and MeMPA
processing were designed to provide as much programming generality as possible by
considering a wide range of algorithms from the SPLASH-2 benchmark suite and
profiling the most used instructions. Due to their fully interconnected structures of
processing elements integrating computing and storage capabilities, the insertion of
Hybrid-SIMD and MeMPA inside a classical CPU-Memory context was confirmed
to successfully bring overwhelming reductions in energy and execution time for the
proposed benchmarks compared with the classical von Neumann solution. In the
next chapters, the core part of this thesis will be explained, presenting DExIMA, a
tool able to assist the designer in the LiM design flow. DExIMA, as discussed later,
relies on an architectural model replicating the ones proposed before, starting from
the finer-grained LiM Cell block towards the top-level LiM architecture. In contrast,
MeMPA architectural model, in which the finer-grained element is N-bit block, will
be implemented as a future work.

Part II

DExIMA tool for LiM design
exploration

Chapter 3

Overview of DExIMA software

Summary

The acronym DExIMA stands for Design Explorer for In-Memory Architectures, and
it is intended as a tool able to assist the user during the LiM architecture design
phases. Starting from the definition of the blocks composing the architecture, DEx-
IMA is able to perform simulations of the circuit and estimations of the performance
achieved. DExIMA is composed of a Graphical User Interface (GUI) incorporating
a Schematic Capture (DExIMA-CAD), that guides the designer through the design
flow of the BvNC devices, and by a Backend (DExIMA-Backend), which is an ad-hoc
performance estimator implemented in C++. In Fig. 3.1, the high-level scheme of
DExIMA is reported. The design flow starts with the architectural design of the
memory array by defining the internal structure of the cells, moving then to the
definition of the memory array characteristics. The LiM array is designed by means
of the Schematic Capture tool provided by DExIMA-CAD, or it can be generated
directly by translating an input algorithm into a LiM architecture using Octantis tool
[131]. The interface with Octantis, however, is not covered in this thesis, because it
is still under development in another doctoral project. DExIMA recalls the BvNC
structure proposed by [127, 13, 63, 132], especially the Hybrid-SIMD [127], but
it can also reproduce different architectural and structural models by changing
the arrangements of the LiM blocks with high flexibility and modularity. DExIMA
performs estimations on a given library of technologies that essentially contains the
parameters of the devices (such as the channel length, the width of the transistors,

72 Overview of DExIMA software

etc.) and a set of LiM templates that are required to define boundaries in the design
exploration. In the following sections, all these aspects are discussed in deep.

ö
LiM

templates

�
Library

n
Algorithm

Schematic

DExIMA

Design Explorer for
In-Memory Architectures

Technology
parameters

Performance

Ù
Plug-and-

play VHDL

RISC-V
Core L1I

Cache
L1D

Cache
L2S

Cache

Memory

CPU-Mem

RISC-V
Core L1I

Cache
L1D

Cache
L2S

Cache

Memory

CPU-Mem-LiMLiM

C
om

parisons

Fig. 3.1 Overview of the DExIMA software

3.1 DExIMA architectural reference structure

In Fig. 3.2, the reference architectural model of the LiM array used by DExIMA
is defined. The finer-grained block is the LiM Cell, composed of a 1-bit memory
element and optionally very simple logical circuits, usually made of a few logic gates.
The Intra Row Logic (IRL) instead, is a more sophisticated computational part that
is interposed between two consecutive rows and can contain blocks such as adders,

3.1 DExIMA architectural reference structure 73

LiM
Cell

LiM
Cell

LiM
Cell

LiM
Cell

Intra Row Logic

LiM
Cell

LiM
Cell

LiM
Cell

LiM
Cell

Intra Row Logic

...
Fig. 3.2 Reference architectural model for the LiM Memory Array.

multipliers, shifters, registers etc., if required by the implementation. During the
design phase, the user can choose the kind of LiM Cell and IRL he/she wants, also
depending on the application or algorithm implemented. This structure is adopted in
works like [127, 13, 63, 132]. For instance, in [13], an XNOR-Net Binary Neural
Network was implemented where the convolution operation is approximated into an
XNOR bitwise and pop counting operations, so the LiM Cell was equipped with an
XNOR gate and a half adder to accomplish the convolution computation. Similarly, in
[63], the memory array is equipped with one full adder and a configurable logic block
for each LiM Cell, allowing to perform parallel convolutions. In [132], a similar
structure is proposed, this time implementing a different algorithm named Bitmap
Indexing, which consists of highly parallelizable bitwise logical operations aiming to
perform search operations and classify data. In previous examples, the IRL part was
absent because the implemented applications were very simple and specific, requiring
simple hardware. As already said before, more complex structures like Hybrid-SIMD
[127] implements sophisticated LiM Cells made of full adders, configurable logic
blocks, and multiplexers to perform a wide range of 1-bit operations together with
complex IRL circuits, aiming at covering the widest range of arithmetical and logical
operations possible. With DExIMA, the idea is to achieve maximum flexibility
by replicating all these architectural models. However, the reference structure can
be modified to accommodate other LiM paradigms or solutions proposed in the
literature.

74 Overview of DExIMA software

3.1.1 Control part and design templates

One of the main aspects of LiM architecture is the definition of a controlling circuit
that should be able to drive the LiM correctly. As already stated, DExIMA gives

BL BLB WL CLK RST Si Inputs

OC LiM SHO Outputs

LiM Cell
base template

BLInputs BLB WL CLK RST OC LiM SIi TOP

IRL SHO BTM OutputsIRL
base template

Fig. 3.3 Base templates of the LiM Cell and IRL.

the user high flexibility in the design stage, meaning that the LiM Cells and IRL
architectures can be defined arbitrarily, according to the application. However, this
high flexibility increases the complexity of the Control Unit because the degrees
of freedom tend to be unpredictable, requiring extremely complicated hardware
and designing skills. To solve this problem and to better define the LiM design
methodology while maintaining high generality, DExIMA provides a series of
templates that the user can choose at the beginning of the design flow. These
templates are linked to the number of input-output pins of the LiM Cell and IRL. In
Fig. 3.3, the base versions of the LiM Cell and IRL templates are shown. Starting
from the input pins, their functions are the following:

• Bitline (BL) and bitline bar (BLB) are the signal that brings data from the CPU,
written inside the LiM Cells.

• Wordline (WL) enables the memory row according to the input address.

• Clock (CLK) and Reset (RST) drive synchronous circuits such as memory
elements, flip-flops, or registers.

• LiM Cell selector(s) (Si), Intra Row selector(s) (SIi) are signals driven by
the Control Unit, according to the desired function. For instance, these signals
can be connected to the selector input of a multiplexer to select the appropriate
value or to enable a synchronous block to memorize a temporary variable.
They can also be used as data signals.

3.1 DExIMA architectural reference structure 75

• TOP signal is a special signal that connects a row to the previous one, as shown
in Fig. 3.2. In particular, TOP signal of the i-th row is connected to BTM signal
of the (i-1)-th row.

The output pins have the following meanings:

• Output Cell (OC) is normally connected to the output of the memory element
of the LiM Cell, and it is useful to read the data stored inside the memory
array.

• Output LiM (LiM) is connected to the output of the logical part of the LiM
Cell.

• Output IRL (IRL) connects the output of the IRL block to the outside.

• Shared Output (SHO) is a single bus shared between the rows. A tristate buffer
is usually employed to handle this output to avoid conflicts.

OC, LiM, SHO signals are used as outputs in the LiM Cell, but these signals are also
connected to the IRL part as IRL can reuse them to perform other computations.
As depicted in Fig. 3.3, some signals are highlighted in orange, meaning that the
other templates for the LiM structure rely on these elements. More complicated
templates can have more selector inputs (S0,S1,S2,S3,...) or more LiM/IRL outputs
(LiM0,LiM1,LiM2,...,IRL0,IRL1,...). By defining the template, the Control Unit can
be designed according to the available selectors since these inputs are used to pro-
gram the behavior of the cells or IRL parts. The user can directly define the template
by means of the template selector tool provided by DExIMA. The Control Unit
architecture is based on a microprogrammed machine, which is the most flexible
structure, following a similar approach to the Hybrid-SIMD [127]. A micropro-
grammed machine is composed of a micro-Program Counter (uPC) that addresses a
memory called micro-RAM (uRAM), in which the instructions used to control the
LiM array are defined, and in particular, each LiM instruction defines the values of
the selectors. In Fig. 3.4, the high-level scheme of the microprogrammed Control
Unit is shown. It relies on the explicit addressing mode, where the next address is
written inside one of the uRAM fields, allowing to perform operations in sequence:
in the future, this part can be improved to support subroutines and loops. The uRAM
fields are:

76 Overview of DExIMA software

Queue uAR

uPC uRAM

SEQ Next ADD Fetch EN LastInstr Rows Enable uInstruction

waitADD

LiMActivate

nCU

Selectors

QueueWen

QueueIn 0

1
0

1

Fig. 3.4 Microprogrammed Control Unit implemented in DExIMA to support general and
flexible driving.

• SEQ is a single-bit field indicating the next address to choose between the
micro address register (uAR), where it is written the starting address parsed by
the Queue, or the Next ADD field of the uRAM.

• Next ADD specifies the next address of the uRAM, containing the next in-
struction.

• Fetch EN is the fetch enable signal, asserted at the beginning of the program
to sample the starting address from the Queue.

• LastInstr is the last instruction flag that selects the wait address (waitADD)
and stalls the Control Unit.

• Rows Enable is a signal having parallelism equal to the number of rows,
selecting which row(s) is(are) enabled in that particular instruction. This
signal is useful for the operations that need a specific row activation pattern,
as discussed in chapter 4.

• uInstruction contains the values of the selectors of the LiM template. Its
parallelism is equal to the number of selectors employed in the design.

3.2 DExIMA-GUI: Graphical User Interface 77

Rows Enable and uInstruction signals are sent to the nano-Control Unit (nCU) that
performs an AND bitwise between the value of the selectors and the enable of each
row, generating the Selectors signal.

3.2 DExIMA-GUI: Graphical User Interface

The main Graphical User Interface of DExIMA software is shown in Fig. 3.5, that is
composed of several tabs:

• LiM Cells, Intra Row Logic, LiM Architecture, and Near-Memory architecture.
In these environments, the designer creates the LiM Cells, the Intra Row
Logic blocks, the top-entity architecture, and, if required, a Near-Memory
architecture. These tabs are structured with the component selector on the
left and Schematic Capture on the right, where the blocks can be placed and
connected.

• Algorithm-to-LiM and Comparison CPU-Memory. The other two tabs, instead,
have a text editor widget in which the user can write the C code required for the
automatic generation of the LiM architecture and the algorithm to implement
inside the CPU-Memory standard system to be compared with, respectively.

DExIMA provides the user with several options that automatize the simulation,
performance estimation and validation of the designed architecture.

• Define uRAM selectors. This tool assists the designer in the definition of the
controlling part of the LiM architecture. In particular, as discussed later, it
allows writing the control signals inside the uRAM memory that drives the
selectors defined by the LiM templates and the row-enable patterns.

• Generate VHDL. Once the architecture has been defined in the schematic editor,
a synthesizable VHDL code of the architecture can be directly generated by
the tool.

• Simulate circuit. The generated RTL code can be automatically simulated by
employing Mentor QuestaSim software, which is directly called by DExIMA,
which generates the scripts and sets the environment variables properly.

78 Overview of DExIMA software

Schematic
capture

Performance
estimations

phases

(a)

LiM design phases

Performance comparison
CPU-Mem/CPU-Mem-LiM

systems

Design of the Near-Memory Architecture
(outside the memory array)

Text editor
(b)

Fig. 3.5 Main window of the DExIMA tool. (a) Schematic capture. (b) Comparison CPU-
Memory and the text editor widget.

• Estimation with DExIMA & synthesis with Synopsys Design Compiler. After
the simulation, the architecture can be estimated with DExIMA-Backend,
providing performance results on the chosen technology or synthesized with
Synopsys Design Compiler.

3.2 DExIMA-GUI: Graphical User Interface 79

• Show DExIMA and Synthesis results. Performance results can be visualized
both in plot or tabular formats.

• Gem5 results browser and plot instructions of the CORE. These options are
used in the "Comparison CPU-Memory". The first one allows visualizing
the results of the Gem5 simulation, saved in HDF5 format, while the second
one evaluates the number of instructions executed by the CPU core in two
cases: the classical von Neumann architecture and the Beyond von Neumann
architecture with the designed LiM.

• Extrapolate caches info. In the "Comparison CPU-Memory" phase, the user
can extrapolate the memory statistics, such as the number of memory accesses,
misses, hits, etc., for both CPU-Mem and CPU-Mem-LiM systems.

• Compare CPU-Mem and CPU-Mem-LiM. Finally, at the end of the LiM design
process, the two systems are compared in terms of performance to clearly
indicate the LiM impact in a standard context.

The user can select two design modes: the LiM, where the structure of the cells, the
IRL, and the top-level entity can be defined, and the Near-Memory, where the user
can design the surrounding logic to the memory array. The LiM mode is structured
in a hierarchical way, starting from the finer-grained blocks (the cells) towards the
top-entity architecture, so the user has to select the LiM Cells tab, implement the
architecture of the cell, selecting the appropriate blocks and connecting them by
means of the Schematic Capture, and then move to the IRL and the top-entity with
the same modality. At the end of the design phase, the architecture reproduces the
structure presented in Fig. 3.2, where the LiM Cells are directly connected to the
IRL, and the final array is built.

In order to implement all the previously mentioned operations, as shown in
Fig. 3.6, the user can interface with the DExIMA GUI which, through an embedded
terminal, communicates with the various external tools required. The GUI then
retrieves the different data produced by the external tools to, for example, show
performance results, compare the results etc.

80 Overview of DExIMA software

g

$Embedded
Terminal

path/to/dexima path/to/file.dex

3
DExIMA-Backend

vsim -do path/to/script.tcl

QuestaSim

path/to/octantis

dc_shell < source path/to/synth_script.tcl

Design Compiler

path/to/cacti -infile /path/to/cacti.cfg

Cacti

path/to/riscv-toolchain/gcc /path/to/algorithm.c
path/to/gem5 -options path/to/arch_config.py

Fig. 3.6 High-level scheme of DExIMA software interface.

3.3 LiM design phases

In this part, the design flow of the LiM is presented. Referring to Fig. 3.7, the flow
starts with the schematic entry and goes through the LiM array definition, the VHDL
and DExIMA-Backend codes generation, the simulation, the back-annotation and
finally performance estimation by means of DExIMA-Backend.

1 Schematic capture. This phase represents the crucial part of the LiM design.
As anticipated previously, the LiM Cells, the IRL, and the top-entity LiM
array are defined in this stage. The user can select among different logical

3.3 LiM design phases 81

blocks the ones required to implement the function required. In particular, the
LiM Cell is always made of a memory element and, if required, some simple
surrounding logic.

2 LiM array definition. Once LiM Cell and IRL are defined, the user can
select the LiM Architecture tab and instantiate the memory array. When
instantiated, the LiM memory is an empty object: the tool allows to define the
structure of the LiM by asking the user to provide the number of rows/columns,
the cell type for each coordinate of the matrix, and the IRL circuit for each
row. This selection is accomplished by means of two tables, where the content
of each location can be changed according to the cell/IRL selected. After
the definition of the LiM Memory, the program automatically instantiates the
microprogrammed Control Unit needed to control the circuit, called Memory
Interface.

3 RTL code files generation. In this step, DExIMA can generate a synthesizable
VHDL description of the top-entity architecture of the LiM and the micropro-
grammed Control Unit.

4 Automatic RTL simulation with UVM and Mentor QuestaSim. The generated
VHDL code can be simulated using QuestaSim. To do this, DExIMA generates
a script that compiles the code and runs the simulation of a UVM testbench,
which is fundamental to generalize the tests of the LiM architectures.

5 Back-annotation and .vcd file generation. At the end of the RTL simulation,
two VCD files are generated, containing the values of the signals for each time
instant. The first one is useful for the back-annotated power estimation with
DExIMA-Backend and contains the waveforms of the LiM blocks (the LiM
Cells and IRLs). The second one contains the signals of the top-level entity,
which connects the microprogrammed Control Unit to the LiM array and is
useful for the bus performance estimation (step 8).

6 Architecture description: DExIMA-Backend input file. After the simulation,
DExIMA-Backend is used to estimate the performance. An intermediate
and custom DExIMA-Backend input file with extension .dex is generated
that contains not only the structural description of the LiM but also crucial
information for performance estimations.

82 Overview of DExIMA software

7 Architecture performance estimation. Once the DExIMA-Backend input file
is ready, DExIMA-CAD calls DExIMA-Backend by means of an embedded
terminal and passes the .dex file. DExIMA-Backend estimates the performance
and prints out the results of the LiM inside a human-readable file with extension
.dof (DExIMA Output File).

8 Bus perfomance estimation. Bus impact can be optionally evaluated in the
performance estimation process. In this case, DExIMA-Backend automatically
instantiates a netlist made of several drivers, a distributed network of capacitors,
and resistances, aiming at emulating a real bus. Then, DExIMA runs the netlist
simulation using the Ngspice tool.

9 Show DExIMA results. At this point, the control of the flow returns to DExIMA-
CAD, and the user can visualize the results in bar plots or tabular format.

10 Comparison CPU-Mem CPU-Mem-LiM. At the end of the LiM design flow,
the user can compare the two solutions to evaluate the impact of the LiM in a
classical context.

3.3.1 Near-Memory design phase

DExIMA aims to assist the user not only in the LiM architecture definition, but
also in the Near-Memory design phase, which is quite similar to the LiM one. In
fact, in this part, with the same modality exploited in the LiM case, the designer
can implement a standard circuit employing the Schematic Capture, generate the
VHDL code, estimate its performance with DExIMA-Backend, and view the results.
However, the Near-Memory phase does not include an automatic testbench, so the
performance results are estimated without the back annotation process, emulating a
worst-case scenario.

3.3
L

iM
design

phases
83

Q
DBL OC

LiMCLK

Schematic capture
 Intra Row Logic Blocks

 LiM Cells

LiM
Array
design

Ë Array Size
Ë Cell selection
Ë Intra Row structure

Automatic

synthesizable
VHDL code
generation

Architecture
description
DExIMA
Backend

.dex input
file

Mentor QuestaSim
simulation

Flexible
UVM

testbench
Automatic RTL simulation

Back-annotation

.vcd file
generation

3
DExIMA-Backend

Architecture
performance
estimation

Bus

performance
estimation
Ngspice

|!
Show

results
Comparison
CPU-Mem

CPU-Mem-LiM

1 2

3

4

5

6

7 8

9
10

Legend
DExIMA-CAD
DExIMA-Backend

Fig. 3.7 DExIMA high-level structure

84 Overview of DExIMA software

3.4 Conclusions

In this chapter, an initial overview of the LiM array architectural model and control
logic used in DExIMA is provided. The architectural model was derived from
past work and can be modified or expanded to implement other LiM models in the
literature as well. The control unit is a microprogrammed machine that, together with
the use of templates, is able to provide flexibility and programmability. Finally, an
overview of the DExIMA tool is discussed, with an initial mention of the functionality
and design steps.

Chapter 4

LiM design flow with DExIMA

Summary

This chapter presents the LiM design flow with DExIMA. The steps start from the
definition of the LiM array with the schematic mode and go towards the definition of
the LiM algorithm, the simulation, performance estimations, and the comparisons
with a standard CPU-Mem system. An example is proposed to exhaustively explain
the entire flow, which consists of a very simple architecture capable of performing
three basic logic operations inside the cell (XNOR, NAND, NOT) between the cell’s
content and external data and additions for each line.

(a) (b) (c)
Fig. 4.1 (a) LiM template example. (b) LiM array cell pattern. (c) IRL organization.

86 LiM design flow with DExIMA

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

S5

S5

S6

S6

S7

S7

S8

S8

S9

S9

S10

S10

S11

S11

S12

S12

S13

S13

S14

S14

S15

S15

S16

S16

S17

S17

S18

S18

S19

S19

S20

S20

S21

S21

S22

S22

S23

S23

S24

S24

S25

S25

S26

S26

S27

S27

S28

S28

S29

S29

S30

S30

S31

S31

S32

S32

S33

S33

OC

OC

SHO

SHO

LiM0

LiM0

CK EN RN WR

RD

Memory_10

IN0

IN1

O

NAND2_11

IN0 O

NOT1_12

IN0

IN1

O

XNOR2_13

IN0

IN1

S

O

MUX21_14

IN0

IN1

S

O

MUX21_15

IN0

IN1

S

O

MUX21_16

A B

AS

SUM

ADDER_12
+/-

IRL0

IRL0

BTM

BTM

LiM0

LiM0

SI0

SI0

TOP

TOP

OC

OC

WL

WL

RST

RST

SHO

SHO

BL

BL

CLK

CLK

CLK

EN

BL

[31:0]BLB

[31:0]

WL

[1023:0]

RST

DOUT

[31:0]

MEMORYARRAY_1

CLK
[15:0]

[1077:0]

RST

uROM_address

[15:0]

Memory Interface

CLK

CLK

EN

EN

BL

BL

[31:0]

BLB

BLB

[31:0]

WL

WL

[1023:0]

RST

RST
DOUT

DOUT

[31:0]

q
u
e
u
e
I
N

queueIN

[15:0]

q
u
e
u
e
W
e
n

L
i
M
a
c
t
i
v
a
t
e

u
I
r
e
g

[1077:0]

uROM_address

uROM_address

[15:0]

(a)

(b)

(c)
Fig. 4.2 (a) LiM Cell and (b) IRL block examples. (c) Top-level entity scheme.

4.1 Definition of the LiM template 87

4.1 Definition of the LiM template

The first step is to define the number of pins required inside the LiM and IRL blocks.
These pins are used as control inputs and data signals in this particular example, but
they can also be used as control-only signals. Since the LiM Cell computes one of
three possible functions, a 4-1 multiplexer is required, and it should be able to select
between the memory output, the XNOR, NAND, and NOT functions. The number
of selectors for the LiM Cell equals 2 (for piloting the 4-1 multiplexer) plus 32 other
pins dedicated for each bit of external data. Moreover, one LiM output is required to
deliver the LiM Cell function to the IRL blocks. The IRL blocks require one selector
to pilot the sum/subtract pin of the adder and one output. The LiM template is set by
clicking on the Templates... button, which shows the dialog in Fig. 4.1 (a).

4.2 Definition of the LiM Cell

The LiM Cell is designed starting from the specifications, and it should be capable
of performing XNOR, NAND, and NOT operations, so the cell must contain these
gates. The architecture of the 0-th bit LiM Cell is shown in Fig. 4.2 (a).

4.3 Definition of the IRL

The IRL block is simply an adder. DExIMA provides an adder capable of performing
both additions and subtractions, so the sum/subtract pin ("AS" in the scheme of
Fig. 4.2 (b)) is connected to the IRL selector SI0, that is fixed to 0. LiM Cell and IRL
are saved into two files with the names cellxx.lim and block.irl, respectively,
where xx is the bit index of the data inside the LiM array.

4.4 LiM array definition

By switching to the "LiM architecture" tab, it is possible to design the top-level
entity containing the LiM array and the controlling part. Once instantiated, the

user can click on Edit button , select the LiM and choose the

88 LiM design flow with DExIMA

array sizes, cell and IRL patterns. In this example, a 32-bit with 128 rows LiM
memory is chosen, and each LiM Cell and IRL block are chosen as the ones shown
in Fig. 4.2 (a-b) by using the dialogs shown in Fig. 4.1 (b-c). After the definition of
the LiM array structure, the program automatically instantiates the Memory Interface
block that acts as the Control Unit of the LiM architecture: the user has to manually
connect all the pins, reaching the final structure shown in Fig. 4.2 (c).

4.5 Definition of the uRAM content

At this point, the algorithm can be defined by writing the values of the selectors of
the chosen LiM template inside the uRAM. DExIMA provides a tool that allows
defining the values of the selectors for each instruction, depending on the operations
required. Considering, for example, the following pseudo-code:

Listing 7 Pseudo-code of an algorithm implementable by the LiM architecture example.

1 for(int i = 0; i < 128; i++)
2 RES[i] = MEM[i] + MEM[i];
3 for(int i = 0; i < 128; i++)
4 RES[i] = MEM[i] + NOT(MEM[i]);
5 EXT_DATA = 68624;
6 for(int i = 0; i < 128; i++)
7 RES[i] = MEM[i] + !(MEM[i] & EXT_DATA);
8 EXT_DATA = 2101376;
9 for(int i = 0; i < 128; i++)

10 RES[i] = MEM[i] + !(MEM[i]^EXT_DATA);

The LiM array can speed up each iteration cycle since it is able to implement
in parallel each instruction proposed in the algorithm. By means of the Estimate

performance -> tool, 4 LiM instructions are implemented,
as shown in Fig. 4.3: each column refers to a specific instruction in which the selector
values are assigned by writing them inside the table. Moreover, the pattern of the
activation of the rows can be selected with the checkboxes: Incremental mode
means that the rows are enabled incrementally, starting from the 0-th row towards the
N-1-th row, where N is the number of rows inside the memory; All Enabled, as the
name suggests, means that all rows are enabled at the same time, so the operations
are performed in parallel on the entire array; Custom allows to specify a custom

4.6 Clock and default toggle rate definitions 89

and irregular activation pattern of the rows (e.g., rows 0, 2, 5, 103, etc.). The uRAM
content is saved inside a .csv file called uRAM.csv, in which the rows activation
pattern and the selector values are reported for each instruction.

Listing 8 Example of a uRAM.csv file content.

1 All Enabled,All Enabled,All Enabled,All Enabled
2 0,1,0,1
3 0,0,1,1
4 1,0,0,0
5 ...

Fig. 4.3 Selector values defined for the LiM architecture example using the Define uRAM
selectors tool.

4.6 Clock and default toggle rate definitions

The architecture is ready to be simulated. Before starting the simulation, by clicking
on Estimate performance -> , the clock period and the default
toggle rate of the pins are requested. The clock period is useful for simulating
and estimating the performance of the architecture, while the default toggle rate

90 LiM design flow with DExIMA

is required only for worst-case performance estimation without simulation and
back-annotation processes.

4.7 Simulation

The simulation starts by clicking on Estimate performance ->

: DExIMA generates the simulation script and starts
QuestaSim that runs the UVM-based testbench of the architecture, as discussed in
deep in chapter 6. The precharging part is executed at the beginning of the program:
after the assertion of the reset signal, the UVM testbench starts filling the LiM array,
piloting the internal signals of each LiM Cell according to the schematic and timing
diagrams shown in Fig. 4.4 (a-c). Subsequently, the computing part starts, and the
selectors are directly driven by the control unit, according to the LiM instructions
reported in Fig. 4.3. In Fig. 4.4 (d), the timing diagram of the LiM Cell internal
signals at (row, col) = (0,0) are considered as reference: at the 10-th time instant,
the algorithm starts, and S2 is asserted to 1, while S0 and S1 are both equal to 0, so
the signal MUX21_14/IN0 and MUX21_16/IN0 are both equal to Memory_10/RD,
so the final operation on the IRL0 signal is MEM[i]+MEM[i]. Next, S2 and S0
switch to 0 and 1, respectively, implementing the operation MEM[i]+NOT(MEM[i]),
in fact MUX21_14 selects NOT1_12’s output and MUX21_16/IN0 is equal to NOT(⌋

Memory_10/RD). Similarly, in the 14-th time instant, S0 and S1 change to 0 and 1,
respectively, implementing MEM[i]+!(MEM[i]&EXT_DATA), where the EXT_DATA
is provided with the S2-S33 selectors. Finally, by switching S0 to 1, the last operation
MEM[i]+!(MEM[i]^EXT_DATA) takes place at the 16-th time instant.

4.8 Performance estimation

At this point, the user can estimate the performance of the circuit by clicking on
, which generates the input .dex file, runs DExIMA-

Backend, and performs the estimations. DExIMA-Backend input file and its working
principle are explained in deep in chapter 7. In detail, the operations performed in
this step are:

4.8 Performance estimation 91

RDN

RN

WR RDO
A

I2
1

IN2

IN1

IN0

OUT

WR
EN

EN

RN

CK

RD

MEMORY_10

Timing diagram

0 1 2 3 4

/MEMORY_10/FLIPFLOP_0/CK

/MEMORY_10/FLIPFLOP_0/RN

/MEMORY_10/FLIPFLOP_0/WR

/MEMORY_10/OAI21_2/IN0

/MEMORY_10/OAI21_2/IN1

/MEMORY_10/OAI21_2/IN2

/MEMORY_10/NAND_1/IN0

/MEMORY_10/NAND_1/IN1

Timing diagram

0 1 2 3 4 5 6 7 8

/TB/DUT/CLK

/TB/DUT/WL[4]

/TB/DUT/WL[3]

/TB/DUT/WL[2]

/TB/DUT/WL[1]

/TB/DUT/BL[9]

/TB/DUT/BL[8]

/TB/DUT/BL[7]

/TB/DUT/BL[6]

/TB/DUT/BL[5]

/TB/DUT/BL[4]

/TB/DUT/BL[3]

/TB/DUT/BL[2]

/TB/DUT/BL[1]

/TB/DUT/BL[0]

Timing diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CLK

S0

S1

S2

/Memory_10/RD

/MUX21_14/IN0

/MUX21_14/IN1

/MUX21_15/IN0

/MUX21_15/IN1

/MUX21_16/IN0

/MUX21_16/IN1

/FULLADDER_0/A

/FULLADDER_0/B

/FULLADDER_0/C

IRL0[0]

(a)

(b) (c)

(d)
Fig. 4.4 (a) Schematic of the Flip-Flop-based memory cell. (b) Timing diagram example
obtained from the output .vcd file: LiMCELL_0_0 data precharging during the initial phase.
(c) Top-level testbench waveforms during the data precharge phase. (d) Example of the
computational phase.

• Architecture translation from the schematic view and description inside the
DExIMA-Backend input file.

92 LiM design flow with DExIMA

• Parsing of the VCD outputs.vcd and tb.vcd files. This process can be
very long if the architecture is particularly complex: for this reason, a dialog
equipped with a progress bar (shown in Fig. 4.5 (a)) communicates to the user
the percentage of completion of the operation, indicating that the program is
busy. Moreover, the user has the possibility to select part of the algorithm

(a)

(b) (c)

(d)
Fig. 4.5 (a) VCD parsing phase: progress bar indicating the percentage of completion of the
operation. (b-c) Start-stop time instants selection dialogs. (d) Start and stop times selection
for VCD parsing with GTKWave.

execution by means of the dialogs in Fig. 4.5 (b-c), where start and stop time
instants can be specified. These are expressed with the same unit as the clock

4.8 Performance estimation 93

period and allow cutting only the portion of waveforms specified between the
start and stop times. This feature is particularly useful to evaluate the impact
of the individual contributions performed by the algorithm (i.e., memory
precharging, computational part, etc.) and to reduce the computational time of
DExIMA-Backend. The start and stop times can be defined with the help of
waveform viewers like GTKWave [133], as shown in Fig. 4.5 (d). Particularly
useful is the LiMActivate signal, which indicates when the LiM is used in
computing mode.

• Selection of the bus lines. Once the waveforms of the signals are extrapolated
from the VCD files, the user can select the bus(es) to estimate. The estimation
is performed by means of Ngspice [94] tool, which enables the evaluation of
the impact of the selected bus lines in the design, both internally and externally
the LiM array, as explained in deep in subsection 7.3.9. The selection of the
bus(es) and their physical characteristics are defined by the dialogs shown in
Fig. 4.6.

Fig. 4.6 Bus(es) selection and parameters definition.

After these steps, DExIMA-Backend starts evaluating the architecture, showing on
the console the output reported in Listing 9.

1 ##
2 # DExIMA-Backend #
3 #Design Explorer for In Memory Architecture#
4 # Developed by VLSI Lab @Polito #

94 LiM design flow with DExIMA

5 ##
6 Compiling --> input.dex
7 Parsing constants...complete
8 Loading Technology...complete
9 Parsing init...complete

10 Parsing MEMORYARRAY_1...complete
11 Parsing map...complete
12 Parsing instructions...complete
13 Parsing code...complete
14 Simulating BL - 32 bits [W = 1e-05; L = 0.01; Metal = 1]
15

16 0% 10 20 30 40 50 60 70 80 90 100%
17 |----|----|----|----|----|----|----|----|----|----|
18 ***
19 Parsing bus...complete
20 Printing log file...complete
21

22 Compilation time: 1.1421 min
23 Compilation finished successfully!
24

25 Simulating --> input.dex
26 Wiring the memories...complete
27 Encoding the Architecture...complete
28 Computing gates performance...
29 Computing performance of the design's modules...
30

31 0% 10 20 30 40 50 60 70 80 90 100%
32 |----|----|----|----|----|----|----|----|----|----|
33 ***
34 Computing performance of the LiM cells...
35

36 0% 10 20 30 40 50 60 70 80 90 100%
37 |----|----|----|----|----|----|----|----|----|----|
38 ***
39 Simulating internal LiM Bus(es)
40 BL - 32 bits [W = 1e-05; L = 0.000336112; Metal = 1]
41

42 0% 10 20 30 40 50 60 70 80 90 100%
43 |----|----|----|----|----|----|----|----|----|----|
44 ***
45 complete
46 Computing area and static power...complete

4.9 Visualization of the results 95

Listing 9 Output of DExIMA-Backend shown in the embedded console.

47 Computing Instructions performance...complete
48 Computing Algorithm performance...complete
49 Printing output file...complete
50

51 Simulation time: 1.31147 min
52 Simulation finished successfully!

4.9 Visualization of the results

After the estimation performed by DExIMA-Backend, the user can visualize the
results both in plot and tabular formats by clicking on ,
as shown in Fig. 4.7 and Fig. 4.8. In this example, the BL bus is evaluated: its

Fig. 4.7 Tabular format results after DExIMA-Backend estimation.

contribution is split in "BL", which refers to the bus located outside the LiM array

96 LiM design flow with DExIMA

Fig. 4.8 Plot format results after DExIMA-Backend estimation.

(shown in Fig. 4.2 (c)) and "BL_LiM", i.e., the internal BL bus connected to each
LiM Cell and IRL. Each number on the abscissas represents a combination of bits
expressed in unsigned format.

4.10 Comparison CPU-Mem and CPU-Mem-LiM. 97

4.10 Comparison CPU-Mem and CPU-Mem-LiM.

The user can evaluate the impact of the LiM solution on a classical von Neumann
structure with the following steps:

• Click on the "Comparison CPU-Memory" tab in the main window (Fig. 3.5
(a)), which switches the main widget from the schematic editor to a text editor.

• In the text editor, the user can write the C code that implements the reference
algorithm on a classical von Neumann architecture, so without considering the
LiM accelerator. In this example, the C algorithm is the following one:

Listing 10 Algorithm example: classical CPU-Memory implementation.

1 #define N 68
2 int main()
3 {
4 volatile int MEM[128] = {N};
5 volatile int EXT_DATA = 0;
6 volatile int RES[128];
7 for(int i = 0; i < 128; i++) RES[i] = MEM[i] + MEM[i];
8 for(int i = 0; i < 128; i++) RES[i] = MEM[i] + !(MEM[i]);
9 EXT_DATA = 68624;

10 for(int i = 0; i < 128; i++) RES[i] = MEM[i] + !(MEM[i] &
EXT_DATA);↪→

11 EXT_DATA = 2101376;
12 for(int i = 0; i < 128; i++) RES[i] = MEM[i] +

!(MEM[i]^EXT_DATA);↪→

13 return 0;
14 }

All variables are declared as volatile to avoid optimizations.

• Run Gem5 [97] software to simulate the algorithm on the CPU-Memory
architecture. By clicking on "Run Gem5", DExIMA asks the user to provide
useful parameters like the size of the caches of the reference system (Fig. 4.9
(a-b)) and the number of LiM memory rows (Fig. 4.9 (c)). The program needs
this last parameter to generate the equivalent C code of a system equipped
with the LiM solution that emulates the data transfer from the main memory
to the LiM architecture. The code is reported in Listing 11.

98 LiM design flow with DExIMA

(a) (b)

(c)
Fig. 4.9 Steps required for CPU-Mem and CPU-Mem-LiM comparison. (a) L1 I/D cache
sizes. (b) L2 shared cache size. (c) Number of LiM memory rows.

Listing 11 Automatically generated LiM algorithm emulating the data transfer from
the main memory inside the LiM.

1 #include <stdio.h>
2 int main(){
3 volatile int memory_content[128] = {0};
4 volatile int data;
5 for(int i = 0; i < 128; i++){
6 data = memory_content[i];
7 }
8 return 0;

Both codes are simulated with Gem5, which directly provides their statistics
(executed instructions, number of memory accesses, etc.).

• Run Cacti by HP [91] to estimate the energies of the caches. By clicking on
"Cacti by HP" (Fig. 3.5 (b)), DExIMA asks the user with the dialogs shown
in Fig. 4.10 to specify the technology node and the cache associativities to
estimate the memory performance properly. From now on, everything is ready
for the CPU-Mem and CPU-Mem-LiM comparison.

The first comparison is the number of instructions executed in the two solutions. By
clicking on , two bar charts are shown, reporting
the estimation of the occurrences of each instruction executed inside the processor,
as shown in Fig. 4.11. These plots show that, in general, the LiM implementation
requires fewer instructions (especially memory operations). However, it is impor-

4.10 Comparison CPU-Mem and CPU-Mem-LiM. 99

(a) (b)

(c)
Fig. 4.10 Steps required for the performance of the caches. (a) L1 I/D cache associativity.
(b) L2 shared cache associativity. (c) Technology node.

lbu c_s
lli

c_a
dd sw

c_a
dd

iw
c_m

v
bn

e
c_b

eq
z
c_l

dsp
c_s

dsp ad
di

c_a
dd

i
c_s

d lw

Instructions

0

200

400

of

 o
cc

ur
re

nc
ie

s Number of instructions for lim_algorithm.c

lbu c_m
v

bn
e
c_b

eq
z
c_l

dsp
c_s

dspslti
u

c_s
d

c_a
dd

w
an

di bg
e

ad
di sw

c_a
dd

iw
c_s

lli
c_a

dd
c_a

dd
i
ad

diw lw

Instructions

0

2000

4000

of

 o
cc

ur
re

nc
ie

s Number of instructions for cpu_mem_code.c

(a)

(b)
Fig. 4.11 Estimation of the number of instructions for both CPU-Mem-LiM (a) and CPU-
Mem (b) codes.

tant to consider that the computational part performed by the LiM still needs to
be considered in this estimation. The next step consists of extrapolating the mem-
ory statistics, particularly the number of memory accesses. Again, Gem5 directly
provides these data by clicking on and the most

100 LiM design flow with DExIMA

relevant ones are plotted by DExIMA, as shown in Fig. 4.12. The final step consists

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0
ov

er
al

lM
iss

Ra
te

::t
ot

al

ov
er

al
lM

sh
rM

iss
Ra

te
::t

ot
al

miss rate for overall accesses (Ratio)
mshr miss ratio for overall accesses (Ratio)

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

ov
er

al
lM

iss
Ra

te
::t

ot
al

ov
er

al
lM

sh
rM

iss
Ra

te
::t

ot
al

miss rate for overall accesses (Ratio)
mshr miss ratio for overall accesses (Ratio)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

50

100

150

200

250

300

350

ov
er

al
lA

cc
es

se
s:

:to
ta

l

ov
er

al
lM

iss
es

::t
ot

al

ov
er

al
lM

sh
rM

iss
es

::t
ot

al

number of overall (read+write) accesses (Count)
number of overall misses (Count)
number of overall MSHR misses (Count)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
0

20000

40000

60000

80000

100000

de
m

an
dA

vg
M

iss
La

te
nc

y:
:to

ta
l

de
m

an
dA

vg
M

sh
rM

iss
La

te
nc

y:
:to

ta
l

ov
er

al
lA

vg
M

iss
La

te
nc

y:
:to

ta
l

ov
er

al
lA

vg
M

sh
rM

iss
La

te
nc

y:
:to

ta
l

average overall miss latency ((Cycle/Count))
average overall mshr miss latency ((Cycle/Count))
average overall miss latency ((Cycle/Count))
average overall mshr miss latency ((Cycle/Count))

L2SCache: cpu_mem_code.c

Fig. 4.12 L2SCache: memory statistics.

of effectively comparing the CPU-Mem and CPU-Mem-LiM systems. By clicking on
, DExIMA considers different figures of merit,

as shown in Fig. 4.13: CPU execution time, cache accesses, caches energy, LiM
power-delay product and LiM execution time.

4.11 Conclusions 101

Fig. 4.13 Final comparison between CPU-Mem and CPU-Mem-LiM systems.

They are plotted in a logarithmic radar chart to emphasize the differences.

4.11 Conclusions

DExIMA is intended as a tool aiming at helping the designer with the Beyond von
Neumann approach, focusing on the Logic-in-Memory paradigm. The tool is a
full-fledged CAD realized in Python and C++, structured in a hierarchical way,
starting from the definition of the LiM Cell, the IRL, and the top-level entity. All the
other steps are automatized by DExIMA, from the definition of the control flow, the
RTL simulation, the performance estimation with an ad-hoc DExIMA-Backend, and
the comparisons with a standard RISC-V-based CPU-Memory system.

Chapter 5

Front-end code description:
DExIMA-GUI

Summary

;

This chapter reports the code structure of the DExIMA front-end. In the writing of
this thesis, the terms front-end and DExIMA-GUI are used interchangeably. Main
codes are reported for each project’s folder, specifying their functionalities. The
Graphical User Interface of DExIMA is coded with Python using PyQt5 framework
[134], based on the popular Qt framework for C++, specialized for creating user
interfaces. Inside the DExIMA project, the files are organized as shown in Fig. 5.1.
The main code is located in the CODE directory, apart from the DExIMABackend
folder that contains the C++ code for the DExIMA-Backend estimator part. The

5.1 MainWindowItems 103

DExIMA
CODE

MainWindowItems
CONNECTBlocks
Interconnections
LiMTEMPLATES
MEMORYARRAYHandlers
PERFORMANCE
SCENEElements
SIMCnfg
DExIMAGenerator
TOOLS
VCDAnalyzer
VHDLGenerators
DExIMABackend
LIBRARY
PIPE
QRC

OUTPUT
docs

Fig. 5.1 Folders organizations of the DExIMA project.

Python code implementing the front-end of DExIMA software is distributed among
different subdirectories, each referring to a specific functionality.

5.1 MainWindowItems

The Python codes implementing the main window graphical interface and functional-
ities are located inside MainWindowItems folder, which content is shown in Fig. 5.2.
The main file is called MainWindow.py, which creates the main window interface
of DExIMA and implements all front-end functions. MainWindow.py embeds all
Python files of Fig. 5.2, which functionalities are explained in the following.

5.1.1 Graphical elements

• Console.py embeds a Linux terminal inside DExIMA main window. The
Linux terminal is fundamental to execute external programs like QuestaSim
for the simulation, Synopsys Design Compiler for the synthesis, and DExIMA-

104 Front-end code description: DExIMA-GUI

actions.py
backgroundButtonGroupClicked.py
bringToFront.py
buttonGroupClicked.py
createBackgroundCellWidget.py
deleteItem.py
handlePositionsXY.py
itemInserted.py
openFile.py
pointerGroupClicked.py
printImage.py
restoreCustomCell.py
save_file.py
sceneScaleChanged.py
sendToBack.py
textInserted.py

Console.py
CustomDialog.py
DialogBus.py
DialogBusProperties.py
FileDialog.py
ProgressBar.py
EditItem.py
QV.py
TemplateButtonClicked.py
TextEditor.py
dialogSetClock.py
uRAMGenerator.py
workingDirectorySelector.py
createCellWidget.py
createCmbSelectMode.py
saveAs.py
toolbars.py
toolbox.py
menu.py
createColorIcon.py
createColorMenu.py
createColorToolButtonIcon.py
fillButtonTriggered.py
itemColorChanged.py
lineButtonTriggered.py
lineColorChanged.py
textButtonTriggered.py
textColorChanged.py
currentFontChanged.py
fontSizeChanged.py
itemSelected.py
handleFontChange.py

(b)

(a)

MainWindow.py

Fig. 5.2 Contents of the MainWindowItems folder. (a) Dialogs, progress bars, and graphical
widgets and elements. (b) Python files performing specific routines or functions related to
the graphical part.

Backend for the performance estimation and to show contextual messages
informing the user on the steps performed and their completion. Console.py
comprises a terminal, particularly a rxvt-unicode terminal, and a QTextEdit
widget used to send user commands (the terminal itself is in read-only mode).
The code implementing the embedded terminal is the following:

1 class EmbTerminal(QtWidgets.QWidget):
2 def __init__(self, parent=None):
3 super(EmbTerminal, self).__init__(parent)
4 self.process = QtCore.QProcess(self)

5.1 MainWindowItems 105

Listing 12 Snippet of code for the embedded rxvt-unicode terminal.

5 self.terminal = QtWidgets.QWidget(self)
6 #...
7 self.process.start('urxvt -embed ' + str(int(self.winId()))

+↪→

8 ' -fn \"xft:Bitstream Vera Sans
Mono:pixelsize=20\"' +↪→

9 ' -bg lightgray -e sh -c
\"./CODE/PIPE/terminal_routine.sh\"')↪→

10

The EmbTerminal class, when instantiated, creates a QProcess, which starts
rxvt-unicode as urxvt -embed $WINDOW_ID ... -e sh -c "./CODE/ ⌋

PIPE/terminal_routine.sh", where the $WINDOW_ID is the identification
number of the QWidget. The -e flag specifies a command to run when urxvt is
launched: the program is an sh script called terminal_routine.sh, located
in /CODE/PIPE/ folder, which content is shown in Listing 13.

Listing 13 Script terminal_routine.sh, implementing the embedded terminal
functionalities.

1 #!/bin/bash
2 SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" &> /dev/null &&

pwd)"↪→

3 export SCRIPT_DIR
4 pipe=$SCRIPT_DIR/testpipe
5 if [[! -f $pipe]]; then
6 mkfifo $pipe > .tmp
7 fi
8 echo "DExIMA is ready!"
9 while true

10 do
11 if read line <$pipe; then
12 eval $line
13 fi
14 sleep 0.1
15 done

In lines 2-3, the script writes inside $SCRIPT_DIR variable the path where
terminal_routine.sh script is located since the urxvt terminal is run from
the main DExIMA folder. Then a pipe file called testpipe is declared,

106 Front-end code description: DExIMA-GUI

located in the same directory of the terminal_routine.sh. In lines 5-15,
the code creates a named pipe (or FIFO) with the name stored in the variable
$pipe, then enters an infinite loop. The FIFO substitutes the stdin, so the
commands are directly taken from it. The content of the testpipe file is the
following:

Listing 14 Content of the testpipe file.

1 . $SCRIPT_DIR/terminal_script.sh

As shown in Listing 14, testpipe only contains one command that essentially
executes another script located in the same $SCRIPT_DIR called termina ⌋

l_script.sh. At the beginning of the program, terminal_script.sh is
empty, but during the execution of DExIMA, the commands to run external
programs are written there. These are directly interpreted by the testpipe
file, which is read by terminal_routine.sh. The if statement of ter ⌋

minal_routine.sh, shown at the line 5 in Listing 13, checks whether the
file pipe exists, and if it does not, the mkfifo command creates the named
pipe. The > .tmp redirects any output from the mkfifo command to a file
named .tmp, but this condition is never verified since the file testpipe is
always present. Inside the loop from line 9, the read command reads a line
of input from the named pipe and stores it in the variable $line. The eval
executes the contents of the $line variable as a command. The loop also
includes a sleep command to prevent the script from consuming too much
CPU time since the script will run indefinitely, waiting for commands from the
terminal_script.sh. The message "DExIMA is ready!" is printed once at
the beginning of the script to indicate that the tool is ready to operate.

1 def simulate(self):
2 #...#
3 pipe_file = open("./CODE/PIPE/terminal_script.sh", "w+")
4 #...#
5 pipe_file.write("clear\n")
6 pipe_file.write("echo \"-----------STARTING

SIMULATION-----------\"\n")↪→

7 pipe_file.write("cd ./OUTPUT/Sim\n")
8 pipe_file.write(". ../../CODE/SIMCnfg/setvsim\n")
9 pipe_file.write("make all\n")

5.1 MainWindowItems 107

Listing 15 Example of the embedded terminal mechanism. A snippet of code of the
simulate(self) method from MainWindow.py file for QuestaSim simulation of the
LiM circuit.

10 pipe_file.write("cd ../../\n")
11 pipe_file.write("echo \"-----------SIMULATION

ENDS-----------\"\n")↪→

12 pipe_file.write("> $SCRIPT_DIR/terminal_script.sh")
13 pipe_file.close()
14 #...#

An example of the terminal functionality is shown in Listing 15, representing
the method simulate(self) of the MainWindow.py file, which is in charge
of simulating the LiM circuit by calling QuestaSim. All commands are simply
written inside the terminal_script.sh file and executed by terminal_r ⌋

outine.sh with the mechanism explained before.

• CustomDialog.py creates a custom dialog to instantiate new external pins in
the design. The user has to choose the label name and the direction of the pin
("input" or "output"). The dialog is shown in Fig. 5.3 (a).

• DialogBus.py creates a QDialog that allows choosing which bus must be
included in the bus analysis performed by DExIMA-Backend (Fig. 5.3 (b)).

• DialogBusProperties.py creates a QDialog in which the user specifies,
for each bus chosen for the analysis, its characteristics, i.e., the width, the
length, and the metal layer (Fig. 5.3 (c)).

• FileDialog.py handles the save_file/ open routines for the designs. File
extensions are .lim, .irl or .c depending on the design scope: the first for
the LiM Cells, top-level and Near Memory architecture, the second for the
Intra Row Logic and the last is the C code for the Octantis and Comparison
CPU-Memory sections (Fig. 5.3 (d)).

• ProgressBar.py creates the Progress Bar widget employed for long-time
tasks (e.g., VCD file parsing). This widget helps indicate to the user that the
program is not stuck but is still computing.

• EditItem.py implements a derivative class of QDialog that describes a
dialog window to edit the characteristics of an instance (item). In particular,
it can edit the parallelism, the item name, etc. This dialog shows up when

108 Front-end code description: DExIMA-GUI

a

b c

d e f

g

h
Fig. 5.3 Overview of the implemented dialogs. From left to right and top to bot-
tom: CustomDialog, DialogBus, DialogBusProperties, FileDialog, EditItem,
TemplateConfigurator, dialogSetClock and uRAMGenerator.

the scene is in EditItem mode. When a MEMORYARRAY instance is edited,
extra entries are inserted in the dialog, asking the user to modify the number
of rows/columns and the memory type (Fig. 5.3 (e)).

• QV.py contains a derivative class of QGraphicsView that handles the QGra ⌋

phicsScene and defines its characteristics: the size and the scrollbar policies.
Moreover, this class contains the routine to define the grid background and the
snap-to-grid behavior in positioning the objects on the scene.

5.1 MainWindowItems 109

• TemplateButtonClicked.py calls the TemplateConfigurator.py
(Fig. 5.3 (f)), located in LiMTemplates folder, that contains the description
of a QDialog for the LiM template configuration. The user can specify the
number of selector pins and the outputs, as discussed in subsection 3.1.1.

• TextEditor.py contains the description of the main text editor widget shown
in Fig. 3.5 (b), where the user can write the C code for the Comparison
CPU-Memory and Octantis parts.

• dialogSetClock.py implements the QDialog that asks for the clock period
and the default toggle rate of the circuit (Fig. 5.3 (g)).

• uRAMGenerator.py implements the QDialog for the definition of the uRAM
content (Fig. 5.3 (h)). This part is discussed in deep in chapter 4.

• workingDirectorySelector.py relies on FileDialog class and allows
the user to choose the output working directory, where all design files and
results are stored.

• createCellWidget.py handles the creation of an instance when it is chosen
from the main window toolbox, i.e., the left panel containing the components
shown in Fig. 3.5 (a).

• createCmbSelectMode.py creates the Templates... button, belonging to
the main window toolbar, shown in Fig. 3.5 (a).

• saveAs.py calls the FileDialog class in Save mode, allowing to save the
work in the directory specified in the FileDialog dialog.

• toolbars.py creates the main toolbar belonging to the main window of
DExIMA, shown in Fig. 5.4. The functions implemented in the toolbar are,
starting from the left: delete a selected item, bring to front, bring to back,
font name (for the C code), font size, bold, italic, underline, text color, object
color, line color, pointer mode (to move objects), wire mode (to draw the
connections), EditItem mode, zoom selector, templates selector button, set
working directory and lastly a label indicating the template configuration.

Fig. 5.4 Main toolbar of DExIMA software.

110 Front-end code description: DExIMA-GUI

• toolbox.py creates the main toolbox of DExIMA, containing the sections
for each design phase, shown on the left side of DExIMA main window in
Fig. 3.5 (a). The sections are LiM Cells, Intra Row Logic, LiM Architecture,
Near-Memory Architecture, Algorithm-to-LiM, Comparison CPU-Memory. It
is also possible to change the background pattern of the schematic editor using
the Backgrounds section.

• menu.py creates the top-most menu of DExIMA, which entries are shown in
Fig. 5.5.

Fig. 5.5 Top-most menu entries of DExIMA.

• createColorIcon.py, createColorMeny.py, createColorToolButt ⌋

onIcon.py, fillButtonTriggered.py create the color icon to color the
blocks, the menu of colors, the color tool button icon and colors the selected
item if the color button is pressed, respectively. The routine implemented in
itemColorChanged.py handles the color changes of the items. Using colors
is helpful for very congested schematics, and this feature can be used both for

5.1 MainWindowItems 111

blocks and also wires with lineButtonTriggered.py, that sets the color of
a line and lineColorChanged.py that updates the line icon when its color is
changed. Moreover, also the color of the text can be changed by the user, and
this is accomplished with textButtonTriggered.py, which sets the color
of the text in the scene and textColorChanged.py, that changes the icon of
the text color, based on the selected color.

• currentFontChanged.py, fontSizeChanged.py, itemSelected.py ⌋

, handleFontChange.py handle the font type and size selections. Ite ⌋

mSelected method allows modifying the current font of a text line. The
handleFontChange method reads the current font from the font combobox
and the font size from the font size combobox. Then the font will be set
through scene.setFont() method.

5.1.2 Functions and routines

Specific functions and routines are associated with the graphical items described
before. In particular, in the MainWindowItems folder, these functions are essentially
related to graphical actions (adding, removing, modifying items, opening files, etc.).
The Python files implementing these functions are reported in Fig. 5.2 (b), and they
are briefly described in the following:

• actions.py contains the main actions that the user can perform in the main
window. These operations include moving an item in the foreground or back-
ground in a diagram, deleting an item, changing text’s font to bold or italic,
generating VHDL code, creating a clock, simulating a circuit, converting a
VCD file to Wavedrom format, synthesizing a design using Synopsys Design
Compiler, and showing/plotting the results. Additionally, there are actions for
showing program information and accessing and saving files. Each action is
specified as a QAction object, which includes a name, an optional icon, a
parent widget, and numerous optional parameters, including a shortcut key
and a status tip that appears in the status bar when the mouse hovers over it.
An action is declared in the actions.py file, and it is instantiated as in the
example shown in Listing 16.

112 Front-end code description: DExIMA-GUI

Listing 16 QAction mechanism. The QAction is created in the actions.py file and
instantiated in the top-most menu of DExIMA.

1 """ File actions.py """
2 #....
3 self.createClockAction = QAction("Create clock", self,

triggered=self.createClock)↪→

4 #....
5 """ File menu.py """
6 self.estimatePerf = self.toolsMenu.addMenu('Estimate performance')
7 #....
8 self.estimatePerf.addAction(self.createClockAction)
9 #....

10

• backgroundButtonGroupClicked.py handles the background of the QGr ⌋

aphicsScene.

• buttonGroupClicked.py handles the components insertion of DExIMA.
This file implements the component’s selector, implemented as button groups
of the LiM Cells, Intra Row Logic, LiM Architecture, and Near-Memory
architecture sections, shown on the left side of Fig. 3.5 (a).

• createBackgroundCellWidget.py creates the toolbuttons group that handle
the scene background.

• deleteItem.py deletes an item from the scene. If an item is deleted, also its
connections are deleted. As discussed in the next parts, this can be done by
removing the item from the scene and employing IdentifyConnections ⌋

.disconnectAll. If the selected item is a wire, then only the wire will be
deleted by using IdentifyConnections.disconnect and IF.scene.re ⌋

moveItem to remove the wire from the scene. Also, the deleted item will be
purged from the component list.

• handlePositionsXY.py handles the position of the objects loaded from
an external file, where explicit positioning coordinates on the scene are not
specified. For instance, Octantis generates a .lim file containing positions that
are all zero-ed.

5.2 CONNECTBlocks 113

• itemInserted.py handles the button behavior (move button, wire, and edit
button) when an item is inserted in the scene. Wire and edit buttons are
disabled, signaling the user that the software is in Insert Item mode.

• openFile.py creates an Open File dialog and runs the open file routine. It
opens .lim, .irl and .c files and loads them into the scene or the text editor.
When called, openFile.py calls restoreCustomCell.py and restores a
previously designed LiM Cell or IRL block. When a file is opened, elements
instantiated can be loaded in the scene or saved in a memory model. If an
open (File->Open) action is executed, then the element will be loaded in the
scene, otherwise stored in the memory characteristics.

• pointerGroupClicked.py sets the mode of the scene based on the checked
button (move, wire, and EditItem).

• printImage.py prints a snapshot of the circuit, saving it in .svg format.

• save_file.py implements a routine that saves in a file what is shown on the
scene in a textual format. The output can assume three possible formats: .lim,
.irl and .c for the C code.

• sceneScaleChanged.py sets the zoom scale of the scene.

• sendToBack.py sends to the background an element by decreasing its z value.

• textInserted.py sets the scene mode to "insert text" and changes the text
button to false.

5.2 CONNECTBlocks

The Python code inside this folder defines a connection between two elements (or
ports). In particular, two Python scripts are located here: ConnectDialog.p ⌋

y, implementing a dialog that handles the case of a connection between different
parallelisms and IdentifyConnections.py, i.e., the module that effectively links
two ports. In Fig. 5.6 (a), the ConnectDialog is shown: it is composed of a QTab ⌋

leWidget with a single row and N columns, where N is the number of bits of the
port with the lowest parallelism. Considering the example of Fig. 5.6 (b), the circuit
needs a connection between the multiplier output, on four bits, and the register input,

114 Front-end code description: DExIMA-GUI

(a)

(b)
Fig. 5.6 (a) ConnectDialog window, where the user specifies, bit-per-bit, the connections
between two ports having different parallelisms. (b) Example of a circuit having a connection
between ports with different parallelisms.

with two bits. In this case, the user specifies by means of the ConnectDialog that
the bit-0 and bit-1 of the D port of the Reg_4 are connected to bit-0 and bit-1 of
Multiplier_1 output port.

5.3 Interconnections

Inside the Interconnections folder, there is only one Python script called lee.py,
which is in charge of connecting items from a graphical point of view. During
the connection phase, the user has to select the wire mode and manually draw a
line between two ports. After that, the path is automatically derived by DExIMA
by means of the Lee algorithm, which aims at finding the shortest path in a maze
[135, 136]. The working principle is shown in Fig. 5.7.

5.3 Interconnections 115

A

B

A Ë

Ë

Ë

Ë

B

A Ë

Ë

Ë

Ë

B

A Ë

Ë

Ë

Ë

A Ë

Ë

Ë

Ë

A Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

B

A Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

B

A Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

B

A Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

B

A Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

Ë

ËË

Ë

Ë

Ë Ë Ë

Ë

Ë

Ë

ËB

12

2

2

2

3 3

33

4
Fig. 5.7 Lee algorithm example applied to a 5x5 grid.

1 The scene containing the graphics elements is represented as a matrix. In this
way, the starting and ending points are associated with two matrix coordinates.
If, for example, the starting point A is in the coordinates (2,2), the program
starts by exploring the neighboring points on the left and right and up and
down.

2 - 3 If the ending point is not found in the new points set, the algorithm takes each
new point and explores its neighbors again, considering also the ones already
explored.

4 At the end, the ending point B is found iterating the 2 - 3 routines, and the
program finishes and returns the found path between A-B. Note that, with this
algorithm, only one path corresponds to the shortest one.

A drawback of this algorithm is its complexity, that is O(M×N), where M and N
are the numbers of rows and columns of the matrix, respectively, so it could be very
slow for large matrices and many components to connect.

116 Front-end code description: DExIMA-GUI

5.4 LiMTEMPLATES

Inside the LiMTEMPLATES folder, there are two Python scripts: TemplateCon ⌋

figurator.py, shown in Fig. 5.3 (f), which implements the QDialog derivative
class asking the user for the template characteristics, and Templates.py which
sets the template properly. In particular, Templates.py, based on the number of
selectors and output for the LiM and IRL parts, updates the list of inputs/outputs for
the cells and IRL and then the program adds the new pins to the scene.

5.5 MEMORYARRAYHandlers

Modules, functions, and dialogs needed to define the memory component (i.e.,
the LiM array) are located in this folder. In particular, the Python scripts are the
following:

• MemoryDialog.py implements the main dialog for the LiM item. In partic-
ular, by entering in EditItem mode and clicking on the MEMORYARRAY
component, the program asks to provide the memory type and the number of
rows and columns. Once defined, the program calls the class MemoryCharac ⌋

teristics implemented in MemoryCharacteristics.py, which associates
the parameters defined in the dialog with the MEMORYARRAY item.

• LiMPattern.py allows to choose the configuration of each memory cell. In
particular, it implements a QDialog whose main widget is a QTableWidget
having a size equal to the number of rows and columns defined for the LiM
memory. Each table location represents a memory cell; the user can choose
which circuit to integrate for each memory location.

• IntraRowPattern.py follows a similar approach as the LiMPattern.py,
but this time for the IRL part. Differently from the LiMPattern.py case,
the QTableWidget has only one column because the IRL part is placed on an
entire memory row, while it has the same number of rows as the memory one.

5.6 PERFORMANCE 117

5.6 PERFORMANCE

Inside the PERFORMANCE folder are the Python scripts that parse, plot, and show
the results of simulations, synthesis, and DExIMA-Backend processes.

• PerformancePlotDexima.py handles the results stored in the DExIMA out-
put file (.dof), where DExIMA-Backend writes all data and performance
estimations. The class PerformancePlotDexima can plot the results or can
show a dialog implementing a QTableWidget, where the results are written in
tabular format. This last option is implemented in PerformanceTable.py.

• InstructionsParser.py refers to the CPU-Mem comparison part, which
details will be given in section 8.1. In particular, this script parses the in-
struction list generated by Gem5 software for a given program and plots the
occurrences on a bar chart.

• HDF5Gem5Results.py implements a function called HDFGem5Results, where
the results of Gem5 simulation and written inside stats.txt default file is
converted in HDF5 format [137], allowing to organize the data in a human-
readable and hierarchical format. An example of the stats.txt file is
reported in Listing 17: with HDF5, a specific data is obtained by simply
navigating through the hierarchy, and each data (or attribute) contains both its
value and its description. For example, by addressing system.cpu.dcache ⌋

.overallMisses::data, the returned value will be 170 and its description
"number of overall misses (Count)".

1 ...
2 system.cpu.dcache.demandHits::cpu.data 2473

number of demand (read+write) hits (Count)↪→

3 system.cpu.dcache.demandHits::total 2473
number of demand (read+write) hits (Count)↪→

4 system.cpu.dcache.overallHits::cpu.data 2473
number of overall hits (Count)↪→

5 system.cpu.dcache.overallHits::total 2473
number of overall hits (Count)↪→

6 system.cpu.dcache.demandMisses::cpu.data 170
number of demand (read+write) misses (Count)↪→

7 system.cpu.dcache.demandMisses::total 170
number of demand (read+write) misses (Count)↪→

118 Front-end code description: DExIMA-GUI

Listing 17 Example of the Gem5 output stats.txt file.

8 system.cpu.dcache.overallMisses::cpu.data 170
number of overall misses (Count)↪→

9 system.cpu.dcache.overallMisses::total 170
number of overall misses (Count)↪→

10 system.cpu.dcache.demandMissLatency::cpu.data 17400000
number of demand (read+write)↪→

11 ...
12

• PlotCachesStats.py plots the caches memory results of the Gem5 simula-
tion in bar chart (shown in Fig. 4.12). Some important figures of merit are
considered: the number of write/read/overall accesses, hits, misses, hit ratio,
and miss ratio. This part is discussed in detail in chapter 4.

• PlotCPU_MemCPU_Mem_LiM_comparison.py evaluates the differences be-
tween the CPU-Mem and CPU-Mem-LiM systems by considering fundamen-
tal figures of merit like the number of memory accesses, the energy of the
memories, the CPU execution time, LiM energy and LiM execution time and
showing a radar chart comparing these data (Fig. 4.13). Further details are
provided in chapter 4.

• ParseDCPerformance.py parses the area, power, and timing performance re-
sults from Synopsys Design Compiler synthesis. In addition, data are inserted
in a QTableWidget that improves readability.

5.7 SCENEElements

The schematic editor of DExIMA relies on a QGraphicsScene widget that enables
to draw shapes (representing the different logical blocks available in DExIMA) and
lines that can be used to connect blocks. In particular, the SCENEElements folder
contains modules, functions, and graphical items needed to define the QGraphi ⌋

csScene and the elements to insert into it. Elements include wires, logical blocks
(DiagramItems), text, and ports.

• DiagramItem.py implements DiagramItem class that creates the compo-
nents (by defining the shape and the characteristics) and handles them in

5.7 SCENEElements 119

the QGraphicsScene. Until now, the available components are NAND, OR,
XOR, XNOR, TBUF, NOT, half adder and full adder gates, multiplexer 2-to-1,
memory cells (flip-flop or SRAM), flip-flops, right-shifter, generic N-bit multi-
plexer 2-to-1, the ripple-carry adder, the array multiplier, registers, equality
comparator, the memory interface, external I/O pins (a pin interfacing the
external peripherals) and the memory array. The routines implemented in
the DiagramItem.py are essentially the same for all components. Inside the
constructor, the component shape and interfacing ports are defined.

Listing 18 Example of the NAND gate shape definition inside the DiagramItem.py
constructor.

1 """DiagramItem.py constructor"""
2 #...
3 if self.diagramType == Nand:
4 self.typeLogic = "NAND2"
5 """Defines the typeLogic string"""
6 self.inputs.append(PortItem('IN0', -70, -40, 1, self))
7 """Adds a port as input in the inputs list and specifies

position of the port."""↪→

8 self.inputs.append(PortItem('IN1', -70, 20, 1, self))
9 self.outputs.append(PortItem('O', 110, -5, 1, self))

10 """Adds a port as output in the outputs list and specifies
position of the port."""↪→

11 path.moveTo(-50, -50)
12 path.arcTo(-50, 0, 100, 100, 180, 0)
13 path.arcTo(0, -50, 100, 100, -90, 0)
14 #
15 path.arcTo(0, -50, 100, 100, 270, 90)
16 path.arcTo(100, 0, 10, 10, 180, 360)
17 path.arcTo(0, -50, 100, 100, 0, 90)
18 """Specifies the path"""
19 if not (restored):
20 """If the diagram item is not restored from a previous load

design, then the name is given by↪→

21 self.typeLogic + idxLogic"""
22 self.textItem = QGraphicsSimpleTextItem(self.typeLogic +

str(IF.idxLogic), self)↪→

23 else:
24 """Otherwise, the name is specified by the input variable

name."""↪→

25 self.textItem = QGraphicsSimpleTextItem(name, self)
26 self.myPolygon = path.toFillPolygon()
27 self.textItem.setPos(self.myPolygon.boundingRect().topRight())
28

120 Front-end code description: DExIMA-GUI

As shown in Listing 18, the diagramType indicates the type of component to
be instantiated. The user chooses it during the instantiation of the item inside
the scene. For example, suppose it corresponds to a Nand. In that case, the
code creates the ports (declared as PortItem objects), their directions (input,
output), and their position. Then it creates the shape corresponding to the
chosen gate. If the item is restored, the name and index in the component list
should be read from the .lim or .irl file; otherwise, they are set by the program.
In the end, the item is positioned on the scene.

• DiagramScene.py implements a derivative class of the QGraphicsScene
and handles all functions of the scene like mouse events, working modalities
(insert the component, EditItem, wire drawing, and insert text), load and
restore of designs from file (.lim or .irl) and external pin automatic creation
(based on the selected LiM template). The def mousePressEvent(self,
mouseEvent) method, handles the mouse left click event on the QGraphi ⌋

csScene and, based on the chosen working method, DExIMA can insert an
item, open the dialog to modify a selected item, draw a wire or insert a text.

• DiagramTextItem.py implements a derivative class of a QGraphicsText ⌋

Item, a textual item that can be added to the scene.

• PortItem.py defines the object port of a component, in particular, the shape
and the characteristics (parallelism and connections). The port is drawn with
the method def paint(self, painter, option, widget=None), that
overloads the original paint method of QGraphicsEllipseItem. Here,
the program draws the ellipse and inserts text inside the ellipse, which is the
port’s name. Moreover, if the port has parallelism greater than 1, [parallelism-
1:0] text is written over the ellipse item. The connections are managed by
the method def connectTo(self, item), which connects two ports. For
ports with parallelism greater than 1, a list is created with a size equal to the
parallelism: each location corresponds to a specific bit index, and each entry
includes a list of ports. Hence, it is a list of lists. When a port is connected,
an example of a list is [[[MULTIPLIER_O,3]]["NC"]["NC"]...]: the first
element indicates the port name and the pin number of the connected port.
"NC" stands for "not connected", so the bit location will not be connected
anywhere.

5.7 SCENEElements 121

• Wire.py implements the class Wire, which graphically defines the connection
between two ports. It is a derivative class of QGraphicsPathItem, which
relies on the Lee algorithm, described in section 5.3, to define the shortest path
between two points. This is accomplished by overriding the def updatePo ⌋

sition(self) method and calling the Lee method, which returns the lists of
points defining the path, as shown in Listing 19.

Listing 19 Overridden updatePosition method for the class QGraphicsPathItem,
including the Lee algorithm.

1 def updatePosition(self):
2 """
3 Updates the shape of the Wire depending on the position of the

starting and ending elements.↪→

4 It is based on the Lee algorithm that returns a list of points
belonging to the path.↪→

5 """
6 self.path = QPainterPath()
7 """Defines the path"""
8 self.setBrush(QBrush(Qt.transparent))
9 """Sets the brush as transparent"""

10 A = self.mapFromItem(self.myStartItem, 0, 0)
11 B = self.mapFromItem(self.myEndItem, 0, 0)
12 """Gets A and B, starting and ending points respectively"""
13 offsetX = QPointF()
14 offsetX.setX(10)
15 offsetX.setY(10)
16 A = A + offsetX
17 B = B + offsetX
18 """Defines an offset of (10,10) to add to the points. In this

way, the center of the PortItem is↪→

19 considered."""
20 list_of_points = Lee(A.x(),A.y(),B.x(),B.y())
21 """Lee returns a list of points (tuples). The path will

connects all these points together from A to B."""↪→

22 self.path.moveTo(A.x(), A.y())
23 for tuple in list_of_points:
24 self.path.lineTo(tuple[0],tuple[1])
25 self.path.lineTo(B.x(),B.y())
26 self.setPath(self.path)
27 """Sets the final path."""
28

122 Front-end code description: DExIMA-GUI

5.8 SIMCnfg

The simulation configuration (SIMCnfg) folder contains the scripts required to run
the simulations and properly set the environment variables. Its contents are shown in
Fig. 5.8:

SIMCnfg
Gem5Scripts

m5outScripts
script.sh

CactiCFG.py
scriptGem.sh

SynthesisScripts
area.sh
createSynthesisScript.py
extract_performance_values.sh
pow.sh
timing.sh

Testbench
register_part.svh
sequences.svh
tb.sv
uvm_testbench.svh

gem5Dir.txt
octantisDir.txt
run_sim.py
setsyn
setvsim

Fig. 5.8 Contents of SIMCnfg directory.

• Gem5Scripts contains all scripts needed by Gem5 to start the simulation of
the algorithms on the Gem5 software. The main file is the scriptGem5.sh,
which content is reported in Listing 20.

1 #!/bin/bash
2 script_directory=$(pwd)
3 #the gem5 directory
4 gem5_dir=$1
5 #the path of the riscv-toolchain
6 riscv_toolchain_path=$2

5.8 SIMCnfg 123

Listing 20 Content of the scriptGem5.sh script to run simulations with Gem5.

7 #the path of the destination directory, where the C code and the
results are saved.↪→

8 destination_directory=$3
9 #the cache sizes

10 l1cache=$4
11 l2cache=$5
12

13 cd $destination_directory
14 for f in $(ls | egrep '\.c$');
15 do
16 cd $destination_directory
17 algorithm=${f%%/}
18 echo "--------------------ALGORITHM:

'$algorithm'--------------------"↪→

19 $riscv_toolchain_path/riscv64-unknown-linux-gnu-gcc $f
--static -o
$gem5_dir/tests/test-progs/hello/riscv/linux/program

↪→

↪→

20 cd $gem5_dir
21 build/RISCV/gem5.opt --debug-flags=Exec,-ExecKernel,-ExecTh ⌋

read,-ExecEffAddr,-ExecResult --debug-file=trace.out
configs/learning_gem5/part1/two_level.py
--l1d_size=$l1cache --l1i_size=$l1cache

↪→

↪→

↪→

22 cd m5out
23 rm -rf program.out
24 cp trace.out program.out
25 $script_directory/m5outScripts/script.sh $gem5_dir

$destination_directory $algorithm↪→

26 rm -rf trace.out program.out
27 mkdir -p $destination_directory/Gem5Results
28 cp stats.txt "$destination_directory/Gem5Results/stats_$alg ⌋

orithm.txt"↪→

29 rm -rf $destination_directory/Gem5Results/instructions_$alg ⌋
orithm.txt↪→

30 touch $destination_directory/Gem5Results/instructions_$algo ⌋
rithm.txt↪→

31 done

The script sets the directories of Gem5 [97] and the riscv-gnu-toolcha ⌋

in [125] required for compiling the C codes into a RISC-V binary and the
values of the L1 and L2 cache sizes: these data are passed as arguments to the

124 Front-end code description: DExIMA-GUI

script. Then, each file with extension .c is statically compiled with riscv ⌋

64-unknown-linux-gnu-gcc, and the corresponding binary is saved inside
the Gem5 directory containing the test programs. The simulation starts with
build/RISCV/gem5.opt command, that runs a two-level caches system and
exports the instruction execution trace on trace.out and system statistics
on stats.txt. Next, the trace.out file is modified by the script m5ou ⌋

tScripts/script.sh, which simplifies trace.out removing useless data
and moves it inside the project destination directory. Finally, after moving
stats.txt inside the destination directory as well, a new file called ins ⌋

tructions_algorithm.txt is created, which purpose is explained in the
following parts. Lastly, the CactiCFG.py file modifies the memory model to
be simulated in Cacti by setting the size and the associativity.

• The scripts inside SynthesisScripts directory are needed to generate the
synthesis script for Synopsys Design Compiler and to extract performance
values from the reports. In particular, createSynthesisScript.py creates
the .tcl script used for the synthesis and extract_performance_values.sh
extracts the values of area, power, and timing from the Synopsys reports, by
calling area.sh, power.sh and timing.sh, respectively.

• Testbench contains the SystemVerilog code implementing the UVM test-
bench for LiM architectures. This part is detailed in chapter 6.

• The files gem5dir.txt and octantisDir.txt contain the paths of the
Gem5 and Octantis tools. DExIMA uses them to run the programs on the
command line correctly.

• run_sim.py contains a script in Python that modifies the QuestaSim simu-
lation script. Based on the design, it specifies which VHDL files must be
considered for compilation.

• setsyn and setvsim are two scripts that set the environment variables to
launch Synopsys Design Compiler and QuestaSim tools, respectively.

5.9 TOOLS, VCDAnalyzer and VHDLGenerators 125

5.9 TOOLS, VCDAnalyzer and VHDLGenerators

<Tools like VCD (Value Change Dump) file parser, VHDL code generation, VCD to
Wavedrom conversion and Gem5 results browser are located in the VCDAnalyzer,
VHDLGenerators, and TOOLS directories, respectively. The VHDL generation part
is relatively straight-forward, so only the VCD parsing and Wavedrom conversion
are discussed in this part, while Gem5 results browser is illustrated in section 5.12.2.

5.9.1 VCD file format

The VCD file is a standard format used by EDA tools that allow to back-annotate the
design by writing the changing of states of each signal inside the DUT for each time
instant. An example of a VCD file format is reported in Listing 21.

Listing 21 Example of a VCD file format.

1 $timescale
2 1ns
3 $end
4

5 $scope module tb $end
6

7 $scope module DUT $end
8 $var wire 1 ! CLK $end
9 $var wire 1 " EN $end

10 $var wire 1 # BL [31] $end
11 $var wire 1 $ BL [30] $end
12 ...
13 $enddefinitions $end
14 #0
15 $dumpvars
16 0#
17 0$
18 0%
19 ...
20 $end
21 #3
22 0!
23 #6
24 1!
25 1'"
26 ...

126 Front-end code description: DExIMA-GUI

In lines 1-3, the timescale is defined, which indicates the unit of measure of
each time instant used in the following parts. Then, the definition of the signals
starts, and each of them is defined within a scope environment; if more than one
scope directives are specified without an upscope, it means that the signals refer
to a more profound block in the hierarchy: for example, in lines 5-7, there are two
scope declarations, so the signals refer to /tb/DUT/ instance. Next, each signal is
declared with the var keyword (lines 8-11), which specifies the type, the parallelism,
the symbol ID, the signal name, and, optionally, the bit index in case of a multi-bit
signal. After the definition of the signals, the section dumpvars starts, preceded by
#0 : in fact, this part declares the values of the signals at the very beginning of the
simulation, so at the time instant 0. Finally, the format for declaring the signal values
is in Fig. 5.9.

X ID
Value

Symbol ID

Fig. 5.9 Declaration format of the signal values in a VCD file.

The dumpvars section ends with a end keyword. After that, the annotation
of the signal changes starts for each time instant greater than 0: a time instant is
declared with #N , where N is a number (line 21). Note that not all signal states are
declared for each time instant since VCD annotates only the changes between one
instant and another.

5.9.2 Conversion to Wavedrom

For better visualization of the waveforms, DExIMA is equipped with a VCD to
Wavedrom converter that employs Wavedrom, a tool capable of rendering wave-
forms in SVG format starting from a plain text [138]. The VCD file is parsed and
converted in a Wavedrom-compatible JSON format that can be directly interpreted
by Wavedrom, which outputs the corresponding timing diagram. An example of a
Wavedrom-compatible JSON file is reported in Listing 22.

5.10 Available blocks: LIBRARY folder and SPICE description 127

Listing 22 Example of a Wavedrom-compatible file

1 {signal: [
2 {name: '/TB/DUT/CLK', wave: 'x|.lHlHlHlHlHlHlHlHl'},
3 {name: '/TB/DUT/LiMactivate', wave: 'x|..1...............'},
4 {name: '/LIMCELL_0_0/MEMORY_9/NAND_1/IN1', wave: 'x|1...0.............'},
5 {name: '/LIMCELL_0_0/NAND2_10/IN1', wave: 'x|............1.0...'},
6],
7 head:{ text:'Timing diagram'},
8 foot:{tock:0},
9 }

The code in Listing 22 specifies the waveform for four signals: /TB/DUT/CLK,
/TB/DUT/LiMactivate, /LIMCELL_0_0/MEMORY_9/NAND_1/IN1 and /LIMCE ⌋

LL_0_0/NAND2_10/IN1. The waveform for each signal is represented as a list
of characters, where "x" represents "undefined", "." represents a no-change period,
"1"/"H" and "0"/"l" active high and low, respectively. Additionally, there can be a data
array, which provides the actual data values for each time step in the waveform. The
head field specifies a label for the entire waveform diagram. When this Wavedrom
file is rendered, it will display a waveform diagram, as shown in Fig. 5.10.

Timing diagram

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

/TB/DUT/CLK

/TB/DUT/LiMactivate

/LIMCELL_0_0/MEMORY_9/NAND_1/IN1

/LIMCELL_0_0/NAND2_10/IN1

Fig. 5.10 Example of a rendered waveform in Wavedrom.

5.10 Available blocks: LIBRARY folder and SPICE
description

As already discussed in section 5.7, there are a limited number of components in
DExIMA, and they are associated with the DiagramItems present in the program.
The list of available components is reported in the following:

• Flip-flops and registers;

• Full adder, half adder and ripple-carry adder;

128 Front-end code description: DExIMA-GUI

• AND, NAND, OR, XOR, XNOR, multiplexer 2-to-1, tristate buffer, multi-
plexer 2-to-1 with N bits, NOT, SRAM cells;

• Array multiplier;

• Equality comparator;

• Right shifter;

• Memory array and microprogrammed Memory Interface.

However, only declaring these components as DiagramItems is insufficient since
further descriptions are required for the RTL simulation and the DExIMA-Backend
estimation. In fact, for each DExIMA component, inside the LIBRARY folder,
shown in Fig. 5.11, there is the corresponding VHDL file containing the functional
description of the block. The LIBRARY folder is split in Blocks (multi-bit compo-
nents), Control (needed for the microprogrammed machine), and Gates (standard
cells). Moreover, as discussed in the DExIMA-Backend part (chapter 7), the standard
cells also require a SPICE description at the transistor-level needed by the Backend
to perform estimations and to build multi-bit hardware models. These SPICE files
can be extrapolated with Cadence Virtuoso in Spectre format and saved inside the
DExIMABackend/Spectre folder. Based on these concepts, if the user wants to insert
a new component, the steps are the following:

1. Create the corresponding DiagramItem inside DiagramItem.py, by defining
the shape and the characteristics of the new component.

2. Describe the component in VHDL to replicate its functional behavior. Save
the new file inside the LIBRARY folder.

3. If the new component is a standard cell, extrapolate the corresponding SPICE
description from Cadence Virtuoso or create it from scratch. On the other hand,
if the component is a multi-bit block, it is necessary to write the description of
the new block inside the DExIMA-Backend tool by updating the Multibit ⌋

Block class. This part is discussed in subsection 7.2.4.

5.11 OUTPUT and Documentation folders 129

LIBRARY
sources

Blocks
Adder.vhd
Multiplier.vhd
MUXNbit.vhd
Reg.vhd
RSHIFTER.vhd

Control
ffd.vhd
SISO.vhd

Gates
AND2.vhd
FA.vhd
FLIPFLOP.vhd
FLIPFLOPEN.vhd
HA.vhd
MUX21.vhd
Memory.vhd
NAND2.vhd
NOR2.vhd
NOT1.vhd
OAI21.vhd
OR2.vhd
SRAM.vhd
TBUF.vhd
XNOR2.vhd
XOR2.vhd

CODE
...
DExIMABackend

...
Spectre

Basic
AND.scs
DFFX1.scs
DRIVER.scs
FA.scs
FLIPFLOP.scs
HA.scs
MUX.scs
NAND.scs
NOR.scs
NOT.scs
OAI21.scs
OR.scs
SRAM.scs
TBUF.scs
TNOT.scs
XNOR.scs
XOR.scs

Composite
CELL.scs

(a) (b)
Fig. 5.11 (a) Content of the LIBRARY folder. (b) Corresponding SPICE file descriptions of
the standard cells for DExIMA-Backend.

5.11 OUTPUT and Documentation folders

By default, DExIMA stores all results, design files, RTL code, netlists, and simula-
tion/synthesis scripts inside the OUTPUT directory. The OUTPUT folder is organized
in subfolders. Bus folder contains the Spice netlists generated by DExIMA-Backend
that are used for the bus performance simulation and estimation, which is explained
in deep in subsection 7.3.9. Examples contains some sample LiM projects. VH ⌋

DLFiles, netlist, saif and syn contain the RTL code description of the LiM
architecture generated by DExIMA, the synthesized netlist (with the .sdf extracted

130 Front-end code description: DExIMA-GUI

DExIMA
CODE
OUTPUT

Bus
Examples
netlist
Octantis
saif
Sim
syn
vcd
VHDLfiles
vhdlsimBA

docs

DExIMA
CODE
OUTPUT
docs

source
make.bat
Makefile

(a) (b)
Fig. 5.12 (a) OUTPUT folder organization. (b) Documentation folder organization.

delays and .sdc design constraints), the switching activity back-annotation file for
Synopsys Design Compiler and the scripts to synthesize and estimate performance,
respectively, while Sim, vhdlsimBA and vcd contain the scripts for the QuestaSim
simulation of the functional VHDL description, the synthesized netlist and the VCD
annotation file, respectively. The last folder is Octantis, where the input C code to
be converted by Octantis is stored. When launched, Octantis automatically analyzes
the .c files inside this directory and provides the description of the corresponding
LiM architecture. The docs folder contains the files required to generate the docu-
mentation of the front-end part of DExIMA. The tool used is called sphinx [139],
which relies on reStructuredText files and on Python Docstrings to generate
both HTML and LATEXdocuments using a Makefile recipe: for instance, by typing
make singlehtml, a single HTML documentation file, shown in Fig. 5.13, is gener-
ated. The documentation is organized into sections corresponding to the organization
of the folders of the front-end code, with a brief description of their contents and
functionalities.

5.12 Project files

In a typical DExIMA project, several files are required to describe a LiM design,
as shown in Fig. 5.14 (a-b). Project files are stored inside the OUTPUT directory

5.12 Project files 131

;
Fig. 5.13 Screenshot of the HTML documentation file.

by default. Each of them refers to a very specific part of the design flow, starting
from the architectural structure of the cells, the Intra Row Logic blocks, and the
top-level entity, to the internal structure of the LiM, the uRAM content, the C codes
of the algorithms implemented in the CPU-Mem-LiM and CPU-Mem systems and
the performance results.

Examples
Prj1
cell00.lim
...
block_irl.irl
top.lim
MEMORYARRAY_1.csv
MEMORYARRAY_1_intrarow.csv
uRAM.csv
MEMORYARRAY_1.dex
MEMORYARRAY_1.dof
MEMORYARRAY_1.log
cpu_mem_code.c
lim_algorithm.c
Gem5Results

Gem5Results
cache.cfg
instructions_cpu_mem_code.c.txt
instructions_lim_algorithm.c.txt
L1Cache.out
L2Cache.out
memoryStats_cpu_mem_code.c.txt
memoryStats_lim_algorithm.c.txt
cpu_mem_code.c.hdf5
lim_algorithm.c.hdf5
program_cpu_mem_code.c.out
program_lim_algorithm.c.out
stats_cpu_mem_code.c.txt
stats_lim_algorithm.c.txt

(a) (b)
Fig. 5.14 Typical content of a DExIMA project directory. (a) Main folder. (b) Gem5 results
directory.

132 Front-end code description: DExIMA-GUI

5.12.1 Main folder

Schematic editor files: .lim and .irl

DExIMA can save the schematics realized in the Schematic Capture. They have two
possible extensions: .lim, for the LiM Cells and the top-level LiM architecture, and
.irl for the Intra Row Logic blocks. Both typologies have the same structure, in fact
they differ only in the extensions type. An example is provided in the following
Listing 23.

Listing 23 Example of a .lim file.

1 AND2_10 560.0 800.0 AND2 0
2 IN0[1] : Cell_9.WR
3 IN1[1] :
4 O[1] :
5 MEMORYARRAY_1 560.0 800.0 MEMORYARRAY 3 LiM 10 10 1 1 0
6 ...
7 ...
8 Cell_9 180.0 700.0 Cell 1
9 CK[1] :

10 EN[1] :
11 RN[1] :
12 WR[1] : BL.BL
13 RD[1] :
14 BL 300.0 480.0 Ext 5 Input
15 BL[1] :

In the first line, for example, there are different fields:

• AND2_10: name of the instance;

• 560.0 and 800.0: X, Y coordinates of the block in the scene. These are useful to
restore the items to the exact original position determined during the schematic
realization;

• AND2: name of the item (the component);

• 0 is the index of the instantiated block.

Then, there is the pin section, where IN[1],IN[1],O[1]: indicate the pin names
and their parallelism (inside the square brackets). The character ":" separates the pin

5.12 Project files 133

name of the instance from the list of connected ports. The format of each element
in the list is the following: name_instance.name_port[bit] if the connected
port has parallelism greater than one. In the external pin case, another element is
specified: the direction of the pin ("input" or "output"). Different is the case of the
MEMORYARRAY component, which contains some additional fields:

1. Memory type: fifth element of the list.

2. Rows: how many rows are used in the memory. The sixth element of the list.

3. Columns: how many columns are used in the memory. The seventh element
of the list.

4. Number of read/write/read and write ports in the memory: eighth, ninth, and
tenth elements of the list, respectively.

Internal structure of the LiM: .csv files

Apart from uRAM.csv file that reports the content of the uRAM and the enabled
rows for each instruction, CSV files are used to specify the internal structure of the
LiM array. For each memory location, the cell type and IRL blocks for each memory
row must be specified. In this example, files MEMORYARRAY_1.csv and MEMORYA ⌋

RRAY_1_intrarow.csv specifies the LiM Cell instance for each memory location
and the IRL block mapped for each memory row, respectively. These files assume
the same name as the memory array component instantiated inside the top-entity
architecture. The LiM Cells file has the exact size of the LiM, while the IRL one
has the same number of rows but with only one column: examples are provided in
Listing 24.

1 -- FILE MEMORYARRAY_1.csv
2 cell00,cell01,cell02,cell03,...,cell31
3 cell00,cell01,cell02,cell03,...,cell31
4 cell00,cell01,cell02,cell03,...,cell31
5 ...
6 cell00,cell01,cell02,cell03,...,cell31
7

8 -- FILE MEMORYARRAY_1_intrarow.csv
9 block_irl

10 block_irl

134 Front-end code description: DExIMA-GUI

Listing 24 Example of MEMORYARRAY_1.csv and MEMORYARRAY_1_intrarow.csv files for
the definition of the LiM Cells and IRL blocks.

11 block_irl
12 ...
13 block_irl

DExIMA-Backend files: .dex, .dof and .log

Once the LiM design has been defined in the front-end, the input .dex file is au-
tomatically generated, and DExIMA-Backend uses it to estimate the performance.
As discussed later in section 7.1, the .dex file contains the description of the LiM
architecture, while .dof and .log contains the results of the estimation.

Algorithms for CPU-Mem and CPU-Mem-LiM comparison: .c files

At the end of the LiM design process, the user may want to compare CPU-Mem and
CPU-Mem-LiM solutions to evaluate the impact of the LiM approach in a classical
context. To do this, the user can realize the CPU-Mem version of the algorithm in C
(in this example cpu_mem_code.c), and the program automatically creates the LiM
version (called lim_algorithm.c). These files are both simulated by Gem5, which
emulates a two-level cache RISC-V-based von Neumann architecture and provides
meaningful data like the instruction execution and the statistics (e.g., number of
memory accesses, number of executed instructions, etc.) that are used to compare
the two solutions.

5.12.2 Gem5 output directory

Results of the comparison between CPU-Mem and CPU-Mem-LiM are saved inside
Gem5Results directory, which contains data about the algorithm statistics, the list
of executed instructions, and information about the cache memories.

Cache configuration and output files: cache.cfg, memoryStats and cache.out

To properly estimate the performance of the cache memories, Cacti [91] tool is
used, which needs a configuration file in input telling information about the cache

5.12 Project files 135

memory size, the associativity, the type, the technology used, etc. This file is called
cache.cfg, and DExIMA modifies it according to the parameters defined by the
user in the final stage of the LiM design. Once called, Cacti produces an output file
called cache.out (L1Cache.out and L2Cache.out in the example), where the
performance results of the considered cache are written, in particular, the amount of
energy required for each write/read access. This parameter is useful to estimate the
energy impact of the memories, given the total number of memory accesses of each
algorithm, which is provided in the memoryStats files after the Gem5 simulation.

Listing 25 Example of memoryStats_cpu_mem_code.c.txt file, containing the number of
memory accesses for the CPU-Mem code.

1 --------L2SCache--------
2 number of overall (read+write) accesses (Count): 368.0
3 --------L1DCache--------
4 number of overall (read+write) accesses (Count): 6749.0
5 --------L1ICache--------
6 number of overall (read+write) accesses (Count): 26183.0

Gem5 output files: list of executed instructions, instructions count and statistics

When Gem5 runs an algorithm, it can provide statistics about the program execution
and the list of instructions. These data are saved inside stats_*.c.out and p ⌋

rogram_*.c.out files, respectively, and provided for each algorithm: one for the
CPU-Mem and the other for the CPU-Mem-LiM systems. Files stats_*.c.txt
and *.hdf5 are equivalent since the second one is the result of a conversion of
the default stats.txt file provided by Gem5 into a more human-readable and
organized format. The example shown in Fig. 5.15 represents the content of the
HDF5 file opened with the embedded Gem5 results browser.The instruction list is
read by DExIMA, which counts the number of occurrences for each opcode and
saves them inside instructions_*.c.txt files. The formats of these files are
reported in the example shown in Listing 26.

1 -- FILE program_cpu_mem_code.c.out
2 system.cpu: 0x104f0 @_start : jal ra, 46 : IntAlu :
3 system.cpu: 0x1051e @load_gp : auipc gp, 96 : IntAlu :
4 system.cpu: 0x10522 @load_gp+4 : addi gp, gp, -1150 : IntAlu :
5 system.cpu: 0x10526 @load_gp+8 : c_jr ra : IntAlu :

136 Front-end code description: DExIMA-GUI

Listing 26 Example of program_cpu_mem_code.c.out, reporting the list of executed in-
structions and instructions_cpu_mem_code.c.txt, reporting the number of occurrences.

6 ...
7 -- FILE instructions_cpu_mem_code.c.txt
8 sh 1
9 c_srai 1

10 divu 2
11 c_fsd 2
12 mul 3
13 lhu 3
14 ...
15 c_addi 1863
16 addiw 1865
17 lw 3868

Fig. 5.15 Statistics extracted from Gem5 simulation.

5.13 Conclusions 137

5.13 Conclusions

This chapter discusses the structure of the DExIMA front-end. The discussion
starts with the structure of folders and subfolders containing Python codes, which
are organized according to the function implemented and to facilitate the user in
understanding the code.

Chapter 6

Automatic RTL simulation

Summary

This chapter explains in detail how the automatic simulation of LiM architectures is
handled. In particular, a UVM testbench is employed, which allows generalization
and great flexibility of the tests to be performed on the LiM. In order for the testbench
to be executed, DExIMA generates the VHDL, modifies the QuestaSim simulation
script, and launches the program directly from the Console. Each of these parts is
discussed in more detail below.

6.1 Simulation script 139

6.1 Simulation script

To support the automatic RTL simulation of the LiM architecture, DExIMA imple-
ments some routines that generate the simulation script required for QuestaSim to
run properly. In particular, the simulation script is reported in Listing 27.

Listing 27 Automatic generated simulation script of the LiM architecture

1 vlib work
2 vcom -mixedsvvh -work work ../VHDLfiles/configpkg.vhd
3 vcom -reportprogress 300 -work work

../../CODE/LIBRARY/sources/Gates/AND2.vhd↪→

4 vcom -reportprogress 300 -work work
../../CODE/LIBRARY/sources/Gates/FA.vhd↪→

5 ...
6 vlog +define+UVM_REG_DATA_WIDTH=512 $env(UVM_HOME)/uvm.sv

+incdir+$env(UVM_HOME) +define+SYNTHESIS=0
../../CODE/SIMCnfg/Testbench/tb.sv

↪→

↪→

7 vsim -sv_lib $env(DPI_DIR)/uvm_dpi -t ns work.tb -voptargs=+acc
8 vcd files ../vcd/outputs.vcd
9 vcd files ../vcd/tb.vcd

10 vcd add -r -in -internal -file ../vcd/outputs.vcd /tb/DUT/*
11 vcd add -in -out -file ../vcd/tb.vcd /tb/DUT/*
12 do wave.do
13 run 10ms
14

Firstly, all VHDL sources are compiled with vcom. In particular, the configu-
ration package configpkg.vhd that contains information about the memory size,
the parallelism, the size of the uRAM and the uRAM field, is compiled with the
-mixedsvvh flag, that enables to share these constants with the SystemVerilog code
used in the testbench. Then, the main testbench file tb.sv is compiled with vlog,
with UVM_REG_DATA_WIDTH and SYNTHESIS values set to 512 and 0, respectively:
the first modifies the default data width of the uvm_reg class to accommodate higher
memory parallelisms, while the second one is a user-defined variable that specifies to
the UVM testbench if the simulated RTL code is a synthesized netlist or not. The sim-
ulation starts with the command vsim, which uses -sv_lib and -voptargs=+acc
flags, indicating the shared UVM library and the no-optimization option applied to
the entire circuit. During the simulation, as already discussed, two VCD files are

140 Automatic RTL simulation

produced: outputs.vcd that report the waves of the internal nets of the Design
Under Test and it is used in the back-annotation procedure in DExIMA-Backend;
tb.vcd that contains only the waveforms of the top-level testbench, so it is used in
the bus performance estimation phase.

6.2 Universal Verification Methodology testbench

To support an automatic simulation routine, a high degree of flexibility is required: in
particular, the testbench environment should be capable of handling LiM structures
with different parallelisms and complexities. To do this, the Universal Verification
Methodology (UVM) is used [140]. The high-level scheme of a generic UVM
testbench is shown in Fig. 6.1 (a): typically, it is organized hierarchically. The main

UVM Environment

Sequencer

Driver Monitor

Agent

Scoreboard

Interface

DUT

UVM Test (a)

Sequence

UVM_BACKDOOR
UVM_BACKDOOR

UVM Environment

Sequencer

Driver Monitor
Agent

Register
Environment

Interface

DUT

UVM Test (b)

Fig. 6.1 (a) High-level scheme of a generic UVM testbench. (b) High-level scheme of the
UVM testbench employed in the DExIMA project.

6.3 Interface 141

components are:

• Agent, containing the Sequencer (responsible for generating and scheduling
the transactions that are sent to the DUT), the Driver (drives the stimuli into
the DUT interfaces), and the Monitor (which observes the DUT interfaces and
logs the transactions and responses).

• Environment that encapsulates the Agent and the Scoreboard. The Scoreboard
compares the expected results with the actual results obtained from the DUT.

• Test that encapsulates the environment, the Device Under Test (DUT), and the
Interface.

DExIMA incorporates a simplified version of a UVM testbench without the Score-
board and Monitor components since the main goal of the testbench is only to control
the phases of the LiM simulation (data precharging, algorithm execution), and not to
verify the correctness of the results. However, it is possible to access the internal data
of the design by using the UVM_BACKDOOR that is useful for verifying states of the
DUT that cannot be accessed through the regular interfaces. The backdoor interface
allows the testbench to bypass the regular stimuli and responses and directly access
the DUT’s internal registers and state. An additional component is the Register
Environment, which is particularly useful in the LiM context since it allows to read,
manipulate and perform memory-level tests of the registers or memories inside the
DUT. Inside the Register Environment, the LiM is completely mapped by means
of UVM_BACKDOOR, allowing access to any location. The high-level scheme of the
UVM testbench employed in the DExIMA project is shown in Fig. 6.1 (b).

6.3 Interface

1 interface dut_if (input clk);
2 logic EN;
3 logic[columns-1:0] BL;
4 logic[columns-1:0] BLB;
5 logic[rows-1:0] WL;
6 logic RST;
7 logic[columns-1:0] DOUT;
8 logic[size_uram_address-1:0] queueIN;
9 logic queueWen;

142 Automatic RTL simulation

Listing 28 UVM interface SystemVerilog code.

10 logic LiMactivate;
11 logic[size_uram_instruction-1:0] uIreg;
12 logic[size_uram_address-1:0] uRAM_address;
13 endinterface

The code for the UVM Interface is shown in Listing 28. The Interface is named
dut_if, and it is clocked by the clock signal clk. The logic EN signal enables the
LiM array, both in reading/writing and operation functions; logic[columns-1:0]
BL and logic[columns-1:0] BLB are the bitline and bitline bar buses, respectively,
having parallelism equal to the number of columns inside the LiM memory; logic ⌋

[rows-1:0] WL is the wordline bus, which enables each memory row; logic RST
is the active-low asynchronous reset signal; logic[columns-1] DOUT is the output
LiM bus, where the data can be read from memory; logic[size_uram_addres ⌋

s-1:0] queueIN, logic queueWen, are signals related to the microprogrammed
control unit to initialize and enable the queue with the uRAM starting address and
finally, logic[size_uram_instruction-1:0] uIreg, and logic[size_uram ⌋

_address-1:0] uRAM_address are the extracted micro-instruction and the uRAM
address, respectively.

6.4 Sequence Item

A Sequence Item is a fundamental UVM object since it represents the set of stimuli
used to drive the DUT. This object is passed to the DUT by means of the Sequencer,
that schedules all the operations needed in the simulation. The Sequence Item used
in the testbench is called packet and is the following:

1 class packet extends uvm_sequence_item;
2 rand logic EN;
3 rand logic[columns-1:0] BL,BLB;
4 logic[columns-1:0] DOUT;
5 logic queueWen;
6 logic LiMactivate;
7 rand logic read_write_n;
8 rand logic[rows-1:0] WL;
9 rand logic lim_ready;

6.5 Driver 143

Listing 29 Code of packet, the uvm_sequence_item used in the UVM testbench.

10 `uvm_object_utils_begin(packet)
11 `uvm_field_int(LiMactivate, UVM_DEFAULT|UVM_BIN)
12 `uvm_field_int(queueWen, UVM_DEFAULT|UVM_BIN)
13 `uvm_field_int(read_write_n, UVM_DEFAULT|UVM_BIN)
14 `uvm_field_int(EN, UVM_DEFAULT|UVM_BIN)
15 `uvm_field_int(BL, UVM_DEFAULT|UVM_DEC)
16 `uvm_field_int(BLB, UVM_DEFAULT|UVM_DEC)
17 `uvm_field_int(DOUT, UVM_DEFAULT|UVM_DEC)
18 `uvm_object_utils_end
19 function new(string name = "packet");
20 super.new (name);
21 endfunction : new
22 endclass : packet

It contains the same signals as the interface but with read_write_n and li ⌋

m_ready additional signals that indicate if the LiM memory is read/written and if
the LiM is ready to perform computations. The `uvm_field_int indicates that
the signal is an integer value and, in this case, its representation is specified with
UVM_BIN or UVM_DEC for binary and decimal, respectively.

6.5 Driver

According to the processed sequence and packet values, the Driver is in charge
of driving the Interface signals. The code for the Driver object is reported in the
following:

1 class Driver extends uvm_driver #(packet);
2 `uvm_component_utils(Driver)
3 packet pkt;
4 virtual dut_if vif;
5

6 function new(string name = "Driver", uvm_component parent);
7 super.new(name, parent);
8 endfunction : new
9 // constructor for Driver class

10 virtual function void build_phase(uvm_phase phase);
11 super.build_phase(phase);

144 Automatic RTL simulation

12 // attempt to get handle to virtual interface from configuration
database↪→

13 if(!uvm_config_db#(virtual dut_if)::get(this, "*", "dut_if", vif))
14 `uvm_error(get_type_name(), "Did not get dut_if handle")
15 // if it fails, terminate and return error.
16 endfunction
17

18 virtual task run_phase (uvm_phase phase);
19 logic [columns-1:0] data;
20 forever begin
21 // get next packet from sequence item port
22 seq_item_port.get_next_item(pkt);
23 if(!pkt.read_write_n)
24 // check read_write_n signal. If it is '0', run
25 // write task
26 write(pkt.BL,pkt.WL);
27 else begin
28 //if read
29 if(!pkt.lim_ready) begin
30 //if the LiM is not ready to compute, then read.
31 read(pkt.WL,data);
32 pkt.DOUT = data;
33 end
34 else begin
35 //the LiM is ready: start the algorithm.
36 run_algorithm(pkt.BL);
37 end
38 end
39 //mark packet as done
40 seq_item_port.item_done();
41 end
42 endtask : run_phase
43 virtual task write(input logic[rows-1:0] word, input logic[rows-1:0] WL);
44 //set enable signal and queue write enable signal to 1
45 vif.EN <= 1;
46 vif.queueWen <= 1;
47 //deactivate the LiM
48 vif.LiMactivate <= 0;
49 //set "1" as starting queue address
50 vif.queueIN <= 1;
51 //drive the bit-bar line and bitline as
52 //equal to the packet word

6.5 Driver 145

Listing 30 Code of the Driver object.

53 vif.BLB <= ~(word);
54 vif.BL <= word;
55 //drive the wordline
56 vif.WL <= WL;
57 endtask : write
58 virtual task read(input logic[rows-1:0] WL,
59 output logic[columns-1:0] DOUT);
60 //enable the array
61 vif.EN <= 1;
62 //disable the queue
63 vif.queueWen <= 0;
64 //enable the LiM
65 vif.LiMactivate <= 1;
66 //set the queuein to 0
67 vif.queueIN <= 0;
68 //drive the wordline
69 vif.WL <= WL;
70 @(posedge vif.clk);
71 //wait one clock cycle to fetch data
72 DOUT = vif.DOUT;
73 endtask : read
74 virtual task run_algorithm(input logic[rows-1:0] BL);
75 vif.queueIN <= 0;
76 vif.queueWen <= 0;
77 vif.EN <= 0;
78 vif.WL <= 0;
79 vif.BL <= BL;
80 vif.BLB <= ~(BL);
81 vif.LiMactivate <= 1;
82 endtask : run_algorithm
83 endclass: Driver

First, the Driver is instantiated in line 2 and lines 6-16. Then, the virtual interface
dut_if is extracted from the configuration database since it is needed by the r ⌋

un_phase to drive the signals to the DUT. During the run_phase, an important
distinction is made based on the considered simulation phase. In the write memory
phase, the read_write_n signal is set to 0 by the Sequencer, and the write task
starts. In the read memory phase, read_write_n is set to 1 and lim_ready to 0,
while in the computational phase, the lim_ready is set to 1.

146 Automatic RTL simulation

6.6 The Register Environment

The main components of the Register Environment can be distinguished in:

• the uvm_reg, that models the register or memory element by specifying its
characteristics.

Listing 31 Snippet of code representing the memory_row register model.

1 class memory_row extends uvm_reg;
2 rand uvm_reg_field data;
3 `uvm_object_utils(memory_row)
4

5 function new (string name="memory_row");
6 super.new(name, columns, build_coverage(UVM_NO_COVERAGE));
7 endfunction : new
8

9 virtual function void build();
10 this.data =
11 uvm_reg_field::type_id::create("data",,
12 get_full_name());
13 this.data.configure(this, columns, 0, "RW", 0,
14 100, 1, 0, 0);
15 endfunction : build
16 endclass : memory_row

In the definition of a register reported in Listing 31, some important parameters
are passed in this.data.configure method: in order, the parallelism (equal
to the number of columns of the LiM), the LSB position, the access policy
(read-write in this case), the volatileness, the reset value, if it has a reset signal,
if it can contain random values and if it can be individually accessed.

• uvm_reg_block: the uvm_reg_block is a key component of the UVM regis-
ter model, which is used to model a set of registers in a design for verification.
In particular, it creates a memory model as an array of uvm_reg elements that
can be accessed in read-write mode. Similarly to the uvm_reg, the uvm_r ⌋

eg_block needs an HDL path, that is used to link the register model to the
actual model inside the HDL code.

• uvm_reg_adapter: creates the interface between the UVM register model
and the actual RTL register/memory described in the VHDL code.

6.7 Sequences 147

Listing 32 Code of the uvm_reg_adapter.

1 class REG_ADAPTER extends uvm_reg_adapter;
2 `uvm_object_utils (REG_ADAPTER)
3

4 function new (string name = "REG_ADAPTER");
5 super.new (name);
6 endfunction
7

8 virtual function uvm_sequence_item reg2bus (const ref uvm_reg_bus_op
rw);↪→

9 packet pkt = packet::type_id::create ("pkt");
10 pkt.WL = rw.addr;
11 pkt.BL = rw.data;
12 return pkt;
13 endfunction
14 virtual function void bus2reg (uvm_sequence_item bus_item, ref

uvm_reg_bus_op rw);↪→

15 packet pkt;
16 if (! $cast (pkt, bus_item)) begin
17 `uvm_fatal (get_type_name(), "Failed to cast bus_item to pkt")
18 end
19 rw.kind = UVM_READ;
20 rw.data = pkt.DOUT;
21 rw.addr = pkt.WL;
22 endfunction
23 endclass

By combining these elements, together with the uvm_reg_predictor, the Register
Environment is built.

6.7 Sequences

The core of the UVM simulation for the LiM design relies on the defined sequences.
In particular, five sequences are defined: reset, read/write memory, set LiM operation,
and algorithm execution. Every simulation has the same scheduling of the sequences.
Firstly, the system is reset, then the memory is written, and, at the end of the
memory initialization, it is set in computing mode. Finally, after the execution of the
algorithm, the memory can be read.

148 Automatic RTL simulation

6.7.1 Reset sequence

During the reset sequence, UVM drives the active-low RST signal to 0, waits for a
clock cycle and rises the RST to 1.

Listing 33 UVM code of the reset_seq.

1 class reset_seq extends uvm_sequence;
2 `uvm_object_utils (reset_seq)
3 function new (string name="reset_seq");
4 super.new (name);
5 endfunction
6 virtual dut_if vif;
7 task body ();
8 if (!uvm_config_db #(virtual dut_if)::get(null, "uvm_test_top.*",

"dut_if", vif))↪→

9 `uvm_fatal ("VIF", "No vif")
10 `uvm_info ("RESET", "Running reset ...", UVM_MEDIUM);
11 vif.RST <= 0;
12 vif.EN <= 0;
13 vif.queueWen <= 0;
14 vif.LiMactivate <= 0;
15 vif.queueIN <= 0;
16 vif.BL <= 0;
17 vif.WL <= 0;
18 @(posedge vif.clk) vif.RST <= 1;
19 endtask
20 endclass

6.7.2 Write and read sequences

During the write sequence, the memory is written completely. As shown in the
code in Listing 34, the for cycle at line 11 starts for the zeroth location until the last
rows-1-th location. The signal read_write_n is set to 0, so in this way, the driver
recognizes that the UVM is trying to write data inside the memory and delivers the
values of the WL and BL as equal to the WL and BL values set inside the write
sequence: the WL is one-hot encoded, while the BL is a random value in the range
(0,1000).

6.7 Sequences 149

Listing 34 UVM code of the write_sequence.

1 class write_sequence extends uvm_sequence;
2 `uvm_object_utils(write_sequence)
3 virtual dut_if vif;
4 function new (string name="write_sequence");
5 super.new(name);
6 endfunction : new
7 virtual task body();
8 if (!uvm_config_db #(virtual dut_if)::get(null, "uvm_test_top.*",

"dut_if", vif))↪→

9 `uvm_fatal ("VIF", "No vif")
10 `uvm_info(get_type_name(), $sformatf("Write sequence starts."), UVM_LOW)
11 for(int i = 0; i < rows; i ++) begin
12 packet m_item = packet::type_id::create("m_item");
13 logic[rows-1:0] tmp_address = 0;
14 tmp_address[rows-1-i] = 1;
15 start_item(m_item);
16 m_item.randomize() with { read_write_n == 0; WL ==

tmp_address; BL inside {[0:1000]}; };↪→

17 finish_item(m_item);
18 @(posedge vif.clk);
19 end
20 `uvm_info(get_type_name(), $sformatf("Done generation of %0d

items",rows),UVM_LOW)↪→

21 endtask : body
22 endclass : write_sequence

In the read sequence instead, the operation is similar to the write one, but this
time the signals read_write_n and lim_ready are set to 1 and 0, respectively.

6.7.3 Set LiM operation sequence

This sequence simply sets the read_write_n and lim_ready signals to 1. In this
way, the driver starts the algorithm execution task.

6.7.4 Algorithm execution sequence

The algorithm execution sequence is called during the LiM computational phase. In
particular, the sequence reads the value coming from the uRAM. If an operation is

150 Automatic RTL simulation

found, the content of the BL, the first LiM Cell, LiM output, and IRL output are
printed with an `uvm_info directive.

1 class vsequence extends uvm_sequence;
2 `uvm_object_utils(vsequence)
3 stdout m_stdout;
4 uRAM_content m_uram;
5 OLIM_out m_OLIM;
6 OIRL_out m_OIRL;
7 int opcode;
8 uvm_status_e status;
9 logic[size_instr-1:0] uram_instruction;

10 virtual dut_if vif;
11 function new (string name = "vsequence");
12 super.new(name);
13 endfunction : new
14 virtual task body();
15 automatic logic[columns-1:0] output_cell;
16 automatic int address;
17 automatic logic[columns-1:0] output_lim,output_irl;
18 if (!uvm_config_db #(virtual dut_if)::get(null, "uvm_test_top.*",

"dut_if", vif))↪→

19 `uvm_fatal ("VIF", "No vif")
20 if(!uvm_config_db#(stdout)::get(null, "uvm_test_top", "m_stdout",

m_stdout))↪→

21 `uvm_fatal("STDOUT", "Could not get stdout.")
22 if(!uvm_config_db#(OLIM_out)::get(null, "uvm_test_top", "m_OLIM",

m_OLIM))↪→

23 `uvm_fatal("m_OLIM", "Could not get m_OLIM.")
24 if(!uvm_config_db#(uRAM_content)::get(null, "uvm_test_top", "m_uram",

m_uram))↪→

25 `uvm_fatal("uRAM", "Could not get uRAM.")
26 if(!uvm_config_db#(OIRL_out)::get(null, "uvm_test_top", "m_OIRL",

m_OIRL))↪→

27 `uvm_fatal("m_OIRL", "Could not get OIRL.")
28 @(negedge vif.clk);
29 m_uram.rom_row.read(status, uram_instruction, UVM_BACKDOOR);
30 m_OLIM.OLIM[0].read(status, output_lim, UVM_BACKDOOR);
31 m_stdout.OC[0].read(status, output_cell, UVM_BACKDOOR);
32 m_OIRL.OIRL[0].read(status, output_irl, UVM_BACKDOOR);
33 opcode = uram_instruction[size_opcode-1:0];
34 if(!uvm_hdl_read("tb.my_uRAM.add",address))

6.8 The UVM main test 151

Listing 35 UVM code of the vsequence.

35 `uvm_fatal(get_type_name(), "Could not get uRAM address.")
36 `uvm_info(get_type_name(), "Found operation!", UVM_LOW)
37 `uvm_info(get_type_name(), $sformatf("\n
38 uram_value = %b\n
39 ################## CELL PART ##################\n
40 BL = %d\n
41 Output Cell[0] = %d\n
42 Output LiM[0] = %d\n
43 ###",
44 uram_instruction,vif.BL,output_cell,output_lim), UVM_LOW)
45 `uvm_info(get_type_name(), $sformatf("\n
46 uram_value = %b\n
47 ------------------- IRL PART ------------------\n
48 BL = %d\n
49 Output Cell[0] = %d\n
50 Output LiM[0] = %d\n
51 Output IRL[0] = %d\n

-↪→

52 ---",
53 uram_instruction,vif.BL,output_cell,output_lim,output_irl), UVM_LOW)
54 endtask : body
55 endclass : vsequence

This sequence can be improved in the future by printing more values of the LiM
array or by incorporating some verification routines on the data read by means of the
UVM_BACKDOOR access.

6.8 The UVM main test

The main_test UVM test is in charge of defining the sequence schedule. As
shown in Listing 36, in lines 8-25, the sequences explained before are created,
but they start when the phase.raise_objection(this); is called: firstly, the
write sequence (wsequence), then the set LiM operation (setLim) and then the
algorithmic sequences. The algorithmic sequences start each clock cycle, and the
main_test has to create a number of sequences equal to the number of instructions
inserted in the uRAM. However, since some waiting statements are present in the
algorithmic sequences to get the results at the correct time instant (e.g., @(posedge

152 Automatic RTL simulation

vif.clk)), they must run in parallel. This can be accomplished by means of the
fork directive, where each vseq waits for k+1 clock cycles before starting. To
better understand the code functionality, the index i=0 is chosen as a starting point: k
is equal to 0. A new thread is created with fork, and the internal for cycle performs
one iteration to wait for one clock positive edge. In the second outer loop iteration,
i=1, k=1 so the vseq[1] has to wait for two clock positive edges and so on: parallel
threads allow for a correct synchronization of the algorithm execution sequences.

1 class main_test extends base_test;
2 `uvm_component_utils (main_test)
3 function new (string name="main_test", uvm_component parent);
4 super.new (name, parent);
5 endfunction
6 virtual dut_if vif;
7 virtual task main_phase(uvm_phase phase);
8 write_sequence wsequence =

write_sequence::type_id::create("wsequence");↪→

9 vsequence vseq[65536];
10 set_lim_operation setLim;
11 read_memory rsequence;
12

13 int n_seq_initial = 1;
14 int n_seq_inter = number_of_uram_instructions + 2;
15 int index = 0;
16 string str = "";
17 for(int i=0; i < number_of_uram_instructions+2; i++) begin
18 str = $sformatf("vseq_%0d",i);
19 vseq[i] = vsequence::type_id::create(str);
20 end
21 rsequence = read_memory::type_id::create("rsequence");
22 setLim = set_lim_operation::type_id::create("set_lim_operation");
23 if(!uvm_config_db#(virtual dut_if)::get(this, "*", "dut_if", vif))
24 `uvm_error(get_type_name(), "Did not get dut_if handle")
25 phase.raise_objection(this);
26 wsequence.start(m_env.m_agent.seqr);
27 setLim.start(m_env.m_agent.seqr);
28 for(int j = 0; j < n_seq_initial; j++) @(posedge vif.clk);
29 for(int i=0; i < n_seq_inter; i++)
30 begin
31 automatic int k = i;
32 fork

6.9 Conclusions 153

Listing 36 Code of the main_test.

33 begin
34 for(int p = 0; p < k+1; p++)
35 @(posedge vif.clk);
36 vseq[k].start(m_env.m_agent.seqr);
37 end
38 join_none
39 end
40 @(posedge vif.clk);
41 wait fork;
42 phase.drop_objection(this);
43 endtask : main_phase
44 endclass

6.9 Conclusions

This chapter reports the simulation procedure embedded in DExIMA. The RTL simu-
lation is carried out by relying on the commercial tool QuestaSim, combined with
UVM, which allows greater flexibility in the realization of testbenches of LiM archi-
tectures, which involve test phases that are always composed of a data precharging
part and the execution of the LiM algorithm. DExIMA takes care of generating the
simulation script, which is then executed by QuestaSim.

Chapter 7

DExIMA-Backend

Summary

To evaluate the LiM architecture in terms of area, power, and critical path delay,
DExIMA is equipped with an ad-hoc estimator called DExIMA-Backend. This tool
is realized in C++, and it is able to estimate the performance of CMOS-based
designs, with the possibility to use different technology nodes and, in the future,
other emerging technologies. The development of DExIMA-Backend began with
two master theses [141, 142], in which an initial structure of the estimator was
implemented, considering very simplified models. The first version, developed
in [141], implemented all logic gate models with NANDs, providing very rough

155

performance estimations, unfortunately far from reality. In addition, the initial
version had four redundant input files instead of one, describing the architecture,
the LiM blocks to be implemented, the pseudo instructions and the code to execute.
In the second version, on the other hand, developed in work [142], the DExIMA-
Backend interface was greatly improved, reducing the number of input files to one
(with the extension .dex), but still maintaining a description of the logic blocks
based on NAND gates. Both these versions required a C++ class describing the
structure of each logic port or hardware block, making the tool extremely complex
and difficult to be expanded with other models. Both versions implemented power
estimation based on the declaration of which blocks are active and involved in
a given operation. This method is completely unrealistic when compared with
classical estimators and synthesizers (e.g., Synopsys Design Compiler), since power
estimation, especially dynamic power estimation, depends on the switching activity
of the nodes. The hardware blocks are always active unless power-aware synthesis
with UPF is performed. In this thesis work, DExIMA-Backend has been completely
restructured by including features such as the transistor-level description of standard
cells, power estimation with back-annotation, bus performance estimation, capacitive
models more faithful to existing standards (e.g., BSIM4), and many other features. In
Fig. 7.1, the complete flow adopted by the Backend is shown. Apart from the .dex file
and transistor-level description of the standard cells in Spectre format, the actual
version of DExIMA-Backend requires the technological parameters, such as the on
current, off current, gate capacitance, etc. At the beginning of the estimation phase,
DExIMA-Backend parses the .dex file and creates a series of instances representing
the internal architecture of the LiM array or the Near-Memory hardware. These class
instances can be standard cells (STDCell class) such as OR, XNOR, NOT, AND,
NAND, etc. that are the smaller 1-bit elements that can be instantiated; composite
cells (CompositeGate class), that are 1-bit blocks containing more than one
standard cell and multibit blocks (MultibitBlock class), that describe complex
structures having parallelism greater than 1 bit (such as multipliers, adders, etc.).
Basically, CompositeGate class and MultibitBlock class contain standard
cells, so the core of the computations of the dynamic and static powers, the area
and the critical path is located inside the STDCell class. This chapter explains
in detail the structure of DExIMA-Backend and the computation models used in
performance estimation of CMOS-based architectures.

156 DExIMA-Backend

.dex

Ë Technology specs
Ë Architecture
Ë Waveforms and TRs
Ë Bus specs and waves

DExIMA
Backend

Netlist files

nFF.scs
nAND.scs

nOR.scs

Technology
parameters

Ë ION: on current
Ë IOFF: off current
Ë IGate: gate current
Ë Cox: oxide capacitance
...

2
Compilation

Ë class STDCell
Ë class CompositeGate
Ë class MultibitBlock
Ë class BusParser

Ù
Spice

simulations
for the bus

Results
.dof file

Fig. 7.1 DExIMA-Backend estimation steps

7.1 Main classes overview

In this section, the code structure of DExIMA-Backend is presented. The discussion
regards the main classes and methods responsible for performing the estimations
and creating the circuit models organized in a hierarchical format. To clarify the
explanations better, the Unified Modeling Language (UML) is used, which provides
diagrams and schemes to represent the DExIMA-Backend structure visually: UML
is used as a starting point, focusing more on the main aspects of the program and
computational models. Further details on the methods and attributes functionalities
can be found in the documentation provided at this link. In Fig. 7.2 (a), the high-level
scheme of the DExIMA-Backend tool is presented: the main class is called Dexima
and it is mainly composed of the Compiler class, which compiles the input .dex
file, creates the model of the architecture, checks for syntax errors, etc., and the
Simulator class that is in charge of performing the estimations and providing
the results. In the scheme, two other classes are aggregated to Dexima class,

https://git.vlsilab.polito.it/logic-in-memory/dexima-gui/-/tree/master/DExIMA/CODE/DExIMABackend/Documentation/html

7.1 Main classes overview 157

Dexima

- m_start_time
and 3 more...

+ Dexima()
and 4 more...
- start_time()
and 2 more...
- check_file_extension()
and 1 more...

Technology

- m_tech_path
and 33 more...

+ Technology()
and 38 more...
- check_tech_par()
and 19 more...

 -m_tech

Architecture

- m_modules
and 9 more...

+ Architecture()
and 31 more...
- printerAlreadyPresent()
and 9 more...

 -m_tech

Compiler

- m_line_number
and 10 more...

+ Compiler()
and 3 more...
- comment_match()
and 13 more...

 -m_tech

 -m_architecture

 -m_architecture

Simulator

+ Simulator()
and 3 more...

 -m_architecture

 -m_compiler -m_simulator

Simulator

+ Simulator()
and 3 more...

Architecture

- m_modules
and 9 more...

+ Architecture()
and 31 more...
- printerAlreadyPresent()
and 9 more...

 -m_architecture

(a)

(b)

Fig. 7.2 (a) UML high-level scheme of the DExIMA-Backend tool: collaboration diagram of
Dexima class. (b) Collaboration diagram of Simulator class.

that are Architecture class, containing a description of the entire architecture
to estimate (i.e., which types of blocks/standard cells are present, how they are
connected, etc.) and Technology class, that models the N-P MOS devices used
to implement the standard cells. Focusing on Dexima class aggregations (denoted
with the connection) the Simulator class, which UML collaboration
diagram is reported in Fig. 7.2 (b), shows that it has only one aggregation, that is the
Architecture class, on which the simulator performs the estimations.

158 DExIMA-Backend

7.2 DExIMA-Backend input file

Architecture and system specifications are provided into an input .dex file: an
example is provided in the following Listing 37, that reproduce the structure of a
LiM architecture shown in Fig. 7.3.

1 begin constants
2 BUILT_IN CLOCK 6.0
3 BUILT_IN VDD 1.1
4 BUILT_IN PROB 0.5
5 end constants
6 begin init
7 LIM MEMORYARRAY_1(1,2)
8 end init
9 begin MEMORYARRAY_1

10 begin memdef
11 ROWS 2
12 COLUMNS 2
13 TYPE FLIPFLOP
14 end memdef
15 begin logic
16 end logic
17 begin cells
18 NAND NAND2_10() -> Cell(0,0)
19 NAND NAND2_10() -> Cell(0,1)
20 NAND NAND2_10() -> Cell(1,0)
21 NAND NAND2_10() -> Cell(1,1)
22 end cells
23 begin map
24 Memory(0,0).RD -> NAND2_10(0,0).IN0
25 Memory(0,1).RD -> NAND2_10(0,1).IN0
26 Memory(1,0).RD -> NAND2_10(1,0).IN0
27 Memory(1,1).RD -> NAND2_10(1,1).IN0
28 end map
29 end MEMORYARRAY_1
30 begin map
31 end map
32 begin instructions
33 LIM_INSTRUCTION MEMORYARRAY_1 timing_paths
34 LIM_INSTRUCTION MEMORYARRAY_1 algorithm
35 begin timing_paths

7.2 DExIMA-Backend input file 159

Listing 37 Example of a .dex file for the architecture in Fig. 7.3.

36 PIPELINE 2
37 begin power
38 end power
39 begin path[0]
40 NAND2_10(0,0)
41 end path[0]
42 begin path[1]
43 Memory(0,0)
44 NAND2_10(0,0)
45 end path[1]
46 begin path[2]
47 Memory(0,0)
48 end path[2]
49 end timing_paths
50 begin algorithm
51 PIPELINE 0
52 begin power
53 /LiMcell_0_0/Memory_9/FLIPFLOP_0/RN/0.08{001...}
54 /LiMcell_0_1/Memory_9/FLIPFLOP_0/RN/0.08{001...}
55 /LiMcell_1_0/Memory_9/FLIPFLOP_0/RN/0.08{001...}
56 ...
57 end power
58 begin path[0]
59 end path[0]
60 end algorithm
61 end instructions
62 begin bus
63 BL[0](2);100e-9;100e-9;1;{0000001111000000000000000}
64 /LiMcell_0_0/Memory_9/NAND_1/IN1/
65 /LiMcell_1_0/Memory_9/NAND_1/IN1/
66 BL[1](2);100e-9;100e-9;1;{0000111111000000000000000}
67 /LiMcell_0_1/Memory_9/NAND_1/IN1/
68 /LiMcell_1_1/Memory_9/NAND_1/IN1/
69 end bus
70 begin code
71 algorithm 1
72 end code

The file is organized in the following sections:

160 DExIMA-Backend

MC

CK WL BL RN

OC

S00

LiM0

MC

CK WL BL RN

OC

S00

LiM0

MC

CK WL BL RN

OC

S00

LiM0

MC

CK WL BL RN

OC

S00

LiM0

LiMcell_0_0 LiMcell_0_1

LiMcell_1_0 LiMcell_1_1

Fig. 7.3 Toy example of a LiM architecture and the associated DExIMA file in Listing 37.

• begin constants contains the values of the clock period, the supply voltage
(VDD) and the default switching probability for the dynamic power estimation;

• begin init declares the blocks belonging to the top-level entity, so the LiM
array or other Near-Memory circuits. A LiM array is instantiated by declaring
its name, parallelism, and log2 of the total number of rows, which are the bits
required to address the memory. For example, a 2-bit and 2 rows LiM array
named MEMORYARRAY_1 is written as LIM MEMORYARRAY_1(1,2);

• begin MEMORYARRAY_1 defines the structure of the LiM array. This section is
divided into four subsections that are begin memdef, declaring the memory
size and the memory element type, begin logic and begin cells, where
the IRL and LiM Cells sub-blocks are instantiated and begin map, where all
the blocks are connected. For instance, in the architecture shown in Fig. 7.3,
there is a NAND gate for each LiM Cell directly connected to the output
of the memory cell. Through the -> operator inside the begin cells sec-
tion, DExIMA-Backend puts the specified logic block inside the cell, that
is addressed with two indexes specified in round brackets. The connections
between outputs and inputs are identified again with the -> operator in the
begin map section;

7.2 DExIMA-Backend input file 161

• begin map, similarly to the MEMORYARRAY_1 case, describes the connections
between the top-level blocks;

• begin instructions contains data related to the algorithm executed in
the simulation. This section always contains two instructions defined as
LIM_INSTRUCTION, called timing_paths and algorithm respectively. In
timing_paths, DExIMA-CAD writes down all the paths inside the LiM array
needed by DExIMA-Backend to perform the critical path computation: in the
example proposed in Fig. 7.3, the total number of paths are 3, involving the
memory cell, the NAND gate and both. In algorithm instead, DExIMA-CAD
reports the waveforms and the toggle rates (TRs) parsed from the LiM array
.vcd file for each time instant. These data are specified in a hierarchical way,
meaning that each pin of each module of the LiM array is clearly defined. For
instance, at line 53 of Listing 37, the toggle rate (i.e., the number between the
last forward slash "/" and the curly bracket "{") and the waveform of signal RN
(the bit sequence included inside the curly brackets) of the FLIPFLOP_0 cell
inside the Memory_9 component of LiMcell_0_0 are unequivocally defined;

• begin bus reports the data needed to perform the bus consumption estimation.
The estimation of the bus performance is made with Ngspice and requires
parameters like the connection name, the width, the length, the metal layer
type, and the wave transitions of the chosen connection. DExIMA-CAD
handles this part and the fundamental parameters are asked to the user utilizing
some graphical dialogs. The wave transitions are derived from the top-level
.vcd file and written inside the .dex file following a similar approach to the
instructions part. In lines 63 and 66 of Listing 37, the BL signal is selected
for bus analysis, of which the bit index (indicated inside "[]"), the parallelism
(indicated inside "()"), the width (first value after ";"), the length (second value
after ";"), the metal layer (third value after ";") and the bit sequence for each
time instant (last field, indicated inside "{}") are specified. Note that, for
each signal chosen for the bus analysis, DExIMA-CAD also specifies the LiM
internal blocks to which the considered signal is connected (lines 64-65 and
67-68): this is required for estimating the impact of the internal memory bus,
as discussed in subsection 7.3.9;

• begin code specifies which instruction and how many times is executed.

162 DExIMA-Backend

Starting from this file, DExIMA-Backend is able to create a model of the architecture.
To accomplish this purpose, the Compiler class and its collaborators take care
of the .dex code parsing, code syntax checking, mapping, error handling, and
compilation.

7.2
D

E
xIM

A
-B

ackend
inputfile

163Fig. 7.4 Collaboration diagram of the Compiler class.

164 DExIMA-Backend

The aggregate classes are shown in Fig. 7.4, and their functions are the following:

• The CodeParser class, parses the code section of the .dex file containing
information on which operation and how often it is executed.

• The MathParser class parses and computes the math operations written
inside the .dex source file.

• The InitParser class parses the initialization section of the .dex file,
indicating the hardware blocks instantiated inside the design, their parallelism,
the LiM array sizes, etc.

• The MapParser class parses the map section of the .dex file that specifies
how the blocks of the design are connected.

• The InstructionsParser class parses the instruction section of the .dex
file. This section is essential since it provides the data paths for the critical
path calculations and the switching activity information for each node if the
back-annotation process is activated.

• The ConstantsParser class parses the constants section of the .dex file,
containing some constant values that are used during the performance evalua-
tion. These constants can be, for instance, the clock period, the default toggle
rate, the supply voltage, etc.

• The LimParser class parses the LiM section of the .dex file. The LiM
section describes, if present, the main characteristics of the LiM array, in
particular the number of rows/columns, the logic blocks of the cell and IRL,
and how they are connected.

• The BusParser class parses the bus section of the .dex file, where infor-
mation about the parallelism, the waves, and the width and length of the bus
interconnection are specified.

All these parser classes inherit from a superclass called Parser class. Eventual
errors are handled by the CompilerError class that is in charge of identifying
the error, telling the user its nature, and specifying the erroneous line of the .dex file
and, possibly, suggesting a correction.

7.2 DExIMA-Backend input file 165

7.2.1 The Technology class

The Technology class has a fundamental role in the DExIMA-Backend tool
since it models the technology used to implement the circuits. The UML class
representation is reported in Fig. 7.5. Starting from a technological file that contains

Technology

- m_tech_path
- m_tech
- m_built_in
- m_switching_enable
- m_Vdd
- m_Aspect_ratio
- m_Cox
- m_Leff
- m_Beta
- m_Inter_over
and 24 more...

+ Technology()
+ ~Technology()
+ clear()
+ set_built_in()
+ load_and_compute()
+ compute_Cjs()
+ compute_Cjd()
+ compute_Cdd()
+ compute_Css()
+ compute_Cgg()
and 29 more...
- check_tech_par()
- check_built_in_par()
- load_tech_file()
- compute_file_name()
- change_default_par()
- compute_tech_parameters()
- compute_Cox()
- compute_Leff()
- compute_Lmos()
- compute_dL_dW()
and 10 more...

Fig. 7.5 UML class diagram of the Technology class.

the useful parameters of the devices, the Technology class models the MOSFET
and its intrinsic characteristics: for instance, the equivalent capacitances of the
MOSFETs are modeled by means of compute_Cjs, compute_Cjd, compute_Cdd,
compute_Css, compute_Cgg, compute_CgsOvl, compute_CgdOvl that refer to
source/drain junction capacitances, drain-drain, source-source, gate-gate intrinsic self
capacitances and gate-source, gate-drain overlap capacitances. These capacitances

166 DExIMA-Backend

are fundamental to estimating the dynamic power and delay of the standard cells, so
precise estimations are needed: this part is discussed in detail in subsection 7.3.4. A
technology source file content example is reported in Table 7.1 for the 45nm CMOS
technology. These parameters are extracted by the BSIM4 model of the device and
are used in the calculations explained from section 7.3.

Table 7.1 Parameter list of the 45nm CMOS technology.

Parameter Value Meaning
Year 2005 -
epsox 3.9 Relative dielectric constant of

the oxide.
Lgate 5.00E-08 Nominal channel length.
Leff 2.25E-08 Effective channel length.
Xj 1.98E-08 Junction depth of the S/D.

Aspect_ratio 2.045 P-N transistor aspect ratio.
Vdd 1.1 Supply voltage (V).

m_Wn 9.00E-08 Minimum transistor width
(m).

Cox 0.03029 Oxide capacitance (F/m2).
Ion 1340 On Current (A/m2).
Ioff 1.18E-01 Off Current (A/m2).

Igate 1.28E-02 Gate Current (A/m2)

CJ0N 0.0005 NMOS: Zero bias source
bottom junction capacitance

per unit area (F/m2).
CJ0P 0.0005 PMOS: Zero bias source

bottom junction capacitance
per unit area (F/m2).

CJSWN 5.00E-10 NMOS: Source sidewall
junction capacitance per unit

periphery (F/m).
CJSWP 5.00E-10 PMOS: Source sidewall

junction capacitance per unit
periphery (F/m).

7.2 DExIMA-Backend input file 167

CGD0 1.10E-10 Gate-Drain overlap
capacitance (F/m)

CGS0 1.10E-10 Gate-Source overlap
capacitance (F/m)

MJN 0.5 NMOS: Source bottom
junction capacitance grading

coefficient.
MJP 0.5 PMOS: Source bottom

junction capacitance grading
coefficient.

MSWN 0.33 NMOS: Isolation-edge
sidewall source junction

capacitance grading
coefficient.

MSWP 0.33 PMOS: Isolation-edge
sidewall source junction

capacitance grading
coefficient.

PBN 1 NMOS: Source/Drain bottom
junction built-in potential.

PBP 1 PMOS: Source/Drain bottom
junction built-in potential.

PBSWN 1 NMOS: Isolation-edge
sidewall source junction

built-in potential.
PBSWP 1 PMOS: Isolation-edge

sidewall source junction
built-in potential.

SDDiffusionLength 0 Length of the Source/Drain
diffusions (m).

dlc 3.75E-09 Delta L for capacitance
model (m).

Vth0 0.322 Long channel threshold
voltage at Vbs = 0 (V).

168 DExIMA-Backend

cgdl 2.65E-10 Overlap capacitance between
gate and lightly-doped drain

region (F/m).
meto 0 Metal overlap in fringing

field.
cgsl 2.65E-10 Overlap capacitance between

gate and lightly-doped source
region (F/m).

Ndep 3.40E+18 Channel doping
concentration at depletion

edge for zero body bias
(m−3).

k1 0.4 First-order body-bias
coefficient.

k2 0 Second-order body-bias
coefficient.

w0 2.50E-06 Narrow width coefficient.
k3b 0 Body effect coefficient of K3.
a0 1 Non-uniform depletion width

effect coefficient.
ags 0 Gate-bias dependence of

Abulk.
b0 0 Bulk charge coefficient due to

narrow width effect.
b1 0 Bulk charge coefficient due to

narrow width effect.
keta 0.04 Body-bias coefficient for

non-uniform depletion width
effect.

lpeb 0 Lateral non-uniform doping
effect on K1.

clc 1.00E-07 CLC and CLE consider the
channel-length modulation.cle 6.00E-01

7.2 DExIMA-Backend input file 169

VFBCV -1 Flatband voltage for capMod
= 0 (V).

Tox 1.14E-09 Oxide thickness (m).
llc 0 Coefficient of length

dependence for CV channel
length offset.

lwc 0 Coefficient of width
dependence for CV channel

length offset.
lwlc 0 Coefficient of length and

width cross-term dependence
for CV channel length offset.

xl -2.00E-08 Channel length offset due to
mask/ etch effect (m).

lln 1 Power of length dependence
for length offset.

lwn 1 Power of width dependence
for length offset.

xw 0 Channel width offset due to
mask/etch effect (m).

wlc 0 Coefficient of length
dependence for CV channel

width offset.
wwc 0 Coefficient of width

dependence for CV channel
width offset.

wwlc 0 Coefficient of length and
width

cross-term dependence for CV
channel width offset.

dwc 5.00E-09 Channel-width offset
parameter for CV model (m).

NF 1 Number of fingers in the
device.

170 DExIMA-Backend

wln 0 Power of length dependence
of width offset.

wwn 0 Power of width dependence of
width offset.

cjswgs 3.00E-10 Gate-side source junction
capacitance per unit width

(F/m).
cjswgd 5.00E-10 Gate-side drain junction

capacitance per unit width
(F/m).

as 0 Source area (m2).
ps 0 Source periphery (m).
ad 0 Drain area (m2).
pd 0 Drain periphery (m).

At the beginning of the operations, inside the Technology class, the technol-
ogy file is parsed and an internal model of the device is created, then the computations
can start. Many classes use the technology object, each of which involves calcu-
lations of the performance, as discussed later. For instance, the STDCell class,
CompositeGate class and MultibitBlock class are the ones responsible for
the estimations of the standard cells, composite cells (i.e., cells composed of multiple
standard cells) and multibit blocks (e.g., registers, adder, multipliers, etc.), respec-
tively. These classes need a precise model of the technology devices, so they strictly
depend on the Technology class.Other objects that have a strict relation with the
Technology class, are the following:

• The FlipFlopArchitecture class builds the memory model, organized
as an array of flip-flops or, alternatively, SRAM cells. Up to present, DExIMA
is capable of estimating the performance of a memory array made of flip-flops
and SRAMs: the capability to implement other arrays will be expanded in the
future.

• The Architecture class builds the architecture model, comprehending the
LiM and, possibly, other Near-Memory logics.

7.2 DExIMA-Backend input file 171

• The LiM class, as suggested by its name, build the model of the LiM array,
linking and mapping the LiM cells, the IRL, etc.

• The LiMPrinter class and Printer are the corresponding printer classes
of the LiM and a generic block (standard cell, composite gate, multibit block),
respectively. The concept of the printer class will be explained later in subsec-
tion 7.2.2.

• The Load class represents the model of a capacitive load that can be inserted
in the output of a generic block if needed.

• The Dexima class is the main file class of the DExIMA software that is in
charge of handling all the evaluation phases (compilation, simulation, CPU
usage time measurements, etc.), as discussed previously.

7.2.2 Concept of the Printer class

The Printer class is intended as a superclass from which multiple classes inherit
its properties. In particular, it is the superclass of the subclasses that implements
a component or a circuit, so the STDCell class, CompositeGate class, Mul ⌋

tibitBlock class and LiMPrinter class. The Printer class is extremely
advantageous because through the inheritance concept, its methods can be declared
as virtual, and they can be overridden by the subclasses, in particular the ones
responsible for computing the performance values. In this way, there is no need
to differentiate between the subclasses in the performance estimation phases. The
inheritance diagram of the Printer class is shown in Fig. 7.6: the inheritance is
indicated with the connection . The Printer class defines the name of the
component model by means of m_printer_type variable (e.g., NAND2_X1) and
the interface of the component itself. Five vectors of strings specify the interface of
the block:

• m_port_names contains the names of the ports used by the component in the
map section;

• m_port_type specifies the ports directions (input or output);

• m_port_parallelism defines the parallelism of the ports;

172 DExIMA-Backend

Fig. 7.6 Inheritance graph of the Printer class.

• m_port_multiplicity is used to specify how many ports are instantiated;

• m_parameters defines the parameters needed by the block at compile time,
e.g., considering the multiplier block, the instance requires at least the number
of bits of input and output ports;

• m_port_fanin specifies the fanin value of each input port.

7.2 DExIMA-Backend input file 173

These vectors are initialized inside the constructor of a block that can be a STD ⌋

Cell, CompositeGate or MultibitBlock and the position of the parameters in
the vectors is related to the index of the m_port_names vector. An example of a
ripple-carry adder is shown in Listing 38.

Listing 38 Ripple-carry adder definition of the initialization vectors.

1 m_printer_type = _componentName;
2 if (_componentName == RCA_KEYWORD)
3 {
4 m_parameters = {"PARALLELISM"};
5 _inputs = {"A", "B", "AS"};
6 _outputs = {"SUM", "CO"};
7 m_port_parallelism = {"PARALLELISM", "PARALLELISM", "1", "PARALLELISM",

"1"};↪→

8 m_port_multiplicity = {"1", "1", "1", "1", "1"};
9 }

10 for (const auto &x: _inputs)
11 {
12 m_port_names.push_back(x);
13 m_port_type.emplace_back("input");
14 }
15 for (const auto &x: _outputs)
16 {
17 m_port_names.push_back(x);
18 m_port_type.emplace_back("output");
19 }

The ripple-carry adder has only one parameter called PARALLELISM, which
specifies the parallelism of the "A", "B" and "SUM" ports, as indicated in the m ⌋

_port_parallelism variable. PARALLELISM is defined in round brackets near
the component name in the Init section of the input .dex file, e.g. RCA Adder(16).
The multiplicity parameter specifies the number of ports at the specific index: if, for
instance, the multiplicity for port "A" in the RCA example is equal to 2, DExIMA
automatically creates two ports "A" named "A0" and "A1". The multiplicity is
particularly useful in blocks like N-via multiplexers. The fanin vector m_port_fa ⌋

nin is defined in the component instantiation since it depends on the technology and
the model.

174 DExIMA-Backend

7.2.3 The STDCell class

The STDCell class is the main class of DExIMA-Backend, which contains and
describes all the calculations needed to estimate the performance of a standard cell
at the architectural-level. Starting from a netlist description at the transistor-level,
which is fundamental for mapping the connections between the MOSFETs and
defining their sizes (widths and lengths), the class can build an internal model of
the standard cell. In Fig. 7.7, the methods and attributes of the STDCell class

Fig. 7.7 UML diagram representation of the STDCell class.

are shown. The attributes are in the first part delimited by a horizontal line, while
the methods are located in the remaining part. The high-level scheme of the related
modules of the STDCell class is shown in Fig. 7.8. As highlighted by this scheme,

7.2 DExIMA-Backend input file 175

the STDCell class has an important aggregation to the STDCellAttribute ⌋

s class. This class, instantiated as the private attribute called valuesToSave,
contains important parameters for the standard cell, such as the netlist description,
the inputs/outputs lists, the output nodes, the minimum width of the transistors,
the value of the static power, short circuit energy and area, and finally the chosen
path containing the lists of internal nets involved in the critical path. Similarly, the
struct MOS is a composition of the STDCellAttributes class and uniquely
indentifies the connections of a MOS object (by means of Gate, Drain, Source, Bulk
attributes), the name of the MOS, the size (width and length) and the MOS type
(NMOS or PMOS). A reference to the technology object, together with a string, are

STDCell
- alphan
and 9 more...
+ STDCell()
and 27 more...
- identifyMinimumWidth()
and 9 more...

Printer
m_printer_type
and 6 more...
+ Printer()
and 13 more...
create_fanin_vector()
and 9 more...

Technology
- m_tech_path
and 33 more...
+ Technology()
and 38 more...
- check_tech_par()
and 19 more...

 #m_tech

STDCellAttributes
+ _netlistDescription
and 9 more...

 -valuesToSave

Fig. 7.8 Related class elements of the STDCell class.

passed to the constructor STDCell(Technology &tech, const std::string
&filename). The technology object contains all the parameters and functions for
the technological part needed by STDCell class to perform evaluations. The co ⌋

nst std::string &filename instead refers to the file name containing the netlist

176 DExIMA-Backend

description at transistor-level of the selected standard cell. Inside the constructor
class, several operations are made:

1. Definition of the input/output pins of the cell. Inside the valuesToSave
variable of type STDCellAttributes, the vectors containing the input and
output names are initialized.

2. Netlist parsing. The netlist is parsed calling the method void readSpe ⌋

ctre() and saved inside the std::vector<MOS> _netlistDescription
variable, stored inside the valuesToSave object. Moreover, each MOS is
also mapped by connecting its terminals to the internal nets of the standard
cells, replicating the input Spectre file.

3. Identification of the intermediate outputs inside the netlist. An intermediate
output is defined as the common node between a PMOS and an NMOS
transistor. Intermediate outputs are fundamental, particularly for the critical
path, dynamic power, and switching activity calculations. An example of
the intermediate output concept and the critical path calculation is shown in
Fig. 7.26: the standard cell is represented as a graph, which nodes are the
inputs, intermediate outputs, and outputs of the standard cell itself, and the
critical path is estimated as the longest path between one input and output.

4. Identification of the minimum transistor width. If not provided, the minimum
width is identified by parsing the initial netlist and finding the transistor having
the minimum width.

5. Memorize the analyzed standard cell. To speed up the execution time of
DExIMA-Backend, the parsed standard cell and its parameters described
inside the STDCellAttributes object are saved inside a shared map named
parsedBlocks. If a similar standard cell is instantiated again, the values
are fetched directly from this map, avoiding useless and time-consuming
calculations.

6. Definition of the Printer attributes. Some common parameters are set in
the Printer base class, such as the ports’ name, their parallelisms, and the
direction (input/output).

7.2 DExIMA-Backend input file 177

Routine to compute the performance

ModulePerformance *STDCell::compute_performance(Module &module, ⌋

const float &sPower) is the most important method that is in charge of evaluat-
ing the performance of the standard cell. It returns a ModulePerformance* object
that essentially contains all the information about the standard cell regarding power,
area, delay, etc. The C++ code for compute_performance method is reported in
Listing 39, while the call graph is shown in Fig. 7.10.

1 ModulePerformance *STDCell::compute_performance
2 (Module &module, const float &sPower)
3 {
4 //computes the performance
5 vector<string> par;
6 vector<float> fanout;
7 //Base temp variables
8 ModulePerformance *performance = nullptr;
9 float dynamicEnergy{0};

10 float delay{0};
11 float contamination{0};
12 float clockOutput{0};
13 float setup{0};
14 float hold{0};
15 for (auto &output: valuesToSave->_outputs)
16 {
17 //push back the fanout values
18 fanout.push_back(module.get_fanout(output, 0));
19 }
20 //*** Computation of the performance parameters ***
21 //if the static power is not already present
22 //in the map of parsed blocks
23 if
24 (sPower == -1.0 && valuesToSave->staticPower == -1.0)
25 {
26 valuesToSave->staticPower =
27 netlistStaticPower();
28 }
29 else if
30 (sPower != -1.0 && valuesToSave->staticPower == -1.0)
31 {
32 valuesToSave->staticPower = sPower;

178 DExIMA-Backend

Listing 39 Code of the compute_performance method.

33 }
34 switchingActivityPropagation(module.getPowerAttributes());
35 dynamicEnergy = netlistDynamicEnergy(fanout);
36 //if the area is not already present
37 //inside the map of parsed blocks
38 if (valuesToSave->area == -1.0)
39 {
40 valuesToSave->area = netlistArea();
41 }
42 contamination = netlistDelay(fanout);
43 //Create the object and return it
44 performance = new
45 ModulePerformance(valuesToSave->staticPower,
46 dynamicEnergy, valuesToSave->area, contamination);
47 //Insert the contamination delay
48 performance->insert_timing_attribute
49 (CONTAMINATION, contamination);
50 if
51 (contains({FLIPFLOP_KEYWORD, FLIPFLOPC2MOS_KEYWORD,
52 FLIPFLOP_KEYWORD, FLIPFLOPCELL_KEYWORD},
53 m_printer_type))
54 {
55 clockOutput = clockToOutput(fanout);
56 setup = setupTime(fanout);
57 hold = holdTime(fanout);
58 performance->insert_timing_attribute
59 (SETUP, setup);
60 performance->insert_timing_attribute
61 (HOLD, hold);
62 performance->insert_timing_attribute
63 (CK_TO_OUTPUT, clockOutput);
64 }
65 return performance;
66 }
67

Inside this method, several calculations are made:

1. Estimation of the standard cell fanout. To correctly calculate the performance,
it is necessary to know if the standard cell is connected to other blocks and
the value of the output load. Therefore, the fanout of the cell is computed

7.2 DExIMA-Backend input file 179

A B

Input capacitance
Fig. 7.9 Fanout evaluation example: two inverters.

considering the connections to other cells, and this information is stored inside
the Module class, which is passed as a reference to the compute_perfo ⌋

rmance method. Considering, for instance, two NOT gates connected as in
Fig. 7.9, the fanout of inverter A is equal to the equivalent input capacitance
of inverter B. The capacitances are estimated by DExIMA-Backend using the
model discussed in subsection 7.3.4. The corresponding code for the fanout
calculation is reported in Listing 39, lines 15-20.

2. Calculation of the static power. At this point, the performance estimation be-
gins, and the first figure of merit is the static power. In lines 23-33 of Listing 39,
static power can be both computed by means of netlistStaticPower()
method or set by a variable named sPower: this last variable is passed to
the compute_performance method, which will be different from -1 when
the static power of that particular block was already evaluated since it always
assumes the same value. The concept of sPower variable reduces computa-
tional efforts, improving performance. The method netlistStaticPower()
evaluates the leakage of the cell, following the approach explained in subsec-
tion 7.3.3. In the call tree graph shown in Fig. 7.10, netlistStaticPower
estimates the leakage current, that considers the contributions of the Igate and
Io f f , provided by the Technology object.

3. Propagation of the switching activity. At line 34 of Listing 39, the switching
activities are propagated inside the netlist by means of the switchingActi ⌋

vityPropagation() method. It takes in input a power_attribute object
that contains information about the pin, the toggle rate, the combination of
bits associated with that pin (obtained after the simulation), and the hierarchy
of the signal in the project. The switching activities, indicated with αi where i
indicates a net, are fundamental for estimating the dynamic energy and power.
The switching activity αi of each node is calculated considering the back-
annotation process, and in particular, the exact waveform of each input/output
provided in the .vcd file. The values of each input are propagated inside the

180 DExIMA-Backend

cell, and each MOS can be on or off depending on the value on its gate. For
each combination, DExIMA-Backend propagates the inputs and derives the
net states: if the net state is different from the previous state, the number of
toggles on that net increments. The value of αi is then obtained by dividing
the number of toggles on the net by the total number of toggles. Otherwise,
when a worst-case estimation is performed without the simulation process, a
constant toggle rate is set for each net specified inside the input .dex file. In the
scheme in Fig. 7.10, the method switchingActivityPropagation calls the
switchingActivityMemoryState and Technology::get_probability
methods. The first one calculates the switching activities for the cells com-
posed of synchronous memory elements, i.e., a flip-flop or a latch. In this
particular case, the switching activities are propagated considering the previous
values stored in the memory node of the netlist; in all the other cases, the
switchingActivityMemoryState method propagates the switching activi-
ties normally by means of the propagateInputs method. All the switching
activities of each net are written inside a private map. More details about the
switching activity calculations are provided in subsection 7.3.5.

4. Estimation of the netlist dynamic energy. The dynamic energy is composed of
two contributions: the first comes from the charge/discharge of the internal
net capacitances, while the second considers the short circuit current. The
equation of the dynamic energy due to the capacitance charge/discharge is
given by:

Edyn =
V 2

dd
2 ∑

∀netsi

(Cloadi ×αi) = Pdyn ×Tck (7.1)

Where Vdd is the supply voltage, Cloadi is the equivalent capacitance that is
located on the considered net, αi is the switching activity on the net, and Tck

is the clock period. The Vdd and Tck are defined from the technology node
and the .dex file respectively, while Cloadi and αi are computed in STDCell
class. Instead, the short circuit energy considers the current between PMOS
and NMOS during switching of the output: this contribution is discussed
in detail in subsection 7.3.2. At line 35 of Listing 39, DExIMA-Backend
considers each net of the standard cell and evaluates both parameters. The
fanout vector is passed to the netlistDynamicEnergy() to consider poten-
tial connections to other blocks in output. In Fig. 7.10, the entire call tree of
the netlistDynamicEnergy() method is shown. The short circuit energy

7.2 DExIMA-Backend input file 181

estimation evaluates the fanin of the block, the capacitances of each net, and
the internal functions for the short circuit computational model (see subsec-
tion 7.3.2). Similarly, the dynamic energy of the charge/discharge capacitances
considers again the fanin and the switching activity values, already written
inside the map. More details about estimating the dynamic energy and power
are provided in subsection 7.3.6.

5. Estimation of the standard cell area. If the area was not already been evaluated
for the considered standard cell (meaning that the valuesToSave->area is
different from -1), it is evaluated inside the netlistArea() method. The
computational model is explained in subsection 7.3.7.

6. Delay calculation. In lines 42-64, different delays are evaluated. Based
on the standard cell type (combinational or sequential), the values of the
contamination, clock to output, setup, and hold delays are computed with
methods netlistDelay, clockToOutput, setupTime and holdTim ⌋

e, respectively. In Fig. 7.10, all the standard cells firstly identify all the
paths inside the block (with identifyPaths) and evaluate their delays (with
pathDelayCalculation). The path identifications rely on the graph object
that finds all the paths between two distinct nodes. Instead, the delay is
computed considering the minimum current on the node and uses the on-
current parameter: further details on the delay calculation model are discussed
in subsection 7.3.8.

Each performance parameter is passed to the performance object, as written in line
48 of Listing 39.

182
D

E
xIM

A
-B

ackendFig. 7.10 Call tree of the compute_performance method.

7.2 DExIMA-Backend input file 183

7.2.4 The CompositeGate and MultibitBlock classes

Only some basic gates can be represented as a simple standard cell. However, there
are cases in which a gate is composed of multiple standard cells, so a proper class
is needed to describe these objects. The CompositeGate class comes in handy:
its collaboration diagram is shown in Fig. 7.11. The CompositeGate class has a

Fig. 7.11 Collaboration diagram for the CompositeGate class.

similar behavior to the STDCell class since it starts by parsing a Spectre netlist.
However, this time, the netlist contains multiple standard cells described at transistor-
level. For instance, a Spectre netlist of a flip-flop with enable composite gate will be
composed of a DFF_X1 with an OAI21_X1 and a NAND2_X1 cells, as reported in
Listing 40.

184 DExIMA-Backend

Listing 40 Extract of the flip-flop with enable composite gate Spectre netlist.

1 // Library name: LiM
2 // Cell name: CELL
3 // View name: schematic
4 I3 (net1 CK RN RD net3) FLIPFLOP
5 I5 (EN WR net2) NAND
6 I4 (net3 EN net2 net1) OAI21
7

Inside the constructor of the CompositeGate class, the Spectre netlist will
be parsed, and inputs, outputs, and parallelism of the ports will be defined exactly
as the STDCell class. As shown in Fig. 7.11, the CompositeGate class has
a link with the BlockUtilities class, a fundamental object that provides the
methods and tools for the performance estimations of more complex blocks than the
standard cells, so the composite gates and the multibit blocks. Similarly to the ST ⌋

DCell class, also in CompositeGate class and MultibitBlock class there
is ModulePerformance *compute_performance method. However, this time the
BlockUtilities class is called, which properly redirects the calculations to the
STDCell class. The collaboration diagram of the BlockUtilities class is
shown in Fig. 7.12. The usage of the BlockUtilities class is summarized in
the following.

1. Creation of the subcomponents. During the architecture creation inside the
CompositeGate, MultibitBlock and FlipFlopArchitecture classes,
the subcomponents are instantiated by calling the void createComponent
function, that instantiates a STDCell or CompositeGate object. For instance,
in a ripple-carry adder, the instantiated objects will be full adders that belong
to the standard cell category, while in a register with enable, multiple Compo ⌋

siteGates of flip-flop with enable cells are required. The calling tree of the
void createComponent method is shown in Fig. 7.13 (a).

2. Representation of the CompositeGate/MultibitBlock as a directed graph.
BlockUtilities class’s method void connectGraph() is called by C ⌋

ompositeGate class, MultibitBlock class and FlipFlopArchitec ⌋

ture class at the moment of the composite block creation. The calling tree
of the void connectGraph function is shown in Fig. 7.13 (b). In the graph
representation, the nodes are the subblocks or the input/output pins, while the

7.2 DExIMA-Backend input file 185

Fig. 7.12 Collaboration graph of the BlockUtilities class.

edges are the connections between the subblocks composing the Composit ⌋

eGate or the MultibitBlock. This representation is useful to estimate the
critical path of the block since the delay calculation simply becomes a Depth
First Traversal algorithm, finding all the possible paths between two nodes (an
input and an output). This part will be deeply explained in subsection 7.3.8.

3. Associate the fanout to the block. When the compute_performance is called
in a CompositeGate, MultibitBlock or FlipFlopArchitecture, the
fanout is computed and associated to the top-level block for dynamic power
and delay calculations.

4. Computation of the subblocks performance. The gatePerformance method
allows estimating the performance of the subblocks. It takes in input a st ⌋

d::vector <power_attribute> &pa that contains the information of the

186 DExIMA-Backend

(a)

(b)
Fig. 7.13 (a) Call graph of the void BlockUtilities::createComponent function. (b)
Call graph of the void BlockUtilities::connectGraph function.

switching activities and toggle rates for each pin, extracted from the power
section of the input .dex file. In this method, a for cycle considers all the
subcomponents composing the complex block and calls the ModulePerfor ⌋

mance* compute_performance method, explained in deep in section 7.2.3,
saving the results inside a map of ModulePerformance* objects.

The MultibitBlock class is based on a similar behavior of the CompositeGate
class. However, instead of using a procedure of netlist parsing, the architecture
is created inside by means of the void MultibitBlock::createArchitecture
method. The reason behind this choice is that, differently from the Composite ⌋

Gate objects, MultibitBlock objects have structures that strictly depend on the
parallelism, so a generic procedure must be taken into account. For instance, in the
snippet of code for the ripple-carry adder model generation, shown in Listing 41,
the subblocks are created in lines 9-10 and connected in lines 15-28. Finally, the
components that contribute to the timing calculations are set with Util.setCo ⌋

mponentsForTiming(). This last function, if called without arguments, sets all
the components instantiated as belonging to the critical path calculations; but s ⌋

etComponentsForTiming can also be used with arguments that specify a subset
of components: this is extremely helpful in regular and complex structures with

7.2 DExIMA-Backend input file 187

many subblocks since by selecting a smaller subset, it is possible to reduce the delay
calculation execution time.

1 //create the vector of internal blocks connections
2 std::vector<std::vector<std::string>> internalBlocksConnections;
3 if (_componentName == RCA_KEYWORD)
4 {
5 //if the component is an RCA
6 for (int i = 0; i < parallelism; i++)
7 {
8 //create the full adders
9 Util.createComponent("FullAdder_" + to_string(i), new STDCell(m_tech,

FULL_ADDER_KEYWORD));↪→

10 Util.createComponent("EXOR_" + to_string(i), new STDCell(m_tech,
XOR_KEYWORD));↪→

11 }
12 for (int i = 0; i < parallelism - 1; i++)
13 {
14 //for each component, set the connections
15 Util.getComponent("EXOR_" + to_string(i))->setConnection({_inputs[1] + "["

+ to_string(i) + "]", _inputs[2], "out_xor_" + to_string(i)});↪→

16 if (i == 0)
17 {
18 Util.getComponent("FullAdder_" + to_string(i))->setConnection({_inputs[0]

+ "[" + to_string(i) + "]","out_xor_" + to_string(i),"net_Cin_" +
to_string(i),_outputs[0] + "[" + to_string(i) + "]",_inputs[2]});

↪→

↪→

19 }
20 else
21 {
22 Util.getComponent("FullAdder_" + to_string(i))->setConnection({_inputs[0]

+ "[" + to_string(i) + "]","out_xor_" + to_string(i),"net_Cin_"
+to_string(i),_outputs[0] + "[" +to_string(i) + "]","net_Cin_" +
to_string(i + 1)});

↪→

↪→

↪→

23 }
24

25 }
26 Util.getComponent("EXOR_" + to_string(parallelism -

1))->setConnection({_inputs[1] + "[" + to_string(parallelism - 1) +
"]", _inputs[2], "out_xor_" + to_string(parallelism - 1)});

↪→

↪→

188 DExIMA-Backend

Listing 41 Snippet of code of the createArchitecture method for a ripple-carry adder
model.

27 Util.getComponent("FullAdder_" + to_string(parallelism -
1))->setConnection({_inputs[0] + "[" + to_string(parallelism - 1) +
"]","out_xor_" + to_string(parallelism-1),"net_Cin_" +
to_string(parallelism - 1),_outputs[0] + "[" + to_string(parallelism -
1) + "]","CO"});

↪→

↪→

↪→

↪→

28 //set the components for timing calculations
29 Util.setComponentsForTiming();
30 }

7.2.5 The Module class

Each element of the architecture is described as a module, meaning that inside
DExIMA, each component (STDCell, CompositeGate, MultibitBlock, Fl ⌋

ipFlopArchitecture) is associated to a Module object. The Module object is
created in the parsing phase or the void BlockUtilities::createComponent
method and contains useful information external from the component model for
the estimation of the performance. The word "external" refers to the data that is
not linked to the component structure but on how the component is connected to
others and how the component is seen from the top-level view. The Module class
contains the value of the fanout for each output pin, the fanin, the parallelism of
each port, the instance name etc. The UML view of the Module class is shown in
Fig. 7.14.

7.2.6 The Lim and the Architecture classes

Memory parameters and specifications are stored and managed by the Lim class.
These are the LiM name and type (e.g., SRAM, FLIPFLOP), the memory dimensions,
the read/write address parallelism, the number of rows and columns, and the modules
to be instantiated inside the LiM array. As shown in Fig. 7.15, the Lim object
contains two maps, one for the modules inside the LiM cells, called memory_array
and the other for the IRL modules (m_modules). The first one is a 4D map that is
addressed by row, column indexes, and the module name, while the second one is
a simple map addressed by the IRL module name: these maps are essential since
they contain the reference to each module that will be addressed in the performance

7.2 DExIMA-Backend input file 189

Module
- m_model
- m_instance_name
- m_code
- m_parameters
- m_inputs
- m_outputs
- fanoutVect
- PA
+ Module()
+ ~Module()
+ clear()
+ push_parameter()
+ insert_input()
+ insert_output()
+ set_fanin()
+ get_fanin()
+ get_fanout()
+ get_fanout()
+ get_parameters()
+ get_instance_name()
+ get_model()
+ get_code()
+ get_port_parallelism()
+ input_already_present()
+ get_input_port_state()
+ set_input_port_state()
+ add_output_fanout()
+ output_already_present()
+ print_info()
+ encode()
+ setPowerAttributes()
+ setPowerAttributes()
+ getPowerAttributes()

Fig. 7.14 Module class collaboration diagram.

estimation phase. Similarly to the Lim class, the Architecture class contains
all the modules and components of the circuit, including the LiM memories: the
collaboration graph of the Architecture class is shown in Fig. 7.16. As can be
seen from the figure, there is also a BusParser object within the Architecture
class. This is because the Architecture class contains the detailed description
of the LiM’s internal components, which is necessary in estimating the contribution
of the internal bus to the LiM, as will be explained later in section 7.3.9.

7.2.7 The Performance class and its inherited classes

The Performance class contains the performance data regarding power, delay,
energy, and area. Performance class is a superclass of other three classes, Arc ⌋

190 DExIMA-Backend

Name Address
Parallelism

Data
Parallelism

#Rows
#Cols

Type

Memory Array
map<int,map<int,map<string,
Module*>>> memory_array

IRL modules
map<string,Module*> m_modules

Lim object

Fig. 7.15 Lim object: high-level scheme

Architecture
- m_modules
and 9 more...
+ Architecture()
and 33 more...
- printerAlreadyPresent()
and 9 more...

Technology
- m_tech_path
and 33 more...
+ Technology()
and 40 more...
- check_tech_par()
and 19 more...

 -m_tech

BusParser
+ processedCombinations
and 1 more...
- t
and 10 more...
+ BusParser()
and 7 more...

 -m_tech

ArchitecturePerformance
- m_clock
and 8 more...
+ ArchitecturePerformance()
and 11 more...
- scale()

 -m_arch_performance

Code
- m_codes
and 1 more...
+ Code()
and 7 more...
- code_instruction_already
_present()

 -m_code -m_bus

Fig. 7.16 Collaboration graph of the Architecture class.

hitecturePerformance class, InstructionPerformance class and Modu ⌋

lePerformance class as shown in Fig. 7.17.
The ArchitecturePerformance class contains the performance of the entire
architecture, as suggested by its methods; the InstructionPerformance class

7.3 Computational model 191

Performance
m_static_power
m_dynamic_energy
m_area
m_delay
+ Performance()
+ ~Performance()
+ set_static_power()
+ set_dynamic_energy()
+ set_area()
+ set_delay()
+ get_static_power()
+ get_dynamic_energy()
+ get_area()
+ get_delay()

ArchitecturePerformance
- m_clock
- m_memories
- m_user_clock
- m_clock_steps
- m_execution_time
- m_average_power
- m_critical_path_name
- m_critical_path_instruction
- m_unit
+ ArchitecturePerformance()
+ ~ArchitecturePerformance()
+ clear()
+ insert_clock_performance()
+ insert_memory_performance()
+ set_critical_path_name()
+ set_critical_path_instruction()
+ set_clock_steps()
+ set_execution_time()
+ set_average_power()
+ set_user_clock()
+ print_output_result()
- scale()

InstructionPerformance
- m_critical_path
- m_path_delays
- m_unit
+ InstructionPerformance()
+ ~InstructionPerformance()
+ clear()
+ insert_path_delay()
+ set_critical_path_name()
+ get_critical_path_name()
+ print_output_result()
- path_already_present()
- scale()

ModulePerformance
- m_power_attributes
- m_timing_attributes
+ ModulePerformance()
+ ~ModulePerformance()
+ clear()
+ get_power_attribute()
+ get_timing_attribute()
+ insert_power_attribute()
+ insert_timing_attribute()
+ power_attribute_already
_present()
+ timing_attribute_already
_present()

Fig. 7.17 Performance class inheritance graph.

contains the performance of a particular instruction. An instruction is defined in the
begin instructions part of the .dex input file, as already explained in section 7.1;
the ModulePerformance class instead, as suggested by its name, contains the
performance results of a single module.

7.3 Computational model

This section explains the model employed within DExIMA-Backend for computing
the performance of CMOS-based circuits.

7.3.1 Model for parallel and series transistors

From the Cadence Virtuoso reference manual, the calculations on parallel MOS
devices for Layout-Versus-Schematic (LVS), parallel transistors having the same
signal on the gate can be collapsed into a single equivalent transistor having a width

192 DExIMA-Backend

and length equal to:

A = ∑
N−1
i=0 Wi ×Li

C = ∑
N−1
i=0

Wi

Li

Weq =
√

A×C

Leq =

√
A
C

(7.2)

For instance two parallel transistors with equal length L1 = L2 = L, that is a condition
that is almost always true in digital circuits, the corresponding width is Weq =

W1 +W2. Similarly, two series transistors having the same input signal on the gate
can be reduced to an equivalent transistor, which dimensions are defined as:

(
W
L

)
eq
=

∏
N−1
i=0

(
Wi

Li

)
∑

N−1
i=0

(
Wi

Li

) (7.3)

Considering the same example with L1 = L2 = L, the width of the equivalent transis-
tor is equal to Weq =

W1W2
W1+W2

and its length is Leq = L.

7.3.2 Short circuit current

Estimating the short circuit current is a challenging task. Normally, it is estimated by
means of simulations and measurements of the peak current between VDD and GND
during a transition of the output. However, DExIMA-Backend cannot simulate the
transient of the circuit and replicate this situation, so an approximation must be taken
into account. The short circuit current estimation is exhaustively discussed in works
[143–146], that implement models with different complexities and accuracy. In
DExIMA-Backend, a trade-off between complexity and accuracy must be considered,
with the clear goal of avoiding models that necessarily require parameters obtainable
only with simulations. The chosen model is presented in [143], based on the α-power
law, i.e., including carrier velocity and saturation effects which are predominant in
short-channel devices. This calculation estimates the short circuit power as the short
circuit transient in a NOT gate. This means that the other gates are reduced to an
equivalent inverter, following the principles explained in subsection 7.3.1. However,
the transistor reduction constitutes a clear approximation of the problem since the

7.3 Computational model 193

gates of the MOS transistors are rarely connected to the same input signal. The
estimation of the short circuit current necessarily requires dynamic simulations of the
gates, which are not possible with DExIMA-Backend, so the results will be affected
by errors. However, the chosen approximation represents a good trade-off between
complexity and accuracy since it gives an indication of the short-circuit component.
The steps to estimate the short circuit current are:

1. Find the equivalent netlist made of only inverters. This operation is performed
considering the intermediate outputs of the standard cell (see subsection 7.2.3)
and by obtaining the equivalent PMOS and NMOS transistors that have in
common the intermediate output net. An example of an AND2_X1 gate reduc-
tion is shown in Fig. 7.18, where WPeq1 = WP1 +WP2, WNeq1 =

WN1WN2
WN1+WN2

,
WNeq2 = WN3 and WPeq2 = WP3.

WN2

WN1

WP1 WP2

WN3

WP3
OUT

OUT’
WNeq1

WPeq1

OUT’

≈
WNeq2

WPeq2

OUT

Fig. 7.18 AND2_X1 gate reduction example for the short circuit power computation.

2. For each inverter in the equivalent netlist, perform the computation of the
short circuit power.

3. Sum all the inverter short circuit power contributions to obtain the final value.

194 DExIMA-Backend

Short circuit current of an inverter

The short circuit current is estimated considering the equations presented in [143].
The starting point is the definition of the drain current ID, that is equal to:

ID =

0, Vgs ≤Vth

k1 (Vgs −Vth)
α/2Vds, Vds <V ′

do

ks (Vgs −Vth)
α , Vds ≥V ′

do

(7.4)

Where α is the velocity saturation index and

kl =
Ido

Vdo (Vdd −Vth)
α/2 (7.5)

ks =
Ido

(Vdd −Vth)
α (7.6)

V ′
do =Vdo

(
Vgs −Vth

Vdd −Vth

)α/2

(7.7)

Ido = ID(Vgs =Vdd) (7.8)

Vdo =Vdsat(Vgs =Vdd) (7.9)

The input voltage is modeled as a ramp, both in rising and falling directions as
reported in Equation 7.10.

Vin =

srt, rising input

Vdd − s f t, falling input
(7.10)

The terms sr and s f are the input slopes, expressed as (V/s). Considering first the
input rising case, the equation of the inverter output is written as:

CL
dVo

dt
=−In (7.11)

So the equation for the output Vo(t) is written as:

Vo(t) =Vdd −
ksn

CLsr

(srt −Vthn)
αn+1

αn +1
, for

Vdd +Vthp

sr
> t >

Vthn

sr
(7.12)

7.3 Computational model 195

Considering Vo(0) = Vdd . Most of the time, the NMOS transistor is in saturation
region during the short circuit, so the Equation 7.12 represents a valid estimate.
During a falling transition, the PMOS operates in linear region in the time interval
defined by n =

Vthn
sr

and tpl =
Vpl
sr

, while it is in saturation in the time interval between

tpl and 1+ p =
Vdd+Vthp

sr
. The Vpl is the voltage in which the PMOS switches from

linear to saturation regions, and it is defined as:

ksn

(
Vpl −Vthn

)αn+1

Vdo,pCLsr (αn +1)
=

(
Vpl −Vthn

Vdd −Vthn

)αp/2

(7.13)

The power during the falling transition is obtained as:

Psc f =Vdd

∫
ip(t)dt =Vdd

[∫ tpl

n
klp

(
Vdd +Vthp − srt

)αp/2
(Vdd −Vo)dt

]
+

+Vdd

[∫ 1+p

tpl

ksp

(
Vdd +Vthp − srt

)αp dt
] (7.14)

Solving the integrals, the final equation for the falling power becomes:

Psc f =
ksnklpVdd

(
srtpl −Vthn

)(αn+αp/2+2)
αnΓ(αp/2+1)Γ(αn)

s2
rCL (αn +αp/2+2)(αn +αp/2+1)(αn +αp/2)Γ(αn +αp/2)

+

+
Vddksp

(
Vdd +Vthp − srtpl

)(αp+1)

sr(αp +1)

(7.15)

Where Γ = (n−1)! is the gamma function. Following a similar approach, also the
rising power is defined:

Pscr =
klnkspVdd

(
s f tnl +Vthp

)(αp+αn/2+2)
αpΓ(αn/2+1)Γ(αp)

s2
fCL (αp +αn/2+2)(αp +αn/2+1)(αp +αn/2)Γ(αp +αn/2)

+

+
Vddksn

(
Vdd −Vthn − s f tnl

)(αn+1)

s f (αn +1)

(7.16)

From the Equation 7.15 and Equation 7.16, the total short circuit power can be
obtained as:

Psc = (Pscr +Psc f) f (7.17)

Where f is the frequency. The tricky part of the short circuit power modeling is
obtaining the value of Vpl , expressed in Equation 7.13, which is a non-linear function.

196 DExIMA-Backend

In DExIMA-Backend, this value is obtained with an iterative procedure based on the
false-position Ridders’ method [147, 148]. The operative steps are the following:

1. Define two initial points x0 and x2 on two different sides of the root.

2. Evaluate the midpoint x1 = (x0 + x2)/2.

3. Find the exponential function such that h(x) = f (x)eax satisfies h(x1) =

(h(x0)+h(x2))/2. The value of a can be found with the following equation:

a =

ln

(
f (x1)− sign[f (x0)]

√
f (x1)2 − f (x0) f (x2)

f (x2)

)
(x1 − x0)

(7.18)

4. Apply the false position method to find a value x3 between x0 and x2. The
equation of x3 is the following:

x3 = x1 +(x1 − x0)
sign[f (x0)] f (x1)√
f (x1)2 − f (x0) f (x2)

(7.19)

The C++ code that implements the Ridders’ method belongs to the STDCell class
and it is the following:

1 float STDCell::findVpl(float cl, float start, float stop, float idon)
2 {
3 //final guess
4 float y1 = functionVpl(stop, cl, idon);
5 //initial guess
6 float y0 = functionVpl(start, cl, idon);
7 //max number of iterations
8 int maxIter = 100;
9 float y2, y;

10 float vpl0, vpl1, vpl;
11 vpl0 = start;
12 vpl1 = stop;
13 //definition of the tollerances
14 float xtol = 1e-12;
15 float ytol = 1e-12;
16 for (int i = 0; i < maxIter; i++)
17 {

7.3 Computational model 197

Listing 42 Ridders’ method implementation for Vpl computation.

18 //definition of the middle point
19 float vpl2 = (vpl0 + vpl1) / 2;
20 //evaluation in the middle point
21 y2 = functionVpl(vpl2, cl, idon);
22 vpl = vpl2 + (vpl2 - vpl0) * sign(y0 - y1) * y2 / sqrt(y2 * y2 -

y0 * y1);↪→

23 if (min(abs(vpl - vpl0), abs(vpl - vpl1)) < xtol) break;
24 y = functionVpl(vpl, cl, idon);
25 if (abs(y) < ytol) break;
26 if (sign(y2) != sign(y))
27 {
28 vpl0 = vpl2;
29 y0 = y2;
30 vpl1 = vpl;
31 y1 = y;
32 }
33 else if (sign(y1) != sign(y))
34 {
35 vpl0 = vpl;
36 y0 = y;
37 }
38 else
39 {
40 vpl1 = vpl;
41 y1 = y;
42 }
43 }
44 return vpl;
45 }

7.3.3 Modeling the static power

Static or leakage power can be modeled by measuring the static current flowing
from the supply voltage inside the standard cell for all possible input combinations.
The high-level static current measurement scheme is depicted in Fig. 7.19 (a). This
measurement is automatically done in characterization tools like Cadence Liberate.
At the end of the procedure, the final value of the leakage power is obtained by
performing the sum of the quiescent current and the gate current of high inputs over
all combinations. DExIMA-Backend uses a different methodology based on static

198 DExIMA-Backend

I

A

B

A B

0
0

1
0

0
1

1
1

A
B

Igate

(a)

1

0

0
Igate

0

1

1
Igate

0

1

0

Io f f0

0

1

Io f f

(b)

0

0

0 0

Vx

0

1

1

0

1

0 1

0

0

1

1

1

0

1 0

1

0

1

1

1

1

1 1

0

0

0

1

Io f f

A B Y Leakage current
0 0 1 2× Igatep + Io f fn

0 1 1 Igatep + Io f fn + Igaten

1 0 1 Io f fn + Igatep

1 1 0 2× Igaten +2× Io f fp (c)
Fig. 7.19 (a) Measurement of the static power for all input combinations. (b) Leakage
currents model used in DExIMA-Backend for the NMOS transistor.

estimations since real measurements of the currents are not possible. The idea is to
start from the values of the Io f f and Igate currents, which can be easily obtained from
the technological model, and to evaluate each input combination: the state of each
transistor defines its contribution to the static power, that can be the off current or

7.3 Computational model 199

the gate current. The combinations in which the off or the gate currents contribute
to the static power are shown in Fig. 7.19 (b) for an NMOS transistor, which are
the same for the PMOS apart from the off current cases, in which the gate input is 1
instead of 0. Igate and Io f f of the reference 45nm CMOS technology are measured
from Cadence Virtuoso by simply measuring the current flow in the cases shown
in Fig. 7.19 (b). The results obtained are expressed as current per unit width since
the current scales linearly with the width of the transistor. The values obtained are
reported in Table 7.2.

Table 7.2 Off and gate current measured with Cadence Virtuoso for a NMOS transistor of
the 45nm CMOS technology.

Parameter Value Meaning
Ioff 1.18E-01 Off Current (A/m2)

Igate 1.28E-02 Gate Current (A/m2)

An example of the calculation of the leakage current for a NAND gate is depicted
in Fig. 7.19 (c): DExIMA-Backend considers all the possible input combinations and
evaluates each contribution that depends on the states of the transistors and obtains
the final current as the mean value, following the Equation 7.20.

Ileak =
∑ j=combination I j

#combinations
(7.20)

And finally the equation of the leakage power is:

Pleak = Ileak ×VDD (7.21)

However, DExIMA-Backend does not consider voltage values different from GND
or VDD because it does not perform analog simulations but static estimations.
Therefore, in the first combination case, the value Vx is treated as a logic-0, and the
equation of the leakage current becomes:

2× Igatep + Io f fn ≈ 2× Igatep (7.22)

This approximation implies an error in estimating the leakage power.

200 DExIMA-Backend

7.3.4 MOS capacitance model

Estimating the MOS capacitances is very important to get accurate results since
crucial parameters like dynamic power and delay strongly depend on these values.

S

cgsov

csb j

cgbov cgbi cgsi

cdbi

cgdi

cdbi

cdb jRSe f f RDe f f

cgdov

G

B

D
IDS

IB

Fig. 7.20 MOS capacitance model used in Cadence Spectre [17].

In Fig. 7.20, the MOS Capacitance model is shown, which is the one used by
Cadence Spectre [17] to perform simulations. Several contributions are considered
in the model, such as junction capacitances (labeled by "j"), overlap capacitances
(labeled by "ov"), and intrinsic capacitances (labeled by "i"): the accuracy of the
MOS capacitances depends on how well these contributions are estimated, so a
starting point should be clearly defined. For this purpose, the Cadence Virtuoso
tool is employed together with the Physical Design Kit (PDK) of the 45nm CMOS
technology from North State Carolina University (NCSU) [149]. The PDK contains
the Spectre models of NMOS and PMOS transistors, characterized with BSIM4
[150]. BSIM4 is a very complex model that describes the behavior of the transistor
devices in a very accurate way, also considering complex effects like the short-
channel effects (SCEs), drain-induced barrier lowering (DIBL), and so on. Starting
from the MOS model, the standard cell is designed and simulated, and if the results
coming from the simulation are good, the standard cell is ready to be used. By
performing a process called characterization, the standard cells are modeled in
terms of power, area, and delay with different output loads and input transition times.

However, the BSIM4 Capacitance model is very complicated and strongly de-
pends on the applied bias and the currents/voltages for each time instant, requiring
a SPICE-level simulation unsuitable in DExIMA-Backend. For this reason, the

7.3 Computational model 201

starting BSIM4 model was simplified to replicate DExIMA-Backend static computa-
tions. According to the BSIM4 manual [150], this operation can be accomplished by
changing capMod parameter: in particular, by setting capMod = 0, the capacitances
are modeled with a simple and piece-wise approximation, with respect to the default
capMod = 2, where a single-equation, bias-dependend and charge-thickness models
are used. The self capacitances can be expressed as a sum of intrinsic and extrinsic

Css

Cdd

Cgg

Fig. 7.21 Self capacitances of the MOS device

contributions, as written in Equation 7.23.
Cgg =Cggi +Cgbov +Cgsov +Cgdov

Css =Cssi +Cgsov +Cbs

Cdd =Cddi +Cgdov +Cbd

(7.23)

In the following parts, each capacitance contribution is discussed in detail.

Estimation of the intrinsic capacitances

The intrinsic capacitances, especially the equivalent gate-gate, source-source, and
drain-drain (Cggi , Cssi , Cddi) self capacitances, are the most important contributions
in the MOS capacitance model. These self capacitances are shown in Fig. 7.21,
constituting the equivalent capacitance value present on each MOS terminal. With
these, it is possible to estimate the intrinsic capacitive load of each transistor that con-
tributes to the final dynamic power and timing computations. However, estimating
their values requires knowledge of the MOS state for each instant, so some approxi-
mations should be made. According to BSIM4 and Spectre manuals [150, 17], by
setting capMod = 0, cvchargemod=0 and 50-50 charge partitioning in the channel
(xpart=0.5), the intrinsic charges equations, which are extensively explained in

202 DExIMA-Backend

[150], become the following:
Su

bt
hr

es
ho

ld
Qg =

Cok2
1

2

(√
1−

4V FBCV +4Vbs −4Vgs

k1
2 −1

)
Qd = 0 Qb = 0 Qs = 0

(7.24)

Tr
io

de

Qg =−Co

(
V FBCV +

Vds

2
−Vgs +φs

)
+

−Co ×
(

AbulkVds
2

12Vth −12Vgs +6AbulkVds

)
Qb =−Co

(
Vth −V FBCV −φs +

Vds (Abulk −1)
2

)
+

−Co

(
AbulkVds

2 (Abulk −1)
12Vth −12Vgs +6AbulkVds

)
Qd =+0.5Co

(
Vth −Vgs +φs +

AbulkVds

2

)
+

+0.5Co

(
Abulk

2Vds
2

12Vth −12Vgs +6AbulkVds

)
Qs = Qd

(7.25)

Sa
tu

ra
tio

n

Qg =−Co

(
V FBCV −Vgs +φs +

Vgs −Vth

3Abulk

)
Qb =−Co

(
V FBCV −Vth +φs −

(Vgs −Vth)(Abulk −1)
3Abulk

)
Qd =−

Co (Vgs −Vth)

3
Qs = Qd

(7.26)

The term cvchargemod, if set to 0, disables the new Vgste f f calculation and
corresponds to the long-channel charge model, with constant mobility and no velocity
saturation. In the equations, k1 is the first-order body bias coefficient; V FBCV is
the flat-band voltage for capMod=0, which is equal to -1 V; Vgs, Vds, Vbs and Vth

are the gate-source, drain-source and bulk-source voltages, respectively; φs is the
surface potential; Abulk models the bulk-charge effect, which equation is shown in
Equation 7.29, and Co is the gate capacitance expressed as Cox ×We f f ×Le f f . The
parameters needed in the Abulk equation are derived from the BSIM4 description of

7.3 Computational model 203

the NMOS/PMOS devices, and they are reported in Table 7.3.

Abulk0 =

1+Fdoping

a0Le f f

Le f f +2
√

X jXdep
×

×

1−agsVgst

(
Le f f

Le f f +2
√

X jXdep

)2
+

+
b0

We f f +b1

1

1+ ketaVbs

(7.27)

Fdoping =

√
1+LPEB/Le f f k1

2
√

φs −Vbs
+ k2 − k3B× Toxe

We f f +W0
φs (7.28)

Abulk = Abulk0

(
1+
(

CLC
Le f f

)CLE
)

(7.29)

A clarification needs to be made: it can be seen that the intrinsic capacitance
equation of Qb given here does not correspond exactly to the equation in the BSIM4
manual [150], in fact the −φs term for the triode zone should be +φs. This equation
reported here is in fact related to the BSIM3.3 model [17] instead of BSIM4 [150].
Several simulations were conducted in Matlab, directly comparing the resulting
capacitance equations with the SPICE measurements, and it was derived that the
values most faithful to the measurements are those of BSIM3.3, as shown in Fig. 7.22.

Fig. 7.22 BSIM3.3, BSIM4 capacitance models comparisons with SPICE measurements for
the triode region.

204 DExIMA-Backend

Table 7.3 Parameters required for Abulk computation. Values are extracted from the NMOS
model file.

Parameter Meaning Value
a0 Non-uniform depletion width effect

coefficient.
1

ags Gate-bias dependence of Abulk. 0

X j Source/drain junction depth. 19.8 nm

Xdep Depletion depth.
√

2εs
φs −Vbs

qNa

keta Body-bias coefficient for
non-uniform depletion width effect.

0.04

b0 Bulk charge coefficient due to
narrow width effect.

0

b1 0

LPEB Lateral non-uniform doping effect
on K1.

0

k1 First-order body-bias coefficient. 0.4

k2 Second-order body bias coefficient. 0

k3B Body effect coefficient of K3. 0

Toxe Effective oxide thickness. Toxe = Tox = 1.14nm

W0 Narrow width coefficient. 2.5×10−6

CLC CLC and CLE consider the effect of
channel-length modulation.

100 nm

CLE 600×10−3

The equations for each intrinsic capacitance are obtained as the derivative of
the charge at the source/drain/gate/bulk terminal with respect to the voltage at the
considered terminal, as reported in Equation 7.30.

C(g,s,d,b),gi =
∂Q(g,s,d,b)

∂Vgs
(7.30a)

C(g,s,d,b),di =
∂Q(g,s,d,b)

∂Vds
−

∂Q(g,s,d,b)

∂Vgs

∂Vth

∂Vds
(7.30b)

C(g,s,d,b),bi =
∂Q(g,s,d,b)

∂Vbs
−

∂Q(g,s,d,b)

∂Vgs

∂Vth

∂Vbs
(7.30c)

7.3 Computational model 205

Starting from equations 7.30, the following formulas are derived for Cggi , Cssi and
Cddi , proposed in BSIM4 model [150, 17].

Cggi =
∂Qg

∂Vgs
(7.31)

Cddi =
∂Qd

∂Vds
− ∂Qd

∂Vgs

∂Vth

∂Vds
(7.32)

Cssi =−Csg −Csd −Csb =− ∂Qs

∂Vgs
−
(

∂Qs

∂Vds
− ∂Qs

∂Vgs

∂Vth

∂Vds

)
−
(

∂Qb

∂Vbs
− ∂Qb

∂Vgs

∂Vth

∂Vbs

)
(7.33)

The equation of Cssi is derived with the following formula, with j=s:

∑
j

C jk = ∑
k

C jk = 0 (7.34)

DExIMA-Backend evaluates Cggi , Cddi and Cssi equations in each MOS region,
considering Vgs = 0V,Vds =Vdd in subthreshold, Vgs =Vdd,Vds = 0V in triode and
Vbs = 0 in all regions. In saturation, once the partial derivatives are computed, there
are no dependencies on the Vgs or Vds. The final resulting equations are the following:

206 DExIMA-Backend

Su
bt

hr
es

ho
ld

Cggi =
Co√

1−
4V FBCV +4Vbs −4Vgs

k1
2

Cssi = 0

Cddi = 0

(7.35)

Tr
io

de

Cggi =−Co

(
12AbulkVds

2

(12Vth −12Vgs +6AbulkVds)
2 −1

)
Cddi =

Co

2

(
Abulk

2
+

2Abulk
2Vds

12Vth −12Vgs +6AbulkVds

)
+

+
Co

2

(
− 6Abulk

3Vds
2

(12Vth −12Vgs +6AbulkVds)
2

)

Cssi =−
Co

(
Vth −Vgs +φs +

AbulkVds

2
+

Abulk
2Vds

2

12Vth −12Vgs +6AbulkVds

)
2

+

−
Co

(
12Abulk

2Vds
2

(12Vth −12Vgs +6AbulkVds)
2 −1

)
2

+

−
Co

(
Abulk

2
+

2Abulk
2Vds

12Vth −12Vgs +6AbulkVds
− 6Abulk

3Vds
2

(12Vth −12Vgs +6AbulkVds)
2

)
2

+

−
Cok1

(
12Abulk

2Vds
2

(12Vth −12Vgs +6AbulkVds)
2 −1

)
4
√

φs −V bs

(7.36)

Sa
tu

ra
tio

n

Cggi =−Co

(
1

3Abulk
−1
)

Cddi = 0

Cssi =
Co

3
+

Cok1

3
√

φs −Vbs

(7.37)

Validation of the intrinsic capacitances The intrinsic capacitances equations’
validation step is performed using Cadence Virtuoso and Matlab tools together. In
Virtuoso, an inverter gate is used as a reference model, in which input voltage is

7.3 Computational model 207

Vin
Vout

−
+

W = 415nm
L = 50nm

W = 630nm
L = 50nm

Fig. 7.23 Schematic of the inverter used in Cadence Virtuoso for intrinsic capacitance
validation.

swept linearly between 0 and Vdd to evaluate each transistor phase. Matlab is used to
model the equations derived for each intrinsic capacitance and to compare the results
obtained with Virtuoso with the computed ones. By selecting the "Save DC Operating
Point" option, Virtuoso outputs the results of each input voltage Vin, obtained with a
DC simulation. These results includes the values of Cggb0, Cddb0, Cbsb0, Cdsb0 and
Cgsb0, corresponding to the intrinsic capacitances without the extrinsic contributions.
As shown in Fig. 7.24, the computed values of the intrinsic capacitances differ from
the measured ones in a range between -6.8% and 24.3%. These values represent the
relative percentage error and are computed as:

Relative error(%) =
(Cggi,Cddi,Cssi)Model − (Cggi,Cddi,Cssi)Ref

(Cggi,Cddi,Cssi)Ref
×100% (7.38)

The error range is acceptable, considering that the adopted capacitance model repre-
sents a simplification of the real one.

Estimation of the extrinsic capacitances

The intrinsic capacitances alone are not sufficient to model the MOS correctly. As
shown in Fig. 7.21, other contributions, called extrinsic capacitances, are present and
given by the overlap and junction capacitances.

208 DExIMA-Backend

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

0.2 0.3 0.4 0.5 0.6
0

1

2

·10−16

1.6%C
gg

(F
)

Saturation

0.2 0.3 0.4 0.5 0.6
−1

−0.5

0

0.5

1

0%

C
dd

(F
)

0.2 0.3 0.4 0.5 0.6
0

0.5

1

·10−16

20.2%

Vgs

C
ss

(F
)

0.6 0.8 1
−4

−2

0

·10−15

8.7%

Triode

0.6 0.8 1

−1

−0.5

0
·10−14

−6.8%

0.6 0.8 1
0

2

4

·10−15

24.3%

Vgs

0 0.1 0.2

5

5.2

5.4

·10−17

0%

Subthreshold

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

0 0.1 0.2
−1

−0.5

0

0.5

1

0%

Vgs
Reference
Computed

Fig. 7.24 Comparison between reference and computed Cgg, Css and Cdd intrinsic capaci-
tances.

Overlap capacitances According to BSIM4 manual [150], for capMod = 0 the
overlap capacitances can be modeled in the following way:

Cgs,gdov =Cgd0,gs0, when Cgd0,gs0 are given

Cgs,gdov = (dlc+meto)×Cox −Cgsl,gdl, when dlc is given and dlc > Cgsl,gdl
Cox

Cgs,gdov = 0.6Cox ×X j, otherwise.

(7.39) Cgbov =Cgb0, when Cgb0 is given

Cgbov = 2×dwc×Cox, otherwise.
(7.40)

7.3 Computational model 209

The parameters, their meanings and values are reported in Table 7.4. Since the values

Table 7.4 Parameters used in the overlap capacitances calculations for the NMOS transistor.

Parameter Meaning Value
Cgs0 Gate-source overlap capacitance

per unit length.
1.1×10−10F/m

Cgd0 Gate-drain overlap capacitance per
unit length.

1.1×10−10F/m

Cgb0 Gate-bulk overlap capacitance per
unit length.

2.56×10−11F/m

dlc Delta L for capacitance model. 3.75nm

meto Metal overlap in fringing field. 0

Cox Oxide Capacitance per unit area. εox/Tox

Cgsl Overlap capacitance between gate
and lightly-doped source region.

2.653×10−10F/m

Cgdl Overlap capacitance between gate
and lightly-doped drain region.

2.653×10−10F/m

X j Source/drain junction depth. 19.8nm

dwc Delta W for capacitance model. 5nm

of Cgs0,gd0,gb0 are defined in the model, the equations for the overlap capacitances
become the following:

Cgs,gdov =Cgs0,gd0 ×We f f (7.41)

Cgbov =Cgb0 ×Le f f (7.42)

Moreover, the fringing effects must be considered in the overlap capacitance equa-
tions. If it is not explicitly written inside the technology file, the fringing capacitance
is computed as:

CF =
2εoxε0

π
× ln

(
1+

4×10−7 m
Tox

)
(7.43)

Finally, the equations for the overlap capacitances become:

Cgs,gdov =Cgs0,gd0 ×We f f +CF ×We f f (7.44)

Cgbov =Cgb0 ×Le f f (7.45)

210 DExIMA-Backend

These values are added in all MOS regions since, for capMod = 0, they are bias-
independent.

Junction capacitances Similarly to the overlap capacitances, the junction capaci-
tances equations are reported inside the BSIM4 manual [150] and rewritten here for
reference.

Cbs = Ase f fC jbs +Pse f fC jbssw +We f f ×NF ×C jbsswg (7.46)

Cbd = Ade f fC jbd +Pde f fC jbdsw +We f f ×NF ×C jbdswg (7.47)

The terms Ase f f ,de f f are the source/drain effective area, and they are equal to AS,AD
given in the technology file; C jbs, jbd are the zero bias source/drain bottom junction
capacitance per unit area; Pse f f ,de f f are the source/drain effective perimeter, equal
to PS,PD given in the technology file; C jbssw, jbdsw are the source/drain sidewall
junction capacitance per unit periphery; NF is the number of fingers in the device,
and lastly C jbsswg, jbdswg are the gate-side source/drain junction capacitance per unit
width. In the MOS technology model, these parameters assume the following values:
AS = AD = 0 and PS = PD = 0, meaning that the drain/source area and perimeter
are not considered since these are defined in the layout view of cell; C jbs, jbd =

0.0005F/m2, C jbssw, jbdsw = 5×10−10 F/m, NF = 1, C jbsswg = 3×10−10 F/m and
C jbdswg = 5×10−10 F/m.

7.3.5 Switching activity propagation model

The switching activities play a fundamental role in the dynamic power estimation
since they provide a clear indication on the circuit functionality. Considering the
example of the And-Or-Invert 2-1 gate (AOI21) shown in Fig. 7.25, the switching
activity propagation process works in the following way:

1. Parsing of the input/output states. As already discussed in subsection 7.2.3,
inside the .dex file, there are waveforms for each input/output pin. These data
are parsed by DExIMA-Backend and used inside each standard cell to derive
the internal net values for each time instant.

2. Evaluation of the states of the transistors. The values of the inputs define the
state of each transistor. Considering the example of the AOI21 cell in Fig. 7.25,

7.3 Computational model 211

M0

M1

net0M2

P0

P1 P2

OUT

net1

A

B

C

C

A B

Fig. 7.25 Schematic of the And-Or-Invert 2-1 gate.

if the input combination is ABC = "010", the M1, P1, and P0 are in saturation,
while the others are in cut-off.

3. Internal nets values derivation. For each input combination, the states of the
transistors are determined. In the cut-off state, transistors act as an open switch
while, in saturation, as a closed switch. So, if M1, P1, and P0 are in saturation,
the values of net1 and net0 are equal to 1, as well as the OUT value.

4. Memorize the values of the nets for each time instant. The values of the nets
are stored for each time instant since they will be fundamental for deriving the
switching activity of the internal nodes.

5. Evaluation of the switching activity of the internal nodes. Once the internal
node values’ evaluation procedure finishes, each net’s stored waveforms are
scanned to get the associated switching activity. The pseudo-code for the
switching activity computation is shown in Listing 43, in which the number
of toggles is incremented if an actual commutation of the signal in the i+1
position with respect to the i position is present. Finally, the number of toggles
is divided by the total combination length, obtaining the toggle rate of the
signal, and the switching activity is evaluated by dividing the toggle rate by
the clock period.

212 DExIMA-Backend

Listing 43 Pseudo-code for the toggle rate/switching activity computation.

1 int toggles = 0;
2 std::string combination = "100101010";
3 unsigned int combinationLength = combination.size();
4 for(unsigned int i = 0; i < combinationLength-1; i++)
5 {
6 if(combination[i+1] != combination[i]) toggles += 1;
7 }
8 float toggle_rate = toggles/combinationLength;

Note that the internal nets evaluation process should start by evaluating the states of
the transistors that are close to the supply pins. Otherwise, this procedure applied to
more complex cells could not correctly identify the values of the nets.

7.3.6 Dynamic energy and power models

Once the switching activities and the capacitances of the internal nets are determined,
the dynamic energy and power can be estimated. The formula to compute the
dynamic energy contribution is reported in Equation 7.48, where Esc is the short-
circuit energy and T Rneti is the toggle rate of the neti.

Edyn = Esc +
1
2

V 2
dd ∑

∀neti

Cneti ×T Rneti (7.48)

The dynamic power is obtained by multiplying the dynamic energy by the clock
frequency.

7.3.7 Area model

The occupation of a single transistor is obtained by adding the channel length and the
source/drain lengths and multiplying them by the channel width. In a standard cell,
the area is computed considering the sum of each transistor area plus an overhead
given by the interconnections. The channel lengths are assumed to be equal to
the technology’s minimum channel length, which is written inside the technology
parameters file. The technology file may also define the minimum width, or it
can be obtained by multiplying the minimum channel length by the aspect ratio.
However, in the netlists of the standard cells, the widths of the transistors can change

7.3 Computational model 213

due to the logical effort method. Therefore, in the calculations, DExIMA-Backend
considers the ratio between the actual transistor width and the minimum width of the
technology.

7.3.8 Delay model

D Q

Qn

net0 net1

net0net1
RN

RN

net3

net8

net11

net6

CK net1

(a)

D net3 net8 net11 Q

RNnet0 net1

QNnet6

CK

RN (b)
Fig. 7.26 (a) Schematic of a flip-flop with the equivalent logic gates. (b) Equivalent graph of
the flip-flop.

An equivalent graph of the standard cell is created to estimate the delay. For
example, a flip-flop cell represented in Fig. 7.26 is loaded by DExIMA-Backend,
which interprets the schematic as an oriented graph, where the nodes represent the
intermediate outputs (or logic gates), and the edges correspond to the connections
between the gates. The critical path of the standard cell is obtained by performing the
longest path search on the equivalent graph from all possible inputs to all possible
outputs, applying the formula in Equation 7.49.

Delaypathi
= ∑

∀net∈pathi

Vdd ×Cloadnet

Ionmin

(7.49)

The capacitances of each net are estimated following the same approach presented
in subsection 7.3.4, while the Ionmin is the minimum on current on the net, that is
obtained considering the transistor having the minimum width connected to that net.
Finally, the critical path search is performed by applying the Depth First Traversal
method [151] on the equivalent graph, which is reported in Listing 44.

214 DExIMA-Backend

Listing 44 C++ code implementing the Depth First Traversal algorithm to find all the delay
paths. The code was repurposed to DExIMA-Backend from the source [151].

1 void Graph::printAllPathsUtil(int u, int d, bool visited[], int path[],
int& path_index)↪→

2 {
3 //mark the node as visited
4 visited[u] = true;
5 //add the node to the path
6 path[path_index] = u;
7 path_index ++;
8 //if the initial node is equal to the destination
9 if(u == d)

10 {
11 //save the path
12 std::vector<int> tmpVector;
13 for(int i = 0; i < path_index; i++) tmpVector.push_back(path[i]);
14 paths.push_back(tmpVector);
15 }
16 else
17 {
18 //re-iterate the procedure to find all the paths.
19 list<int>::iterator i;
20 //adj contains the edges of the graph
21 for(i = adj[u].begin(); i != adj[u].end(); i++)
22 if(!visited[*i]) printAllPathsUtil(*i, d, visited, path,

path_index);↪→

23 }
24 path_index --;
25 visited[u] = false;
26 }

7.3.9 Bus model

DExIMA-Backend can also provide estimations of the bus involved in the LiM
design. In particular, two contributions are evaluated: the external bus, i.e., the bus
that delivers or receives data to/from the LiM, and the internal bus, i.e., the bus
employed inside the memory connecting the LiM cells/IRL logic. For example,
by selecting the bus "BL", DExIMA-Backend evaluates the impact of the bitlines
considering, for the external contribution, the resistances/capacitances per unit length
of the wires and for the internal contribution, both the resistances/capacitances per

7.3 Computational model 215

unit length and the capacitance loads of each cell/IRL, as shown in Fig. 7.27. From

CPU LiM
BL

BL
(n-1)

...

BL
(n-2)

...

...

...

...

...

BL
(0)

...

(a)
(b)

Fig. 7.27 Bus estimation. External (a) and internal (b) bus contributions.

these analyses, DExIMA-Backend directly provides the values of the 50%-50% delay
and the average power consumption during the transitions. According to Fig. 7.28,
the value of the average power during the transitions is calculated by considering the
average value of the current leaving the power supply generator during the transitions
and multiplied by the voltage Vdd.

Fig. 7.28 Simulation window in which the average transition power of a bus is computed.

216 DExIMA-Backend

External bus model

The model generated by DExIMA is a distributed RC model, meaning that the
resistances and capacitances per unit length are required for the calculation. The
equivalent network of the external bus is shown in Fig. 7.29: the model, based on the
work exposed in [152, 153, 141], also considers the cross-talk capacitances between
two adjacent lines and the number of lines is associated to the bus parallelism.
Regarding the parasitic inductances, they must be considered until the following

Cc Cc Cc

Cc Cc Cc
Cc Cc Cc

Rl

Cl Cl

Rl

Cl

Rl

−
+ Cload

Rl

Cl Cl

Rl

Cl

Rl

−
+ Cload

Rl

Cl Cl

Rl

Cl

Rl

−
+ Cload

...
Fig. 7.29 Equivalent netlist of an external bus, used for the bus performance estimation. The
number of lines is associated to the number of bits of the bus.

condition on lwire is verified:

tr
2
√

LC
< lwire <

2
R

√
L
C

(7.50)

Where tr is the rise time of the input signal and L, C, R are the inductance, capacitance,
and resistance per unit length. To neglect the inductance, the condition on the tr
becomes as follows:

tr > 4× L
R

(7.51)

The bus model implemented in DExIMA-Backend considers this condition true,
so the inductance is always neglected in this phase. Moreover, to compute the
capacitances and resistances per unit length, three parameters are required: resistance
per unit square RQ, wire underside capacitance CQ and wire edge capacitance Ce.

7.3 Computational model 217

The resistance and capacitance per unit length can be obtained as follows:

Rl = RQ
lwire

W
(7.52)

Cl = lwire(CQW +2Ce) (7.53)

While the cross-talk capacitances can be estimated as:

Cc = ε0εr
T lwire

D
(7.54)

Where lwire is the length, W is the width, T is the thickness of the wire, and D is the
distance between two wires. The bus is split into sections of length lwire

N , where N is
the number of sections, and at the end of each section, the cross-talk capacitances are
connected to the other wires. In general, as discussed in [152], a number of sections
equal to 3 is sufficient to reach a good trade-off between accuracy (almost 5% of
error) and complexity. The netlist is simulated with Ngspice, and the results are
directly written inside the .dof file for each input combination.

Internal bus model

Following a similar methodology as the external bus estimation, the internal bus
impact is evaluated considering the resistive/capacitive contributions of the wire and
the equivalent capacitances connected to the selected bus. Considering the Fig. 7.27
(b), the BL bus is connected to each cell of the LiM array: DExIMA-Backend iterates
over the entire array, searching for each device connected to the BL bus and adding
its contribution. The equivalent model for the internal bus (Fig. 7.30) is different
from the external one (Fig. 7.29). The internal estimation does not consider the cross-
talk capacitances since the bus lines inside the memory are distant. The number of
sections (i.e., the number of RC nets) equals N, where the definition of N depends on
the selected bus. In general, N is derived by DExIMA-Backend during the estimation
procedure and is equal to the number of equivalent capacitances connected to that
line. In the BL example, the number of sections will equal the number of rows inside
the memory since each bit of the BL is connected to the LiM Cells in the same
column.

218 DExIMA-Backend

C0_0 C1_0 CN-1_0

C0_1 C1_1 CN-1_1

C0_2 C1_2 CN-1_2

Rl

Cl Cl

Rl

Cl

Rl

−
+ Cload

Rl

Cl Cl

Rl

Cl

Rl

−
+ Cload

Rl

Cl Cl

Rl

Cl

Rl

−
+ Cload

...
Fig. 7.30 LiM internal equivalent model for the bus estimation.

(ns) (ns)(a) (b)
Fig. 7.31 Ngspice-based bus estimation waveforms. (a) Transition example for the bit-0 of
the BL bus. (b) Transition example for the bit-1 of the BL bus.

The BusParser class

The BusParser class is in charge of parsing and simulating the bus lines. The
collaboration graph of the BusParser class is shown in Fig. 7.32. Essentially, B ⌋

usParser has a series of Bus objects that contains the characteristics of the selected

7.3 Computational model 219

Fig. 7.32 Collaboration graph of the BusParser class.

bus(es), like the length, the width, the parallelism, etc. The main steps are discussed
in the following parts.

Parsing the Bus data

To properly analyze the bus impact, inside the input .dex file are written all data
required for the estimation. A snippet of bus-related code inside the .dex file is
reported in Listing 45.

Listing 45 Snippet of code containing bus data for the estimation.

1 BL[0](2);100e-6;10e-5;1;{1111000000000000000}
2 /LiMcell_0_0/Memory_9/NAND_1/IN1/
3 /LiMcell_1_0/Memory_9/NAND_1/IN1/

Inside BusParser, the method void BusParser::parseBus(const stri ⌋

ng &line):

1. Looks for the character ’[’ in the input string. If it finds one, it extracts
everything before it as the signal’s name and stores it in the variable. If it does

220 DExIMA-Backend

not find one, it means that the line parsed refers to the internal LiM hierarchy
of the bus, so it is parsed and stored inside the data structure of the signal.

2. Next, the code uses a regular expression to search for a pattern matching a
number followed by a closing parenthesis ’)’ in the input string. If it finds a
match, it extracts the number as a string, converts it to an integer using stoi,
and stores it in the variable parallelism.

3. The code then uses another regular expression to search for a pattern matching
a number between square brackets ’[’ and ’]’ in the input string. If it finds a
match, it extracts the number as a string, converts it to an integer using stoi,
and stores it in the variable bit index.

4. The code uses another regular expression to search for a pattern matching a
string between curly braces ’{’ and ’}’ in the input string. If it finds a match,
it extracts the string and stores it as the waveform of the parsed signal.

5. The code then checks if a signal with the same name as signalName has
already been stored in the buses map. If it has, it represents another bit of the
already stored signal (e.g., BL1). The signal stored in the map is updated with
the new waveform, passing the bit index and the wave as arguments. If it has
not, the code extracts and saves the width, length, and metal layer number of
the selected bus.

Simulation of the Bus

After the bus parameter parsing, the BusParser class implements methods called
void BusParser::computeBus() and void BusParser::computeLiMBus(m ⌋

ap<string, busValuesStruct> &pinCapacitances), that are in charge of gen-
erating the output Ngspice-compatible netlists and running Ngspice to start the
simulations: the first one, simulates the external bus, while the second one the
internal. The codes of void BusParser::computeBus() and void BusParser ⌋

::computeLiMBus(map<string, busValuesStruct> &pinCapacitances) be-
gin a loop over the elements of the buses map and sets the bus characteristics parsed
from the void BusParser::parseBus(const string &line) method. Each
segment of the bus model is generated with functions generateBusSegment(co ⌋

nst string filePath) and generateBusLiMSegment(const string file ⌋

7.3 Computational model 221

Path, const string csubName, std::vector<float>& capacitances) re-
alizing a netlist containing a set of interconnected capacitors and resistors for the
external and internal bus models, respectively. If the number of lines are greater
than 1 and the analyzed bus is external, it writes a series of lines defining the cross-
capacitance between pairs of input nodes with even indices. Moreover, if the number
of lines exceeds 2, it writes a series of lines defining cross-capacitors between pairs
of input nodes with odd indices. After the generation of the bus segments, the
waves stored for each signal are iterated: each bit of the wave vector represents the
value of the signal in a time instant defined by half the clock period. Within the
loop performed for each half-clock step, a local variable called combination is
initialized to the half-clock step-th element of the waves vector member of bus data
structure: the code checks if the combination has been processed before, and, if not,
the code does the following:

• Calls the function generateTopNetlist, passing in three arguments: a
string indicating a file path, the combination vector, and a vector containing
the name of each bus segment file to be included inside the top-level SPICE
netlist. In the top netlist, the square voltage generators are instantiated, and
their values are related to the actual combination of bits for the bus in the
considered half-clock step. In Listing 46, an example of a top-level internal
bus netlist for the BL is reported.

1 *Complete bus system netlist
2 *Global definitions
3 .GLOBAL Vdd
4 .INCLUDE ./InverterExample.sp
5 .INCLUDE ./bus_sectionBL0.sp
6 *...*
7 .INCLUDE ./bus_sectionBL31.sp
8 .param L_section = 2.42129e-06
9 .param sections = 256

10 .param R = 2.90555
11 .param C_sub = 1.23754e-26
12 .param C_cross_1 = 4.03823e-27
13 .param C_cross_2 = 1.34608e-27
14 .param supply_voltage = 1.1
15 .param pulse_duration = 6e-09
16 .param transition_time = 6e-11

222 DExIMA-Backend

Listing 46 Example of an internal bus top-level spice netlist for the BL bus.

17 .param simulation_duration = 9e-09
18 *supply generator
19 VCC Vdd 0 supply_voltage
20 Vd0 Vdd Vdd_dummy 0
21 V0 V_in_driver_0 0 PULSE (1.1 0 1E-12 6e-11 6e-11 6e-09 9e-09) DC

1.1↪→

22 *...*
23 V15 V_in_driver_15 0 PULSE (1.1 0 1E-12 6e-11 6e-11 6e-09 9e-09) DC

1.1↪→

24 *Input driver
25 X0 V_in_driver_0 V_out_inverter_0 Vdd_dummy 0 Inverter
26 X1 V_out_inverter_0 V_out_section_0_0 Vdd_dummy 0 Inverter
27 *...*
28 X30 V_in_driver_15 V_out_inverter_15 Vdd_dummy 0 Inverter
29 X31 V_out_inverter_15 V_out_section_0_15 Vdd_dummy 0 Inverter
30 *Bus sections
31 X33 V_out_section_0_0 V_out_section_1_0 BusSectionBL0
32 *...*
33 X48 V_out_section_0_15 V_out_section_1_15 BusSectionBL9
34 *Final capacitors
35 C0 V_out_section_1_0 0 C_sub
36 *...*
37 C15 V_out_section_1_15 0 C_sub
38 X49 V_out_section_1_0 V_out_load_0 Vdd_dummy 0 Inverter
39 *...*
40 X64 V_out_section_1_15 V_out_load_15 Vdd_dummy 0 Inverter
41 *analysis definition
42 .tran 1e-12 9e-09
43 .measure tran bus_delay_0 trig V_in_driver_0 val=0.55 FALL=1
44 +TARG V_out_section_1_0 val=0.55 FALL=1
45 *...*
46 .measure tran bus_delay_15 trig V_in_driver_15 val=0.55 FALL=1
47 +TARG V_out_section_1_15 val=0.55 FALL=1
48 .measure tran avg_i avg i(Vd0) from=6e-09 to=7e-09
49 .measure tran avg_power param='avg_i * supply_voltage'
50 .control
51 run
52 quit
53 .endc
54 .end
55

7.3 Computational model 223

• Calls the function runNetlist, passing in two string arguments indicating
file paths: the first one is the file to simulate, and the second is the output file
in which the simulation results will be written. Inside this method, Ngspice is
called:

Listing 47 Command specified to Ngspice tool to run the generated netlist.

1 busError Bus::runNetlist(const string filePath, const string
outFilePath) {↪→

2 int state = 0;
3 string cmd = "ngspice -b -o " + outFilePath + " " + filePath + "

> " + "../../OUTPUT/Bus/.log.txt";↪→

4 system(cmd.c_str());
5 return Error;
6 }

The -b flag stands for "batch mode". When this flag is used, Ngspice reads
a list of commands from a file (or from standard input if no file is specified)
and executes them without entering interactive mode. The -o flag stands for
"output": Ngspice will write the simulation output to the specified file.

• Adds an entry to the processed combinations map with the results of the
simulated combination.

An important distinction must be made between the simulations of the external and
internal bus(es). These contributions are evaluated in two different instants: the first
during the input .dex file parsing, while the second in the performance estimation
phase, because it is necessary to compute all parameters of the modules located
inside the LiM design before estimating the impact of the bus, especially the internal
capacitances.

7.3.10 DExIMA output file

In Listing 48 is given an example of a DExIMA-Backend output file, which has the
extension .dof.

224 DExIMA-Backend

1 ##BUS RESULTS##
2 BL>>1000000111010011: Pavg = 0.00259578 (W); MaxDelay = 1.80485e-10 (s)
3 ...
4 BL_LiM>>1000000111010011: Pavg = 0.00540404 (W); MaxDelay = 4.13644e-10

(s)↪→

5

6 Simulation results
7

8 Clock period: 6 ns
9 Frequency: 166.667 MHz

10 Critical Path Instruction: timing_paths
11 Critical Path name: path[100]
12 Critical Path: 817.881 ps
13 Area: 386483 um^2
14 Dissipated dynamic energy: 580.816 pJ
15 Dissipated static energy: 274.489 pJ
16 Total dissipated energy: 855.305 pJ
17 Static power: 45.7482 mW
18 Execution time: 126 ns
19 Average dynamic power: 96.8026 mW
20 Total power: 142.551 mW
21 Total clock steps: 21
22

23 Instructions
24

25 Instruction: algorithm
26 Dissipated energy: 580.816 pJ
27 Static Power: 45.7483 mW
28 Area: 386484 um^2
29 Critical path: 0 fs
30 Critical path name:
31 Path delays
32 path[0] -> 0 fs
33

34 Instruction: timing_paths
35 Dissipated energy: 580.816 pJ
36 Static Power: 45.7483 mW
37 Area: 386484 um^2
38 Critical path: 817.881 ps
39 Critical path name: path[100]
40 Path delays
41 path[0] -> 514.59 ps

7.3 Computational model 225

Listing 48 Example of a DExIMA-Backend output file (.dof).

42 path[100] -> 817.881 ps
43 ...
44 path[9] -> 514.59 ps
45

46 Technology internal parameters
47

48 Technology file: HP_45.txt
49 Interconnection overhead: 10%
50 Standard Cell overhead: 0%
51 Stack factor: 0
52 Vdd: 1.1 V
53 Aspect ratio: 3.09278
54 Cox: 30290 uF/m^2
55 Leff: 22.5 nm
56 Beta: 1.554
57 Diffusion lenght: 0 nm
58 C bottom n: 0 pF/m
59 C bottom p: 0 pF/m
60 C sidewall n: 432.674 pF/m
61 C sidewall p: 432.674 pF/m
62 C interconnections: 183.13 pF/m
63 Unitary Mos width: 0.09 um
64 Cin n mos: 0.0859322 fF
65 Gamma: 1.554
66 Rho: 1
67 Ion: 1340 uA/um
68 Ioff: 118.44 nA/um
69 Igate: 12.84 nA/um
70 Ion unitary mos: 120.6 uA
71 Ioff unitary mos: 10.6596 nA
72 Igate unitary mos: 1.1556 nA

As it is possible to see, it is divided into sections:

1. In the first part (labeled ##BUS RESULTS##), the bus performance results
are reported, both external/internal from/to the LiM. For each combination,
the delay and average power are given.

2. The next part reports the performance results of the LiM architecture, with the
most important data such as energy, power, area, critical path, etc.

226 DExIMA-Backend

3. After that, there is the section devoted to the declared instructions, then algo-
rithm and timing_paths, needed for power estimation and timing, respectively.

4. The last section, on the other hand, summarizes the technology parameters
used.

7.4 Conclusions

In this chapter, the structure of DExIMA-Backend is analyzed in detail. Unlike the
front-end, this discussion is carried out using the UML, as it provides a description
of the classes and the relationships between them, resulting in being an extremely
useful tool for explaining how the code works. In addition to the structure, the
computational models for estimating the performance of the CMOS cells and the
bus are also given, and an output file example containing the performance values
provided by the tool is provided.

Chapter 8

Inserting LiM in a von Neumann
system

Summary

In this short chapter, the procedure for evaluating the impact of LiM architecture in a
classical CPU-Memory context is reported. The idea is to compare the performance
of two systems, where the LiM accelerator is considered in one of them. Two C codes
are simulated, one for the CPU-Memory architecture, where the CPU executes the
algorithm, and the other for the CPU-Memory-LiM architecture, where the data
transfer between main memory to LiM is emulated. Lastly, the LiM is responsible for
the actual computation of the algorithm. Comparisons are proposed in terms of some
figures of merit, such as energy and execution time, following the state-of-the-art
models.

8.1 Comparison between CPU-Mem and CPU-Mem-
LiM systems

Following the design of the LiM architecture, DExIMA software offers an environ-
ment for comparing two systems, CPU-Memory (CPU-Mem) and CPU-Mem-LiM.
The first is a conventional von Neumann architecture consisting of a RISC-V CPU
and a two-level cache system, while the second is a Beyond von Neumann design

228 Inserting LiM in a von Neumann system

functionally comparable to the CPU-Mem but with a LiM co-processor. The emu-
lated system is described within a Python file in the Gem5 root directory, located in
gem5/configs/learning_gem5/part1/two_level.py, which is reported down
below for reference purposes.

1 # import the m5 (gem5) library created when gem5 is built
2 import m5
3 # import all of the SimObjects
4 from m5.objects import *
5

6 # Add the common scripts to our path
7 m5.util.addToPath('../../')
8

9 # import the caches which we made
10 from caches import *
11

12 # import the SimpleOpts module
13 from common import SimpleOpts
14

15 # get ISA for the default binary to run. This is mostly for simple
testing↪→

16 isa = str(m5.defines.buildEnv['TARGET_ISA']).lower()
17

18 # Default to running 'hello', use the compiled ISA to find the binary
19 # grab the specific path to the binary
20 thispath = os.path.dirname(os.path.realpath(__file__))
21 default_binary = os.path.join(thispath, '../../../',
22 'tests/test-progs/hello/', isa, 'linux/program')
23

24 # Binary to execute
25 SimpleOpts.add_option("binary", nargs='?', default=default_binary)
26

27 # Finalize the arguments and grab the args so we can pass it on to our
objects↪→

28 args = SimpleOpts.parse_args()
29

30 # create the system we are going to simulate
31 system = System()
32

33 # Set the clock fequency of the system (and all of its children)
34 system.clk_domain = SrcClockDomain()

8.1 Comparison between CPU-Mem and CPU-Mem-LiM systems 229

35 system.clk_domain.clock = '1GHz'
36 system.clk_domain.voltage_domain = VoltageDomain()
37

38 # Set up the system
39 system.mem_mode = 'timing' # Use timing accesses
40 system.mem_ranges = [AddrRange('512MB')] # Create an address range
41

42 # Create a simple CPU
43 system.cpu = TimingSimpleCPU()
44

45 # Create an L1 instruction and data cache
46 system.cpu.icache = L1ICache(args)
47 system.cpu.dcache = L1DCache(args)
48

49 # Connect the instruction and data caches to the CPU
50 system.cpu.icache.connectCPU(system.cpu)
51 system.cpu.dcache.connectCPU(system.cpu)
52

53 # Create a memory bus, a coherent crossbar, in this case
54 system.l2bus = L2XBar()
55

56 # Hook the CPU ports up to the l2bus
57 system.cpu.icache.connectBus(system.l2bus)
58 system.cpu.dcache.connectBus(system.l2bus)
59

60 # Create an L2 cache and connect it to the l2bus
61 system.l2cache = L2Cache(args)
62 system.l2cache.connectCPUSideBus(system.l2bus)
63

64 # Create a memory bus
65 system.membus = SystemXBar()
66

67 # Connect the L2 cache to the membus
68 system.l2cache.connectMemSideBus(system.membus)
69

70 # create the interrupt controller for the CPU
71 system.cpu.createInterruptController()
72

73 # For x86 only, make sure the interrupts are connected to the memory
74 # Note: these are directly connected to the memory bus and are not

cached↪→

75 if m5.defines.buildEnv['TARGET_ISA'] == "x86":

230 Inserting LiM in a von Neumann system

Listing 49 Implementation of the RISC-V-based two-level caches system in Gem5 [97].

76 system.cpu.interrupts[0].pio = system.membus.mem_side_ports
77 system.cpu.interrupts[0].int_requestor =

system.membus.cpu_side_ports↪→

78 system.cpu.interrupts[0].int_responder =
system.membus.mem_side_ports↪→

79

80 # Connect the system up to the membus
81 system.system_port = system.membus.cpu_side_ports
82

83 # Create a DDR3 memory controller
84 system.mem_ctrl = MemCtrl()
85 system.mem_ctrl.dram = DDR3_1600_8x8()
86 system.mem_ctrl.dram.range = system.mem_ranges[0]
87 system.mem_ctrl.port = system.membus.mem_side_ports
88

89 system.workload = SEWorkload.init_compatible(args.binary)
90

91 # Create a process for a simple "Hello World" application
92 process = Process()
93 # Set the command
94 # cmd is a list which begins with the executable (like argv)
95 process.cmd = [args.binary]
96 # Set the cpu to use the process as its workload and create thread

contexts↪→

97 system.cpu.workload = process
98 system.cpu.createThreads()
99

100 # set up the root SimObject and start the simulation
101 root = Root(full_system = False, system = system)
102 # instantiate all of the objects we've created above
103 m5.instantiate()
104

105 print("Beginning simulation!")
106 exit_event = m5.simulate()
107 print('Exiting @ tick %i because %s' % (m5.curTick(),

exit_event.getCause()))↪→

This environment is offered in the "Comparison CPU-Memory" tab of Fig. 3.5
(b): it consists of a text editor, in which the user can create a C algorithm that will be
automatically built and executed by Gem5 [97] software. The procedures used to

8.1 Comparison between CPU-Mem and CPU-Mem-LiM systems 231

examine the LiM effect on a conventional von Neumann architecture are similar to
those taken in [127]:

1. Definition of the CPU-Mem and CPU-Mem-LiM C codes. In this phase, the
user writes the algorithm that will be executed by the core of the classical
CPU-Mem architecture. At the same time, DExIMA automatically creates the
CPU-Mem-LiM algorithm that simply emulates the data movement from the
main memories in the LiM, where the core of the computation is located. The
code automatically generated by DExIMA is a simple for loop that accesses a
number of memory locations equal to the memory size of the LiM accelerator.
An example is given below:

Listing 50 Example of a LiM code.

1 #include <stdio.h>
2 int main(){
3 volatile int memory_content[1024] = {0};
4 volatile int data;
5 for(int i = 0; i < 1024; i++){
6 data = memory_content[i];
7 }
8 return 0;
9 }

10

In this example, the main memory access of 1024 data items to be passed later
to the LiM is emulated.

2. Compile the C codes. By clicking on "Gem5" button in Fig. 3.5 (a), the C
codes for the CPU-Mem and CPU-Mem-LiM architectures are automatically
compiled with riscv-gnu-toolchain [125] and executed with Gem5, that pro-
vides performance data such as CPU execution time, the total number of
memory accesses, etc. To compile the C codes of the two CPU-Mem and
CPU-Mem-LiM programs, the script contained in the SIMCnfg folder called
scriptGem5.sh is used, which is explained in details in section 5.8. Data are
then moved inside the appropriate working folder.

3. Estimate the caches’ performance. At this point, the caches are characterized
by means of Cacti [91]. By clicking on "Cacti by HP" in Fig. 3.5 (b) and

232 Inserting LiM in a von Neumann system

providing a few input arguments such as the cache size, the associativity,
and the technology node, DExIMA executes Cacti, which outputs useful
parameters such as the access time and the read/write energy per access.

4. Estimate CPU-Mem and CPU-Mem-LiM performance. Data from Gem5
simulation and Cacti evaluation are used to estimate the overall performance
of the algorithms.

At this point, the user has several options. By clicking on "Plot instructions of the
CORE" in Fig. 3.5, algorithms are profiled in terms of executed instructions, and
the most recurrent instructions are reported: an example is shown in Fig. 10.9 (b-c).
"Extrapolate caches info" reports useful cache parameters such as the miss rate, the
overall accesses per cache type, the total number of hits, etc. Lastly, the "Compare
CPU-Mem and CPU-Mem-LiM" option evaluates both systems by choosing a subset
of figures of merit, such as the total memory accesses, the total caches access energy,
the CPU execution time, LiM execution time, and LiM energy consumption. These
last two values come from DExIMA-Backend.

8.2 Conclusions

This short chapter presents the methodology for comparing CPU-Mem and CPU-
Mem-LiM solutions. To do this, it is necessary to use the Gem5 tool, which models a
RISC-V architecture with two cache levels, reported in Listing 49. Examples that
implement the procedures described in this chapter in a timely manner, starting with
the definition of CPU-Mem and CPU-Mem-LiM code and ending with the estimation
of instructions, cache parameters, and system energy, are provided in the chapter 10.

Chapter 9

DExIMA-Backend validation

Summary

Standard industrial software like Synopsys Design Compiler (DC) or similar can
provide advanced tools and algorithms that precisely synthesize and estimate CMOS-
based circuits. However, an extensive and complete description of the technology is
compulsory to perform such complex routines, starting from the N and P transistors
and moving toward the standard cell structure, layout, and characterization. The
description of the transistors is usually reported in SPICE files, including a vast
list of parameters that depend on the model (MOS levels, BSIM, etc.) [17] and on
the technology node [26]. When characterized, the standard cells are automatically
simulated and modeled, and the results are grouped in a Liberty file, which is a
standard representation of the power, area, and delay of any cell belonging to a
library. The Liberty file is employed by the synthesizers and Place&Route tools
to provide precise indications of the circuit performance. Even if companies or
universities typically already provide all the files required to perform the synthesis
and Place&Route, this process is long and time-consuming: a small modification
of the starting transistor model requires the complete re-characterization of the
entire library. DExIMA-Backend is introduced to lighten this drawback. In fact, it
aims to provide relatively fast and approximated performance estimations of the
architectures, with the possibility of integrating other technologies than standard
CMOS in the future.

234 DExIMA-Backend validation

In this chapter, the idea is to validate the results of DExIMA-Backend by compar-
ing them with those provided by standard industrial tools such as Cadence Liber-
ate and Synopsys Design Compiler, thus providing an indication of how accurate
DExIMA-Backend actually is in estimating the performance parameters.

9.1 Procedural steps for validation

Apart from the clear goal of reducing the efforts in the digital design flow, DExIMA-
Backend must be able to provide a rough but clear indication of the system per-
formance, so it has to be validated with respect to the standard EDA tools. The
validation procedure of DExIMA-Backend consists of the following steps:

• Choose the reference library. As already stated before, the technological
library used for the calculations in DExIMA-Backend is the FreePDK 45nm
from North Carolina State University (NCSU) [149].

• Simplification of the technology model. As already said, the technology files
are simplified imposing capMod = 0, cvchargemod = 0 and xpart = 0.5
to match the calculations used in DExIMA-Backend.

• Characterization of the simplified library. The FreePDK 45nm library already
contains the SPICE netlists of each standard cell, which can be used by the
characterization tool to characterize a new library with the modifications
explained before. For this purpose, Cadence Liberate is used, a tool able to
automatically generate the Liberty file description and a detailed datasheet of
the library.

• Stardard cells estimations: comparisons with Liberate datasheet. In the
datasheet generated by Liberate, there are important parameters like the inter-
nal dynamic energy of the cells, the timing, the leakage power, the capacitance
of each pin, and the truth table. These results are useful to validate DExIMA-
Backend in estimating the performance of the standard cells.

• Complex designs: comparisons with Synopsys Design Compiler. The datasheet
alone is insufficient to estimate the accuracy of DExIMA-Backend in more
complex designs. Synopsys DC covers this part, which can be used to have

9.1 Procedural steps for validation 235

an indication of what happens to the DExIMA-Backend accuracy for designs
involving a higher number of standard cells. The Liberty file generated by
Liberate is compiled with Synopsys Library Compiler and converted into a
database file with extension .db. This file can be directly read from DC to
perform the synthesis. In this phase, some architectures and blocks are realized
in DExIMA-CAD, estimated with the Backend, and the VHDL code generated
is directly synthesized with DC, so the performance results of the two tools
are directly compared.

9.1.1 Comparisons with Liberate datasheet

Cadence Liberate is a tool capable of characterizing the standard cells described in
SPICE or Spectre languages and writing their performance results into a Liberty
output file. A typical characterization flow is shown in Fig. 9.1. The steps start from
the transistor-level view of the cells, designed in SPICE tools like Cadence Virtuoso,
moving towards the layout view of the cell, the characterization into a Liberty file, and
the generation of the abstract view of the layout, which can be used by Place&Route
tools. While the layout view represents all the devices, interconnections, P/N wells,
metal layers, contacts, etc., the abstract view contains only the essential elements
needed by the Place&Route to correctly map and connect the standard cell, so only
the metal layers and the contacts. In this instance, only a portion of this chain is
used, taking the standard cells described in the FreePDK45nm and characterizing
them with Liberate. It is important to underline that the considered netlists are
taken from the schematic view and not the layout view, to avoid the inclusion of the
parasitic elements of the layout. This is fundamental to have fairer comparisons with
DExIMA-Backend since it does not include parasitics in the estimations. Liberate
accepts in input a .tcl file, containing indications on the characterization procedure,
such as the working temperature, the supply voltage value, the Look-Up Table
templates for delay and power, the files to characterize, and so on. In Listing 51, the
Liberate script is reported.

1 # Liberate Tcl File
2 set_var bus_syntax "<>"
3 set rundir $env(PWD)
4 #Allow short-circuit states for leakage. As a result, the short-circuit

nodes are not initialized in the deck.↪→

236 DExIMA-Backend validation

Listing 51 Liberate tcl main script for library characterization.

5 set_var mega_short_circuit_mode 2
6 #Resets the negative power
7 set_var reset_negative_power 3
8 set_var reset_negative_power_info 2
9 #Disables the search bound estimation

10 set_var constraint_search_bound_estimation_mode 3
11 #Set the maximum number of hidden vectors for power estimation
12 set_var max_hidden_vector 512
13 set_var conditional_expression_max_whens 1024
14 # Create the directories Liberate will write to.
15 exec mkdir -p ${rundir}/LDB
16 exec mkdir -p ${rundir}/LIBRARY
17 exec mkdir -p ${rundir}/DATASHEET
18 ### Define temperature and default voltage ###
19 set_operating_condition -voltage 1.1 -temp 27
20 ## Load template information for each cell ##
21 source ${rundir}/TEMPLATE/template_rechar.tcl
22 ## Load Spice models and subckts ##
23 set spicefiles $rundir/MODELS/NMOS_VTL.scs
24 lappend spicefiles $rundir/MODELS/PMOS_VTL.scs
25 foreach cell $cells {
26 lappend spicefiles ${rundir}/NETLIST/${cell}.spi
27 set cell_name ${cell}.spi
28 }
29 read_spice $spicefiles
30 ## Characterize the library for NLDM (default), CCS and ECSM timing.
31 char_library -auto_index -auto_max_capacitance -ccs -ecsm -cells ${cells}
32 ## Save characterization database for post-processing ##
33 write_ldb ${rundir}/LDB/Nangate45_NOPEX.ldb
34 ## Generate a .lib with ccs, ecsm ###
35 write_library -overwrite -ccs -bus_syntax "\[\]"

${rundir}/LIBRARY/Nangate45_NOPEX_ccs.lib↪→

36 write_library -overwrite -ecsm -bus_syntax "\[\]"
${rundir}/LIBRARY/Nangate45_NOPEX_ecsm.lib↪→

37 write_verilog ${rundir}/LIBRARY/Nangate45_NOPEX.v
38 ## Generate ascii datatsheet ###
39 write_datasheet -format text ${rundir}/DATASHEET/Nangate45_NOPEX

First, constraints about short circuits, negative powers, maximum hidden vectors,
and conditional expressions are applied to avoid cases with negative powers or
limitations on the maximum number of test cases for more complex gates. Next,

9.1 Procedural steps for validation 237

A

B

AB
Liberty file containing

cell’s informations.
.lib file represents the
cell library used for

synthesis.

Abstract view
Virtuoso

Realization of the cell
(transistor level)

Layout of the Cell Characterization of
the cells

Liberate

Abstract

Synthesis with the new
cell library for very
precise estimations.

Simulation with
ModelSim and
backannotation.

Innovus

Place & Route

Fig. 9.1 Example of a typical characterization steps for a standard cell library.

the operating conditions are set, with a supply voltage of 1.1V and a temperature
of 27 ◦C. Then the information about each cell is loaded by sourcing another script
file called template_rechar.tcl. This file is very important: it is obtained by
exporting a template of data from an existing Liberty file. This operation can be
accomplished with Liberate by reading the initial library using the read_library
command and creating the template with write_template.

Listing 52 Liberate tcl script data template generation.

1 read_library NangateOpenCellLibrary_typical_ecsm.lib
2 write_template -verbose TEMPLATE/template_rechar.tcl

The file template_rechar.tcl contains the Look-Up Tables templates for
power and delay and other constraints of each standard cell, as reported in Listing 53:

238 DExIMA-Backend validation

1 #Thresholds for delay measurements: 30% and 70% of the signal
2 set_var slew_lower_rise 0.3
3 set_var slew_lower_fall 0.3
4 set_var slew_upper_rise 0.7
5 set_var slew_upper_fall 0.7
6 set_var measure_slew_lower_rise 0.3
7 set_var measure_slew_lower_fall 0.3
8 set_var measure_slew_upper_rise 0.7
9 set_var measure_slew_upper_fall 0.7

10 #set the mix-max transition times and minimum output capacitance
11 set_var max_transition 1.98535e-10
12 set_var min_transition 1.17378e-12
13 set_var min_output_cap 3.65616e-16
14 #set the cells to characterize
15 set cells { \
16 AND2_X1 \
17 AND2_X2 \
18 ...
19 }
20 #definition of the delay and power templates with input net transition and

output capacitance.↪→

21 define_template -type delay \
22 -index_1 {0.00117378 0.00472397 0.0171859 0.0409838 0.0780596

0.130081 0.198535 } \↪→

23 -index_2 {0.000365616 0.00189304 0.00378609 0.00757217 0.0151443
0.0302887 0.0605774 } \↪→

24 delay_template_7x7
25

26 define_template -type power \
27 -index_1 {0.00117378 0.00472397 0.0171859 0.0409838 0.0780596

0.130081 0.198535 } \↪→

28 -index_2 {0.000365616 0.00189304 0.00378609 0.00757217 0.0151443
0.0302887 0.0605774 } \↪→

29 power_template_7x7
30 #Definition of the inputs/outputs, templates, leakage and timing arcs of

the cell.↪→

31 if {[ALAPI_active_cell "AND2_X1"]} {
32 define_cell \
33 -input { A1 A2 } \
34 -output { ZN } \
35 -pinlist { A1 A2 ZN } \
36 -delay delay_template_7x7 \

9.1 Procedural steps for validation 239

Listing 53 Liberate template_rechar.tcl script containing the standard cell templates.

37 -power power_template_7x7 \
38 AND2_X1
39

40 define_leakage -when "!A1 & !A2" AND2_X1
41 define_leakage -when "!A1 & A2" AND2_X1
42 define_leakage -when "A1 & !A2" AND2_X1
43 define_leakage -when "A1 & A2" AND2_X1
44

45 # delay arcs from A1 => ZN positive_unate combinational
46 define_arc \
47 -vector {RxR} \
48 -related_pin A1 \
49 -pin ZN \
50 AND2_X1
51 ...

After the template parsing, Liberate returns to the main script (Listing 51), reads
the NMOS/PMOS technology model files and the standard cell netlists, and starts
the characterization of the library by means of char_library command. It is
important to underline that the NMOS/PMOS technology files are the ones that were
simplified by setting capMod = 0, xpart = 0.5, and cvchargemod = 0 options.
At the end of the characterization process, Liberate outputs several files such as the
.ldb database of the library that can be used in post-processing; two Liberty libraries,
with Concurrent Current Source (CCS) and Non-Linear Delay Model (NLDM)
descriptions; a Verilog file containing the behavioral description of the standard cells
that can be used for post-synthesis simulations and, lastly, a datasheet file containing
the human-readable characterization and performance results of each standard cell.
From this datasheet, some cells are considered and directly compared with DExIMA-
Backend, as shown in Table 9.1. In the datasheet, for each standard cell, the energy
and timing are evaluated for each input, output transitions (input rising, input falling,
output rising, and output falling), and different capacitance loads, differentiating
between minimum value (corresponding to the minimum load and indicated as Min
in Table 9.1), average (Avg) and maximum (Max). Choosing one combination as
a reference, in Table 9.1, the minimum value for the dynamic energy and timing
is considered because in this analisys the standard cells in DExIMA-Backend are
evaluated with zero loads. For the static power, instead, the average value is taken.
The absolute error is computed between DExIMA-Backend and Liberate, showing

240 DExIMA-Backend validation

Table 9.1 Standard cells performance comparison between Liberate and DExIMA-Backend.
Cell Parameter DExIMA-

Backend
Liberate AE*

IN
V

_X
1

Dynamic Energy (fJ) 0.61
Min

0.090.7

Timing (ps) 1.97
Min

0.032

Static Power (nW) 74.01
Avg

12.1286.13

A
N

D
2_

X
1

Dynamic Energy (fJ) 1.28
Min

0.221.5

Timing (ps) 5.43
Min

1.977.4

Static Power (nW) 145.96
Avg

7.74138.22

N
A

N
D

2_
X

1

Dynamic Energy (fJ) 1.34
Min

0.061.4

Timing (ps) 3.34
Min

0.063.4

Static Power (nW) 133.40
Avg

45.3088.09

O
R

2_
X

1

Dynamic Energy (fJ) 1.34
Min

0.261.6

Timing (ps) 5.02
Min

1.823.2

Static Power (nW) 116.65
Avg

1.37118.02

M
U

X
2_

X
1

Dynamic Energy (fJ) 2.46
Min

0.362.1

Timing (ps) 10.55
Min

1.0511.6

Static Power (nW) 216.77
Avg

33.98182.79

X
N

O
R

2_
X

1

Dynamic Energy (fJ) 2.93
Min

0.932

Timing (ps) 11.78
Min

2.6214.4

Static Power (nW) 262.55
Avg

77.09185.46

X
O

R
2_

X
1

Dynamic Energy (fJ) 3.07
Min

0.772.3

Timing (ps) 4.23
Min

0.474.7

Static Power (nW) 219.29
Avg

45.25174.04

*AE stands for Absolute Error, obtained as |xDExIMA − xLiberate|.

9.1 Procedural steps for validation 241

a maximum difference of 0.93 fJ for the dynamic energy, 2.62 ps for the timing,
and 77.09 nW for the static power. The intrinsic differences between the tools
mainly cause these differences: Liberate performs several simulations, estimating
the performance of each transition and measuring the contributions. In contrast,
DExIMA-Backend estimates the total energy with each node or net active at the
same time. From these results, it is evident that precise estimations of the MOS
intrinsic capacitances, Igate and Io f f are crucial to get accurate performance results.

9.1.2 Comparisons with Synopsys Design Compiler

DExIMA-Backend should also be validated with more complicated blocks to have a
clear indication of its precision. Since they are composed of multiple standard cells, a
synthesis process is necessary. For this purpose, Synopsys Design Compiler is used,
with the just characterized library as a database, to keep similarities with DExIMA-
Backend computational models as much as possible. The estimations with both tools
are made without the back-annotation process, with a fixed switching activity factor
α of each net equal to 0.5. The synthesis script is reported in Listing 54.

1 #set the significant digits in the reports
2 set_app_var report_default_significant_digits 4
3 #set the target library
4 set t_lib Nangate45_NOPEX_ecsm
5 #get the library cells
6 set COLLECTION [get_lib_cell $t_lib/*]
7 set COLLECTION_CELLS [get_object_name $COLLECTION]
8 #set the cells to keep
9 set KEEP_CELLS {

10 Nangate45_NOPEX_ecsm/NAND2_X1
11 Nangate45_NOPEX_ecsm/AND2_X1
12 Nangate45_NOPEX_ecsm/OR2_X1
13 Nangate45_NOPEX_ecsm/MUX2_X1
14 Nangate45_NOPEX_ecsm/INV_X1
15 Nangate45_NOPEX_ecsm/DFFR_X1
16 Nangate45_NOPEX_ecsm/FA_X1
17 Nangate45_NOPEX_ecsm/HA_X1
18 Nangate45_NOPEX_ecsm/NAND2_X1
19 Nangate45_NOPEX_ecsm/NOR2_X1
20 Nangate45_NOPEX_ecsm/OAI21_X1

242 DExIMA-Backend validation

21 Nangate45_NOPEX_ecsm/TBUF_X1
22 Nangate45_NOPEX_ecsm/TINV_X1
23 Nangate45_NOPEX_ecsm/XNOR2_X1
24 Nangate45_NOPEX_ecsm/XOR2_X1
25 }
26 #cells with dont_use attribute are not considered in the synthesis
27 foreach lib_cell $COLLECTION_CELLS {
28 set flag_to_keep_cell 0
29 foreach cell $KEEP_CELLS {
30 if { $cell == $lib_cell } {
31 set flag_to_keep_cell 1
32

33 }
34 }
35 if { $flag_to_keep_cell == 0 } {
36 set_dont_use $lib_cell
37 }
38 }
39 #STEP1: READING VHDL sources
40 analyze -f vhdl -lib WORK ../VHDLfiles/configpkg.vhd
41 analyze -f vhdl -lib WORK ../../CODE/LIBRARY/sources/Gates/AND2.vhd
42 ...
43 analyze -f vhdl -lib WORK ../VHDLfiles/top_level.vhd
44 set power_preserve_rtl_hier_names true
45 elaborate top_level -arch structure
46 #-------------------------------------STEP2: CONSTRAINTS
47 #CREATE CLOCK
48 create_clock -name MYclk -period 6 CLK
49 set_dont_touch_network MYclk
50 #set the toggle rate equal to 0.5 with base clock
51 set_switching_activity -toggle_rate 0.5 -static_probability 0.5

-base_clock MYclk {*}↪→

52 #--------------------------------------STEP3: SYNTHESIS
53 compile
54 ##-------------------------------------STEP4: results
55 report_timing > ./results/timingtop_level.txt
56 report_area > ./results/areaHIER_top_level.txt
57 report_power > ./results/power_noBA_top_level.txt
58 report_power -net > ./results/net_power.txt
59 ##-------------------------------------STEP5: BA SETUP
60 change_names -hierarchy -rules verilog
61 write_sdf ../netlist/top_level.sdf

9.1 Procedural steps for validation 243

Listing 54 Synthesis script used to compare DExIMA-Backend and Synopsys Design Com-
piler performance results.

62 write -f verilog -hierarchy -output ../netlist/top_level.v
63 write_sdc ../netlist/top_level.sdc
64 exit

To compare the two tools, using the same cells to implement the considered
blocks is fundamental. DExIMA-Backend models the performance of the cells with
a drive strength of 1, so all the cells with the suffix "_X1" at the end of the cell
name should be selected in the Design Compiler as well. This is accomplished with
the directive set_dont_use, indicating explicitly the cells not to use. Next, the
script analyzes all RTL files of the implementation and elaborates the architecture.
As reference, a clock period of 6 ns is used, but it can be changed by the user in
DExIMA-CAD if needed. At line 51 of Listing 54, the static probability, i.e., the
percentage of time in which the considered signal is at logic ’1’, and the toggle
rate, expressed in transitions per second, are set to 0.5. When specified, the flag
base_clock couples the value of the toggle rate passed with the toggle_rate flag
with the clock period in the following way:

T Rneti =
T Rspecified

Clock period
(9.1)

Where T Rspecified is the value passed with toggle_rate flag. In this case, the
definition of the T Rspecified coincides with the switching activity factor.

T Rneti =
T Rspecified

Clock period
≡ α

Clock period
(9.2)

After the definition of the toggle rate, the design is compiled and synthesized with
compile and the performance reports extracted, as well as the Verilog netlist of
standard cells, the Standard Delay File (SDF), and Synopsys Design Constraint
(SDC) files. Several blocks, such as registers, ripple-carry adders with 8, 16, and
64 bits parallelism, and simple logic gates are considered. For each case, the
values of the Backend are directly compared with Synopsys DC, estimating the
relative percentage error. However, to have a fair comparison between the two tools,
Synopsys must synthesize and perform estimations on the same architecture as the
DExIMA-Backend one, meaning that the same standard cells must be used in the
two cases. Therefore, the following steps are followed to accomplish this constraint:

244 DExIMA-Backend validation

1. Structural description of the test architecture. Considering, for instance, adders
test architectures, in DExIMA-Backend, they are implemented as ripple-carry
adders, so the RTL code must be described in a structural way to match the
models.

2. Force the synthesizer to use the same standard cells as DExIMA-Backend’s
ones. Most importantly, apart from the same structural description of the
architectures, Synopsys DC must map the same standard cells as the ones
included in the DExIMA-Backend structural blocks. To accomplish that,
PRAGMAs are used in the VHDL source files: an example of a full adder RTL
description is reported in Listing 55.

1 library ieee;
2 use ieee.std_logic_1164.all;
3 entity FA is
4 port(A: in std_logic;
5 B: in std_logic;
6 C: in std_logic;
7 S: out std_logic;
8 CO: out std_logic);
9 end FA;

10 architecture structure of FA is
11 -- synopsys translate_off
12 signal out_xor_1: std_logic;
13 signal out_and_1, out_and_2: std_logic;
14 -- synopsys translate_on
15 component FA_X1
16 port(
17 A,B,CI: in std_logic;
18 CO,S: out std_logic
19);
20 end component;
21 begin
22 -- synopsys translate_off
23 out_xor_1 <= A xor B;
24 out_and_1 <= out_xor_1 and C;
25 S <= out_xor_1 xor C;
26 out_and_2 <= A and B;
27 CO <= out_and_1 or out_and_2;
28 -- synopsys translate_on
29 -- synopsys dc_script_begin

9.1 Procedural steps for validation 245

Listing 55 Full adder RTL code with PRAGMAs

30 -- set_dont_touch FA_instance
31 -- synopsys dc_script_end
32 FA_instance: FA_X1
33 port map(A,B,C,CO,S);
34 end structure;
35

The directive --synopsys translate_off tells the synthesizer not to con-
sider the subsequent code until it reaches --synopsys translate_on : in
this way, the behavioral part of the code will not be synthesized. With the
current code, however, the synthesizer possibly removes the FA_X1 cell since
it is mapped as a black box, so to avoid synthesis optimizations, the direc-
tive --set_dont_touch FA_instance is used, wrapped in --synopsys
dc_script_begin and --synopsys dc_script_end , specifying that it is
a Synopsys DC command.

The results and the test architectures are reported in Fig. 9.2 and Fig. 9.3, where
dynamic, static, total powers, and critical path are compared with Synopsys DC.
Highlighted in yellow, there is the relative error in percentage computed as:

Relative errorDExIMA-Synopsys(%) =
XDExIMA −XSynopsys

XSynopsys
×100% (9.3)

Where XDExIMA and XSynopsys are the considered measures for DExIMA and Synop-
sys, respectively. These results can be considered valid, remembering that DExIMA-
Backend should provide a rough and fast estimation of the performance. Once the
LiM circuits are evaluated with the Backend, the user can directly synthesize the
design. As expected, the two tools provide different results because of the intrinsic
differences between the computational models: DExIMA performs static evaluations
on the circuit without the characterization process that includes measurements at the
SPICE level of the standard cells’ performance. This is not the only difference; in
fact, synthesizers, in addition to having a different computation model, are also able
to propagate switching activity within the nodes of the circuit, whereas DExIMA-
Backend, when used in worst-case mode, imposes the same toggle rate for each node
in the design. The switching activity greatly impacts the performance estimation,
also greatly modifying the dynamic power value. It is therefore possible that, in
estimations on more complex architectures, DExIMA-Backend overestimates the

246 DExIMA-Backend validation

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Flip
-fl

opFull
Add

erHalf
Add

er
Add

er8
Add

er1
6Add

er6
4

Reg
8

Reg
16

Reg
64

OR
AND

NAND
NOT

XNOR

−13.34

−13.88

−14.13

−11.22

−10.52

−9.13

−11.26

−10.57

−9.18

−15.32

−15.36

−15.83

−16.1

−14.53

−13.49

−14.17

−14.61

−11.37

−10.67

−9.18

−11.4

−10.58

−9.15

−15.32

−15.32

−15.95

−16.77

−15.21

Dynamic Power (W)

DExIMA-Backend
Synopsys DC

15.2% 1.61 µ

1.39 µ

34.1% 0.94 µ

0.70 µ

61.5% 0.73 µ

0.45 µ

16.5% 13.40 µ

11.50 µ

15.8% 26.94 µ

23.26 µ

5.2% 108.19 µ

102.80 µ

15.2% 12.85 µ

11.16 µ

0.6% 25.71 µ

25.54 µ

-3.3% 102.82 µ

106.38 µ

-0.1% 0.22 µ

0.22 µ

-4.0% 0.21 µ

0.22 µ

13.0% 0.13 µ

0.12 µ

96.0% 0.10 µ

5.21 ·10−2 µ

97.5% 0.49 µ

0.25 µ

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

−14.24

−14.59

−14.82

−12.12

−11.43

−10.04

−12.16

−11.47

−10.08

−15.96

−15.74

−15.83

−16.42

−15.15

−13.98

−14.94

−14.98

−11.95

−11.25

−9.67

−11.9

−10.98

−9.49

−15.95

−15.79

−16.24

−16.27

−15.5

Static Power (W)

-23.1% 0.65 µ

0.85 µ

41.2% 0.46 µ

0.33 µ

17.0% 0.37 µ

0.31 µ

-15.4% 5.43 µ

6.43 µ

-16.6% 10.87 µ

13.04 µ

-31.3% 43.48 µ

63.25 µ

-23.0% 5.23 µ

6.79 µ

-38.7% 10.46 µ

17.06 µ

-44.9% 41.82 µ

75.90 µ

-1.2% 0.12 µ

0.12 µ

5.6% 0.15 µ

0.14 µ

51.4% 0.13 µ

8.81 ·10−2 µ

-14.1% 7.4 ·10−2 µ

8.61 ·10−2 µ

41.6% 0.26 µ

0.19 µ

Performance comparisons between DExIMA-Backend and Synopsys DC

Fig. 9.2 Dynamic and Static powers comparisons between DExIMA and Synopsys Design
Compiler.

dynamic power even considerably, but this is not a disadvantage because the user is
still able to get an indication of the circuit consumption for a given technology, and
once one is satisfied with the values obtained, he/she can move on to synthesis and
Place&Route. However, the results obtained for each relevant parameter are close to
the reference ones, suggesting that DExIMA can provide valid indications of system
performance faster than classical synthesizers.

9.1 Procedural steps for validation 247

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Flip
-fl

opFull
Add

erHalf
Add

er
Add

8
Add

16
Add

64
Reg

8
Reg

16
Reg

64

OR
AND

NAND
NOT

XNOR

−13

−13.48

−13.73

−10.88

−10.18

−8.79

−10.92

−10.23

−8.84

−14.9

−14.84

−15.14

−15.55

−14.1

−13.01

−13.79

−14.09

−10.93

−10.22

−8.7

−10.93

−10.06

−8.61

−14.89

−14.83

−15.39

−15.79

−14.65

Total Power (W)

DExIMA-Backend
Synopsys DC

0.7% 2.26 µ

2.24 µ

36.3% 1.40 µ

1.02 µ

43.3% 1.09 µ

0.76 µ

5.0% 18.83 µ

17.93 µ

4.1% 37.81 µ

36.30 µ

-8.7% 151.67 µ

166.06 µ

0.8% 18.08 µ

17.95 µ

-15.1% 36.16 µ

42.60 µ

-20.6% 144.65 µ

182.27 µ

-0.4% 0.34 µ

0.34 µ

-0.4% 0.36 µ

0.36 µ

29.4% 0.27 µ

0.21 µ

27.4% 0.18 µ

0.14 µ

73.6% 0.75 µ

0.43 µ

Performance comparisons between DExIMA-Backend and Synopsys DC

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

−3.13

−3.88

−4.65

−1.85

−1.19

0.17

−3.13

−3.13

−3.13

−5.29

−5.22

−5.7

−6.23

−4.44

−3.51

−3.51

−4.61

−1.77

−1.14

0.2

−3.51

−3.51

−3.51

−4.51

−4.54

−5.47

−6.61

−4.28

Critical Path Delay (ns)

45.4%
4.36 ·10−2 n
3 ·10−2 n

-31.2%
2.07 ·10−2 n
3 ·10−2 n

-4.8%
9.52 ·10−3 n
1 ·10−2 n

-7.7% 0.16 n
0.17 n

-5.2% 0.30 n
0.32 n

-3.1% 1.18 n
1.22 n

45.4%
4.36 ·10−2 n
3 ·10−2 n

45.4%
4.36 ·10−2 n
3 ·10−2 n

45.4%
4.36 ·10−2 n
3 ·10−2 n

-54.4%
5.02 ·10−3 n
1.1 ·10−2 n

-49.1%
5.43 ·10−3 n
1.07 ·10−2 n

-20.6%
3.34 ·10−3 n
4.21 ·10−3 n

46.3%
1.97 ·10−3 n
1.35 ·10−3 n

-15.0%
1.18 ·10−2 n
1.39 ·10−2 n

Fig. 9.3 Total power and critical path comparisons between DExIMA and Synopsys Design
Compiler.

Another parameter to consider is the execution time of DExIMA-Backend in
making performance estimates. To do this study, the execution times of DExIMA-
Backend and Synopsys Design Compiler in providing the results were compared
for the previously studied architectures. The values of execution times are printed
on the command line by the two tools when the entire procedure finishes and they
are reported in Table 9.2. Both tools are executed on the same PC’s system archi-
tecture. The speed-up achieved by DExIMA-Backend for the proposed benchmarks
varies from ∼ 21.4 to ∼ 263.2 times, confirming its capability to provide almost

248 DExIMA-Backend validation

Table 9.2 CPU usage time comparison between DExIMA-Backend and Synopsys DC.

Architecture
CPU usage time (s)

Speed-upDExIMA Synopsys
Reg64 0.281 6 21.4

Reg16 0.084 5 59.5

Reg8 0.086 7 81.4

Adder64 0.08 7 87.5

Flip flop 0.053 6 113.2

Adder8 0.041 6 146.3

HalfAdder 0.04 7 175.0

XNOR 0.028 5 178.6

Adder16 0.027 5 185.2

FullAdder 0.032 6 187.5

NOT 0.03 6 200.0

OR 0.024 5 208.3

AND 0.019 5 263.2

NAND 0.019 5 263.2

accurate estimations in a very short time. Further comparisons with more complex
architectures are proposed in section 10.7.

9.2 Conclusions

In this chapter, the validation of the DExIMA-Backend tool is addressed, which is of
fundamental importance in demonstrating the reliability of the tool. The validation
steps require the use of Cadence Liberate (for characterization of the reference cell
library) and Synopsys Design Compiler (for comparison with architectures composed
of multiple standard cells). Comparisons are made in terms of performance and also
in terms of execution time required by DExIMA-Backend in making the estimates. For
the proposed subset of test architectures, DExIMA-Backend proved to be a fast and
relatively accurate tool compared to commercial standards. In the next chapter, these
comparisons will be repeated for much more complex LiM architectures, evaluating
the reliability of DExIMA-Backend even on extremely complex architectures.

Chapter 10

Testing DExIMA: benchmarking and
comparisons

Summary

In this section, DExIMA is tested with different LiM structures. In all proposed
benchmarks, the LiM architecture is designed according to the algorithm to be
implemented, starting from the LiM cell, the IRL, and finishing with the entire
memory array. Finally, the "Comparison CPU-Memory" tool is exploited to compare
the results obtained with the classical CPU-Mem and the beyond von Neumann
CPU-Mem-LiM architecture.

10.1 XNOR-Net: a binary neural network

The first proposed benchmark is the XNOR-Net [7]. XNOR-Net working principle
is recalled in the following:

250 Testing DExIMA: benchmarking and comparisons

A Binary Neural Network approximates a classical Neural Network, aim-
ing to reduce computation complexity. In XNOR-Net, weights and inputs
are binarized, and they can assume only two values: ±1. The convolution
operation is approximated into a series of bitwise-XNOR and pop-counting
operations. Pop-counting consists of performing the difference between the
number of ones and zeros in a bit string.

A generic i-th convolution operation is computed following the Equation 10.1:

ConvXNOR ≈ pop-count [!(Ii ∧W0), ..., !(Ii+N−1 ∧WN−1)] (10.1)

Where N is the kernel window size. This algorithm is implemented in [13], which
proposes two LiM arrays made of basic LiM cells with an XNOR gate (to compute
the product) and a half adder (to compute the pop-count), respectively. Only the
first LiM Array dedicated to the XNOR products is implemented in DExIMA-CAD.
The basic LiM cell is captured from DExIMA-CAD and depicted in Fig. 10.1. The

IN0

IN1

O

XOR2_42

CK EN RN WR

RD

Memory_41

LiM0

LiM0

SHO

SHO

OC

OC

S31

S31

S30

S30

S29

S29

S28

S28

S27

S27

S26

S26

S25

S25

S24

S24

S23

S23

S22

S22

S21

S21

S20

S20

S19

S19

S18

S18

S17

S17

S16

S16

S15

S15

S14

S14

S13

S13

S12

S12

S11

S11

S10

S10

S9

S9

S8

S8

S7

S7

S6

S6

S5

S5

S4

S4

S3

S3

S2

S2

S1

S1

S0

S0

WL

WL

RST

RST

CLK

CLK

BLB

BLB

BL

BL

Fig. 10.1 XNOR-Net basic LiM Cell (cell00).

10.2 Matrix-Vector Multiplication 251

CPU-Mem code for the XNOR-Net (named xnor_net_cpu.c) is the following:

Listing 56 XNOR-Net CPU-Mem algorithm.

1 volatile int memory_content[N] = {0};
2 volatile int weights[K] = {0x3,0x2,0x3e,0x12,0x87,0xf2,...};
3 volatile int value = 0;
4 for(int j = 0; j < K; j++)
5 {
6 for(int i = 0; i < N; i++)
7 {
8 value = !(memory_content[i] ^ weights[j]);
9 }

10 }

The algorithmic steps to implement the LiM version of the Listing 56 are the
following:

1. Data precharging. The values of the input matrix are binarized and saved in
each memory row such that the 0th bit of row 0 corresponds to the binarized
pixel (0,0) of the input image, the 1st bit of the row 0 corresponds to the
binarized pixel (0,1), etc. This step requires N clock cycles.

2. Binary convolution computation. The binarized weights are streamed inside
the memory array by means of the selectors S00-S31 shown in Fig. 10.1. The
array performs N parallel XNORs at the same time. This step requires K clock
cycle.

10.2 Matrix-Vector Multiplication

By exploiting Intra Row Logic blocks, the user can realize more common opera-
tions such as Matrix-Vector Multiplication (MVM). The pseudocode is reported in
Listing 57.

Listing 57 MVM pseudocode.

1 for(int i = 0; i < ROWS; i++)
2 for(int j = 0; j < COLS; j++)
3 {
4 Y[i] = Y[i] + M[i][j] * V[j];
5 }

252 Testing DExIMA: benchmarking and comparisons

MC

CK WL BL RN SN

M[i][j]NV[j]N

... MC

CK WL BL RN S0

M[i][j]0V[j]0

×TOP

+

REG

BTM
Fig. 10.2 LiM cell (bordered in blue) and IRL circuits for the MVM algorithm. IRL contains
a multiplier, an adder and a register.

For each line of the memory array, the LiM cell, shown in Fig. 10.2, is made of a
simple memory cell (MC in the figure) that stores the input matrix M[i][j] and an
additional input pin called Sn, where n indicates the n-th bit. This input provides the
value of the V[j]n for each algorithmic step. The adder of the IRL takes in input the
multiplied value of M[i][j]*V[j] and the signal coming from the previous memory
line, that corresponds to M[i][j-1]*V[j-1], since the TOP signal of the k-th row
is connected to the BTM signal of the (k-1)-th row. Referring to Listing 57, the steps
executed by the MVM algorithm are the following:

1. Data precharging. Matrix elements are saved in each line of the memory array
so that inside row 0, there will be M[0][0], M[0][1] in row 1, M[0][2]in row
2, M[0][COLS-1] in row COLS, M[1][0] in row COLS+1 and so on. This
step requires ROWS×COLS clock cycles.

2. Multiply and accumulate. In this phase, the values of V[j] are provided to the
LiM array for each clock cycle by means of Sn. In the first clock cycle, V[0] is
streamed inside the array. The rows 0,16,...,240 containing M[0][0], M[1][0],
..., M[ROWS-1][0] are enabled to perform the product, that will be saved inside
the register of the IRL. In the second clock cycle, V[1] is provided, so the rows
1,17,...,241 containing M[0][1], M[1][1], ..., M[ROWS-1][1], respectively,
are enabled. At the same time, the TOP signals, connected to the BTM of

10.3 K-Nearest Neighbor 253

the previous rows, assume the value of the previous accumulation that is
summed with the current product. The algorithm ends when all columns of
the input matrix are processed, so when the last enabled set of rows is the ones
containing M[0][COLS-1], M[1][COLS-1], ..., M[ROWS-1][COLS-1]. This
step requires COLS clock cycles.

10.3 K-Nearest Neighbor

The K-Nearest Neighbor (K-NN) is a classification and regression algorithm. Starting
from a dataset, the K-NN calculates the distance between the points in the dataset and
k centroids, returning those with the shortest distance. In DExIMA, this algorithm is
implemented by considering the following pseudo-algorithm with 1 centroid:

Listing 58 K-NN pseudocode.

1 #define N 1024
2 int D[N] = {0};
3 int X[N];
4 int Y[N];
5 int Xs,Ys;
6 for(unsigned int i = 0; i < N; i++)
7 {
8 D[i] = abs(Xs-X[i]) + abs(Ys-Y[i]);
9 }

The circuit that implements the IRL block is shown in Fig. 10.3, which can
implement sums and absolute values. An IRL block must be inserted for each
memory row to implement K-NN. The calculation of the absolute value is done
by Adder_19, in fact, the operator A is the value 0 stored in the register Reg_21,
while operator B takes the result of the subtraction (performed by Adder_18) and
complements it with XORs based on the value of the MSB, exploiting the adders’
sum/subtraction functionality.

The array will consist of two different types of LiM Cells, shown in Fig. 10.4.
The cell shown in the Fig. 10.4 (a), is a variant of a standard memory cell, in fact
it connects the values of the selectors to the SHO bus. The selectors convey the Xs
and Ys coordinates of the centroid, which must be shared with the entire array. The
memory structure will consist of all standard memory cells, except for the last row,

254 Testing DExIMA: benchmarking and comparisons

CLK

CLK

BL

BL

BLB

BLB

SHO

SHO

RST

RST

WL

WL

OC

OC

TOP

TOP

SI0

SI0

SI1

SI1

SI2

SI2

SI3

SI3

SI4

SI4

BTM

BTM

IRL0

IRL0

IN0

IN1

S

O

Muxnbit_16

IN0

IN1

S

O

Muxnbit_17

A B

AS

SUM

ADDER_18
+/-

A B

AS

SUM

ADDER_19

+/-

CK

EN

R

D

Q

Reg_21

Register

Register
CK

EN

R

D

Q

Reg_24

Fig. 10.3 IRL block implementing the K-NN computation.

where there will be special cells in the Fig. 10.4 (a). Specifically, each column will
have a different cell: cell 00 in column 0, which connects the S0 switch to SHO;
cell 01 in column 1, which connects the S1 switch, and so on. The algorithm is
implemented as follows:

1. Data precharging. Within the even-numbered rows (0, 2, 4, 6,..., 1022), the
values of X[i] are loaded, and in the odd-numbered rows (1,3,5,...,1021), the
values of Y[i].

2. First absolute value calculation. At the beginning of the algorithm, only the
even-numbered rows plus the 1023rd (containing the special LiM cells) are
enabled, and the value of Xs is entered on the selector signals S0,...,S31. Then,
in the same clock cycle, the IRLs of the even-numbered rows perform the
subtraction between the value contained in the cells (thus the X[i]) and the

10.4 Bitmap Indexing 255

(a) (b)
Fig. 10.4 LiM Cells used to implement the K-NN algorithm. (a) Cell 00, used to connect the
selectors on the SHO bus. (b) Standard memory cells that simply hold data.

value of Xs (which will be on the SHO bus). On the subtraction, the absolute
value is calculated with Adder_19, and the result will be saved in Reg_24.

3. Second absolute value calculation. The next step will be to enable the odd-
numbered rows plus the 1023rd, simultaneously putting the value of Ys on the
SHO bus. Following the same method as before, the calculation of subtraction
and absolute value will be saved in Reg_24.

4. Final sum. In the final step, only the odd rows (1,3,...,1021) are enabled,
and the sum between |X [i]−Xs|+ |Y [i]−Y s| is performed. This can be done
using the mechanism offered by TOP-BTM signals: the BTM of the previous
even-numbered row will be linked to the TOP of the next odd-numbered row.
The result of the sum is saved again in Reg_24, where the final value can be
found.

10.4 Bitmap Indexing

The concept of the Bitmap Indexing (BMP) algorithm was explained different times
in this thesis. Here, a quick explanation from section 2.1.2 is reported for reference.

256 Testing DExIMA: benchmarking and comparisons

BMP is a strategy for quick database searches, according to [129]. It in-
volves altering the data representation in order to search for information
inside the database using simple bitwise operations. Each bit represents a
field in bit arrays (also known as bitmaps), which may be true or false. The
corresponding bit is set to true if the record corresponds to a certain field.
The IRL structure includes the OneCounter, which implements the samples
count.

Until now, benchmarks made use of a fairly large number of data elements, but
in this context, the BMP algorithm implemented in this section employs a very small
database (consisting of 15 elements) aiming to evaluate the impact of an extremely
small LiM on the performance of a von Neumann architecture. The memory array
will be 16× 8 bits in size and is composed of two types of cells: standard LiM
memory cells and computation LiM cells. The former store data and, when selected
appropriately, send data to the SHO bus through the use of a tristate buffer. On the
other hand, the latter also perform calculations coupled with IRL logic. The array
will then be organized as follows:

Listing 59 Organization of the LiM array for the BMP algorithm.

1 -- File MEMORYARRAY_1.csv
2 st_memory_cell,st_memory_cell,...,st_memory_cell
3 st_memory_cell,st_memory_cell,...,st_memory_cell
4 ...
5 compute_cell00,compute_cell01,...,compute_cell07
6

7 -- File MEMORYARRAY_1_intrarow.csv
8 NO-Logic
9 ...

10 OneCountIRL

LiM Cells (standard and computation) are shown in the Fig. 10.5.

10.4 Bitmap Indexing 257

BL

BL

CLK

CLK

RST

RST

WL

WL

S15

S15

OC

OC

SHO

SHO

CK EN RN WR

RD

Memory_24

IN0

EN

O

TBUF_25

SHO

SHO

IN0

IN1

O

AND2_34

IN0

IN1

S

O

MUX21_33

IN0

IN1

S

O

MUX21_32

IN0

IN1

S

O

MUX21_31
CK EN RN WR

RD

Temp

IN0

IN1

S

O

MUX21_29

CK EN RN WR

RD

R2

CK EN RN WR

RD

M
e
m
o
r
y
_
1
4

IN0

IN1

O

OR2_13

IN0

IN1

O

AND2_12

LiM0

LiM0

OC

OC

S14

S14

S13

S13

S12

S12

S11

S11

S10

S10

S9

S9

S8

S8

S7

S7

S6

S6

S5

S5

S4

S4

S3

S3S2

S2

S1

S1

S0

S0

WL

WL

RST

RST

CLK

CLK

BLB

BLB

BL

BL

(a)

(b)
Fig. 10.5 LiM Cells for BMP implementation. (a) Standard memory cells (st_memory_cell)
and (b) LiM computational cells (compute_cell00).

The algorithm is implemented as follows:

258 Testing DExIMA: benchmarking and comparisons

1. Data precharging. Bitmaps are loaded for each row. Specifically, in the pro-
posed implementation, we have a sample of 8 elements with the following
characteristics: category 1, category 2, type A, B, C, D, E,..., M. The charac-
teristics are stored in the first 15 rows of the array, and if an i-th element of
the 8 analyzed possesses one of the above characteristics, the i-th bit on the
corresponding row will be set to 1, otherwise 0.

2. Addressed question. In the proposed example, the following query is to be
answered: "how many elements are of category 2 and are they type A or type
B?". The algorithm then results in a series of bitwise operations involving
rows 1, 2, and 3. The algorithm will then be:

Listing 60 Pseudo-algorithm of the BMP query.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdint.h>
4 #define ELEMENTS 8
5 #define BITMAPS 15
6 int OneCount(unsigned char element)
7 {
8 unsigned char temp;
9 int number_of_occurences = 0;

10 for(unsigned int i = 0; i < ELEMENTS; i++)
11 {
12 temp = element >> i;
13 temp = temp & 1;
14 number_of_occurences += temp;
15 }
16 return number_of_occurences;
17 }
18 int main()
19 {
20 unsigned char bitmap[BITMAPS];
21 unsigned char result = bitmap[1] & (bitmap[2] | bitmap[3]);
22 int counting = OneCount(result);
23 return 0;
24 }
25

Taking the Fig. 10.5 as a reference, the steps performed on the LiM are as follows:

10.4 Bitmap Indexing 259

• Save the contents of row 2 (corresponding to type A) within Memory_14 of
the compute cells. This operation is done through the SHO bus, enabling the
tristate buffers of row 2 containing standard memory cells.

• Save the contents of row 3 within R2 in the computation cells, exploiting the
same principle used previously. Row 3 contains type B.

• Perform the OR between the contents of Memory_14 and R2 and save the
result in Temp. The result is the bitwise OR between type A and type B.

• At this point, LiM takes the contents of row 1 (corresponding to category 2)
and saves it in Memory_14, again exploiting the SHO bus.

• The AND between the contents of Memory_14 and Temp is done, thus obtaining
the final query stored in Temp.

These steps require 5 clock cycles. For the OneCounting operation, the IRL is also
involved in combination with the S7-S14 computation cell selectors. The structure
of the IRL is shown in Fig. 10.6: OneCounting is done by doing an AND & Right

CK

EN

R

D

Q

Sum

A B

AS

SUM

ADDER_19 +/-

CK

EN

R

D

Q

TempIRL

Register

Register

A

O

RSHIFTER_17

RSHIFTERIN0

IN1

S

O

Muxnbit_16

IRL0

IRL0

BTM

BTM

LiM0

LiM0

SI4

SI4

SI3

SI3

SI2

SI2

SI1

SI1

SI0

SI0

TOP

TOP

OC

OC

WL

WL

RST

RST

SHO

SHO

BLB

BLB

BL

BL

CLK

CLK

IN
0

IN
1

S

O Muxnbit_21

Fig. 10.6 IRL circuit for OneCounting operation.

260 Testing DExIMA: benchmarking and comparisons

Shift operation to count the number of ones within a sequence of bits. Then, the
remaining part of the algorithm is carried out as follows:

• Initially, the sequence "00000001" is inserted on the S14-S7 selectors. The
selectors are employed in the computation cells and transfer the mask to
perform the bitwise AND between the contents of Temp and the mask itself.
In cell 00, the AND will be done with S7, in cell 01 with S8, and so on. The
value of the bitwise AND is supplied to the IRL via the LiM0 pin: the result is
saved within the Sum register.

• Next, the value "00..10" will be entered on switches S14-S7. The AND is done
again, but this time the result must be shifted to the right by 1 position by the
use of RSHIFTER_17, which is a hardwired Right Shifter. The shifted value is
saved within the TempIRL register.

• At this point, a sum is performed between the value previously saved in the
Sum register and the contents of TempIRL. Then, the result is saved again in
Sum.

• The cycle starts again by providing the selectors the value "0..100" and per-
forming the AND bitwise. This time, however, the shift must be done in two
positions to the right, requiring to iterate the procedure twice.

• The algorithm is iterated until the mask combination of "1...0" is reached.

The calculation of the OneCounting depends on the size of the bitmaps. No right
shift is required at the beginning of the OneCounting algorithm, so the accumulation
is performed in 1 clock cycle. At the second iteration, 1 clock cycle is required for
the shift and 1 clock cycle for the accumulation. Next, 2 clock cycles are required for
the shift and 1 clock cycle for the accumulation, and so on. Totally, the OneCounting
procedure requires ∑

Size bitmap−1
i=0 (i+1) clock cycles.

10.5 Mean-Variance

The last proposed benchmark is the Mean-Variance computation, implemented as in
Listing 61.

10.5 Mean-Variance 261

Listing 61 Mean-Variance pseudocode.

1 sum1, sum2, sum3 = 0;
2 for(int i = 0; i < N; i++) sum1 += X(i);
3 mean = sum1/N;
4 for(int i = 0; i < N; i++)
5 {
6 sum3 += (X(i) - mean);
7 sum2 += (X(i) - mean) * (X(i) - mean);
8 }
9 variance = (sum2-sum3*sum3/N)/N;

Mean-Variance computation is a sequential algorithm, meaning that in an i-
th iteration, the calculations depend on values computed in the (i-1)-th iteration.
However, the user can still use DExIMA to design a LiM array that works sequentially.
To accomplish the Mean-Variance algorithm, the LiM array has only one IRL circuit
at the last row that computes the values of sum1,sum2,sum3, mean, and variance,
following the algorithm in Listing 61. The LiM cell, represented in Fig. 10.7, is
simply composed of a memory cell and a buffer tristate on the shared output pin
(SHO). Referring to Fig. 10.7 and Listing 61, the algorithmic steps are the following:

1. Data precharging. The samples are stored inside the array, with one sample
for each memory line. This step requires N clock cycles.

2. Sum1 computation. The sum1 value is computed by enabling the sum1 register
and by enabling the selector S0 one row at a time. This step takes N clock
cycles.

3. Mean computation. After all samples are scanned, the content of register sum1
is right shifted by k positions to accomplish a division by 2k. In this case study,
the number of samples N equals a power of 2 since the hardware division is
a very complex and intensive task that should be delegated to the CPU. The
result is saved inside the mean register. This step requires 1 clock cycle.

4. Sum3 and sum2 computations. In the second for cycle, sum3 and sum2 can
be computed by scanning the array again and by using the sum1 register,
which holds the values of X(i) - mean. The accumulation sum3 is saved in
the corresponding register. The content of sum1 is used by the multiplier to
obtain (X(i)-mean)*(X(i)-mean), and this result is then accumulated in
sum2 register. This step requires N clock cycles.

262 Testing DExIMA: benchmarking and comparisons

5. Variance computation. After the sum2 and sum3 are ready, the IRL circuit
starts the variance computation. The multiplier inputs are fed with sum3
value, and the multiplication result is right shifted. Inside sum2 register, there
will be sum2-sum3*sum3/N, which is again right shifted and saved inside the
variance register. This step requires 1 clock cycle.

MC

CK WL BL RN S0

SHO

SHO

+/-

sum1

RSHIFTER

mean
IRL0

+/-

sum3

×

RSHIFTER

+/-

sum2

RSHIFTER

variance

0 1

01 1 0

0

1

IRL1

Last row IRL

LiM cell

Fig. 10.7 Mean-Variance LiM cells and IRL circuits. Selectors pins are not shown for clarity.

10.6 Results comparison

In this part, the results obtained for the proposed benchmarks are reported. In
all the cases, after the definition of the LiM array, generation of the VHDL code,
clock period definition, and simulation, DExIMA-Backend performs the estimations,

10.6 Results comparison 263

providing results in graphical (for example as shown in Fig. 10.8 and Fig. 10.9) or
tabular formats (Table 10.1). Estimations in Table 10.1 are provided without the
back-annotation process using 45nm CMOS technology. When back-annotation is
not performed, DExIMA asks the user to provide a value of the toggle rate (TR)
for the dynamic power estimation. In all cases, a TR of 0.5 is used for each node
in the design, emulating a worst-case scenario. After that, the user can compare
CPU-Mem and CPU-Mem-LiM architectures by exploiting the "Comparison CPU-
Memory" section of DExIMA. Both the CPU-Mem and CPU-Mem-LiM algorithms
are simulated with Gem5. Finally, by means of the "Compare CPU-Mem and CPU-
Mem-LiM" option (see Fig. 3.5), DExIMA proposes a comparison between the two
systems considering five figures of merits: total caches accesses, total caches energy,
LiM energy, LiM algorithm execution time, CPU total execution time (memory
read/write and computation). For all quantities, the lower value is better. The
performance achieved by each benchmark is summarized in Table 10.1, which is
divided into DExIMA-Backend results, i.e., the values referring to the LiM arrays,
and CPU-Mem/CPU-Mem-LiM, i.e., the comparisons between the two systems. Last
comparisons in terms of Execution Time/Memory Energy/Total Memory Accesses
between CPU-Mem and CPU-Mem-LiM are proposed, which consider the two
solutions having a core clock frequency of 1GHz. In this part, the three parameters
analyzed are obtained in the following way: the Execution Time is calculated as the
sum of the processor Execution Time (obtained as CPU Execution Cycles multiplied
by the core clock period) and the LiM Execution Time in executing the algorithm;
the Total Memory Energy is obtained as the sum of the caches energy plus the
LiM Power-Delay product (obtained as the total LiM Power multiplied by the LiM
Execution Time, also considering the data preload); finally, Total Memory Accesses
is obtained as the sum of cache memory accesses and LiM accesses (considering
data preload in the LiM and cache accesses to move data to the LiM).

264
Testing

D
E

xIM
A

:benchm
arking

and
com

parisons

Table 10.1 Performance values of each benchmark and comparison CPU-Mem and CPU-Mem-LiM.
Benchmark XNOR-Net MVM Mean-Variance BMP K-NN Category

LiM size 1024 256 1024 16 1024

B
ac

ke
nd

re
su

lts

Parallelism 32 16 32 8 32

Clock period (ns) 6.000 6.000 6.000 6.000 6.000

Critical path (ns) 0.051 0.818 2.867 0.284 1.299

Execution time (µs) 6.210 1.632 18.444 0.342 6.162

Frequency (MHz) 166.667 166.667 166.667 166.667 166.667

Area (mm2) 0.285 0.386 0.290 0.002 1.146

Dynamic Energy (nJ) 0.445 0.614 0.424 0.002 1.885

Static Energy (nJ) 0.180 0.274 0.185 0.001 0.746

Total Energy (nJ) 0.625 0.888 0.608 0.003 2.631

Static Power (mW) 30.021 45.748 30.754 0.172 124.312

Dynamic Power (mW) 74.111 102.310 70.649 0.394 314.242

Total Power (mW) 104.132 148.058 101.403 0.566 438.554

CPU Execution Cycles (Mticks)
CPU-Mem 1094.06

89.3%
88.97

25.5%
349.74

66.6%
53.48

0.0%
236.91

50.7%

C
om

pa
ri

so
ns

C
PU

-M
em

/C
PU

-M
em

-L
iM

CPU-Mem-LiM 116.76 66.28 116.76 53.47 116.76

Caches Accesses (k)
CPU-Mem 526.53

92.8%
26.32

42.7%
154.34

75.5%
9.16

0.1%
92.23

59.0%
CPU-Mem-LiM 37.80 15.07 37.80 9.15 37.80

Caches Energy (uJ)
CPU-Mem 68.79

92.6%
3.52

40.8%
20.24

75.0%
1.31

2.5%
12.20

58.8%
CPU-Mem-LiM 5.06 2.08 5.07 1.28 5.03

LiM Power-Delay product (uJ)
CPU-Mem-LiM

0.6467 0.2416 1.8703 0.0002 2.7024

LiM Execution cycles (ticks) 11.00 23.00 2050.00 41.00 3.00

Final comparisons

Execution Time (µs) (@fcpu = 1GHz)
CPU-Mem 1094.06

88.8%
88.97

23.7%
349.74

61.3%
53.48

-0.6%
236.91

48.1%
CPU-Mem-LiM 122.97 67.91 135.20 53.81 122.92

Memory Energy (µJ) (@fcpu = 1GHz)
CPU-Mem 68.79

91.7%
3.52

34.0%
20.24

65.7%
1.31

2.5%
12.20

36.6%
CPU-Mem-LiM 5.7067 2.3250 6.9369 1.2772 7.7328

Total Memory Accesses (k) (@fcpu = 1GHz)
CPU-Mem 526.53

92.6%
26.32

41.7%
154.34

73.5%
9.16

-0.5%
92.23

57.9%
CPU-Mem-LiM 38.832 15.341 40.871 9.203 38.824

Percentages indicate the improvement achieved in the CPU-Mem-LiM case. Benchmarks are evaluated without back-annotation.

10.6 Results comparison 265

• XNOR-Net: the algorithm performs the computation of the XNOR products
reproducing the first layer of the Fashion-MNIST Convolutional Neural Net-
work proposed in [13], having a size of 32x32 inputs of 1 bit each and a kernel
size of 5x5 with 12 output channels K. The size of the LiM array, equivalent
to N in Listing 56, is 1024 rows of 32 bits each. Performance is evaluated
with a clock period of 6 ns. As shown in Table 10.1, the CPU-Mem-LiM
architecture implementing the XNOR-Net algorithm turns out to be extremely
advantageous, as it is capable of reducing energy, execution time and memory
accesses compared to the classical von Neumann architecture. In fact, the LiM
is able to significantly accelerate the XNOR-Net algorithm by performing all
XNOR products in parallel, while maintaining low energy.

• MVM: in this case study, a matrix of ROWS×COLS = 16×16 is chosen, so
the LiM array has 256 rows of 16 bits each. Performance is evaluated with
a clock period of 6 ns. Both the worst-case with a TR equal to 0.5 and the
back-annotation processes are proposed to show the differences between the
two estimations. The power in the back-annotation case can be expected to be
lower than in the worst-case because the switching activity of the nodes, which
impacts the dynamic power estimation, is for sure lower. The comparison is
shown in Table 10.2. Moreover, all MVM results with back-annotation process

Table 10.2 Back-annotation/worst-case power estimation comparison during algorithm evalu-
ation.

Algorithm Process Dynamic Power (W) Total Power (W)

MVM
Worst-case 0.102

-4.90%
0.148

-4.70%
Back-

annotation
(execution

part)

0.097 0.142

during the evaluation phase are shown in graphical format in Fig. 10.8 and
Fig. 10.9. In Fig. 10.9 (a-b), it is possible to see the effectiveness of LiM in re-
ducing the von Neumann Bottleneck: apart from lightening the computational
efforts of the CPU, it also reduces the number of instructions and memory
operations. From the results in Fig. 10.9 (c), LiM-based MVM implementa-
tion considerably impacts the system performance, bringing improvements
in execution time and energy. In the evaluation, apart from the estimation

266 Testing DExIMA: benchmarking and comparisons

10 9

10 8

10 7

Ti
m

e
(s

)
Clock period = 6.0ns
Critical Path = 817.881ps
Execution time = 120.0ns

108

109

Fr
eq

ue
nc

y
(H

z)

Frequency = 166.667MHz

10 1

100

Ar
ea

 (m
m

^2
)

Area = 386483.0um^2

3 × 10 10
4 × 10 10

6 × 10 10

En
er

gy
 (J

) Dissipated dynamic energy = 579.761pJ
Dissipated static energy = 274.489pJ
Total dissipated energy = 854.25pJ

10 1

6 × 10 2

Po
we

r (
W

) Static power = 45.7482mW
Average dynamic power = 96.6269mW
Total power = 142.375mW

DExIMA Backend performance results

Fig. 10.8 DExIMA-Backend results for the MVM algorithm. The evaluation with back-
annotation during the algorithm evaluation phase.

of the LiM array performance, also the bus contribution is estimated. In this
case, the BL bus is considered during part of the data preload phase within the
array. To do this, the performance estimation process with DExIMA-Backend
is re-run, simulating only the preloading part of the first 10 data within the
array and giving a clear indication of the impact of the bus. The results are
shown in Fig. 10.10, in which the Average Power and Delay measured by
Ngspice are reported for a set of combinations of bits (expressed in unsigned
format). Interestingly, the impact of the external bus (BL) compared with the
LiM’s internal bus (BL_LiM) is much lower. This is because the capacitive
load inside the LiM is significantly higher. In the specific case of the MVM,
each LiM Cell is connected to the BL bus, but in other cases where the BL
bus is also connected to the IRL blocks, the internal contribution can be much
greater.

10.6 Results comparison 267

bn
e
c_b

eq
zsw ad

di
c_l

dspbg
eu
c_s

dspc_s
d c_l

i

c_a
dd

iwlw lhu slli
ad

diw lwu
c_s

rli
c_a

dd
i
c_a

ddc_s
lli

Instructions

0

1000

of
 o

cc
ur

re
nc

ie
s Number of instructions for mvm_cpu_mem.c

c_b
eq

z
bn

e
c_l

dsp ad
diw c_s

lli
c_a

dd
c_s

dsp c_s
d sw

c_a
dd

iw ad
di

c_a
dd

i lw

Instructions

0

500

1000

of

 o
cc

ur
re

nc
ie

s Number of instructions for lim_algorithm.c

(a)

(b)

(c)
Fig. 10.9 Results of the MVM algorithm. The evaluation with back-annotation during the
algorithm evaluation phase. (a-b) Instructions profiling for the MVM of the CPU-Mem
and CPU-Mem-LiM architectures, respectively. (c) Comparison between CPU-Mem and
CPU-Mem-LiM for the MVM (axes are in logarithmic scale).

• K-NN: the K-NN algorithm considers 512 pairs of 32-bit X,Y values. Perfor-
mance is evaluated with a clock period of 6 ns. The LiM structure requires
one IRL block per row, significantly impacting performance. The power value

268 Testing DExIMA: benchmarking and comparisons

0
19

20
16

12
8

18
17

6
19

07
2

21
63

2
41

79
2

41
85

6
44

92
8

46
14

4
53

69
6

Combinations

0.000

0.001

0.002

Av
er

ag
e

Po
we

r d
ur

in
g

Tr
an

sit
io

ns
 (W

)

BL

0
19

20
16

12
8

18
17

6
19

07
2

21
63

2
41

79
2

41
85

6
44

92
8

46
14

4
53

69
6

Combinations

0.0

0.5

1.0

1.5

M
ax

im
um

 d
el

ay
 (s

)

1e 10 BL

0
19

20
16

12
8

18
17

6
19

07
2

21
63

2
41

79
2

41
85

6
44

92
8

46
14

4
53

69
6

Combinations

0.000

0.002

0.004

0.006

Av
er

ag
e

Po
we

r d
ur

in
g

Tr
an

sit
io

ns
 (W

)

BL_LiM

0
19

20
16

12
8

18
17

6
19

07
2

21
63

2
41

79
2

41
85

6
44

92
8

46
14

4
53

69
6

Combinations

0

1

2

3

4

M
ax

im
um

 d
el

ay
 (s

)

1e 10 BL_LiM

Bus Performance results

Fig. 10.10 BL Bus estimation of the MVM algorithm during data precharging.

obtained is very high, thus indicating the K-NN architecture as a disadvanta-
geous solution in the LiM case. As can be seen from the Table 10.1, the K-NN
implemented in LiM with the proposed solution leads to a worsening of the
LiM Power-Delay product with respect to the other cases.

• BMP: the architecture implementing the BMP represents the smallest LiM
solution compared to the others, as anticipated earlier. There are 16 entries of
8 bits each and, similarly to the Mean-Variance benchmark, the algorithm is
executed in a pseudo-serial manner. The results are disadvantageous in the
LiM case due to both the extremely small array size and serialization.

• Mean-Variance: the total number of samples N is equal to 1024, so the memory
array has 1024 rows. The Mean-Variance algorithm is disadvantageous to be
implemented in a LiM solution; in fact, the memory array runs in serial mode,
requiring many steps to finish the computation. Specifically, considering 1024
elements, the total number of steps will be:

#StepsMean−Variance = #Stepssum1 +#StepsMean +#Stepssum2,3 +#Stepsvar

= 1024+1+1024+1 = 2050

(10.2)

10.6 Results comparison 269

Despite this, the array’s low power consumption leads to advantages from an
energy perspective, demonstrating how LiM can still bring improvements as
long as there are few hardware blocks within the array, keeping the power
consumption low.

In almost all cases, the LiM approach demonstrates to be efficient in improving
performance, bringing general system benefits. One of the most important figures
of merit is the number of memory accesses: LiM paradigm reduces the memory
accesses and consequently the energy in the analyzed cases, confirming the strong
point of the Beyond von Neumann approach. The worst case is the BMP: since it
is a very straightforward algorithm, the calculations exploited for the CPU-Mem
case do not have a significant impact on the system performance, so delegating the
computation to LiM does not bring a notable advantage compared to the other cases.
Looking at the data, the following conclusions can be made:

• The LiM concept is very beneficial, especially when used as an accelerator
alongside the classical von Neumann system.

• LiM can bring advantages to the system as long as it can accelerate an
application that contains a moderate amount of data. In fact, LiM, if made
too small, brings only disadvantages (BMP case) and is not worth using.
Otherwise, the larger the LiM, the better the acceleration and execution time.

• However, the complexity of the hardware placed inside the LiM must be taken
into consideration. Making a LiM too large with too many internal hardware
blocks can negatively impact power, leading the LiM to be disadvantageous in
terms of energy.

All of these considerations are critical and must be taken into account by the designer
before starting the design flow of a LiM structure. With DExIMA software, it is
possible to evaluate all these aspects quickly, automating the entire estimation and
comparison process with von Neumann, thus avoiding design from scratch, lengthy
and complex synthesis processes by-hand, and performance estimations.

270 Testing DExIMA: benchmarking and comparisons

10.7 DExIMA-Backend vs. Synopsys Design Com-
piler: complex architectures

In Fig. 10.11, comparisons between the worst-case results without back-annotation
of DExIMA-Backend and Synopsys Design Compiler of XNOR-Net, MVM, and
BMP architectures are proposed. These comparisons are very useful to understand
how far the computational model implemented in DExIMA-Backend deviates for
more complex architectures from those proposed in the validation part (chapter 9).
It is possible to observe how, for all benchmarks, DExIMA-Backend overestimates
performance, providing results up to 6.9 times worse than Synopsys in the dynamic
power case. As explained earlier, this trend can be attributed to the different capaci-
tance models (discussed in subsection 7.3.4), the approximation of the short-circuit
power calculation (subsection 7.3.2), and the estimation of node switching activities.
In DExIMA-Backend, the switching activity of the nodes is fixed at the toggle rate
value set by the user (in these cases, equal to 0.5), while Synopsys Design Compiler
can propagate the switching activity within the design, providing more accurate
and faithful indications. The critical paths also differ from the reference, being an
approximate model that also strongly depends on the capacitances of the design
nodes. Static power values, on the other hand, are very similar to those provided by
Synopsys Design Compiler, confirming the goodness of the models implemented
within the Backend. These results, however, should not be seen as a weakness of the
framework, as they can still provide worst-case estimates of LiM architectures that
are then used to evaluate LiM in von Neumann systems. Based on these estimates,
the user can do a full architectural exploration before moving on to the chip synthesis,
Place&Route, and fabrication phase.

10.7 DExIMA-Backend vs. Synopsys Design Compiler: complex architectures 271

XNOR-NetMVM BMP

10−5

10−4

10−3

10−2

10−1

100

−2.6 −2.28

−7.84

−3.29
−4.21

−8.87

D
yn

am
ic

Po
w

er
(W

)

2.0×
74
.1

1
m

W

37
.3

3
m

W

6.9×

10
2.

31
m

W

14
.8

3
m

W
2.8×

0.
39

m
W

0.
14

m
W

XNOR-N
et

M
VM

BM
P

10−5

10−4

10−3

10−2

10−1

100

−3.51 −3.08

−8.67

−3.66 −3.37

−8.65

St
at

ic
Po

w
er

(W
)

DExIMA-Backend
Synopsys DC

1.20×

30
.0

2
m

W

25
.8

6
m

W

1.30×

46
.0

9
m

W

34
.4

0
m

W

1.00×

0.
17

m
W

0.
17

m
W

XNOR-N
et

M
VM

BM
P

10−4

10−3

10−2

10−1

100

−2.26 −1.91

−7.48

−2.76 −3.01

−8.16

Architecture

To
ta

lP
ow

er
(W

)

1.60×

10
4.

13
m

W

63
.1

9
m

W

3.00×

14
8.

40
m

W

49
.2

3
m

W

2.00×

0.
57

m
W

0.
29

m
W

XNOR-N
et

M
VM

BM
P

10−4

10−3

10−2

10−1

100

101

102

−2.98

−0.2
−1.26

−3.63

−0.54
−1.47

Architecture

C
ri

tic
al

Pa
th

(n
s)

1.90×

0.
05

10
ns

0.
02

64
ns

1.40×
0.

81
79

ns
0.

58
04

ns
1.20×

0.
28

37
ns

0.
23

00
ns

Fig. 10.11 Performance comparison between Synopsys Design Compiler and DExIMA-
Backend for MVM, XNOR-Net and BMP.

272 Testing DExIMA: benchmarking and comparisons

10.7.1 Investigating the worst outcomes: MVM case

To give a more accurate explanation of the result obtained in the MVM case, com-
parisons are made between the performance calculated by DExIMA-Backend and
Synopsys Design Compiler for MVM architectures with different parallelisms (4
bits to 32 bits) and different memory array depths (4 to 256 rows). The results
of these analyses are the ratios between the parameters obtained with DExIMA-
Backend and Synopsys Design Compiler, which are shown in Fig. 10.12. As the
number of rows in the array increases, the three studied ratios of Dynamic Power,
Total Power and Critical Path remain almost constant, while varying more as par-
allelism changes. These ratios vary in the ranges of (4.3×, 7.6×), (2.52×, 3.24×)
and (1.39×,1.54×), respectively. The fact that the power and timing results do not
change much as the number of rows varies is a decidedly positive result, because it
confirms the goodness of DExIMA-Backend in modeling these architectures, scaling
performance correctly by size. In the case of parallelism, on the other hand, there
is a confirmation of what was anticipated earlier, i.e., DExIMA-Backend makes
errors in modeling the individual hardware blocks for the propagation of switching
activities and for the approximations made in the implemented computational model.
Further analysis was performed on the switching activity, showing that Synopsys
Design Compiler makes power estimations with different switching activity values
that, unlike DExIMA-Backend, are not fixed but are obtained by propagating them
within the design. Taking the MVM with 4 rows with 4-bit parallelism and the
adder within the fourth IRL as an example, via the command get_switching_ ⌋

activity {*}, Synopsys Design Compiler reports the switching activity values
of the adder’s inputs and outputs and, by issuing a report_power, the associated
power is provided. This value is compared with DExIMA-Backend and is reported
in Table 10.3. The same adder is re-analyzed with Synopsys Design Compiler, but
this time annotating by hand the value of the toggle rate, set equal to 0.5 for each pin
of the design through the command set_switching_activity -toggle_rate
0.5 -static_probability 0.5 -base_clock MYclk {*}. At this point, the
power estimation, shown in Table 10.3 under the heading "With forced activity,"
is carried out again. As expected, the power value estimated by Synopsys Design
Compiler increases, thus reducing the difference between the two tools. It is worth
noting that, again, switching activity is fixed on the input and output pins, but the
internal adder pins (e.g., the carry chain) have switching activities estimated through

10.7 DExIMA-Backend vs. Synopsys Design Compiler: complex architectures 273

propagation. Another interesting result is the Execution Time speed-up between the

Table 10.3 Toggle rate impact evaluation in terms of dynamic and total powers. Comparison
between Synopsys Design Compiler and DExIMA-Backend.

Design Pin
Toggle Rate

Dynamic
Power
(µW) Ratio

Total
Power
(µW) Ratio

Synopsys DC DExIMA-
Backend

Synopsys
DC

DExIMA-
Backend

Synopsys
DC

DExIMA-
Backend

/in
tr

ar
ow

_l
og

ic
_3

/A
D

D
E

R
_1

6/

A[3] 0.009608

0.5 3.49 6.63 1.90 5.43 9.34 1.72

A[2] 0.008581
A[1] 0.006866
A[0] 0.004618
B[3] 0.000509
B[2] 0.000488
B[1] 0.000529
B[0] 0.000376
AS 0.083333

SUM[3] 0.009984
SUM[2] 0.008957
SUM[1] 0.00706
SUM[0] 0.004812

With
forced
activity

All 0.5 0.5 5.82 6.63 1.14 7.81 9.34 1.20

two tools, i.e., DExIMA-Backend and Synopsys Design Compiler required time to
provide the estimations. This analysis was already proposed in Table 9.2, but it can
be useful to evaluate this fundamental parameter for more complex architectures. The
speed-up gives another clear indication of DExIMA-Backend strenghts compared to
classical synthesizers, in fact Fig. 10.13 shows the results for the MVM architecture
at varying parallelism and number of rows. It is possible to observe that the speed-up
varies from a maximum of about 800 times (for smaller architectures) to a minimum
of about 37 times (for more complex architectures, thus 16 bit MVM with 256 rows),
revealing the efficiency of the Backend in providing close-to-reality estimations in a
very short time. In the specific case of an array with maximum size (32bit × 256
rows), the Backend takes about 60 seconds, while Synopsys Design Compiler takes
about 120 minutes.

274
Testing

D
E

xIM
A

:benchm
arking

and
com

parisons

100
200

10
20

30

6

rows# bitsD
yn

am
ic

Po
w

er
ra

tio

5 6 7

50 100 150 200 250

5

6

7

rows

D
yn

am
ic

Po
w

er
ra

tio X-Z plane

5 10 15 20 25 30

5

6

7

bits

D
yn

am
ic

Po
w

er
ra

tio

Y-Z plane

100
200

10
20

30

3

rows# bits

To
ta

lP
ow

er
ra

tio

2.6 2.8 3 3.2

50 100 150 200 250

2.6

2.8

3

3.2

rows
To

ta
lP

ow
er

ra
tio

X-Z plane

5 10 15 20 25 30

2.6

2.8

3

3.2

bits

To
ta

lP
ow

er
ra

tio

Y-Z plane

100
200

10
20

30
1.4

1.5

rows# bits

C
ri

tic
al

Pa
th

ra
tio

1.4 1.45 1.5

50 100 150 200 250
1.4

1.45

1.5

1.55

1.6

rows

C
ri

tic
al

Pa
th

ra
tio

X-Z plane

bits=32 # bits=16
bits=8 # bits=4

5 10 15 20 25 30
1.4

1.45

1.5

bits

C
ri

tic
al

Pa
th

ra
tio

Y-Z plane

rows=256 # rows=128
rows=64 # rows=32
rows=16 # rows=8
rows=4

MVM Algorithm: DExIMA vs Synopsys Design Compiler

Fig. 10.12 Comparison between DExIMA-Backend and Synopsys Design Compiler performance results. The parallelism and the number of
rows of the LiM array are swept.

10.7 DExIMA-Backend vs. Synopsys Design Compiler: complex architectures 275

50 100 150 200 250

51015202530

500

Number of rowsNumber of bits

Sp
ee

d-
up

MVM algorithm speed-up: DExIMA-Backend vs. Synopsys Design Compiler

200
400
600
800

Sp
ee

d-
up

20 40 60 80 100 120 140 160 180 200 220 240
0

200

400

600

800

Number of rows

Sp
ee

d-
up

X-Z plane

Number of bits=32
Number of bits=16
Number of bits=8
Number of bits=4

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

200

400

600

800

Number of bits

Sp
ee

d-
up

Y-Z plane

Number of rows=256 Number of rows=128
Number of rows=64 Number of rows=32
Number of rows=16 Number of rows=8
Number of rows=4

Fig. 10.13 DExIMA-Backend vs Synopsys Design Compiler Execution Time speed-up ratio.

10.7.2 Investigating even more the problem: DExIMA-Backend
known issues

The comparisons conducted so far on the MVM and other architectures are still
insufficient to provide quantitative proof of the cause of the errors on DExIMA-

276 Testing DExIMA: benchmarking and comparisons

Backend’s estimations. For this reason, two examples are proposed that give a better
idea of the explanations given above. The two examples deal with two architectures
consisting of only 16-bit adders: the first has several adders connected in cascade,
while the other has only one adder whose output is connected to multiple adders in
parallel. The number of adders in both cases is varied, observing the effects on the
parameters of interest. Fig. 10.15 shows comparisons in terms of Dynamic, Total

O2

O2

[15:0]

A B

AS

SUM

+/-

A B

AS

SUM

[15:0]

[15:0]

+/-

A

A

B

B

O

O

[15:0]

A B

AS

SUM
[15:0]

[15:0]

+/-

[15:0]

[15:0][15:0]

[15:0][15:0] [15:0] [15:0]

[15:0]

[15:0]

A B

AS

SUM

A B

AS

SUM

A

A

B

B

O

O

A B

AS

SUM

+/-

+/-

+/-

[15:0][15:0]

[15:0][15:0]

[15:0]

[15:0][15:0]

[15:0]

[15:0][15:0]

[15:0]

[15:0]

(a) (b)
Fig. 10.14 (a) Two parallel adders circuit example. (b) Three serial adders circuit example.

Powers and Critical Path delay between DExIMA-Backend and Synopsys Design
Compiler. The two architectures studied allow more accurate analysis of timing
(the serial architecture) and dynamic power (the parallel architecture). In fact, in
the case of the serial architecture, the worst result is obtained in the Critical Path
delay case, because the timing model implemented in DExIMA-Backend differs
from that of Synopsys Design Compiler: when a multibit block is instantiated on
DExIMA-Backend, the timing is calculated as the Critical Path of the block itself,
so when more are connected in succession (as is the case in the serial architecture),

10.7 DExIMA-Backend vs. Synopsys Design Compiler: complex architectures 277

the total timing will be N × DelayAdder, where N is the number of adders. In
this case, however, this extremely worst-case estimation turns out to be different
from reality because the Critical Path delay of the serial architecture is equal to
DelayAdder+(N−1)×(DelayFullAdder +DelayXNOR), which is correctly calculated
by Synopsys Design Compiler. Regarding dynamic power, the parallel architecture
confirms the hypothesis of the differences between the capacity and switching
activity models implemented in the Backend. As can be seen, the dynamic power
ratio increases approximately linearly in the parallel case, but remains approximately
constant in the serial case.

(a) (b)
Fig. 10.15 Dynamic, Total Powers and Critical Path comparisons between DExIMA-Backend
and Synopsys Design Compiler. (a) Serial Adders analysis. (b) Parallel Adders analysis.

278 Testing DExIMA: benchmarking and comparisons

10.8 SRAM vs flip-flop memories

All the work presented so far is based on LiM arrays with a flip-flop as memory
element, which is a good starting model for theorizing and developing In-Memory
architectures. However, one might wonder about the impact of a more real memory
array, so for example an SRAM-type array. As anticipated in the state-of-the-art of
this thesis, In-Memory computation of SRAM-type arrays is decidedly different from
that proposed in DExIMA: most SRAM approaches consist of analog operations
with modified versions of sense amplifiers placed at the bottom of the memory array.
Unfortunately, until now, DExIMA is not able to implement this type of array with
associated computation. DExIMA does, however, offer the possibility of evaluating
what the impact of an SRAM-based array would be by choosing an SRAM cell
instead of a flip-flop as the memory element. By choosing the SRAM cell, DExIMA
will build an array of SRAM cells exactly as is done with flip-flop arrays, and at this
point, the user can make performance comparisons. The first proposed comparison

Table 10.4 SRAM-based and flip-flop based memory arrays performance comparisons.
Structure Size

(kB)
Area (mm2) Total Power (W) Clock

period
(ns)

Toggle
Rate

Flip-flop-based
16

0.878
-84.52%

0.313
-87.07% 6 0.5SRAM-based 0.136 0.041

is of area and power of two 16 kB arrays, one SRAM-based and one flip-flop-based,
respectively. As can be seen from Table 10.4, both area and power are greatly
reduced with an SRAM-type cell because the number of transistors of an SRAM
cell is significantly less than that of a flip-flop. Integrating LiM logic within an
SRAM array would therefore bring significant advantages, reducing the LiM impact
more, as well as being a significantly more scalable array than a Register File. To
follow a similar approach to what has been developed in this thesis, differential type
logic could be placed within the SRAM array, doing something similar to the work
presented in [154], thus introducing differential logic (also called DCVSL [155])
within DExIMA. It should be kept in mind that DCVSL-type logic requires doubling
the pull-down network, thus having twice the number of transistors with respect
to a static-CMOS logic. This could therefore negatively impact the performance
of SRAM-based arrays, favoring those based on flip-flops. However, this study is
beyond the scope of this thesis.

10.9 Evaluating the impact of the bus on CPU-Mem and CPU-Mem-LiM 279

The second comparison is made on the impact of internal bus performance on the
two types of memories during a write operation. Results are shown in Table 10.5. As

Table 10.5 BL bus performance comparison between SRAM-based and flip-flop-based
memories.

Structure Size (kB) Average Power (mW) Max delay (ps) Bus name
Flip-flop-based

4
26.45

-70.84%
824.40

-70.01% BLSRAM-based 7.80 247.18

expected, the impact of the bus is also less significant in an SRAM-based memory.
This can be justified by the lower capacitive load, which reduces both the power and
the bus delay.

10.9 Evaluating the impact of the bus on CPU-Mem
and CPU-Mem-LiM

The benchmark results presented in the section 10.6 do not directly consider the
effect the bus has on performance. The impact of the bus, as discussed earlier, can
be estimated on the LiM architectures implemented on DExIMA, but unfortunately
the same estimation cannot be made on a classical memory hierarchy in the CPU-
Mem system, since Gem5 and Cacti do not implement a bus estimation like the
one implemented in DExIMA. However, it is possible to make a rough estimation
of bus performance in the CPU-Mem case as well, taking advantage of the results
obtained in section 10.8 regarding the 4kB SRAM array. In this estimation, only
L1-type caches, both data and instruction, are considered. The process of estimating
CPU-Mem and CPU-Mem-LiM architectures’ parameters with Gem5 and Cacti is
performed by imposing an L1 cache size of 4kB, so as to have as close a resemblance
as possible to the model implemented in DExIMA. At this point, the numbers of
L1 data and instruction memory accesses are used to compute the total bus energy,
obtained as:

Total Bus Energy = Average Bus Power×Tck ×NumberAccesses (10.3)

Where Tck is the clock period. The quantity Average Bus Power×Tck defines the
Energy/Access of the bus, since it represents the energy of a single access during a
clock cycle. The Table 10.6 shows the results of the bus evaluated for the proposed

280 Testing DExIMA: benchmarking and comparisons

Table 10.6 Bus impact results and comparisons.
Architecture Memory Size

(kB)
Overall
accesses

Clock
Period

(ns)

Bus
Energy

per
Access

(pJ)

Bus
Energy

(µJ)

Total
(µJ)

Improvement
(%)

M
V

M

CPU-Mem
L1D

4
5036

1

7.80

39.28
202.43

37.72%

L1I 20916 163.14

CPU-Mem-LiM

L1D
4

3475
1

27.11

126.07L1I 11231 87.60

LiM 0.5 272 6 41.79 11.37

X
N

O
R

-N
et CPU-Mem

L1D
4

100694
1

7.80

785.41
4103.70

91.81%

L1I 425422 3318.29

CPU-Mem-LiM

L1D
4

8467
1

66.04

336.03L1I 28912 225.51

LiM 4 272 6 163.52 44.48

VA
R

CPU-Mem
L1D

4
25887

1

7.80

201.92
1200.54

35.08%

L1I 128029 998.63

CPU-Mem-LiM

L1D
4

8467
1

66.04

779.43L1I 28912 225.51

LiM 4 3074 6 158.71 487.88

B
M

P

CPU-Mem
L1D

4
1910

1

7.80

14.90
68.66

-0.59%

L1I 6892 53.76

CPU-Mem-LiM

L1D
4

1913
1

14.92

69.06L1I 6879 53.66

LiM 0.01563 57 6 8.52 0.49

algorithms. The clock periods are equal to 1 ns in the case of the caches and 6 ns in
the LiM case, in fact the clock frequency of the caches is assumed to be equal to that
of the processor. As can be seen, since the cache memory accesses are significantly
lower in the CPU-Mem-LiM in almost all cases, the bus energies are correspondingly
lower. It is interesting to note that energies per access in the LiM cases are much
larger, despite the fact that the memory sizes are smaller or equal to the L1 caches.
These effects are due to the complexities of the LiM arrays compared to SRAMs
and the higher clock periods. The BMP results are worse in the LiM case, since as
discussed above, the proposed LiM implementation does not bring advantages over
the classical case, requiring a similar number of memory accesses.

10.10 Conclusions 281

10.10 Conclusions

In this chapter, several benchmarks are proposed and implemented with DExIMA,
applying all the procedures seen so far and providing architectures’ performance
and bus impact results and comparisons with the reference von Neumann system.
The data obtained confirm the validity of the LiM concept as well as the flexibility of
the tool in implementing very different algorithms by providing the user with guided
support at every stage of the design. In addition, a comparison with the commercial
Synopsys Design Compiler tool is again proposed to evaluate the difference in
performance estimations provided by DExIMA-Backend for large and complex
architectures. In addition, the execution times of the two tools for different LiM
array sizes are evaluated. The speed-ups achieved by DExIMA-Backend for the
MVM algorithm are reported, which is at least 37 times higher than Synopsys Design
Compiler. Finally, evaluations on more standard memory arrays (based on SRAM
cells) are proposed, and the limitations of the Backend are reported, which will be
addressed as future work.

Chapter 11

Conclusions and future works

This thesis work proposes DExIMA, a tool dedicated to the architectural exploration
of BvNC architectures. BvNC, particularly LiM architectures, are extremely versatile
and, as widely demonstrated in the literature, effectively reduce the bottleneck of
von Neumann structures. The design of LiMs can be based on different technologi-
cal solutions, including SRAMs, DRAMs, or resistive elements, each implemented
following completely different approaches. Some are based on analog operations,
while others rely on the use of layers of logic interconnected with the memory array.
From this, one can observe how heterogeneous the BvNC approach is, with no clear
design flow: for each architectural solution, the designer needs to implement the
structure from scratch. With the aim of trying to ease the procedure as much as
possible, tools have been proposed in the literature that can provide estimations or
simulate this new architectural approach, trying to standardize the methodology.
These tools generally specialize in one or more types of BvNCs, some of them based
on existing architectural templates. With DExIMA, the idea is to focus on LiMs and
to define the whole architecture with high flexibility, going through the whole design
flow up to performance estimation and comparison with von Neumann architectures.
In fact, DExIMA maintains all architectural-level descriptions, so estimations can
be done on any technology if implemented within DExIMA-Backend. The different
benchmarks proposed show how, with DExIMA, the user has the possibility to control
every step of the design with simplicity, greatly speeding up the whole procedure.

DExIMA, however, has some limitations that necessarily need to be addressed in
the future. One mentioned earlier is the lack of support for technologies other than

283

CMOS and alternative structures from flip-flop-based arrays. Similarly, the CMOS
estimation models implemented in DExIMA-Backend, as extensively discussed above,
require corrections in order to provide estimations as close as possible to the ones
made by commercial and industrial-use tools (e.g., Synopsys Design Compiler).
Despite this, DExIMA-Backend has proven to be a good tool for making preliminary
design estimations that indicate to the user how efficient a LiM architecture is in
implementing a given algorithm. In addition to this, DExIMA-Backend is extremely
faster than Synopsys Design Compiler, since it does not perform a real synthesis
phase. The idea of DExIMA-Backend, in addition to guaranteeing the future possibil-
ity of implementing new technologies, is to give the user the opportunity to optimize
the design as much as possible, and then move on to the actual implementation of
the chip through synthesis and Place&Route phases with classic EDA tools.

In addition, DExIMA’s interface requires enhancement to make the experience
with the tool even more user-friendly, as well as enhancement of the interconnect
capabilities within the array. A missing part also is the interface with the Octantis
synthesis tool [131], developed at the Polytechnic of Turin, which is specific for LiM
architectures and capable of providing an architectural implementation starting from
an algorithm described in C.

Moreover, comparisons with standard architectures may in the future be extended
to Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs), since
LiM has a distinctly similar structure to these categories as massively parallel
computing units. Therefore, the "CPU-Memory Comparison" section of DExIMA
will have to be extended, integrating architectural modeling tools similar to Gem5,
but reproducing GPUs and TPUs.

Currently, DExIMA is under development, with the idea of integrating all the
shortcomings mentioned above.

References

[1] John L Hennessy and David A Patterson. Computer architecture: a quantita-
tive approach. Elsevier, 2017.

[2] J Giceva. Lecture notes for data processing on modern hardware–lecture 3:
Cache awareness for query execution models, 2020.

[3] Maha Kooli, Henri-Pierre Charles, Clément Touzet, Bastien Giraud, and Jean-
Philippe Noël. Software platform dedicated for in-memory computing circuit
evaluation. In 2017 International Symposium on Rapid System Prototyping
(RSP), pages 43–49. IEEE, 2017.

[4] Jaeheum Lee, Jason K Eshraghian, Kyoungrok Cho, and Kamran Eshraghian.
Adaptive precision cnn accelerator using radix-x parallel connected memristor
crossbars. arXiv preprint arXiv:1906.09395, 2019.

[5] Mustafa F Ali, Akhilesh Jaiswal, and Kaushik Roy. In-memory low-cost
bit-serial addition using commodity dram technology. IEEE Transactions on
Circuits and Systems I: Regular Papers, 67(1):155–165, 2019.

[6] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet, 20:5, 2015.

[7] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European conference on computer vision, pages 525–542. Springer, 2016.

[8] Di Gao, Dayane Reis, Xiaobo Sharon Hu, and Cheng Zhuo. Eva-cim: A
system-level performance and energy evaluation framework for computing-
in-memory architectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(12):5011–5024, 2020. doi: 10.1109/
TCAD.2020.2966484.

[9] Antonia Ieva. Speed-up of risc-v core using logic-in-memory operations,
2020.

[10] Andrea Coluccio, Antonia Ieva, Fabrizio Riente, Massimo Ruo Roch, Marco
Ottavi, and Marco Vacca. Risc-vlim, a risc-v framework for logic-in-memory
architectures. Electronics, 11(19):2990, 2022.

References 285

[11] Simone Domenico Antonietta. Weights in-memory neural network embedded
ram, 2019.

[12] Simone Domenico Antonietta, Andrea Coluccio, Giovanna Turvani, Marco
Vacca, Mariagrazia Graziano, and Maurizio Zamboni. Winner: a high speed
high energy efficient neural network implementation for image classification.
In 2019 26th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pages 29–32. IEEE, 2019.

[13] Andrea Coluccio, Marco Vacca, and Giovanna Turvani. Logic-in-memory
computation: Is it worth it? a binary neural network case study. Journal of
Low Power Electronics and Applications, 10(1):7, 2020.

[14] L. Jiang, M. Kim, W. Wen, and D. Wang. Xnor-pop: A processing-in-memory
architecture for binary convolutional neural networks in wide-io2 drams.
In 2017 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), pages 1–6, July 2017. doi: 10.1109/ISLPED.2017.
8009163.

[15] Angela Guastamacchia. Gp-lima: A general purpose architectural model
leveraging the logic-in-memory approach, 2021.

[16] Angela Guastamacchia, Andrea Coluccio, Marco Vacca, Fabrizio Riente,
Mariagrazia Graziano, and Maurizio Zamboni. Mempa: a memory mapped
m-simd co-processor to cope with the memory-wall issue. Submitted to ACM
Transactions on Computer Systems, 2023.

[17] Spectre circuit simulator components and device models reference, 2020.

[18] Bruno E Forlin, Paulo C Santos, Augusto E Becker, Marco AZ Alves, and
Luigi Carro. Sim2pim: A complete simulation framework for processing-in-
memory. Journal of Systems Architecture, 128:102528, 2022.

[19] D. Fan and S. Angizi. Energy efficient in-memory binary deep neural network
accelerator with dual-mode sot-mram. In 2017 IEEE International Conference
on Computer Design (ICCD), pages 609–612, 2017.

[20] Woong Choi, Kwanghyo Jeong, Kyungrak Choi, Kyeongho Lee, and Jongsun
Park. Content addressable memory based binarized neural network accelerator
using time-domain signal processing. In Proceedings of the 55th Annual
Design Automation Conference, DAC ’18, pages 138:1–138:6, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5700-5. doi: 10.1145/3195970.3196014.
URL http://doi.acm.org/10.1145/3195970.3196014.

[21] Jesper Knudsen. Nangate 45nm open cell library. CDNLive, EMEA, 2008.

[22] Richard T. Kouzes, Gordon A. Anderson, Stephen T. Elbert, Ian Gorton, and
Deborah K. Gracio. The changing paradigm of data-intensive computing.
Computer, 42(1):26–34, 2009. doi: 10.1109/MC.2009.26.

http://doi.acm.org/10.1145/3195970.3196014

286 References

[23] Etienne Sicard and Alexandre Boyer. Impact of technological trends and
electromagnetic compatibility of integrated circuits. In EMC Compo 2019,
2019.

[24] Thomas N Theis and H-S Philip Wong. The end of moore’s law: A new
beginning for information technology. Computing in Science & Engineering,
19(2):41–50, 2017.

[25] Gordon E Moore et al. Cramming more components onto integrated circuits,
1965.

[26] International technology roadmap for semiconductors. http://www.itrs2.net/,
2022.

[27] John P Holdren and Shaun Donovan. National strategic computing initiative
strategic plan. Technical report, National Strategic Computing Initiative
Executive Council Washington United . . . , 2016.

[28] II Arikpo, FU Ogban, and IE Eteng. Von neumann architecture and modern
computers. Global Journal of Mathematical Sciences, 6(2):97–103, 2007.

[29] Rudolf Eigenmann and David J Lilja. Von neumann computers. Wiley
Encyclopedia of Electrical and Electronics Engineering, 23:387–400, 1998.

[30] John Von Neumann and Ray Kurzweil. The computer and the brain. Yale
University Press, 2012.

[31] Wm A Wulf and Sally A McKee. Hitting the memory wall: Implications of
the obvious. ACM SIGARCH computer architecture news, 23(1):20–24, 1995.

[32] Maurice V Wilkes. The memory wall and the cmos end-point. ACM SIGARCH
Computer Architecture News, 23(4):4–6, 1995.

[33] Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. Missing the memory
wall: The case for processor/memory integration. In Proceedings of the 23rd
Annual International Symposium on Computer Architecture, ISCA ’96, page
90–101, New York, NY, USA, 1996. Association for Computing Machinery.
ISBN 0897917863. doi: 10.1145/232973.232984. URL https://doi.org/10.
1145/232973.232984.

[34] Xingqi Zou, Sheng Xu, Xiaoming Chen, Liang Yan, and Yinhe Han. Break-
ing the von neumann bottleneck: architecture-level processing-in-memory
technology. Science China Information Sciences, 64(6):1–10, 2021.

[35] Adrian Cristal, Daniel Ortega, Josep Llosa, and Mateo Valero. Out-of-order
commit processors. In 10th International Symposium on High Performance
Computer Architecture (HPCA’04), pages 48–59. IEEE, 2004.

[36] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evangelos
Eleftheriou. Memory devices and applications for in-memory computing.
Nature nanotechnology, 15(7):529–544, 2020.

http://www.itrs2.net/
https://doi.org/10.1145/232973.232984
https://doi.org/10.1145/232973.232984

References 287

[37] Kaya Can Akyel, Henri-Pierre Charles, Julien Mottin, Bastien Giraud, Gré-
gory Suraci, Sébastien Thuries, and Jean-Philippe Noel. Drc 2: Dynamically
reconfigurable computing circuit based on memory architecture. In 2016
IEEE International Conference on Rebooting Computing (ICRC), pages 1–8.
IEEE, 2016.

[38] Zhiting Lin, Honglan Zhan, Xuan Li, Chunyu Peng, Wenjuan Lu, Xiulong
Wu, and Junning Chen. In-memory computing with double word lines and
three read ports for four operands. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(5):1316–1320, 2020.

[39] Hongyang Jia, Hossein Valavi, Yinqi Tang, Jintao Zhang, and Naveen Verma.
A programmable heterogeneous microprocessor based on bit-scalable in-
memory computing. IEEE Journal of Solid-State Circuits, 55(9):2609–2621,
2020. doi: 10.1109/JSSC.2020.2987714.

[40] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. Xnor-sram: In-
memory computing sram macro for binary/ternary deep neural networks.
IEEE Journal of Solid-State Circuits, 55(6):1733–1743, 2020.

[41] Amogh Agrawal, Akhilesh Jaiswal, Chankyu Lee, and Kaushik Roy. X-sram:
Enabling in-memory boolean computations in cmos static random access
memories. IEEE Transactions on Circuits and Systems I: Regular Papers, 65
(12):4219–4232, 2018.

[42] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons,
and Todd C Mowry. Ambit: In-memory accelerator for bulk bitwise opera-
tions using commodity dram technology. In 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 273–287.
IEEE, 2017.

[43] Akhilesh Jaiswal, Indranil Chakraborty, Amogh Agrawal, and Kaushik Roy. 8t
sram cell as a multibit dot-product engine for beyond von neumann computing.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(11):
2556–2567, 2019.

[44] William Andrew Simon, Yasir Mahmood Qureshi, Marco Rios, Alexandre
Levisse, Marina Zapater, and David Atienza. An in-cache computing archi-
tecture for edge devices. IEEE Transactions on Computers, 2020.

[45] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and David
Blaauw. A 28 nm configurable memory (tcam/bcam/sram) using push-rule 6t
bit cell enabling logic-in-memory. IEEE Journal of Solid-State Circuits, 51
(4):1009–1021, 2016.

[46] Dayane Reis, Michael T Niemier, and Xiaobo Sharon Hu. A computing-in-
memory engine for searching on homomorphically encrypted data. IEEE
Journal on Exploratory Solid-State Computational Devices and Circuits, 5(2):
123–131, 2019.

288 References

[47] Leonid Yavits, Amir Morad, and Ran Ginosar. Computer architecture with
associative processor replacing last-level cache and simd accelerator. IEEE
Transactions on Computers, 64(2):368–381, 2013.

[48] Woong Choi, Kwanghyo Jeong, Kyungrak Choi, Kyeongho Lee, and Jongsun
Park. Content addressable memory based binarized neural network accelerator
using time-domain signal processing. In Proceedings of the 55th Annual
Design Automation Conference, pages 1–6, 2018.

[49] Jae Seong Lee, Jisoo Yoon, and Woo Young Choi. In-memory nearest neigh-
bor search with nanoelectromechanical ternary content-addressable memory.
IEEE Electron Device Letters, 43(1):154–157, 2021.

[50] Mark Durlam, P Naji, M DeHerrera, S Tehrani, G Kerszykowski, and K Kyler.
Nonvolatile ram based on magnetic tunnel junction elements. In 2000 IEEE
International Solid-State Circuits Conference. Digest of Technical Papers
(Cat. No. 00CH37056), pages 130–131. IEEE, 2000.

[51] Adnan Siraj Rakin, Shaahin Angizi, Zhezhi He, and Deliang Fan. Pim-tgan: A
processing-in-memory accelerator for ternary generative adversarial networks.
In 2018 IEEE 36th International Conference on Computer Design (ICCD),
pages 266–273. IEEE, 2018.

[52] Arman Roohi, Shaahin Angizi, Deliang Fan, and Ronald F DeMara.
Processing-in-memory acceleration of convolutional neural networks for
energy-effciency, and power-intermittency resilience. In 20th International
Symposium on Quality Electronic Design (ISQED), pages 8–13. IEEE, 2019.

[53] Deliang Fan and Shaahin Angizi. Energy efficient in-memory binary deep
neural network accelerator with dual-mode sot-mram. In 2017 IEEE Inter-
national Conference on Computer Design (ICCD), pages 609–612. IEEE,
2017.

[54] Hong Wang and Xiaobing Yan. Overview of resistive random access mem-
ory (rram): Materials, filament mechanisms, performance optimization, and
prospects. physica status solidi (RRL)–Rapid Research Letters, 13(9):1900073,
2019.

[55] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald,
Eby G Friedman, Avinoam Kolodny, and Uri C Weiser. Magic—memristor-
aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs, 61
(11):895–899, 2014.

[56] Olga Krestinskaya and Alex Pappachen James. Binary weighted memristive
analog deep neural network for near-sensor edge processing. In 2018 IEEE
18th International Conference on Nanotechnology (IEEE-NANO), pages 1–4.
IEEE, 2018.

References 289

[57] Xinxin Wang, Mohammed A. Zidan, and Wei D. Lu. A crossbar-based in-
memory computing architecture. IEEE Transactions on Circuits and Systems I:
Regular Papers, 67(12):4224–4232, 2020. doi: 10.1109/TCSI.2020.3000468.

[58] I Giannopoulos, A Sebastian, M Le Gallo, VP Jonnalagadda, M Sousa,
MN Boon, and E Eleftheriou. 8-bit precision in-memory multiplication
with projected phase-change memory. In 2018 IEEE International Electron
Devices Meeting (IEDM), pages 27–7. IEEE, 2018.

[59] Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca Benini,
Abbas Rahimi, and Abu Sebastian. In-memory hyperdimensional computing.
Nature Electronics, 3(6):327–337, 2020.

[60] Berkin Akin, Franz Franchetti, and James C Hoe. Data reorganization in
memory using 3d-stacked dram. ACM SIGARCH Computer Architecture
News, 43(3S):131–143, 2015.

[61] Amir Morad, Leonid Yavits, and Ran Ginosar. Gp-simd processing-in-
memory. ACM Transactions on Architecture and Code Optimization (TACO),
11(4):1–26, 2015.

[62] Suhail Basalama, Atiyehsadat Panahi, Ange-Thierry Ishimwe, and David
Andrews. Spar-2: A simd processor array for machine learning in iot devices.
In 2020 3rd International Conference on Data Intelligence and Security
(ICDIS), pages 141–147, 2020. doi: 10.1109/ICDIS50059.2020.00025.

[63] Giulia Santoro, Giovanna Turvani, and Mariagrazia Graziano. New logic-in-
memory paradigms: An architectural and technological perspective. Micro-
machines, 10(6):368, 2019.

[64] B. Akin, F. Franchetti, and J. C. Hoe. Data reorganization in memory using
3d-stacked dram. In 2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA), pages 131–143, June 2015. doi: 10.1145/
2749469.2750397.

[65] Fabio Lorenzo Traversa and Massimiliano Di Ventra. Universal memcomput-
ing machines. IEEE transactions on neural networks and learning systems,
26(11):2702–2715, 2015.

[66] Yuriy V Pershin and Massimiliano Di Ventra. Memcomputing implementation
of ant colony optimization. Neural Processing Letters, 44:265–277, 2016.

[67] Fabio L Traversa, Fabrizio Bonani, Yuriy V Pershin, and Massimiliano Di Ven-
tra. Dynamic computing random access memory. Nanotechnology, 25(28):
285201, 2014.

[68] Fabio Lorenzo Traversa, Chiara Ramella, Fabrizio Bonani, and Massimiliano
Di Ventra. Memcomputing np-complete problems in polynomial time using
polynomial resources and collective states. Science advances, 1(6):e1500031,
2015.

290 References

[69] Massimiliano Di Ventra. Memcomputing: When memory becomes a comput-
ing tool. Physics Today, 75(11):36–41, 2022.

[70] Nicholas Cunningham, Joseph Del Rocco, and Derrick Greenspan. Memcom-
puting: Leveraging memory and physics.

[71] Fabio L Traversa and Massimiliano Di Ventra. Polynomial-time solution of
prime factorization and np-complete problems with digital memcomputing
machines. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(2):
023107, 2017.

[72] Fabio L Traversa and Massimiliano Di Ventra. Memcomputing integer linear
programming. arXiv preprint arXiv:1808.09999, 2018.

[73] S Agatonovic-Kustrin and R Beresford. Basic concepts of artificial neu-
ral network (ann) modeling and its application in pharmaceutical research.
Journal of Pharmaceutical and Biomedical Analysis, 22(5):717 – 727, 2000.
ISSN 0731-7085. doi: https://doi.org/10.1016/S0731-7085(99)00272-1. URL
http://www.sciencedirect.com/science/article/pii/S0731708599002721.

[74] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Mar-
shall. Activation functions: Comparison of trends in practice and research for
deep learning. arXiv preprint arXiv:1811.03378, 2018.

[75] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[76] Y. Wang, J. Lin, and Z. Wang. An energy-efficient architecture for binary
weight convolutional neural networks. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 26(2):280–293, Feb 2018. ISSN 1557-9999. doi:
10.1109/TVLSI.2017.2767624.

[77] Dominik Scherer, Andreas Müller, and Sven Behnke. Evaluation of pooling
operations in convolutional architectures for object recognition. In Inter-
national conference on artificial neural networks, pages 92–101. Springer,
2010.

[78] P. N. Whatmough, S. K. Lee, G. Wei, and D. Brooks. Sub-uj deep neural
networks for embedded applications. In 2017 51st Asilomar Conference
on Signals, Systems, and Computers, pages 1912–1915, Oct 2017. doi:
10.1109/ACSSC.2017.8335697.

[79] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[80] Eyyüb Sari, Mouloud Belbahri, and Vahid Partovi Nia. How does batch
normalization help binary training?, 2019.

http://www.sciencedirect.com/science/article/pii/S0731708599002721

References 291

[81] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. In
Advances in neural information processing systems, pages 3123–3131, 2015.

[82] Y. Pan, P. Ouyang, Y. Zhao, W. Kang, S. Yin, Y. Zhang, W. Zhao, and S. Wei.
A multilevel cell stt-mram-based computing in-memory accelerator for binary
convolutional neural network. IEEE Transactions on Magnetics, 54(11):1–5,
2018.

[83] H. Yonekawa, S. Sato, H. Nakahara, K. Ando, K. Ueyoshi, K. Hirose,
K. Orimo, S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, and M. Moto-
mura. In-memory area-efficient signal streaming processor design for bi-
nary neural networks. In 2017 IEEE 60th International Midwest Sympo-
sium on Circuits and Systems (MWSCAS), pages 116–119, Aug 2017. doi:
10.1109/MWSCAS.2017.8052874.

[84] X. Sun, S. Yin, X. Peng, R. Liu, J. Seo, and S. Yu. Xnor-rram: A scalable and
parallel resistive synaptic architecture for binary neural networks. In 2018
Design, Automation Test in Europe Conference Exhibition (DATE), pages
1423–1428, March 2018. doi: 10.23919/DATE.2018.8342235.

[85] W. Wang, Y. Li, M. Wang, L. Wang, Q. Liu, W. Banerjee, L. Li, and M. Liu. A
hardware neural network for handwritten digits recognition using binary rram
as synaptic weight element. In 2016 IEEE Silicon Nanoelectronics Workshop
(SNW), pages 50–51, June 2016. doi: 10.1109/SNW.2016.7577980.

[86] Dirk Jansen et al. The electronic design automation handbook. Springer,
2003.

[87] Eda software, hardware & tools, 2022. URL https://eda.sw.siemens.com/
en-US/.

[88] Eda tools, semiconductor ip and application security solutions, 2022. URL
https://www.synopsys.com/.

[89] Computational software for intelligent system design™, 2022. URL https:
//www.cadence.com/en_US/home.html.

[90] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength
verification tool. In International Conference on Computer Aided Verification,
pages 24–40. Springer, 2010.

[91] Muralimanohar et al. Cacti 6.0: A tool to model large caches. HP laboratories,
27:28, 2009.

[92] Wilson Snyder. Verilator: Open simulation-growing up. DVClub Bristol,
2013.

https://eda.sw.siemens.com/en-US/
https://eda.sw.siemens.com/en-US/
https://www.synopsys.com/
https://www.cadence.com/en_US/home.html
https://www.cadence.com/en_US/home.html

292 References

[93] Matthew R Guthaus, James E Stine, Samira Ataei, Brian Chen, Bin Wu,
and Mehedi Sarwar. Openram: An open-source memory compiler. In 2016
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 1–6. IEEE, 2016.

[94] Paolo Nenzi and Holger Vogt. Ngspice users manual version 23, 2011.

[95] Geraldo F Oliveira, Paulo C Santos, Marco AZ Alves, and Luigi Carro. A
generic processing in memory cycle accurate simulator under hybrid memory
cube architecture. In 2017 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), pages 54–61.
IEEE, 2017.

[96] John D Leidel and Yong Chen. Hmc-sim: A simulation framework for hybrid
memory cube devices. Parallel Processing Letters, 24(04):1442002, 2014.

[97] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,
Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH computer
architecture news, 39(2):1–7, 2011.

[98] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the
42nd annual ieee/acm international symposium on microarchitecture, pages
469–480, 2009.

[99] Xiangyu Dong, Cong Xu, Yuan Xie, and Norman P. Jouppi. Nvsim: A circuit-
level performance, energy, and area model for emerging nonvolatile memory.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 31(7):994–1007, 2012. doi: 10.1109/TCAD.2012.2185930.

[100] Sheng Xu, Xiaoming Chen, Ying Wang, Yinhe Han, Xuehai Qian, and Xi-
aowei Li. Pimsim: A flexible and detailed processing-in-memory simulator.
IEEE Computer Architecture Letters, 18(1):6–9, 2019. doi: 10.1109/LCA.
2018.2885752.

[101] Sparsh Mittal, Rujia Wang, and Jeffrey Vetter. Destiny: A comprehensive
tool with 3d and multi-level cell memory modeling capability. Journal of
Low Power Electronics and Applications, 7(3), 2017. ISSN 2079-9268. doi:
10.3390/jlpea7030023. URL https://www.mdpi.com/2079-9268/7/3/23.

[102] Yannan Nellie Wu, Vivienne Sze, and Joel S. Emer. An architecture-level
energy and area estimator for processing-in-memory accelerator designs. In
2020 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 116–118, 2020. doi: 10.1109/ISPASS48437.2020.
00024.

https://www.mdpi.com/2079-9268/7/3/23

References 293

[103] Yannan Nellie Wu, Joel S Emer, and Vivienne Sze. Accelergy: An architecture-
level energy estimation methodology for accelerator designs. In 2019
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 1–8. IEEE, 2019.

[104] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. Timeloop: A systematic approach to dnn
accelerator evaluation. In 2019 IEEE international symposium on performance
analysis of systems and software (ISPASS), pages 304–315. IEEE, 2019.

[105] Mahdi Zahedi, Muah Abu Lebdeh, Christopher Bengel, Dirk Wouters, Stephan
Menzel, Manuel Le Gallo, Abu Sebastian, Stephan Wong, and Said Ham-
dioui. Mnemosene: Tile architecture and simulator for memristor-based
computation-in-memory. ACM Journal on Emerging Technologies in Com-
puting Systems (JETC), 18(3):1–24, 2022.

[106] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. Computedram: In-
memory compute using off-the-shelf drams. In Proceedings of the 52nd
annual IEEE/ACM international symposium on microarchitecture, pages 100–
113, 2019.

[107] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac:
A convolutional neural network accelerator with in-situ analog arithmetic in
crossbars. ACM SIGARCH Computer Architecture News, 44(3):14–26, 2016.

[108] Paulo C Santos, Geraldo F Oliveira, Diego G Tomé, Marco AZ Alves, Ed-
uardo C Almeida, and Luigi Carro. Operand size reconfiguration for big data
processing in memory. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017, pages 710–715. IEEE, 2017.

[109] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. Polybench: The first
benchmark for polystores. In Performance Evaluation and Benchmarking for
the Era of Artificial Intelligence: 10th TPC Technology Conference, TPCTC
2018, Rio de Janeiro, Brazil, August 27–31, 2018, Revised Selected Papers
10, pages 24–41. Springer, 2019.

[110] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff
LaCoss, John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, et al.
The architecture of the diva processing-in-memory chip. In Proceedings of
the 16th international conference on Supercomputing, pages 14–25, 2002.

[111] Zhaojun Lu, Md Tanvir Arafin, and Gang Qu. Rime: A scalable and
energy-efficient processing-in-memory architecture for floating-point op-
erations. In Proceedings of the 26th Asia and South Pacific Design Au-
tomation Conference, ASPDAC ’21, page 120–125, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450379991. doi:
10.1145/3394885.3431524. URL https://doi.org/10.1145/3394885.3431524.

https://doi.org/10.1145/3394885.3431524

294 References

[112] Andrea Coluccio. In-memory binary neural networks, 2019.

[113] Shahar Kvatinsky, Guy Satat, Nimrod Wald, Eby G Friedman, Avinoam
Kolodny, and Uri C Weiser. Memristor-based material implication (imply)
logic: Design principles and methodologies. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(10):2054–2066, 2013.

[114] Peng Gu, Xinfeng Xie, Yufei Ding, Guoyang Chen, Weifeng Zhang, Dimin
Niu, and Yuan Xie. ipim: Programmable in-memory image processing ac-
celerator using near-bank architecture. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 804–817,
2020. doi: 10.1109/ISCA45697.2020.00071.

[115] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brockman,
and Norman P Jouppi. Cacti-3dd: Architecture-level modeling for 3d die-
stacked dram main memory. In 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 33–38. IEEE, 2012.

[116] Purab Ranjan Sutradhar, Mark Connolly, Sathwika Bavikadi, Sai Manoj
Pudukotai Dinakarrao, Mark A. Indovina, and Amlan Ganguly. ppim: A
programmable processor-in-memory architecture with precision-scaling for
deep learning. IEEE Computer Architecture Letters, 19(2):118–121, 2020.
doi: 10.1109/LCA.2020.3011643.

[117] Waterman A. and Asanović K. The RISC-V Instruction Set Manual Volume
I: User-Level ISA. EECS Department, University of California, Berkeley, 8
2016.

[118] Özlem Altınay and Berna Örs. Instruction extension of rv32i and gcc back end
for ascon lightweight cryptography algorithm. In 2021 IEEE International
Conference on Omni-Layer Intelligent Systems (COINS), pages 1–6. IEEE,
2021.

[119] Y. Chen, T. Krishna, J. Emer, and V. Sze. 14.5 eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. In 2016
IEEE International Solid-State Circuits Conference (ISSCC), pages 262–263,
Jan 2016. doi: 10.1109/ISSCC.2016.7418007.

[120] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. A
high performance fpga-based accelerator for large-scale convolutional neural
networks. In 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–9, Aug 2016. doi: 10.1109/FPL.2016.
7577308.

[121] S. Wang, D. Zhou, X. Han, and T. Yoshimura. Chain-nn: An energy-efficient
1d chain architecture for accelerating deep convolutional neural networks.
In Design, Automation Test in Europe Conference Exhibition (DATE), 2017,
pages 1032–1037, March 2017. doi: 10.23919/DATE.2017.7927142.

References 295

[122] R. Andri, L. Cavigelli, D. Rossi, and L. Benini. Yodann: An ultra-low power
convolutional neural network accelerator based on binary weights. In 2016
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 236–241,
July 2016. doi: 10.1109/ISVLSI.2016.111.

[123] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[124] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,
and Anoop Gupta. The splash-2 programs: Characterization and methodologi-
cal considerations. ACM SIGARCH computer architecture news, 23(2):24–36,
1995.

[125] Riscv-Collab. Riscv-collab/riscv-gnu-toolchain: Gnu toolchain for risc-v, in-
cluding gcc, 2022. URL https://github.com/riscv-collab/riscv-gnu-toolchain.

[126] Umberto Casale. Programmable lim: a modular and reconfigurable approach
to the logic in memory, 2020.

[127] Andrea Coluccio, Umberto Casale, Angela Guastamacchia, Giovanna Turvani,
Marco Vacca, Massimo Ruo Roch, Maurizio Zamboni, and Mariagrazia
Graziano. Hybrid-simd: a modular and reconfigurable approach to beyond
von neumann computing. IEEE Transactions on Computers, 2021.

[128] Xin Jin and Jiawei Han. K-Means Clustering, pages 563–564. Springer
US, Boston, MA, 2010. ISBN 978-0-387-30164-8. doi: 10.1007/
978-0-387-30164-8_425. URL https://doi.org/10.1007/978-0-387-30164-8_
425.

[129] Paul Lane, Viv Schupmann, and I Stuart. Oracle database data warehousing
guide. 10g Release, 2(10.2), 2005.

[130] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi,
Antonio Pullini, Davide Rossi, Eric Flamand, Frank K. Gürkaynak, and
Luca Benini. Near-threshold risc-v core with dsp extensions for scalable iot
endpoint devices. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(10):2700–2713, 2017. doi: 10.1109/TVLSI.2017.2654506.

[131] Andrea Marchesin, Giovanna Turvani, Andrea Coluccio, Fabrizio Riente,
Marco Vacca, Massimo Ruo Roch, Mariagrazia Graziano, and Maurizio
Zamboni. Octantis: An exploration tool for beyond von neumann architectures.
In 2021 16th International Conference on Design & Technology of Integrated
Systems in Nanoscale Era (DTIS), pages 1–5, 2021. doi: 10.1109/DTIS53253.
2021.9505135.

[132] Milena Andrighetti, Giovanna Turvani, Giulia Santoro, Marco Vacca, Andrea
Marchesin, Fabrizio Ottati, Massimo Ruo Roch, Mariagrazia Graziano, and
Maurizio Zamboni. Data processing and information classification—an in-
memory approach. Sensors, 20(6), 2020. ISSN 1424-8220. doi: 10.3390/
s20061681. URL https://www.mdpi.com/1424-8220/20/6/1681.

https://github.com/fchollet/keras
https://github.com/riscv-collab/riscv-gnu-toolchain
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://www.mdpi.com/1424-8220/20/6/1681

296 References

[133] Tony Bybell. Gtkwave electronic waveform viewer, 2010.

[134] Burkhard Meier. Python GUI Programming Cookbook: Develop functional
and responsive user interfaces with tkinter and PyQt5. Packt Publishing Ltd,
2019.

[135] Frank Rubin. The lee path connection algorithm. IEEE Transactions on
computers, 100(9):907–914, 1974.

[136] Saharsh Laud. Lee algorithm: Shortest path in a maze, Feb 2021. URL
https://www.codesdope.com/blog/article/lee-algorithm/.

[137] Sandeep Koranne. Hierarchical data format 5: Hdf5. In Handbook of open
source tools, pages 191–200. Springer, 2011.

[138] Aliaksei Chapyzhenka and Jonah Probell. Wavedrom: rendering beautiful
waveforms from plain text. In Synopsys User Group (SNUG) Silicon Valley
2016 Proceedings, 2016.

[139] Georg Brandl. Sphinx documentation. URL http://sphinx-doc. org/sphinx.
pdf, 2021.

[140] Ray Salemi. The Uvm Primer: A step-by-step introduction to the universal
verification methodology. Boston Light Press, 2013.

[141] Mariagrazia Graziano, Marco Vacca, and Nicola Piano. Dexima: a design
explorer for in-memory architectures. 2019.

[142] Loris Mendola. Dexima a synthesis tool and performance estimator for logic-
in-memory architectures, 2021.

[143] S.R. Vemuru and N. Scheinberg. Short-circuit power dissipation estimation for
cmos logic gates. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 41(11):762–765, 1994. doi: 10.1109/81.331533.

[144] Spiridon Nikolaidis and Alexander Chatzigeorgiou. Analytical estimation of
propagation delay and short-circuit power dissipation in cmos gates. Interna-
tional journal of circuit theory and applications, 27(4):375–392, 1999.

[145] L Bisdounis and O Koufopavlou. Short-circuit energy dissipation modeling
for submicrometer cmos gates. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications, 47(9):1350–1361, 2000.

[146] Harry JM Veendrick. Short-circuit dissipation of static cmos circuitry and its
impact on the design of buffer circuits. IEEE Journal of Solid-State Circuits,
19(4):468–473, 1984.

[147] Sergio Galdino. A family of regula falsi root-finding methods. In Proceed-
ings of 2011 World Congress on Engineering and Technology (CET 2011),
volume 1, pages 514–517, 2011.

https://www.codesdope.com/blog/article/lee-algorithm/

References 297

[148] Wikipedia contributors. Ridders’ method — Wikipedia, the free encyclopedia,
2021. URL https://en.wikipedia.org/w/index.php?title=Ridders%27_method&
oldid=1033092888. [Online; accessed 24-November-2022].

[149] Freepdk45 technology model, 2022. URL https://eda.ncsu.edu/freepdk/
freepdk45/.

[150] Mohan V Dunga, X Xi, Jin He, Weidong Liu, Kanyu M Cao, Xiaodong Jin,
Jeff J Ou, Mansun Chan, Ali M Niknejad, and Chenming Hu. Bsim4. 6.0
mosfet model. University of California, Berkeley, 2006.

[151] Longest path in an undirected tree, Jul 2022. URL https://www.geeksforgeeks.
org/longest-path-undirected-tree/.

[152] Antoine Courtay, Olivier Sentieys, Johann Laurent, and Nathalie Julien. High-
level interconnect delay and power estimation. Journal of Low Power Elec-
tronics, 4(1):21–33, 2008.

[153] Yehea I Ismail, Eby G Friedman, and Jose L Neves. Figures of merit to
characterize the importance of on-chip inductance. In Proceedings of the 35th
annual Design Automation Conference, pages 560–565, 1998.

[154] Junjie Mu, Hyunjoon Kim, and Bongjin Kim. Sram-based in-memory com-
puting macro featuring voltage-mode accumulator and row-by-row adc for
processing neural networks. IEEE Transactions on Circuits and Systems I:
Regular Papers, 69(6):2412–2422, 2022.

[155] Didem Z Turker, Sunil P Khatri, and Edgar Sánchez-Sinencio. A dcvsl delay
cell for fast low power frequency synthesis applications. IEEE Transactions
on Circuits and Systems I: Regular Papers, 58(6):1225–1238, 2011.

https://en.wikipedia.org/w/index.php?title=Ridders%27_method&oldid=1033092888
https://en.wikipedia.org/w/index.php?title=Ridders%27_method&oldid=1033092888
https://eda.ncsu.edu/freepdk/freepdk45/
https://eda.ncsu.edu/freepdk/freepdk45/
https://www.geeksforgeeks.org/longest-path-undirected-tree/
https://www.geeksforgeeks.org/longest-path-undirected-tree/

Glossary

AlexNet AlexNet is a convolutional neural network, which competed in the Im-
ageNet Large Scale Visual Recognition Challenge in 2012. The network
achieved a top-5 error of 15.3% .. xviii, 18, 42–44, 46, 48

ASIC Application Specific Integrated Circuit. 21, 31

BCNN Binary convolutional neural network. 20

BL Bit Line. xvi, xvii, xx, 7, 10, 53, 95, 96, 148, 150, 161, 214, 217, 218, 220–222,
266, 268, 279

BNN Binary neural network. 46, 50

BSIM4 Berkeley Short-channel IGFET Model 4. 155, 166, 200–202, 205, 208, 210

BvNC Beyond von Neumann Computing. vi, 7, 9, 11, 15, 20, 21, 23–29, 44, 71,
282

CAD Computer Aided Design. 20, 22, 71, 82, 101, 161, 235, 243, 250

CAM Content Addreassable Memory. xviii, 7–9, 12, 49

CMOS Complementary Metal-Oxide Semiconductor. xix, 5, 7, 10, 40, 41, 43, 44,
49, 58, 60, 154, 155, 166, 199, 200, 233, 263, 278, 283

CNN Convolutional neural network. xi, 16, 17, 44, 47, 49

CPU Central Processing Unit. vii, x–xiii, xvii, xix, 5, 6, 11, 15, 25, 28, 29, 34,
37–39, 50–53, 58, 59, 61–63, 65–68, 74, 77–79, 82, 85, 97–101, 106, 107,
109, 110, 117, 118, 131, 134, 135, 171, 227–232, 248, 249, 251, 261, 263–265,
267, 269, 279, 280, 283

Glossary 299

DC Synopsys Design Compiler. xix, 233–235, 243–245, 248, 273

DRAM Dynamic Random Access Memory. xi, 7, 8, 10–12, 20, 22, 24–26, 28, 44,
59

DRC Design Rule Check. 39

DUT Design Under Test. 125, 141, 142, 145

EDA Electronic Design Automation. 20, 21, 125, 234, 283

FinFET Fin Field-Effect Transistor. 5

FP Floating Point. 18

FPGA Field Programmable Gate Array. 21, 31

GAAFET Gate-All-Around Transistor. 5

GPU Graphics Processing Unit. 28, 29

HMC Hybrid Memory Cube. 10, 11, 22

HTML HyperText Markup Language. xiv, 130, 131

IC Integrated Circuit. 5

IFMAP Input feature map. 16, 17, 19, 47, 48

IRL Intra Row Logic. vii, xii, xiii, xvi, xvii, 52, 53, 55–57, 72–75, 79–81, 85–88,
96, 101, 113, 116, 133, 134, 150, 160, 164, 171, 188, 214, 215, 249, 252–254,
256, 259–262, 266, 267, 272

LEF Library Exchange Format. 40

LeNet LeNet is a type of convolutional neural network. xi, 16

LiM Logic-in-Memory. vii, viii, x–xiii, xv–xix, 7, 10–12, 17, 23–42, 46–57, 61,
67, 68, 71–77, 79–83, 85–90, 92–101, 107, 109, 110, 112, 113, 116, 118, 120,
124, 129–135, 138–143, 146, 147, 149–151, 153–155, 158, 160, 161, 164,
170, 171, 188, 189, 214, 217, 218, 220, 223, 225, 227–232, 245, 248–259,
261–269, 274, 278–283

300 Glossary

LVS Layout-Vs-Schematic. 39, 191

MAC Multiply and Accumulate. 23, 26, 28, 42

MAGIC Memristor-Aided Logic. 27

ML Match Line. 7, 8

MLC Multi level cell, more then one bit can be hold into a single cell. 22

MLP Multilayer perceptron is a class of artificial neural network. Each node is a
neuron that uses a nonlinear activation function, except for the inputs. MLP
uses backpropagation for training.. 16, 17

MNIST The MNIST database (Modified National Institute of Standards and Tech-
nology database) is a dataset of handwritten digits with 60000 images in B/W..
38, 265

MRAM Magnetoresistive random-access memory (MRAM) is a non-volatile random-
access memory technology. Data in MRAM is not stored as electric charge or
current flows, but by magnetic storage elements. 22, 44, 46

MTJ Magnetic Tunnel Junction is a component composed by two ferromagnets
separated by an insulator. Electrons can tunnel from one ferromagnet into the
other.. 10, 20

NN Neural Network. 15–20, 44–46, 48, 49, 65

NVM Non-volatile memory. 12, 22

OFMAP Output feature map. 17, 47

OOM Out of memory implementation.. 46, 48–50

OOO Out-Of-Order. 6

PCM Phase Change Memory. 10, 22, 26

PE Processing Element. 42, 63

PEX Parasitics EXtraction. 39

Glossary 301

PIM Processing in Memory. xviii, 22, 24, 25, 28, 29

ReLU Rectified linear unit, a type of neuron’s activation function which consists
into ReLU(x) = max(0,x). In terms of training time, it is the best choice.. 16

RRAM Resistive switching random access memory. 20, 22, 26, 27

RTL Register Transfer Level. viii, 20–22, 37, 67, 77, 81, 101, 128, 129, 138–140,
142, 144, 146, 148, 150, 152, 243–245

SIMD Single Instruction Multiple Data. xii, xix, 11, 52–55, 57–68, 71, 73, 75

SL Search Line. 7–9

SLC Single Level Cell. 22

SOT Spin-orbit torque: a type of magnetic RAM. 22, 44, 46

SRAM Static Random Access Memory. x, xi, xix, xx, 6–12, 20, 22, 23, 26, 119,
128, 129, 170, 188, 278–280

stride stride, in the context of CNNs, is the distance between the receptive field
centers of neighboring neurons in a kernel map. 16, 17, 47

STT Spin-transfer torque is an effect in which the orientation of a magnetic layer in
a MTJ can be modified using a spin-polarized current.. 22, 26

TOP5 top-5 error is measured by checking if the target label is one of your top 5
predictions (the 5 ones with the highest probabilities).. xi, 18

TSV Through Silicon Via. 11, 20

UML Unified Modeling Language. xiv, xv, 156, 157, 165, 174, 188, 226

UVM Universal Verification Methodology. ix, xiv, 81, 90, 124, 138–143, 146–149,
151, 153

VCD Value Change Dump. viii, xiii, xiv, 81, 92, 93, 107, 111, 125, 126, 130, 139

VLSI Very Large Scale Integration. 21

WL Word Line. 7, 9, 10, 148

	Contents
	List of Figures
	List of Tables
	I Background and previous works
	1 Introduction
	1.1 State-of-the-art
	1.1.1 Beyond von Neumann concept
	1.1.2 BvNC application example: neural networks

	1.2 Electronic Design Automation applied to BvNC
	1.2.1 Overview of the standard tools
	1.2.2 Tools for BvNC

	1.3 Promoting BvNC: results and discussions
	1.4 Conclusions

	2 Previous works and architectural models
	2.1 General-Purpose and Application Specific
	2.1.1 Application Specific implementations
	2.1.2 General Purpose approach

	2.2 Conclusions

	II DExIMA tool for LiM design exploration
	3 Overview of DExIMA software
	3.1 DExIMA architectural reference structure
	3.1.1 Control part and design templates

	3.2 DExIMA-GUI: Graphical User Interface
	3.3 LiM design phases
	3.3.1 Near-Memory design phase

	3.4 Conclusions

	4 LiM design flow with DExIMA
	4.1 Definition of the LiM template
	4.2 Definition of the LiM Cell
	4.3 Definition of the IRL
	4.4 LiM array definition
	4.5 Definition of the uRAM content
	4.6 Clock and default toggle rate definitions
	4.7 Simulation
	4.8 Performance estimation
	4.9 Visualization of the results
	4.10 Comparison CPU-Mem and CPU-Mem-LiM.
	4.11 Conclusions

	5 Front-end code description: DExIMA-GUI
	5.1 MainWindowItems
	5.1.1 Graphical elements
	5.1.2 Functions and routines

	5.2 CONNECTBlocks
	5.3 Interconnections
	5.4 LiMTEMPLATES
	5.5 MEMORYARRAYHandlers
	5.6 PERFORMANCE
	5.7 SCENEElements
	5.8 SIMCnfg
	5.9 TOOLS, VCDAnalyzer and VHDLGenerators
	5.9.1 VCD file format
	5.9.2 Conversion to Wavedrom

	5.10 Available blocks: LIBRARY folder and SPICE description
	5.11 OUTPUT and Documentation folders
	5.12 Project files
	5.12.1 Main folder
	5.12.2 Gem5 output directory

	5.13 Conclusions

	6 Automatic RTL simulation
	6.1 Simulation script
	6.2 Universal Verification Methodology testbench
	6.3 Interface
	6.4 Sequence Item
	6.5 Driver
	6.6 The Register Environment
	6.7 Sequences
	6.7.1 Reset sequence
	6.7.2 Write and read sequences
	6.7.3 Set LiM operation sequence
	6.7.4 Algorithm execution sequence

	6.8 The UVM main test
	6.9 Conclusions

	7 DExIMA-Backend
	7.1 Main classes overview
	7.2 DExIMA-Backend input file
	7.2.1 The Technology class
	7.2.2 Concept of the Printer class
	7.2.3 The STDCell class
	7.2.4 The CompositeGate and MultibitBlock classes
	7.2.5 The Module class
	7.2.6 The Lim and the Architecture classes
	7.2.7 The Performance class and its inherited classes

	7.3 Computational model
	7.3.1 Model for parallel and series transistors
	7.3.2 Short circuit current
	7.3.3 Modeling the static power
	7.3.4 MOS capacitance model
	7.3.5 Switching activity propagation model
	7.3.6 Dynamic energy and power models
	7.3.7 Area model
	7.3.8 Delay model
	7.3.9 Bus model
	7.3.10 DExIMA output file

	7.4 Conclusions

	8 Inserting LiM in a von Neumann system
	8.1 Comparison between CPU-Mem and CPU-Mem-LiM systems
	8.2 Conclusions

	9 DExIMA-Backend validation
	9.1 Procedural steps for validation
	9.1.1 Comparisons with Liberate datasheet
	9.1.2 Comparisons with Synopsys Design Compiler

	9.2 Conclusions

	10 Testing DExIMA: benchmarking and comparisons
	10.1 XNOR-Net: a binary neural network
	10.2 Matrix-Vector Multiplication
	10.3 K-Nearest Neighbor
	10.4 Bitmap Indexing
	10.5 Mean-Variance
	10.6 Results comparison
	10.7 DExIMA-Backend vs. Synopsys Design Compiler: complex architectures
	10.7.1 Investigating the worst outcomes: MVM case
	10.7.2 Investigating even more the problem: DExIMA-Backend known issues

	10.8 SRAM vs flip-flop memories
	10.9 Evaluating the impact of the bus on CPU-Mem and CPU-Mem-LiM
	10.10 Conclusions

	11 Conclusions and future works
	References

