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Abstract

Molecular sorting is a sophisticated mechanism exploited by eukaryotic cells to
maintain their inner order and guarantee proper physiological functioning. By means
of this mechanism, specific biomolecules dwelling on the outer plasma membrane
and on the internal membranes are selectively concentrated into spatially localized
domains and engulfed into submicrometric lipid vesicles, that are actively delivered
to their right destinations. A similar sorting process is also involved in the assembly
and budding of enveloped viruses. This thesis is devoted to the study of the statistical
properties of molecular sorting investigated by means of an abstract model, that
assumes that this non-equilibrium process emerges from the coupling of two main
physical principles: (a) molecule phase separation into domains and (b) domain-
induced membrane bending, leading to vesicle nucleation.
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Chapter 1

Introduction

Compartmentalization is crucial for cell survival. The robust physiological functioning
of eukaryotic cells relies on a intricate system of distinct inner structures, or
compartments, each of which is designated to accomplish a specific task [1–4].
This functional diversification originates from the unique biochemical composition
of each subregion. Indeed, each compartment is endowed with selected groups of
specialized proteins and other auxiliary molecules that cooperate for a common
purpose, defining its identity and function. Orchestrating the myriad of incessantly
diffusing and interacting molecules, that need to be at the right place at a precise
time, is thus vital for the cell and errors can lead to the development of severe
diseases. How molecules are initially partitioned into different compartments and
are maintained spatially separated are questions still under investigation.

A major mechanism for the organization of intracellular matter is the process
known in the biological literature as molecular sorting, which takes place on the
plasma membrane and on the membranes enveloping the inner cell compartments [5,
6]. By this process, each of the thousands of proteins in a cell is correctly assigned
and delivered to its appropriate membrane region via small lipid vesicles through well-
defined pathways. Although huge efforts in investigating this process have been made
through the decades, the underlying physical mechanisms need to be further explored.
In this regard, it has been recently proposed that this highly complex process
may emerge from the coupling of two simple physical mechanisms [7]: a) phase
separation of specific proteins into localized, homogeneous, submicrometric domains,
and b) membrane bending induced by protein crowding, leading to the formation
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of protein-enriched vesicles. The combination of these two mechanisms ultimately
results in a spontaneous demixing process. Based on these assumptions, a non-
equilibrium phenomenological theory of molecular sorting has been formulated [7],
along with a microscopic lattice-gas model, describing molecule insertion on the
lipid membrane, molecule diffusion and aggregation into domains, and molecule
extraction as part of a domain once it has reached a characteristic extraction size.

The main goal of this thesis is to gain further insights into this fundamental
process, firstly by exploiting the molecular sorting model developed in [7] and then
by extending it to include more aspects.

A central role in the process of domain growth is played by the critical domain
size which, as predicted by the theory of phase separation, distinguishes domains
into subcritical domains with a low probability of reaching the extraction size, and
supercritical domains which irreversibly grow and are ultimately extracted from the
system. Sorting domains observed in experiments are commonly classified into two
groups: productive domains, that evolve into vesicles, and unproductive domains,
characterized by smaller size and shorter lifetimes, which rapidly dissolve. Therefore,
it is tempting to interpret the different final fates a domain can undergo in terms of
the critical domain size. Numerical results of the lattice-gas model of molecular
sorting show good qualitative agreement with experimental data on domain lifetimes
and sizes, supporting the hypothesis that sorting is driven by a phase separation
process.

Thanks to recent advances in imaging techniques, it is now possible to directly
visualize the subsequent events leading to the simultaneous sorting and dispatching
of multiple species in living cells [8–11]. Here, the phenomenological theory of
molecular sorting, which for simplicity was developed by considering a single
molecular species [7], is thus extended to the case of the simultaneous sorting of a
plurality of species. A combination of analytical estimate and numerical simulations
shows that, in principle, a large number of species can be sorted in parallel on a
membrane region without significant crowding effects.

An increasing amount of experimental studies shows that the valence, defined as
the average number of interacting neighbors of a molecule in a domain, plays a crucial
role in the formation of protein domains [12–14]. The effect of varying valence in
this context is investigated by means of the lattice-gas model of molecular sorting,
simulating protein diffusion and aggregation on triangular, square and hexagonal
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lattices. Numerical results reveal that molecules with higher valence are sorted with
greater efficiency.

Lastly, to explore the effect of the membrane bending on the sorting process, a
simple model is introduced here, which simulates the sorting of a binary mixture
of molecules onto a fluctuating, topologically-varying membrane lattice. Thus,
differently from the previously introduced model [7] where the membrane was
described as a static lattice of fixed size, here the lattice is allowed to undergo shape
deformations and topological changes corresponding to events of fusion and fission
of protein-loaded vesicles. The properties of the lipid membrane and of the detached
vesicles are investigated in this new framework.

The organization of the thesis is as follows. In Chapter 2, the phase-separation-
driven process of molecular sorting is introduced, highlighting its vital role in
organizing intracellular matter. Basic concepts from the classical theory of phase
separation and the theory of membrane elasticity are also recalled here. Chapter 3
contains the phenomenological theory of molecular sorting developed in [7], along
with a description of its lattice-gas implementation. Chapters from 4 to 7 contain
the results on which I have contributed: in particular, in Chapter 4 the role of the
critical domain size in molecular sorting is studied, Chapter 5 concerns the process
of sorting multiple molecular species in parallel, Chapter 6 investigates the impact
of molecular valence on the efficiency of sorting, and in Chapter 7 a new model
of molecular sorting explicitly accounting for the coupling of lipid membrane and
proteins dynamics is proposed.



Chapter 2

Molecular sorting as a phase
separation process

The content of this Chapter is partially based on the published paper [4].

In this Chapter I review basic notions about cell compartmentalization, phase
separation processes and the physics of membranes.

2.1 Intracellular organization and molecular sorting

To effectively interact with their environment, cells have to generate inner structures
by a sequence of symmetry-breaking events, whereby regions devoted to different
vital functions emerge either spontaneously or under the influence of specific
driving cues [15]. For instance, stem cells generate differentiated daughter cells
by asymmetric cell division, endowing them with specific fate determinants [16]
(Fig. 2.1(a)). Cells migrating in a chemotactic gradient are initially round but
under the influence of a chemotactic factor develop a chemically differentiated
front and back allowing them to migrate towards a chemoattractant source [17]
(Fig. 2.1(b)). Epithelial cells mature chemically differentiated apical, basal and
lateral region to integrate into the fine planar architecture of an epithelial tissue [18]
(Fig. 2.1(c)). In these examples, the plasma membrane is subdivided in specialized,
chemically differentiated domains by a selforganized phase separation process [19–
22] which in its turn guides the asymmetric positioning of inner structures, such as the
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Fig. 2.1 Symmetry breaking and generation of cellular functions. (a) In asymmetric cell
division, fate determinants are distributed asymmetrically between the mother and daughter
cell [16]. (b) In chemotactic cells, different molecular factors accumulate in the growing
anterior part and in the retracting posterior part of the cell [17]. (c) During epithelial tissue
morphogenesis, the apical, lateral and basal regions of the cell acquire different molecular
identities [18, 29].

cytoskeleton, and membrane-bound organelles, such as the Golgi and endoplasmic
reticulum, in the intracellular space [23–26]. A sophisticated machinery of molecular
sorting and dispatching contributes to the generation and maintenance of the symmetry-
broken, polarized state [5, 27, 28]: the biochemical constituents of these localized
domains dwelling on the plasma membrane and on the membranes of inner cellular
bodies are engulfed in small lipid vesicles that, once formed, detach from the
membrane and are subsequently delivered to their appropriate destinations.

Differently from purely chemical systems that may rely on ‘passive’, non-
energy consuming intermolecular interactions for the generation and maintenance
of separated phases, biological systems typically employ energy-consuming, non-
equilibrium, ‘active’ processes to sustain heterogeneity among the distinct phases
that identify its inner compartments [30]. In particular, the ability of biomolecules to
separate into phases characterized by distinct states of matter, ranging from liquid
to gas or solid, is fundamental to spatially segregate proteins and nucleic acids in
cells, thus generating specific compartments with specialized functionalities. Diverse
biological processes ranging from RNA metabolism, DNA damage response and
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signal transduction exploit the fine levels of compartmentalization provided by
phase-separated domains for their proper functioning [31–33].

Membrane-bound compartments

Cell membranes are primarily responsible for compartmentalization: each organelle
is enclosed in its membrane, which serves as delimiting interface between the
organelle’s contents and the surrounding cytosol. In the intracellular space, membra-
nes not only constitute boundaries but also, and more importantly, define each
organelle’s function. Indeed, apart for the common structure provided by a self-
assembled double layer of lipids all cell membranes share, each membrane hosts a
specific set of proteins and other macromolecules, determining its function.

Lastly, membranes play a pivotal role in diverse cellular processes, including
molecular sorting and trafficking to/from the external cell environment and between
different intracellular locations. Thus, membranes are required to continuously
undergo dynamical changes and assume a broad diversity of morphological states,
ranging from non-spherical shapes to spherical ones.

Membraneless organelles

Recent evidences have shown that phase separation is a key driver not only of the
spatial organization of molecules on cell membranes, but also of the biogenesis
of a large class of membraneless organelles contained in the cytoplasm and in the
nucleoplasm. These organelles, although lacking an enclosing membrane which
physically separate the internal content from the surrounding medium, maintain a
coherent structure and are characterized by a specific biochemical composition [34,
35]. A far from exhaustive list includes the nucleolus, Cajal bodies, nuclear speckles,
stress granules, P-bodies, and germ granules.

2.2 Phase separation in cell biology

Processes of phase separation have emerged in the recent decade as an ubiquitous
feature of eukaryotic cell physiology. Phase separation is a natural process that the
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cell may exploit to spatially localize biochemical reactions and cellular functions
in appropriate subcellular structures and compartments. Two large classes of
macromolecules have been identified, that exhibit a particular tendency to phase
separate: proteins and RNA molecules containing several repeats of similar binding
sites and/or weak interaction regions (multivalent molecules) and proteins (in particu-
lar, RNA- and DNA-binding proteins) containing stretches of unstructured, partially
unfolded regions enriched in particular polar and charged amino acids (intrinsically
disordered, or prion-like, protein regions) [12, 32, 36]. Favored by negligible
activation barriers, such feeble interactions promote spontaneous and reversible
organization of macromolecules in phase-separated domains, often referred to also
as ‘droplets’, or ‘condensates’ [37]. In most cases the state of aggregation of such
domains has been reported to be liquid-like, or gel, but occasionally also solid
domains have been observed, mainly in association with pathological conditions [32].
On lipid membranes, phase separation into localized domains enriched in specific
molecular factors can be also driven by the indirect intermolecular interactions
established by networks of autocatalytic loops. Such ‘soft’ domains may have
a gas-like structure, as their constituents do not need to be constantly in direct
contact [19, 38]. The progressive ‘coarsening’, or ‘ripening’ of phase-separated
domains evidenced by time-lapse experiments, which is a signature of phase separation
in the presence of a finite pool of molecular factors, has been observed in the cytosol,
nucleus, and on lipid membranes, both in vitro (Fig. 2.2(a, b)) and in vivo (Fig. 2.2
(c-f)). Computer simulations of quantitative models of phase separation reproduce
the observed coarsening dynamics (Fig. 2.2 (g, h)).

By organizing biochemical reactions in time and space, phase-separated domains
allow them to proceed at the right pace by preventing undesired side-reactions
in multistage processes [31, 33], storing away biomaterials when the cell comes
under stress and releasing them gradually in normal conditions [36, 43], selectively
inhibiting or promoting reactions by sequestering [44] or concentrating reactants [45,
46].

Importantly, at the larger, cellular scale, the regulated formation of phase-
separated domains allows the right processes to take place at the right time and in
the right place. A far from exhaustive list of examples is briefly reviewed here. The
centrosome, which serves as the main microtubule organizing center during mitosis,
is nucleated by the centriole and grows by a phase-separation process [47]. Then, by
absorbing tubulin from the cytosol and concentrating it in its interior, it favors the
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Fig. 2.2 Nucleation and coarsening of selforganized domains in biological phase separation
(reproduced from the original with permission, in modified form): (a) prion-like FUS protein,
associated with the neurodegenerative disease ALS [32]; (b) LAT protein, taking part in T cell
receptor signal transduction [33]; (c) stress granules [39]; (d) post-synaptic densities [40];
(e) nucleoli and extranucleolar droplets [41]; (f) polarity establishment in yeast [42];
(g) simulation of the coarsening kinetics of nucleoli and extranucleolar droplets[41];
(h) simulation of coarsening kinetics in the establishment of cell polarity [20, 22].

multiple nucleation of microtubules from its surface [48]. The nucleolus, which is
responsible for ribosome biogenesis, is nucleated around a specific ribosomal DNA
region and grows by phase separation, as evidenced by the observed coarsening
kinetics (Fig. 2.2e). Germ granules, aggregates of protein and RNA that determine
the differentiation fate of daughter cells generated by asymmetric cell division,
form during mitosis by a phase separation process [49], which is asymmetrically
driven by the previous formation of opposite phase-separated domains on the plasma
membrane of the mother cell [50].



2.3 Molecular interactions inducing phase separation 9

2.3 Molecular interactions inducing phase separation

The interaction between homotypic molecules leading to their phase separation into
distinct sorting domains may be either direct, such as in the case of the weakly
adhesive electrostatic interactions between unstructured molecule regions involved
in biological liquid-liquid phase separation [37], or indirect, as in the case of
the effective, contactless interactions induced by enzyme-driven feedback loops
involving lipid and molecules. The latter, indirect interactions have the potential
to induce diffusion-limited phase separation, originally studied in the context of
cell polarity [19, 51, 22, 3, 52], and are involved in molecular sorting processes
where the segregation of distinct molecular species in separate sorting domains is
not controlled by direct homotypic intermolecular interactions [53].

Direct interactions

Mixing-demixing transitions have been thoroughly studied in Physics [54–56]. There,
the ordering of similar molecules by mutual affinity in spatially separated domains is
driven by attractive or repulsive interactions, primarily of electrostatic origin, such as
those emerging from the interaction of permanent or induced dipoles [57–59]. The
formation of phase-separated domains becomes possible when the demixing tendency
of mutually attractive interactions outcompetes the tendency of thermal agitation
to mix and homogenize the molecular components of a system. For this reason, in
the simplest systems the mixing-demixing transition may take place abruptly when
some control parameter (such as the temperature, or the concentration of a particular
component) crosses some critical value, and a tipping point is reached.

The initiation of this process of separation into different phases, characterized by
distinct physical properties and/or molecular compositions, can occur spontaneously
as a consequence of stochastic fluctuations. For instance, the spontaneous nucleation
of a germ of a (solid, liquid or gel) condensate phase from a solution starts from the
random encounter of two molecules of the solute, resulting in the formation of a
(stable or transient) dimer. The growth of a small condensate domain of molecules
of the solute is then driven by the balance between the influx of molecules from the
solution and the ‘evaporation’ of molecules from the domain [60]. If, after the initial
nucleation stage, phase separation takes place sufficiently close to thermodynamic
equilibrium, it is possible to describe it in thermodynamical terms as a competition
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between a bulk and interface free energy. Here, the growth of a spherical domain
of the condensate phase allows the system to lower its energy proportionally to
the increase in the volume of the domain itself, while at the same time, the free
energy of the system is raised by an amount proportional to the increase of interface
area, where the energetically favorable contacts are not saturated (the proportionality
coefficient is called a ‘surface tension’). A tug of war therefore arises between these
two competing effects.

Several observable effects derive from this scenario [55, 60–63]:

1. Phase separation takes place via a switch-like onset when the concentration of
the solute exceeds the threshold concentration that allows a large condensate
domain to coexist at equilibrium with the solution.

2. The process tends to minimize the interface area (or perimeter length in two-
dimensional systems) between the two phases, leading to the formation of
approximately spherical (or circular, in two-dimensional systems) growing
domains.

3. The speed of the process is controlled by a degree of metastability, which is
approximately proportional to the difference between the concentration of the
solute and the threshold concentration.

4. There is a critical size under which domains are unstable and tend to disappear,
since for small domains, the energy advantage coming with an increased
volume does not repay the cost of an extended droplet boundary; the critical
size of approximately spherical or circular domains is inversely proportional
to the degree of metastability.

5. Stable domains (i.e., domains larger than the critical size) can be generated
either by a large enough random fluctuation (homogeneous nucleation), or
by the creation of a large enough nucleation center by some external action
(heterogeneous nucleation).

6. When competing for a limited pool of molecules, domains undergo competitive
growth, also known as coarsening: larger domains grow at the expense of
the molecules that ‘evaporate’ from smaller ones, so that at equilibrium a
unique domain survives, in a sort of winner-take-all mechanism; moreover,
the growth of domains becomes slower and slower with time, as long as the
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solute is sequestered by the growing domains, and as a consequence, the
degree of metastability decreases and the critical size grows; Lifshits and
Slyozov [64, 62] found that under these conditions the average size of domains
grows as (time)1/3 in both two- and three-dimensional environments. This
is ultimately a consequence of the fact that molecules diffuse in a restricted
environment without being created or destroyed (in this case it is said that the
system exhibits a locally conserved order parameter [55]).

A similar scenario is realized in the case of an initially well-mixed binary mixture of
a population of molecules of types A and B (Fig. 2.3(a)), characterized by homotypic
intermolecular affinity, where islands of pure A- and B-phases can be nucleated and
grow in the ‘sea’ of the well-mixed phase.

In both cases, a mathematical description of phase separation can be given by
introducing a coarse-grained order parameter φ (that in the case of the binary mixture
can for instance be thought as the difference between the local concentrations of the
A- and B-molecules) and a Landau-Ginzburg free-energy density:

f =
K
2
|∇φ |2 +V (φ) (2.1)

where the gradient term penalizes the interfaces between the two phases (K is thus
proportional to the surface tension), while V (φ) is a potential, which depends on
the strengths of the intermolecular interactions. There exist a region of parameter
space (Fig. 2.3(b)) in which the coexistence of competing phases is possible, as V (φ)

develops two minima (Fig. 2.3(c)), corresponding respectively to each of the two
physically realizable phases. If V (φ) is symmetric, both phases are globally stable,
otherwise one of the two phases is metastable.

Indirect interactions

Classical theories of phase separation rely on concepts of equilibrium statistical
mechanics, such as the free energy, that in some cases can be used to approximately
describe also non-equilibrium dissipative processes during their relaxation toward
an equilibrium state. However, many of the inner workings of living cells are
intrinsically nonequilibrium, since they are continuously driven by external and/or
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Fig. 2.3 Mixing-demixing transition. (a) Schematic representation of the formation of
phase-separated domains in a ‘sea’ of the mixed phase. (b) Phase diagram of the process.
(c) Potential part of the free energy in the phase-coexistence region, with the characteristic
bistable shape; the two potential wells correspond to the two stable phases.

internal forces, and can involve transport phenomena and enzymatic processes
in which individual molecular components constantly and irreversibly consume
and dissipate energy, a defining feature of ‘active’ matter [30, 65, 66]. Such
intrinsically out-of-equilibrium processes permit the existence of a larger variety of
stationary states than those realizable in close-to-equilibrium conditions [47, 67].
Such processes contribute to generate and maintain the symmetry-broken, structured,
compartmentalized state which allows the cell to perform its complex, vital functions.
An example of such order-generating, energy-consuming nonequilibrium process is
provided by the phase separation of cell membranes into polarized signaling domains
driven by autocatalytic loops [19, 68–71, 53]. In this context, the attractive or
repulsive interaction between homotypic molecules is often not direct, but effectively
mediated by autocatalytic feedback loops involving auxiliary molecules and sustained
by a continuous energy influx, that may be provided for instance by ATP hydrolysis
and is consumed by individual catalytic events.

A simple model of this active phase separation process describes a population of
molecules of types A and B, bound to the lipid membrane, where they can laterally
diffuse with diffusivity constant D. The two molecular types are interconverted
by the action of two enzymes EA, EB that shuttle between the lipid membrane
and the cytosol, where they rapidly diffuse. Each of the two enzyme types binds
preferentially to membrane regions enriched in their own product, thus realizing a
simple reinforcing feedback loop (Fig. 2.4) [19, 20, 51, 22, 72]. Based on some of
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Fig. 2.4 (a) Abstract model for active phase separation on lipid membranes [19, 20, 51, 22].
(b) Phase diagram. Concentrations are measured in units of Atot+Btot; the graph is symmetric
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its characteristic properties, this kind of model has been termed ‘mass-conserved’,
‘bistable’, or ‘wave-pinning’ by different authors [73–75].

A mathematical description of this process can be given by considering as an
order parameter the difference in the surface concentration of the molecules of
types A and B [19, Supp. Text]. The evolution of φ in time can be reduced to the
minimization of the effective free energy density:

fact =
D
2
|∇φ |2 +Vact(φ), (2.2)

where Vact(φ) is an effective potential, which depends on the chemical reaction rates
indicated in Fig. 2.4(a). In the region of parameter space depicted in light green in
Fig. 2.4(b) the coexistence of competing phases is possible, as Vact(φ) develops two
minima, corresponding respectively to each of the two (A- and B-enriched) phases.
This is analogous to the mathematical description of the classical phase separation
of a binary mixture, except that Vact(φ) now depends on the kinetic rates of a set
of non-equilibrium autocatalytic reactions, instead of the equilibrium strength of
direct intermolecular interactions. A similar mathematical structure implies similar
properties: domains of pure A- and B-phases may nucleate and grow, exhibiting
all the ‘classical’ effects, including switch-like onset, minimization of surface
tension, existence of critical size, and coarsening [19, 20, 51]. Interestingly, in
these conditions coarsening is faster than in the classical Lifshitz-Slyozov prediction,
since the order parameter is not conserved: molecules may ‘evaporate’ from any part
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of a domain, diffuse rapidly in the cytosol, and be captured again in another point of
the membrane; correspondingly, the average size of domains is predicted to grow as
(time)1/2 [20, 51].

These selforganized ‘active’ domains exhibit peculiar features. They cannot
exist at the stationary state without a constant influx of energy, and are therefore
intrinsically out of equilibrium. Since direct homotypic molecular interactions are
here substituted by effective interactions mediated by the autocatalytic loops, the
intermolecular distance in such domains can be larger than the molecular size, a
characteristic that can be assimilated to that of a ‘gas’ phase. In principle, such
domains may be expected to cover large extents of space and to exhibit a high degree
of plasticity and fast recycling of their constituents. Interestingly, the size of these
membrane domains is limited by the depletion of their constituents from the cytosolic
reservoir, and can therefore in principle be controlled by regulating their cytosolic
concentrations [19, 20, 51].

It is also worth observing here that actual selforganized active domains are driven
by selfreinforcing catalytic loops that usually involve a chain of events where a
multiplicity of molecular species participate. Therefore, such domains are expected
to be typically multicomponent, and to host a spatially-localized, higher-than-average
concentration of the ‘clan’ of all of the molecular species that take part into the
relevant autocatalytic feedback loops (the red and blue ‘clans’ in Fig. 2.4 can be seen
as an abstract example).

2.4 Kinetics of phase separation

Phase separation corresponds to the decay of a thermodynamic system from a
metastable state (corresponding to a local minimum of the free energy) to a stable one
(global minimum). This transition occurs through the subsequent steps of nucleation,
coarsening, and coalescence. The nucleation stage consists in the formation of tiny
islands (called nuclei or droplets) of the stable phase in a "sea" of the unstable phase
as a consequence of a large enough thermal fluctuation or driven by preexisting
seeds of the new phase. The second stage is characterized by the growth of larger
domains, or coarsening, at the expense of smaller ones, resulting in the decrease of
the average number of domains. In the final stage phase coexistence is reached: two
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large complementary domains remain in the system. In the following we will use the
example of liquid-gas coexistence.

Nucleation

A simple description of the process of droplet nucleation is provided by the critical
droplet theory [54, 76]. It relies on a quasi-equilibrium assumption, according to
which a metastable state can be treated as an equilibrium state if the lifetime of the
metastable state is much larger than the relaxation time the system needs to reach that
state. Using concepts from the thermodynamic fluctuation theory, the equilibrium
probability describing the formation of a cluster composed of n particles (n-cluster)
can be written as

feq(n) ∝ e−βWmin, (2.3)

where Wmin is the minimum reversible work necessary to form a n-cluster in the gas
phase at pressure pg and temperature T . If the process takes place at constant T and
pg, it can be shown that Wmin is equal to the variation of the Gibbs free energy ∆G.
This can be calculated as follows:

∆G = ∆F(T,V )+ pg∆Vg + pgVl

=−n∆µ + γA(n)

=−n∆µ + γSdrd−1n
d−1

d ,

(2.4)

where ∆F is the variation of the Helmholtz free energy, ∆Vg is the gas volume change,
Vl is the volume of the liquid droplet, and ∆µ = µg(pg)− µl(pg) is the chemical
potential difference. The last line is obtained by using the capillarity approximation
which consists of the two following assumptions:

i) the droplet is a sphere of incompressible liquid of radius R = rn1/d in d
dimensions, with r being the radius of a single particle and d the dimensionality;

ii) the droplet surface energy is given by U = γA, where γ = γ∞(T ) is the
planar surface tension and A = Sdrd−1n

d−1
d denotes the surface area, with

Sd = 2π(d+1)/2/Γ((d +1)/2).

For small n, the formation of a small cluster is energetically unfavourable due to
the positive surface term, while for large n the bulk contribution dominates. The
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maximum value of ∆G(n) is obtained in correspondence of the critical number of
particles nc, or analogously for the critical radius

Rc =
d −1

d
Sdrdγ

∆µ
. (2.5)

∆G(Rc) is the nucleation barrier, that is the energy barrier a system has to overcome
to form a new stable phase. On average, for R > Rc the droplet grows, while for
R < Rc the droplet shrinks. ∆µ appearing in the expression of the critical radius
(Eq. 2.5) can be calculated by using the condition that the critical droplet is in
equilibrium with the surrounding gas and the condition of liquid incompressibility.
By expanding the free energy as a function of the radius around the critical region

∆G(R)≈ ∆G(Rc)+
1
2

d2∆G(R)
dR2

∣∣∣
R=Rc

(R−Rc)
2, (2.6)

it follows that the equilibrium probability of finding a cluster of radius R can be
expressed as

feq(R) ∝ e
4πγ

kBT (R−Rc)
2
. (2.7)

Recalling that, for large n, ∆G is dominated by the negative bulk contribution, it
follows that feq(n) diverges for n −→ ∞ , while it should remain finite for any n
and t. To describe the dynamical nature of the nucleation-growth process, two
kinetics methods were developed independently by Becker and Döring [77] and by
Zeldovich [78], relying on a time-dependent cluster size distribution f (n, t).

Coarsening

In the case of low supersaturation, the growth of a droplet is mainly due to the
attachment of single diffusing molecules (diffusion-limited growth). Consider a
droplet of radius R surrounded by a gas of non-interacting molecules at pressure pg

in three dimensions. The rate at which diffusing molecules hit the absorbing droplet
is determined by the reaction rate theory [63]. Laplace equation with appropriate
boundary conditions describes the stationary density profile of the gas n surrounding
the droplet

D∇
2n = 0, (2.8)
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with diffusion constant D and n(∞) = ng and n(R) = n0,R. Since the general solution
of Laplace equation for d ⩾ 3 is n(r) = A+Br2−d , one obtains

n(r) = ng − (ng −n0,R)

(
R
r

)d−2

. (2.9)

The reaction rate K is given by the flux of particles across the surface of the droplet

K = D
∫

Σ

∇n · n̂dΣ = SdRd−1D
dn
dr

∣∣∣
r=R

= SdD(d −2)Rd−2(ng −n0,R),

(2.10)

where Sd = 2π(d+1)/2/Γ((d +1)/2). Using the Gibbs-Thomson relation

n0,R ≃ n0,∞

[
1+

2γ∞

nlkBT
1
R

]
, (2.11)

for d = 3 one obtains

K = 4πDR
[
(ng −n0,∞)−

2γn0,∞

nlkBT
1
R

]
. (2.12)

Calculating the critical radius Rc for d = 3 from Eq. 2.5 and using the following
relation for the chemical potential difference

∆µ = µg(pg)−µl(pg) = kBT log
pg

psat

= kBT log
ng

n0,∞
≈ kBT

ng −n0,∞

n0,∞
,

(2.13)

with psat is the saturation pressure, the absorption flux, defined as the number of
particles per unit surface, is given by

i0 =
D
R2 (R−Rc)(ng −n0,∞). (2.14)

2.5 Membrane fluctuations

Molecular sorting is mediated by vesicles, small spherical membrane structures
that bud off from a membrane region and fuse with another one, releasing their
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content. Introducing a local curvature is a key requirement for initiating the formation
of a vesicle. What are then the special strategies cells employ to easily deform
membranes? In the last decades several studies have revealed that interactions
between proteins, the second major component of membranes, and the lipid bilayer
are the main drivers of membrane bending [79]. Lipid-protein interplay arises from
the joint effort of distinct physical mechanisms [80, 81]: generation of an area
mismatch due to the insertion of a helix into one leaflet of the membrane, scaffolding
of the membrane, protein repulsion due to steric interactions [82–84], and protein
phase separation [85]. A comprehensive understanding of all these mechanisms is
still lacking.

Curvature

A membrane can be viewed as a two-dimensional surface embedded in a three-
dimensional space (thin-sheet approximation). Consider, for instance, a vesicle of
size 100 µm and thickness 3− 5 nm: the lateral extent of the membrane is much
greater than its thickness [86]. Thus, notions of differential geometry can be used to
describe a membrane and, in particular, its shape can be quantified in terms of the
curvature. This is a local geometrical property which, for a planar curve, is defined
as the inverse of the radius of the circle that best approximate the curve at each point
(osculating circle). In the case of a surface, two circular mutually perpendicular arcs
with radii R1 and R2 need to be defined. Their reciprocal C1 = 1/R1 and C2 = 1/R2

are called principal curvatures. The mean curvature is defined as

HC =
1
2
(C1 +C2) (2.15)

and the Gaussian curvature is defined as

HG =C1C2. (2.16)

The Helfrich Hamiltonian

The Helfrich theory, widely employed to study the behaviour of biological membranes,
is based on a continuum-mechanical approach. The use of a continuum description
is justified by the two following properties: a) the area per lipid molecule in the
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membrane is nearly constant; b) the fluctuation in the thickness of a lipid bilayer
is negligible compared to its average thickness. In contrast to atomistic and coarse-
grained models useful to study the biochemistry of interactions, but computationally
expensive, a continuum framework allows to investigate the biophysical properties
and their implications relevant to a cellular scale.

Owing to the thin-sheet approximation, the theory of membrane elasticity,
independently developed by Canham [87] and Helfrich [88], can be considered
as a special case of the theory of bent plates. The Helfrich Hamiltonian [88] has the
form

Hel =
∫

dS
[

κ

2
(HC −H0)

2 + κ̄ HG

]
, (2.17)

where κ is the bending rigidity of the membrane, κ̄ is the Gaussian rigidity, HC is
the local mean curvature, H0 is the spontaneous curvature, assumed to be isotropic
here, and HG is the Gaussian curvature. The moduli κ and κ̄ have the dimension
of energy. Since a biological membrane is a self-assembled system, the bending
modulus κ is of the order of kBT . For closed surfaces, the Gaussian contribution
is usually neglected since it is constant according to the Gauss-Bonnet theorem. In
Eq. 2.17 a term corresponding to the surface tension is also neglected [89].



Chapter 3

Theory of phase-separation driven
molecular sorting

The content of this Chapter is based on the published paper [90] and on the paper
under review [91].

Molecular sorting is a major process responsible for the organization of cellular
matter in eukaryotic cells [5]. This highly complex task is accomplished by selectively
concentrating and distilling specific proteins and lipids that dwell on the plasma
membrane and on the membranes of inner cellular bodies into submicrometric
lipid vesicles. Once formed, these vesicles detach from the membrane and are
subsequently delivered to their appropriate destinations. A similar process of sorting
of specific molecular factors into localized membrane domains is involved in the
assembly of enveloped viruses (such as HIV, SARS-CoV, and influenza) and in their
budding from host cells [92–95].

Experimental evidences suggest that the self-organization of specific molecules
into localized domains on cell membranes is the result of a phase separation
process [72, 3, 96, 35]. Moreover, the formation of these domains has been shown
to precede and initiate vesicle nucleation [97, 83, 98, 84, 85]. Starting from these
observations, recently, a minimal model of molecular sorting has been developed,
based on the idea that this sophisticated process may emerge from the combination of
two fundamental physical mechanisms [7]: a) phase separation of specific molecules
into localized sorting domains, and b) domain-induced membrane bending, leading



3.1 Phenomenological theory 21

to the formation of vesicles constitutively enriched in the biochemical factors of the
engulfed domains, thus resulting in a natural distillation process.

In Sec. 3.1 the phenomenological theory of molecular sorting introduced in [7]
and extended in [91] is described, while in Sec. 3.2 the hard-core lattice-gas implemen-
tation of the model is explained.

3.1 Phenomenological theory

The phenomenological theory of phase-separation driven molecular sorting introduced
in Ref. [7] is here extended to the case of N > 1 non-interacting species, based on
the following non-equilibrium steady-state picture. A constant flux φ = ∑

N
i=1 φi of

“sortable” cargo molecules is deposited on the lipid membrane at random positions,
where φi denotes the average number of particles of the i-th species. Molecules
diffuse laterally and attractive (direct or indirect) interactions between homotypic
molecules (i.e., molecules belonging to the same species) can lead to the formation
of multiple sorting domains enriched in the molecules of a particular species, thus
inducing a natural demixing process. Since domain formation is characterized by
competing effects, according to classical nucleation theory, a critical size Ac is
required for a domain to continue to grow irreversibly and avoid decay (Sec. 2.4 and
Refs. [77, 78, 60]). Once formed, sorting domains coarsen due to the incoming flux of
laterally diffusing molecules, and are eventually extracted from the membrane in the
form of lipid vesicles of characteristic area AE = mA0, with AE ≫ Ac, naturally
enriched in the molecules of the engulfed sorting domain. It follows that the
growing domains coexist with a continuously repleted two-dimensional “gas” of
laterally diffusing molecules in a statistically stationary state, whose properties
are determined by the incoming flux of molecules and by the effective interaction
strength which measures the interactions between homotypic molecules, irrespective
of the microscopic (direct or indirect) origin of the attraction. A schematic represen-
tation of the minimal model of molecular sorting is shown in Fig. 3.1.

It is important to consider here that in biological phase separation, the formation
of localized domains is often driven by the action of positive feedback loops that
involve several molecular factors (Sec. 2.2). The resulting phase-separated domains
are thus enriched in the whole set of molecular factors that participate in each
feedback loop. Distinct feedback loops lead to the formation of localized domains
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lipid membrane

Fig. 3.1 Schematic representation of the minimal model of molecular sorting: cargo molecules
are inserted at random positions on the lipid membrane with a constant flux φ , diffuse laterally
with diffusivity D, and can aggregate into domains, which are extracted from the membrane
if their size reaches a characteristic value AE .

endowed with distinct chemical identities. To simplify the discussion, we consider
here a coarse-grained description, where each of the distinct chemical identities
emerging from phase separation is represented by a single, representative molecular
species, such as a well-defined cargo molecule. It should be kept in mind, however,
that on a real cell membrane, a domain enriched in the representative molecular
species will also be enriched in a whole clan of associated molecular factors. For
instance, the endocytic sorting of a cargo molecule also involves the accumulation in
sorting domains of a whole set of auxiliary molecules, playing the roles of scaffolds,
regulators, etc. [5, 99]. In the same spirit, we consider here effective attractive
interactions between members of homotypic representative species, that may result
from the participation of the representative species, together with a clan of associated
molecular factors, to a common network of reinforcing feedback loops, even in the
absence of any direct homotypic interaction.

Domain size distribution

In the low density regime, the process of formation of domains enriched in a specific
type of cargo molecule is approximately independent of the formation of domains
of the other species. If we consider a region of linear size L of the order of the
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average interdomain half distance, centered around a growing supercritical domain
of approximately circular shape and radius R, the quasi-static profile nR(r) of the
density of the gas of freely diffusing molecules in the proximity of the domain can
be approximately obtained by solving a Laplace equation with Dirichlet boundary
conditions nR(R) = n0 and nR(L) = n̄ (following the same reasoning of Sec. 2.4),
obtaining

nR(r) = n0 +
log(r/R)
log(L/R)

∆n, (3.1)

where r ≥ R denotes the distance from the domain center, and ∆n = n̄−n0. Domain
growth is induced by the flux ΦA of molecules from the gas to the domain, which
can be calculated by integrating the flux density −D∇nR(r) across the boundary of
the domain of size A = πR2, obtaining

ΦA =
4πD∆n

log(AL/A)
, (3.2)

where D is the lateral diffusivity of the molecules and AL is a circular region of size
AL = πL2. This formula implies that the domain will grow according to the dynamic
equation

Ȧ = ΦAA0 =
4πA0D∆n
log(AL/A)

. (3.3)

In a membrane system where sorting domains may be assumed to be approximately
evenly distributed, the statistics of supercritical domains can be conveniently described
in terms of the number density N (t,A)dA, giving the average number per unit
membrane area of supercritical domains with size comprised between A and A+dA.
Since the effects of random fluctuations can be approximately neglected in the case
of supercritical domains, N (A, t) satisfies the continuity equation

∂N

∂ t
+

∂

∂A
(ȦN )+ γ(A)N = 0, (3.4)

where the rate of removal of domains of size A from the system is γ(A) = 0 for
A < AE , and γ(A) = γ0 > 0 for A > AE . The stationary solution of Eq. (3.4),

Nst(A) =
J log(AL/A)

4πD∆n
exp
[
−
∫ A

Ac

γ(a) log(AL/a)
4πA0D∆n

da
]

(3.5)
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has a universal logarithmic behavior for A < AE . The normalization constant J can
be determined from the steady state condition

φ =
∫

∞

Ac

ΦANst(A)dA ≃ JAE (3.6)

for large γ0 and AE ≫ Ac. Assuming that the incoming flux φ of molecules is
evenly distributed in average among all available supercritical sorting domains, and
neglecting logarithmic corrections, the average total number of supercritical domains
per unit area is given by

N̄d ∼ φ

ΦA
∼ φ

D∆n
. (3.7)

Optimality

In the non-equilibrium stationary state, the average number φi of particles of the i-th
species injected into the membrane system per unit time and unit area equals the
analogous number of such particles leaving the system as a consequence of domain
extractions. Under the assumption that supercritical domains grow irreversibly until
extraction, one gets

φi = mi
dN̄d,i

dt
, (3.8)

where dN̄d,i/dt is the rate of formation of supercritical domains of the i-th species
per unit membrane area, and mi = AE/A0,i, with A0,i the average area occupied
by a sorted molecule in a sorting domain. The rate of formation of such domains
depends on the frequency of formation of germs of new sorting domains and on
the probability that those germs reach the supercritical stage. Since the formation
of a domain is initiated by the encounter of two freely diffusing molecules of the
i-th species, the rate of domain formation has to be proportional to the square of the
average free molecule density n̄i [7]. Therefore, the rate of formation of supercritical
domains can be expressed phenomenologically as

dN̄d,i

dt
=CiDin̄2

i , (3.9)

where Ci is a dimensionless quantity representing the macroscopic, effective strength
of the attractive interaction acting between homotypic molecules [7, 90]. According
to a general steady-state relation valid for open systems in a driven non-equilibrium
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stationary state, the average density of particles in the system is given by the product
of the average density flux of particles and the average residence time of a particle in
the system [100]. In the present case, this relation can be applied to several entities
that populate the membrane in the statistically stationary state. For the total, average
density ρ of molecules (both freely diffusing and bound to sorting domains) of all N
species in the stationary state one has

ρ = φ T̄ , (3.10)

where T̄ is the average molecule residence time on the membrane, and φ = ∑
N
i=1 φi.

This shows in particular that for fixed values of the molecular flux φ , the average
residence time T̄ is simply proportional to the average molecule density ρ . For the
average density of freely diffusing molecules of the i-th species one finds

n̄i = φi T̄f ,i, (3.11)

where T̄f ,i is the average time a molecule of the i-th species spends in the gas. For
the average density of supercritical domains of the i-th species one has

N̄d,i =
dN̄d,i

dt
T̄d,i =

φi

m
T̄d,i, (3.12)

where T̄d,i is the average lifetime of a sorting domain. The latter, in the limit of
approximately absorbing domains, is of the order of the average time a molecule of
the i-th species spends as a part of a sorting domain. For simplicity, we only analyze
here the symmetric case, where A0,i = A0, Ci = C and Di = D for all i = 1, . . . ,N,
and also assume that T̄f ,i = T̄f , T̄d,i = T̄d , and φi = φ/N for all i = 1, . . . ,N. The
total density of molecules in the gas is then

n̄ = φ T̄f , (3.13)

while the total number of supercritical domains per unit area is

N̄d = φ T̄d/m. (3.14)

Combining the relations (3.8–3.14), all the main quantities describing the behavior
of the system in the non-equilibrium, statistically stationary state can be explicitly
expressed in terms of the number of species N, the total incoming molecule flux
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φ , the extraction size m = AE/A0, the diffusivity D, and the phenomenological
interaction strength C, as:

n̄ ∼
(

φ N
mC D

)1/2

, (3.15)

N̄d ∼
(

mC φ N
D

)1/2

, (3.16)

T̄d ∼
(

m3C N
Dφ

)1/2

, (3.17)

T̄f ∼
(

N
mC Dφ

)1/2

. (3.18)

The efficiency of the molecular sorting process in the steady state is inversely
proportional to the mean time of residence of a cargo molecule on the membrane,
approximately given by T̄ = T̄f + T̄d . The highest efficiency is obtained when T̄ is
minimal, i.e., for

C ∼Copt ∼ m−2. (3.19)

In this optimal regime, each molecule spends approximately the same amount of
time freely diffusing in the gas and as a part of a growing domain, i.e.

T̄ ∼ T̄ ∼ T̄d ∼ T̄f ∼
(

mN
Dφ

)1/2

. (3.20)

For a fixed value of the incoming flux φ , the mean total residence time of a molecule
on the membrane increases therefore with the number of different species as T̄ ∼
N1/2. In the optimal regime, the average density of freely diffusing molecules and
the average density of supercritical domains behave as

n̄opt ∼
(

mφ N
D

)1/2

, (3.21)

N̄d,opt ∼
(

φ N
mD

)1/2

. (3.22)

From (3.15) and (3.16), it follows that also the total molecule density ρ ∼ n̄+mN̄d

scales as ρ ∼ N1/2, and is minimal for C ∼Copt.
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A consequence of the above relations is that even for low, fixed values of the total
incoming molecule flux φ , the low-density regime, where molecules and domains
of different species do not interact significantly, progressively breaks down as the
number N of species increases. In the presence of multiple species, according to
Eq. 3.2, the flux of molecules of the i-th species across a domain boundary can be
approximately written as Φi ∼ Dn̄i. For very high N, such expression should be
modified into Φi ∝ fNDn̄i, with fN a decreasing function of N, since the crowding
of molecules of different species surrounding a domain can be expected to cause an
effective decrease in the flux Φi at the surface. In that case, a simple modification of
the previous phenomenological arguments gives Copt ∼ fN m−2, thus predicting that
the optimal effective interaction between homotypic molecules should decrease for
very large N.

Rate of supercritical domain production

The rate at which supercritical domains are generated in the non-equilibrium driven
stationary state of the lattice model of molecular sorting is assumed, in Eq.(3.9), to
be proportional to the square of the free molecule density n̄. Here a justification for
this assumption is provided, based on a simplified mean-field model of monomer
aggregation.

Consider a model of domain formation by means of monomer attachment and
detachment, and suppose that there exists a threshold area value Ac above which
monomer detachment from domains is not possible, and clusters grow irreversibly.
This way, the existence of a critical size in the system is artificially reproduced.
Let us call nA the number density per unit surface of domains of area A, and N+

the number density per unit surface of domains with A > Ac. The incoming flux of
monomers is φ . The set of mean-field Smoluchowski equations for this model is:

dn1

dt
=−2c1n2

1 +b2n2 −n1

Ac

∑
A=2

cAnA +
Ac

∑
A=2

bAnA − c+n1N++φ (3.23a)

dnA

dt
= cA−1n1nA−1 −bAnA − cAn1nA +bA+1nA+1, 2 ≤ A ≤ Ac (3.23b)

dN+

dt
= cAcn1nAc (3.23c)
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where cA (and, respectively, bA) are dimensional coefficients representing the attachment
(detachment) rates of monomers on (from) domains of area A, and bA = 0 for A > Ac.
According to reaction rate theory (Sec. 2.4), in two dimensions, the effective reaction
rate of two domains is proportional to the sum of their diffusion constants. In the
approximation where only monomers can move (extended domains being much
slower, as their diffusivity decreases with size as A−3/2), the effective aggregation
rates cA become independent of A and proportional to the diffusivity D of a monomer.
It is also important to notice that dimers can split with a rate proportional to D/g per
molecule, i.e. b2 = b/g. Summing over the areas 2 ≤ A ≤ Ac to obtain an equation
for N− = ∑

Ac
A=2 nA, we find

dN−
dt

= cn2
1 − cn1nAc −g−1bn2 (3.24a)

dN+

dt
= cn1nAc . (3.24b)

The stationary condition dN−/dt = 0 for the subcritical domains implies dN+/dt =
cn2

1 − g−1bn2. In order for N− to be approximately constant with a non-zero
production of supercritical domains, the second term must be subdominant already
at moderately large values of g. One can then conclude that the net production of
supercritical domains N+ is well approximated by the equation dN+/dt ≈ cn2

1. The
quantity N+ corresponds to the number density Nd of supercritical domains used in
the main text, thus qualitatively justifying Eq. 3.9.

Entropy production

The ordering effect of the sorting process on the molecule gas can be quantified as
follows. Consider the case where molecule injection takes place by the fusion into a
membrane system of area A of vesicles carrying a well-mixed cargo of molecules of
all of the N distinct molecular species. In the steady state, the same number of cargo
molecules is extracted in vesicles containing in average δNi = Aφi δ t molecules of
only one of the i-th molecular species. Formally treating empty membrane regions of
area A0 as a 0-th molecular species, we define a corresponding flux density φ0. The
change in entropy due to the demixing process can then be measured as [61, 101]:

δS =
N

∑
i=0

δNi log
δNi

δN
, (3.25)
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with δN =∑
N
i=0 δNi, resulting in a simple expression for the average rate of entropy

production per unit membrane area:

1
A

δS
δ t

=
N

∑
i=0

φi log
φi

φ0 +φ

= −φ0 log
(

1+
φ

φ0

)
−φ log

(
1+

φ0

φ

)
−φ logN.

3.2 Lattice-gas model

Numerical investigations of the molecular sorting process are performed by means
of a minimal hard-core lattice-gas model introduced in [7]. The lipid membrane is
represented as a two-dimensional square lattice consisting of L2 sites with periodic
boundary conditions. Let ηi be a binary variable denoting the presence or absence of
a molecule on site i and let f (η) be a function of the state η = {ηi}. The evolution
of the system is given by a continuous Markov process described by the infinitesimal
generator L = LI +LD +LE , with LI , LD and LE the generators for molecule
insertion, diffusion-aggregation and extraction, respectively. The operator L is
defined as

∂t⟨ f (η)⟩= ⟨L (η)⟩, (3.26)

where the average is over the realizations of the process. The allowed moves are the
following ones (Fig. 3.2):

i) insertion: molecules from an infinite reservoir arrive and are inserted on empty
sites with rate kI:

LI f (η) = kI ∑
i
(1−ηi)[ f (η i)− f (η)], (3.27)

where η i denotes the configuration η after the insertion of a molecule on site
i;

ii) diffusion and aggregation: molecules can perform diffusive jumps to empty
nearest neighboring sites Ni:

LD f (η) = kD ∑
i

∑
j∈Ni

ηi(1−η j)gi(η)[ f (η i j)− f (η)], (3.28)
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insertion diffusion and aggregation

extraction

(a) (b) (c)

Fig. 3.2 Schematic representation of the lattice-gas implementation of the minimal model of
molecular sorting. (a) Molecules are inserted on empty sites with rate kI . (b) Molecules can
jump to an empty neighboring site with rate kD/gnh , where g is the intermolecular interaction
strength and nh is the number of homotypic molecules in neighboring sites. (c) Molecules are
extracted from the system by the simultaneous removal of all connected clusters of molecules
containing a completely filled square of a characteristic size with rate kE .

where η i j denotes the configuration after the jump has occurred and the
diffusion rate kD is reduced by a factor

gi(η) = ∏
k∈Ni

g−ηk , (3.29)

which penalizes the jumps of molecules with nearest neighbours. Domain
formation is favoured for values of the interaction strength g ≥ 1;

iii) extraction: molecules are extracted from the system by simultaneously removing
all connected clusters of molecules that contain a completely filled square
region V of linear size l with rate extraction kE :

LE f (η) = kE ∑
C∈C

h

(
∑

V⊂C
∏
j∈V

η j

)
[ f (ηC)− f (η)], (3.30)

where C is the connection of connected subsets, h(x) for x= 0 and h(x) = 1 for
x > 0, and ηC is the configuration obtained after the extraction (by emptying
all the sites in C).

Simulations are performed in the limit kE −→ ∞, using Gillespie’s algorithm [102].
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Critical radius

Assuming that in a quasi-equilibrium condition the molecule gas density outside
of a growing domain in a lattice-gas model follows the Gibbs-Thomson relation
(Eq. 2.11), where σ is the line tension of the domain, using Eq. 3.3 we get

Ṙ =
A0D

log(L/R)

(
R− σn∞

n̄−n∞

)
n̄−n∞

R2 . (3.31)

Therefore the critical value of the domain radius is

Rc =
σn∞

n̄−n∞

. (3.32)

This is a non-equilibrium result, in which n̄ and n∞ represent respectively the bulk
average density of the molecule gas and the equilibrium density of the gas at the
interface with a large flat domain.

These two quantities, together with σ , can be easily estimated at equilibrium
in a lattice-gas model. Consider an equilibrium lattice-gas model with a chemical
potential µ , and let ε > 0 be the energy gain due to the attractive interaction between
two molecules occupying nearest-neighboring sites of the lattice. The energy function
of the equilibrium lattice-gas system takes the form

E(η) = µ ∑
i

ηi − ε ∑
⟨i, j⟩

ηiη j, (3.33)

where η = {ηi} with ηi ∈{0,1} for i= 1, . . . ,N is a binary configuration representing
the presence or absence of molecules on lattice sites. According to the dynamic
viewpoint of Ref. 103, the expression

Rc ≈
ε

zε −2µ
, (3.34)

with z the number of nearest neighbors of a given site, is obtained imposing a local
equilibrium condition between the probability of growing and that of shrinking. In
a mean-field equilibrium picture, the chemical potential is related to the average
total density n̄eq = e−β µ of free molecules in a supersaturated system. At the
condensation point µ = zε/2, the average total density is equal to the saturation
density n∞ ≈ e−β zε/2, which is the molecule density of a gas phase in equilibrium
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with a liquid phase (with flat interface). In terms of these quantities, the critical
domain radius becomes

Rc ≈
βε

2 log(n̄eq/n∞)
≈ βεn∞

2(n̄eq −n∞)
(3.35)

close to the condensation point. The expression is formally equivalent to Eq. 3.32 if
we identify σ = βε/2. Given two configurations η ,η ′ of the dynamic lattice-gas
model, the detailed balance condition implies

W (η → η ′)

W (η ′ → η)
=

Peq(η
′)

Peq(η)
. (3.36)

Focusing on the transition η → η ′, in which a dimer fragments into two monomers as
a consequence of one of them hopping away, and since z = 4 for a square lattice, the
previous relation implies β ε = logg, and consequently n∞ ≈ e−2βε = g−2. Moreover,
in a lattice gas at equilibrium, the average density n̄eq of supersaturated gas is fixed
by the chemical potential and is independent of the microscopic interaction strength.
Therefore, from (3.35) the critical radius is seen to be a monotonically decreasing
function of g.



Chapter 4

Phase separation and critical size in
molecular sorting

The content of this Chapter is based on the published paper [90].

In the abstract model of the sorting process described in Chapter 3, molecules
arriving on a membrane region can laterally diffuse and aggregate into localized
domains, whose formation and growth occurs through the typical stages of phase
separation: after the initial nucleation stage, in the case of low supersaturation,
the growth of domains is mainly governed by the absorption of freely diffusing
molecules. One of the main predictions of the classical theory of phase separation is
that a critical size Ac has to be reached in order for domains to survive and continue
to grow irreversibly to larger and larger scales (Sec. 2.4). In the present theory of
molecular distillation such domains are extracted once they reach a characteristic
size AE ≫ Ac, determined by the physical and biomolecular processes that induce
membrane bending and vesicle formation. In the presence of a constant flux of
incoming molecules, the membrane system selforganizes in a driven non-equilibrium
stationary state, which can be seen as a realization in Nature of the classical Szilard’s
model of droplet formation [104, 105, 62].

Phase separation phenomena are emerging as central drivers of the selforganization
of cell structures and the idea that phase separation is an essential step for molecular
sorting is increasingly finding support in recent studies (Chapter 2). As advances in
live-cell imaging have enabled more accurate observations in real time, a striking
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heterogeneity in domain growth kinetics has emerged, and several approaches to
unambiguously classify different dynamic populations have been proposed [106–
111]. In the experiments, a crucial parameter used to describe the sorting process is
the lifetime of a sorting domain. It has been recently shown that the lifetime of a
sorting domain is related to the domain stability, which in its turn depends on the
number of molecules contained in the domain, and thus on the domain size [112].

It is therefore tempting to relate the existence, in the context of phase separation,
of a critical size for domain growth, to the observation that sorting domains on cell
membranes can undergo qualitatively different final fates. As a matter of fact, sorting
domains are commonly classified in two groups: productive domains, if their growth
eventually terminates in the nucleation of a vesicle which is ultimately detached from
the membrane, and unproductive (or abortive) domains which, instead, progressively
dismantle and are ultimately dissolved [113, 107, 111]. It seems natural to interpret
this distinction in the context of classical nucleation theory, where the fate of a
domain results from the balance between bulk stabilization and the propensity to
dismantle along the domain boundary, which in its turn is controlled by the value
of a characteristic boundary tension (Chapter 2). As a result, circular domains
(that minimize the boundary perimeter) are favored, subcritical domains (having
size A < Ac) have short lifetimes and a low probability of reaching the extraction
size AE , while supercritical domains have a high probability of being ultimately
extracted. Here we discuss the implications of this picture in the framework of the
phenomenological theory of molecular sorting described in Chapter 3.

In Sec. 4.1 several predictions of the phenomenological theory are verified by
extensive numerical simulations of the lattice-gas model introduced in Sec. 3.2. To
help in the analysis of experimental data, in Sec. 4.2 we introduce an operational
definition of critical size, and its relation to recently introduced methods for the
classification of domain formation events into productive and unproductive classes
[111] are discussed in Sec. 4.3. The operational definition is used here to compare
the predictions of our phenomenological theory of molecular sorting to experiments
on the formation of productive and unproductive clathrin-coated pits at the plasma
membrane. However, the proposed framework is more general, and we expect that it
can turn useful in the interpretation of experiments on molecular sorting at different
membrane regions, such as sorting endosomes, or the Golgi complex.
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4.1 Scaling laws

One of the main observations of the phenomenological theory of molecular sorting
(Sec. 3.1) is that both the average permanence time T̄ of sorted molecules on the
membrane system and the average molecule density ρ in the steady state are minimal
in an intermediate, optimal range of values of the interaction strength g, where the
molecular distillation process is most efficient. This is confirmed by numerical
simulations of the lattice-gas model (Sec. 3.2). In what follows, areas are measured
as numbers of lattice sites, i.e. A0 = 1, and the characteristic area of extracted
domains is AE = mA0 with m = 102. In every simulation, the system is allowed
to relax to the steady state before starting the collection of relevant statistical data.
Snapshots of the simulations taken in the steady state show the typical behavior of
the system both inside and outside of this optimal range (Fig. 4.1).

(a) (b) (c) (d) (e)

g=3 g=10 g=30 g=102 g=104

Fig. 4.1 Snapshots of configurations of the lattice-gas model of molecular sorting for a
system of 4002 sites in the steady state, with incoming flux φ/kD = 10−6 and increasing
values of the interaction strength g (from left to right). In the central panel the interaction
strength is close to the optimal value gopt = 30.

For low interaction strength, molecular crowding accompanied by a hectic
formation of small short-lived domains is observed (Fig. 4.1(a)). As the interaction
strength increases, the density of freely diffusing molecules decreases (Fig. 4.1(b-d)).
Consistently with the predictions of the phenomenological theory, the molecular
density ρ and residence time T̄ are lower in this intermediate range, and reach a
minimum in correspondence with the optimal value of the interaction strength g
(Ref. [7] and Fig. 4.1(c)). When the interaction strength becomes much larger than
its optimal value, the gas of free molecules is strongly depleted, and the system
enters into a regime of domain crowding (Fig. 4.1(d)). Here, a large number of
sorting domains shares the incoming molecular flux, the growth of each sorting
domain is slowed down, and the efficiency of the distillation process is impaired, as
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both the molecular density and molecular residence time are much larger than in the
optimal region. For very high values of the microscopic interaction strength g, the
formation of highly irregular domains of the type predicted by DLA theory [114] is
observed (Fig. 4.1(e)). This latter regime is unlikely to correspond to physiological
sorting, but could be related to pathological conditions where high intermolecular
interaction strength induced by mutations promote the formation of irregular, solid-
like aggregates associated to degenerative deseases [2, 32]. Similar behaviors
have also been observed in experiments, where overexpression of adaptor proteins
responsible for mediating intermolecular interactions leads to the formation of large
and irregularly shaped sorting domains [115]. In summary, for varying values of the
interaction strength g, our abstract model recapitulates two main phenomenologies.
At low and intermediate values of the interaction strength g, the simulated dynamics
is characterized by the formation of approximately circular sorting domains via
nucleation and coarsening, compatibly with the phenomenology of liquid-liquid
phase separation observed in several important biological processes [96, 116, 35]. For
very large g instead, domain remodeling is impaired and a DLA phenomenology [114]
is recovered, which may possibly describe the features of pathological processes.
A precise characterization of the crossover between these two regimes will be the
matter of future investigation.

Numerical simulations confirm the validity of the scaling laws ρopt ∼ φ a, n̄opt ∼
φ b and T̄opt ∼ φ−c, as the numerically obtained values a = 0.48, b = 0.46 and
c = 0.52 are in good agreement with the theoretical predictions a = b = c = 1/2 [7],
that were derived under simplifying assumptions.

In addition to these former results, other predictions of the phenomenological
theory can be verified numerically using the microscopic lattice-gas model. The
previously exposed phenomenological theory is valid in the regime where supercritical
domains are well separated objects, with a well defined value of the average
interdomain half distance L̄. Since the number of supercritical domains scales
as N̄d ∼ φ 1/2, and πL̄2N̄d ≈ 1, it is expected that L̄ ∼ φ−1/4. This scaling law can
be verified numerically in the following way. First, the center of mass of each
domain is computed. A critical size is determined using the operational definition
given in the following Sec. 4.2. Domains with size smaller than the critical size are
neglected. The nearest neighbour of each domain is found (Fig. 4.2(a)). Finally, the
distances between nearest neighbors and the corresponding statistical measures are
computed. The numerical values of the average interdomain half distance L̄ obtained
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Fig. 4.2 (a) Nearest-neighbor distances between simulated sorting domains are highlighted
in red in a snapshot from a simulation performed with incoming flux φ/kD = 10−7 and
interaction strength g = 102. (b) Scaling of the optimal values of the average interdomain
half distance. The red solid line is a fit with the power law φ−a, with a = 0.23. (c) The
frequency density and cumulative frequency distribution (inset) for the rescaled half distances
L/L̄ for varying values of the incoming flux φ/kD collapse on a single universal frequency
distribution.

by this method follow a scaling law L̄ ∼ φ−d with d = 0.23, close to the theoretically
predicted value d = 1/4 (Fig. 4.2(b)). When the mean value L̄ is used to rescale the
interdomain half distances, the corresponding frequency distributions for different
values of φ collapse on a single universal distribution (Fig. 4.2(c)).

Several results of the phenomenological theory stem from the assumption that the
steady-state profile of molecule density around a sorting domain has the logarithmic
form (Eq. 3.1), and from the related idea that the membrane region can be divided into
“attraction basins” of linear size ∼ L pertaining to distinct sorting domains. Given
the approximate nature of these hypotheses, it is interesting to check their validity by
direct numerical simulations. A convenient way to computationally define this kind
of attraction basins is the use of a Voronoi decomposition, which is a partition of the
plane into non-overlapping regions according to their proximity to points of a given
set [117]. The two-dimensional square lattice used for the numerical simulations was
therefore decomposed according to the following procedure. Once all supercritical
domains were identified and tracked, for each time frame the center of mass of each
domain was computed and the set of these centers was used to partition the lattice
area into Voronoi regions (Fig. 4.3(b)). Then, free molecules belonging to each region
were identified, and their distance from the domain center of mass computed. A direct
validation of the theoretical expression (Eq. 3.1) is computationally very demanding,
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as it requires building histograms of distances conditional to the radius R of a given
sorting domain. We studied a slightly different quantity, i.e. the average frequency
of the distances of free molecules from domains of linear sizes R comprised between
the critical radius Rc and the extraction radius RE :

n̄(r) =
∫ RE

Rc

nR(r)Nst(R)dR (4.1)

for 0 ≤ r ≤ L, where the theoretical model describes a density profile characterized
by gas depletion in the proximity of the sorting domain. Computing the integral in
(4.1) we obtain

n̄(r) = K1 +K2 log(r), (4.2)

where K1 and K2 are functions of the model parameters. If p(r)dr is the empirical
probability of finding a molecule at a distance comprised between r and r+dr from
the center of mass of a domain, then

n̄(r) =
p(r)
2πr

. (4.3)

The measure of n̄(r) obtained from the numerical simulations by this procedure is in
agreement with a fit of the theoretical prediction (Fig. 4.3(a)).

In the phenomenological theory, a central role is played by the dimensionless
effective interaction strength C. A convenient expression for C, amenable to empirical
estimation, can be obtained by inverting Eq. 3.9 and making use of Eq. 3.12 to get

C =
φ

mDn̄2 , (4.4)

which is a function of directly measurable quantities, such as the incoming flux φ

and the bulk gas density n̄. The theory predicts that the optimal value C =Copt scales
as m−h, with h = 2 (cf. Eq. 3.19). Numerical simulations yield the compatible value
h = 1.8 (Fig. 4.4(a)).

One of the main tenets of the phenomenological theory is the existence of a
well-defined critical domain size Ac, arising from the balance between the mixing
power of lateral diffusion and the tendency of sorted molecules to aggregate. In
the lattice-gas model, the tendency to aggregation is controlled by the microscopic
parameter g, while in the phenomenological theory, an analogous role is played
by the effective interaction strength C. The operational definition provided by
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Fig. 4.3 (a) Average density profile n̄(r) of the gas of free molecules at a distance r from the
center of supercritical domains, obtained from the simulations, and fitted with the theoretical
prediction Eq. 4.2 (φ/kD = 10−7, g = 102). (b) Voronoi decomposition obtained from a set
of simulated supercritical sorting domains (4.2).

Eq. 4.4 allows to determine C from the simulated molecule density n̄ as a function of
model parameters (Fig. 4.4(b)). Accordingly with its interpretation as an effective
interaction strength, C is observed to be a non linear, monotonically increasing
function of the microscopic parameter g.

4.2 Operational definition of critical size

The critical domain size Ac = πR2
c is a central control parameter of the molecular

distillation process, but there is no simple analytical expression for it in the framework
of the phenomenological theory. Explicit approximate expressions for the critical
size can be obtained using classical metastability analysis in quasi-equilibrium
lattice-gas models (Sec. 3.2). Such an analysis predicts that Ac is a monotonically
decreasing function of the microscopic interaction strength between sorted molecules,
which, however, is not practically measurable. For this reason, here we provide an
operational definition of critical size that can be more directly related to the analysis
of experimental observations.
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Fig. 4.4 (a) Optimal effective interaction strength Copt as a function of m = AE/A0, at fixed
φ/kD = 10−6. The red solid line is a fit with the power law m−h, with h = 1.8. (b) Effective
interaction strength C as a function of the microscopic interaction strength g, for different
values of the incoming flux.

In experimental studies of molecular sorting, domain “trajectories” have been
observed to fall into two classes, depending on their fate [113, 107, 111]: productive
trajectories, where the domain is finally extracted as a part of a lipid vesicle,
and unproductive trajectories, where the domain progressively dismantles and is
ultimately dissolved. It is worth observing here that these are properties of the
domain history, and not of its state at a given instant. However, for simplicity, we
will define in what follows as productive or unproductive domains, those that belong
to productive or unproductive trajectories, respectively. In our lattice-gas model,
productive and unproductive domains can be directly distinguished by tracking
their evolution in time, and checking whether their trajectory ends up with an
extraction event, or not (Fig. 4.5). The classification into productive and unproductive
trajectories can be used to provide a natural, operational definition of critical size,
applicable to the analysis of actual experimental data. Let us define the ‘operational’
critical size as the value Ac such that a domain of size Ac has 50% probability of
being productive:

P(prod.|Ac) =
1
2
, (4.5)
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Fig. 4.5 Time evolution of the size of productive (blue) and unproductive (red) sorting
domains, from numerical simulation of the lattice-gas model (φ/kD = 10−6, g = 20).

(similar definitions have been adopted in previous works, see e.g. Ref. 118). In terms
of (joint) probability density functions (pdf’s), Eq. 4.5 is equivalent to

p(Ac,prod.) = p(Ac,unprod.), (4.6)

i.e., the critical size is found at the intersection of the joint pdf’s of, respectively,
productive and unproductive domain sizes. Under a few additional hypotheses
(discussed at the end of this Section), Eq. 4.5 implies

P(prod.|A)≥ 1
2

for all A ≥ Ac (4.7)

consistently with the phenomenological picture, where smaller domains decay with
high probability, while, once a domain exceeds the critical size, the probability that it
will continue to grow up to the extraction size is larger than the probability that it will
disappear. In terms of the joint pdf’s of, respectively, productive and unproductive
domains, Eq. 4.7 is in its turn equivalent to the condition that

p(A,prod.)≥ p(A,unprod.) for all A ≥ Ac. (4.8)

Either (4.7) or (4.8) can be conveniently applied to the analysis of empirical data,
which are given as integer or floating-point numbers of finite precision. The critical
size Ac can thus be estimated either from conditional frequencies (using Eq. 4.7) or
from frequency histograms of domain sizes (using Eq. 4.8), as long as productive and
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Fig. 4.6 (a) Empirical histograms of domain sizes for productive (rightmost histogram, blue)
and unproductive (leftmost histogram, red) domains obtained from numerical simulations of
the lattice-gas model (φ/kD = 10−7, g = 20). (b) Probability of a domain being productive
or unproductive, conditioned by its size A. The vertical dashed lines mark the position of
the critical size Ac, that can be found, according to (4.8), where the frequency of productive
domains surpasses the frequency of unproductive domains (a), or equivalently, according to
(4.7), where the conditional probability of a domain of size A being productive exceeds 1/2
(b). (c) Critical size Ac as a function of the interaction strength g for different values of the
incoming flux φ/kD.

unproductive domains can be effectively discriminated. As an example, in Fig. 4.6(a),
Ac is found at the approximate intersection of the (joint) frequency histograms of,
respectively, productive and unproductive domains. The existence of this intersection
appears to be guaranteed by the fact that p(A,unprod.) is a decreasing function of A,
while p(A,prod.) is initially increasing. Fig. 4.6(b) shows that the probability of a
domain being productive increases with its size, while the complementary probability
of being unproductive decreases. The above procedure allows to compute Ac from
numerical simulations for different values of model parameters. The critical size Ac

is thus found to be a decreasing function of both the incoming molecule flux φ , and of
the microscopic interaction strength g (Fig. 4.6(c)), consistently with the prediction
for the critical size derived in the context of mestability in quasi-equilibrium lattice-
gas models (see Sec. 3.2). In the non-equilibrium case of molecular sorting however
the gas density n̄, being sustained by the constant molecular influx φ , decreases
slower than the equilibrium gas density n∞ .

Having at our disposal an operational definition of critical size, we are now in a
position to check numerically the validity of theoretical predictions about the shape
of the domain size distribution. The theory predicts functionally different forms
for the number densities for the size of, respectively, subcritical and supercritical
domains. In the subcritical region, transient domains continuously form and dissolve.
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Fig. 4.7 (a) Full histogram of all domain sizes (φ/kD = 10−7, g = 20). The lines are fits
with Eq. 4.9 (red dashed line) for A < Ãc, and with Eq. 4.10 (blue dash-dotted line) for
Ãc < A < AE . The A > AE tail depends on the details of the extraction mechanism and is
therefore non universal. (b) Numerical estimate of the prefactor N0 appearing in Eq. 4.10, as
a function of the incoming flux φ/kD, in the optimal region. The red solid line is a fit with
the power-law φ f with f = 0.54.

This quasi-equilibrium state is approximately described by Eq. 2.7, derived in the
context of the classical nucleation theory (Sec. 2.4), which predicts that the stationary
number density for domains of size A < Ac is

Nsub
st (A) = Nsub

0 eλ

(
A1/2−A1/2

c

)2

, (4.9)

where λ is a constant, which is expected to be proportional to the interaction strength
between sorted molecules.

For A > Ac, according to Eq. 3.5, the shape of the number density is instead of
the logarithmic type:

Nst(A) = N0 log
AL

A
, (4.10)

with N0 ∼ φ 1/2. By fitting the full histogram of all domain sizes with Eq. 4.9 for
small A and with Eq. 4.10 for large A, and by imposing the continuity condition

Nsub
0 = N0 log

AL

Ac
(4.11)
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Fig. 4.8 (a) The number of free molecules per unit area decreases for increasing interaction
strength g (magenta triangles), while the number of molecules found inside of sorting
domains has an increasing trend at large g (orange dots). As a consequence, the total
number of molecules per unit area (black stars) has a minimum, which marks the position
of the optimal sorting regime [7]. (b) In its turn, the number of molecules inside of sorting
domains (orange dots) is a non-monotonic function of the interaction strength g. This can
be understood as follows. The number of molecules inside of unproductive domains (red
triangles) decreases with increasing interaction strength, while the number of molecules
inside of productive domains (blue squares) increases. As a consequence, the total number
of molecules found inside of sorting domains of any of the two types (orange dots) has a
minimum close to the optimal sorting regime. (c) Similarly, the number of unproductive
domains per unit area (red triangles) decreases with the interaction strength, whereas the
number of productive domains (blue squares) increases. As a consequence, the total number
of sorting domains of the two types (orange dots) has a minimum for intermediate interaction
strength, close to the optimal sorting regime. Simulations performed with φ/kD = 10−8. The
number of both productive and unproductive domains increase with increasing φ (not shown
here).

one obtains an estimate Ãc of the critical size Ac in the framework of classical
nucleation theory (see Fig. 4.7(a)). The thus obtained value Ãc is of the same order
as the previously introduced value Ac, the difference being due to the presence of a
small tail of unproductive domains with A > Ac (see Fig. 4.6(a)). The definition of
Ac has a clear probabilistic interpretation and is independent of phenomenological
assumptions about the underlying process of domain formation. On the other hand,
the estimate Ãc by the above empirical fitting procedure can be used when it is not
possible to discriminate between productive and unproductive domains.

A numerical estimate of the prefactor N0 for different values of the incoming
molecule flux φ gives N0 ∼ φ f with f = 0.54, in reasonably good agreement with
the theoretical value f = 1/2 (Fig. 4.7(b)).
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Fig. 4.9 Statistical properties of productive (blue (light gray, rightmost histograms)) and
unproductive (red (dark gray, leftmost histograms)) domains for incoming flux φ/kD = 10−6

and interaction strength g = 102 (a-d, 5 ·104 domain trajectories) and g = 101 (e-h, 1.5 ·106

domain trajectories), collected over a 3 ·106/kD time interval. Simulated trajectories were
classified into productive and unproductive depending on whether they ended up in an
extraction event, or not. (a, b, e, f) Scatter plots of domain lifetimes vs. maximum sizes (a, e)
and of DASC indicators d1,d2 (b, f). (c, d, g, h) frequency distributions of maximum sizes
and lifetimes. Insets: complementary cumulative frequency distributions. Domain sizes are
given as number of occupied lattice sites, lifetimes are measured in units of 103/kD.

In addition to these former results, other predictions of the phenomenological
theory can be verified numerically using the microscopic lattice-gas model. The
previously exposed phenomenological theory is valid in the regime where supercritical
domains are well separated objects, with a well defined value of the average
interdomain half distance L̄. Since the number of supercritical domains scales
as N̄d ∼ φ 1/2, and πL̄2N̄d ≈ 1, it is expected that L̄ ∼ φ−1/4. This scaling law can
be verified numerically in the following way. First, the center of mass of each
domain is computed. A critical size is determined using the operational definition
given in the following Sec. 4.2. Domains with size smaller than the critical size are
neglected. The nearest neighbour of each domain is found (Fig. 4.2(a)). Finally, the
distances between nearest neighbors and the corresponding statistical measures are
computed. The numerical values of the average interdomain half distance L̄ obtained
by this method follow a scaling law L̄ ∼ φ−d with d = 0.23, close to the theoretically
predicted value d = 1/4 (Fig. 4.2(b)). When the mean value L̄ is used to rescale the
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interdomain half distances, the corresponding frequency distributions for different
values of φ collapse on a single universal distribution (Fig. 4.2(c)).

The systematic discrimination of productive and unproductive domains allows
to unravel additional aspects of the phenomenology. Optimal sorting takes place
when the total number of molecules in the system is minimal [7] (Fig. 4.8(a)). In a
neighborhood of this optimal value, one observes also a minimum in the number of
molecules contained in the domains (Fig. 4.8(b)), and in the number of domains itself
(Fig. 4.8(c)). This is a somehow paradoxical effect, since at first sight, one would
expect that a larger number of sorting domains could increase the speed of the sorting
process. Instead, sorting turns out to be most efficient precisely when the number
of sorting domains is close to a minimum. As a matter of fact, when the interaction
strength increases, the number of molecules in unproductive domains decreases,
while the number of those in productive domains increases. As a consequence, their
sum, i.e. the number of molecules in any of the two types of domains, has a minimum
(Fig. 4.8(b)). A similar argument applies directly to the total numbers of productive
and unproductive domains: the number of unproductive domains decreases when the
interaction strength increases, while the number of productive domains increases, as
predicted by Eq. 3.16 1. This leads to the appearance of an intermediate minimum in
the total number of domains (Fig. 4.8(c)). The emerging picture is that the efficiency
of the sorting process is not favored by a proliferation in the number of sorting
domains: in that case, the flux of incoming molecules has to be shared among a
larger number of domains, and the growth rate of individual domains is slowed
down. A balance has therefore to be struck between two competing requirements:
the interaction strength should be large enough to allow for easy nucleation of new
sorting domains, but small enough to avoid their unnecessary proliferation.

These theoretical predictions are compatible with former experimental work
where the strength of interaction between transferrin receptors on cell plasmamem-
branes was experimentally controlled, and higher interaction strength was shown to
induce higher rates of generation of productive sorting domains, and lower numbers
of unproductive events [119].

1Recalling also that the macroscopic interaction strength C is a monotonically increasing function
of the microscopic parameter g (Fig. 4.4(b)).
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Alternative definitions of critical size

Let us define the empirical critical size as the value Ac such that

P(prod.|Ac) =
1
2
. (4.12)

This value is well defined if P(prod.|A) is a continuous function which tends to 0 for
A → 0 and to 1 for A → ∞. Equivalently, Ac can be defined as the solution of

p(A,prod.) = p(A,unprod.) (4.13)

since (4.13) can be rewritten as

p(A,prod.) = p(A)− p(A,prod.) (4.14)

yielding

P(prod.|A) = p(A,prod.)
p(A)

=
1
2
. (4.15)

If p(A,unprod.) is a decreasing function of A, and p(A,prod.) is an increasing
function of A in a right neighborhood of 0 (as the simulations suggest, see e.g.
Fig. 4.6), one can easily show that P(prod.|A1 ⩾ A ⩾ Ac) is a non decreasing
function of A1 by directly computing its derivative with respect to that variable.
Then, for all A1 ⩾ Ac one has:

P(prod.|A ⩾ Ac)⩾ P(prod.|A1 ⩾ A ⩾ Ac)⩾ P(prod.|A = Ac) =
1
2
. (4.16)

4.3 Interpretation of experimental data

The correct classification of productive/unproductive trajectories in data obtained
from living cell experiments is a challenging process. Several approaches have
been adopted. Productive trajectories can be singled out by detecting bursts in the
concentration of specific molecules involved in the process of vesicle detachment,
such as dynamin [120, 109, 113]. Other approaches rely on the measure of extremal
properties of domain trajectories, such as the maximum size reached by domains, or
their lifetime [113, 106, 107, 121, 7], which are expected to be less dependent on
the small-scale details of the stochastic process. More recently, a new classification
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method based on a “disassembly asymmetry score” (DASC) [111] has been proposed.
In this context, productive and unproductive trajectories are discriminated by clustering
the values of a set of statistical indicators that compare properties of the backward
and forward histories of the domains [111]. The effectiveness of some of these
approaches can be tested on numerical simulations of the lattice-gas model discussed
in the previous Sections, where the productive vs. unproductive classification can be
performed exactly. The first two columns of Fig. 4.9 show scatter plots of maximum
size vs. lifetime, and of the DASC indicators d1,d2 [111], for g = 102 (a-d) and
g = 101 (e-h). Different colors are used for productive (blue) and unproductive (red)
trajectories. For g = 102 the two populations are clearly separated, and can be easily
discriminated automatically using standard clustering methods. For g = 101 instead
the representative points of the two populations start to overlap, and clustering
methods are likely to return a certain number of erroneously classified points.
For g = 102 the existence of two distinct populations of domain trajectories is
reflected in the bimodal shape of the frequency distributions of maximum sizes and
lifetimes (Fig. 4.9(c, d)). This clear separation corresponds to a distinct plateau in
the (complementary) cumulative frequency distribution (insets). For g = 101 instead
(Fig. 4.9(g, h)), the frequency distributions of the two populations start to overlap
and the bimodal character of the two frequency distributions tends to disappear. The
loss of discriminating power takes place approximately for values of the interaction
strength such that the critical size Ac becomes of the order of the extraction size AE

(cf. Fig. 4.6(b)).

Interestingly, the model predictions for the frequency distributions of the maximum
sizes and lifetimes of sorting domains are similar to those resulting from experimental
observations. In particular, the maximum size and lifetime distributions for unpro-
ductive domains show a rapid monotonic decay, while the corresponding distributions
for productive domains show a distinct maximum and a slower decaying tail (Fig. 4.9(c,
d, g, h)). Both of these features have been observed in experiments of endocytic
sorting [107, 111], where productive and unproductive domains correspond to
clathrin-coated pits (CCPs) and abortive coats (ACs), respectively. (A third population
of outlier traces (OTs) [111], characterized by short lifetimes and large sizes,
likely correspond to cytoplasm-originated events [121] and are not observed in
the simulations.) We looked for model parameters providing the best fit of simulated
frequency distributions with data from Fig. 2B,C of Ref. 111, where productive
and unproductive domains were classified using DASC. By a single fit of the two
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parameters of the model and of two rescaling factors for the time and length scales,
good agreement between simulation and experimental data was found for both the
lifetime and maximum size distributions, simultaneously for both productive and
unproductive domains (Fig. 4.10). The frequency histograms obtained from the exact
classification of simulated productive and unproductive domains (Fig. 4.10(a, b)) was
compared with the frequency histograms obtained with the same model parameters,
where however simulated domains were classified by the DASC method, yielding
similar results (Fig. 4.10(c, d)).
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Fig. 4.10 Comparison between the experimental distributions of lifetimes (a, c) and maximum
sizes (b, d) of unproductive (red dashed lines) and productive (blue dash-dotted lines)
domains from Ref. 111, Fig. 2B,C (kindly shared by Dr. Xinxin Wang), and corresponding
distributions obtained from simulations of the lattice-gas model (leftmost red and rightmost
blue histograms, respectively) with fitted values of the model parameters (g = 6.5, φ/kD =
10−6) and fitted rescaling factors for lifetime and domain size units (kD = 715s−1, 1 lattice
site = 0.3 a.u.). Lower cutoffs on lifetime and maximum size approximately equal to
the values reported in the experimental data were used. In the experiments, productive
and unproductive domains were classified by DASC. In the analysis of simulated data
(histograms), use was made of both the exact classification obtained directly from the
simulations (a, b), and a posteriori use of DASC on the numerically generated domains (c,
d), obtaining similar results.



Chapter 5

Sorting of multiple molecular species

The content of this Chapter is based on the paper under review [91].

In the past, experimental investigations have been mainly focused on the process
of sorting of single molecular species, such as transferrin receptors or low density
lipoproteins [7, 5]. More recently, advances in imaging technologies have made it
possible to elucidate aspects of the simultaneous distillation of distinct molecular
species, and to directly observe their localization in distinct, separate sorting domains
[8–11]. The demixing of distinct molecular species subject to attractive homotypic
interactions at equilibrium has been also predicted by statistical physics arguments
[122, 123].

Here, we investigate the non-equilibrium scenario of sorting N molecular species
by combining theoretical arguments and lattice-gas numerical simulations in Sec. 5.1,
while in Sec. 5.2 the case where each species is characterized by different microscopic
interaction strengths is considered.

5.1 Sorting multiple molecular species

A rough indication about the number of different species that can be sorted in parallel
without significantly interfering with each other in the optimal sorting regime can be
obtained by noticing that in the low-density regime, the interdomain half distance L
has to be much larger than the extraction size A1/2

E . Observing that π L2N̄d ∼ 1, and
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Fig. 5.1 Schematic representation of the hard-core lattice-gas model used to investigate the
parallel sorting of multiple molecular species.

using Eq. 3.22, this condition translates into

L ∼ N̄−1/2
d ∼

(
Dm
N φ

)1/4

≫ A1/2
E (5.1)

giving

N ≪ D
AEA0φ

(5.2)

Using the realistic orders of magnitude D ∼ 10−3 µm2/s, AE ∼ 10−1 µm2, A0φ ∼
10−5 s−1 inferred in a previous study [7] from experimental data on the endocytic
sorting of low-density lipoproteins, one obtains N ≪ 103. Therefore, the analytical
estimate (5.2), based on our phenomenological theory of sorting (Sec. 3.1), suggests
that a large number of protein cargos of different species may in principle be
distilled in parallel on a cell membrane. It is worth observing, however, that Eq. 5.2
can provide only a qualitative indication about the breakdown of the low-density
regime, as it was derived neglecting the contribution of complicated logarithmic
prefactors [7]. The onset of the regime of molecular crowding is therefore more
precisely investigated by means of numerical simulations of a generalized version
of the hard-core lattice-gas model previously introduced (Sec. 3.2). A schematic
representation of the stochastic processes taking place in the model is shown in
Fig. 5.1.
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Molecules of multiple species are distributed on a two-dimensional regular lattice
with periodic boundary conditions. Each lattice site can host a single molecule at
most, but there is no limit to the number of species that can populate the lattice.
The current state of the system is described by a multivariate configuration where 0
marks an empty lattice site, while a number i ∈ {1, . . . ,N} marks a molecule of the
i-th species residing on a given site. The state of the system evolves according to a
continuous-time Markov chain consisting of the following three processes:

i) molecules, whose species are chosen randomly from a set of N species in such
a way that the overall flux has the assigned value φ , are inserted into empty
sites with rate kI;

ii) molecules jump towards empty neighboring sites with rate kDne/gnh
i , where ne

is the number of empty neighboring sites, gi is the intermolecular interaction
strength between molecules belonging to the i-th species, with i = 1, ...,N, and
nh is the number of homotypic molecules in neighboring sites;

iii) the molecules in a connected domain of homotypic molecules are extracted
when the domain reaches the extraction size m.

The extraction mechanism adopted here is a slightly simplified version of the one
described in Sec. 3.2 and used in Chapter 4, where the molecules of a connected
domain were extracted only when the domain grew to the point of containing
a molecule-filled square of given size. In the simulations, A0 = 1, i.e. areas are
measured as multiples of the elementary lattice area A0, and the realistic value m= 25
is used. This way, the relevant microscopic parameters describing the process are
the intermolecular interaction strength g and the ratio kI/kD. For low values of the
molecule density ρ , such as those experimentally measured in Ref. [7], the molecule
flux φ = kI(1−ρ) is approximately equal to the insertion rate kI . Compatibly with
experimental observations [7], simulations were performed with φ/kD = 10−5.

The results of numerical simulations of the model on a 100×100 square lattice
are displayed in Fig. 5.2. Consistently with previous results (Ref. [7] and Sec. 4.2),
Fig. 5.2a shows that, in an intermediate range of values of the microscopic interaction
strength g, the stationary density of molecules ρ exhibits a minimum, corresponding
to an optimal sorting regime. Increasing the number N of sorted species, the optimal
region moves towards larger values of g, indicating that efficient molecular sorting
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Fig. 5.2 (a) Total molecule density as a function of the microscopic interaction strength g, for
increasing values of the number of species N. For large N, sorting remains possible only in a
restricted interval of values of g. (b,c,d) Total molecule density, density of freely diffusing
molecules, and density of domains, respectively, as functions of the number N of sorted
molecular species, in the optimal sorting regime. The solid lines are fitted with ρ ∼ Na,
n̄ ∼ Nb, and N̄d ∼ Nc with a = 0.51, b = 0.62, c = 0.50. These scaling relations are verified
for N < 20, whereas, in qualitative agreement with the theory, increasing deviations are
observed for larger N. (e) Ratio of the interdomain half-distance L to the extraction size A1/2

E
as a function of the microscopic interaction strength g. The parameter region where the
system becomes overcrowded and sorting is impaired is marked in light gray. (f) Effective
interaction strength C as a function of the microscopic interaction strength g for different
values of the number of molecular species N. Simulations were performed at fixed incoming
molecule flux φ/kD = 10−5 on a square lattice.
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Fig. 5.3 (a) Total molecule density ρ as a function of the number of species N in the limit
case g = ∞. Above a critical value ∼ 10 of the number of species, the density becomes ∼ 1,
signaling that most lattice sites are filled and that the distillation process has come to a stop
due to molecule overcrowding. (b) The effective diffusivity of a test particle decreases as
the number of species N increases, signaling that molecular mobility is strongly reduced.
Simulations were performed at fixed incoming molecule flux φ/kD = 10−5 on a square
lattice.

becomes more and more difficult to obtain as the number of sorted species increases.
For very large N, molecular sorting can take place only in a restricted interval of
values of g, as the system tends to freeze into an overcrowded state for both lower
and higher values of g. The existence of a maximum value gN such that sorting
at g > gN becomes impossible for large N due to crowding effects can also be
checked by looking at the behavior of the stationary molecular density ρg=∞ as a
function of N (Fig. 5.3(a)): this density rapidly transitions to values of order 1 (high
molecular crowding) for N ∼ 10, signaling that sorting is strongly impaired at high
g for N ≳ 10.

When N ∼ 10, sorting is still possible around the optimal region, which however
tends to shrink progressively with increasing N, since the optimal molecular density
ρopt grows with N, in quantitative agreement with the scaling law ρopt ∼ N1/2

predicted by the phenomenological theory (Fig. 5.2(b)). An analogous behaviour
is observed for the optimal density of freely diffusing molecules n̄opt ∼ N1/2 and
the optimal density of domains N̄d,opt ∼ N1/2 (Fig. 5.2(c,d)). A summary of these
scaling laws for the optimal regime is reported in Table 5.1.
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Scaling law Theoretical Numerical

ρopt = φ T̄opt ∼ Na a = 1/2 a = 0.51

n̄opt ∼ Nb b = 1/2 b = 0.62

N̄d,opt ∼ Nc c = 1/2 c = 0.50

Table 5.1 Scaling laws for the average total molecule density ρ , the average density of freely
diffusing molecules n̄, the average density of domains N̄d in the optimal regime as a function
of the number of molecular species N are reported in the first column. The corresponding
theoretically predicted and numerically computed exponents are reported in the second and
third column, respectively. Numerical simulations were performed with incoming molecule
flux φ/kD = 10−5 on a regular square lattice.

The deviation from the N1/2 scaling observed at N ∼ 102 signals the breakdown,
even at optimality, of the low-density regime where the parallel processes of sorting
of different species take place approximately independently of each other. For larger
N, sorting domains are no longer well separated and molecular mobility is strongly
reduced (Fig. 5.3(b)). This can be checked by tracking the diffusive motion of a
test molecule which does not interact with any of the molecules of the i = 1, . . . ,N
species, except for excluded volume effects. The effective diffusivity of the test
molecule, measured empirically from the temporal growth of its mean squared
displacement, is observed to decrease when the number N of molecular species
increases (Fig. 5.3(b)).

The behavior of the interdomain half distance L, numerically evaluated as a
function of g for various values of N, is displayed in Fig. 5.2(e). The shaded area
represents the region where the ratio of L to the extraction size A1/2

E is smaller than 1.
This region corresponds to a crowding regime where the different species hinder
the mobility of each other, thus reducing the sorting efficiency. This is qualitatively
confirmed by observing the snapshots of configurations obtained from simulations of
the lattice-gas model for different values of N, where the existence of two different
regimes, a low-density one and a crowded one, can be clearly distinguished (Fig. 5.4).
A convenient measure of the mutual affinity of homotypic molecules, both in a dilute
and in a crowded environment, is the effective, macroscopic interaction strength C,
which can be easily computed by inverting Eqs. 3.9 and 3.12 [7, 90]. Fig. 5.2(f) shows
that C increases monotonically as a function of the microscopic interaction strength
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Fig. 5.4 Snapshots of the sorting process for increasing values of the number of species N
(from left to right). Different molecular species have been marked with different colors.
Simulations were performed in the optimal regime at the realistic value φ/kD = 10−5 of the
incoming molecule flux.

g (as previously observed for N = 1 in Chapter 4), but decreases monotonically for
increasing N, as predicted by the phenomenological theory.

Altogether, these numerical results suggest that up to 10-100 distinct protein
cargos might in principle be sorted in parallel, with the highest value attainable
only in the optimal regime, while strong crowding effects are expected to impair
molecular sorting for larger values of N.

5.2 Sorting species with different mutual affinities

For the symmetric case, where all the molecular species have similar mutual affinities,
we found simple scaling laws for the molecular density at the steady state in the
optimal region, away from the crowding regime. It is then interesting to investigate to
which extent this symmetry requirement is restrictive. To this aim, we here consider
the process of sorting of N = 2 molecular species, such that their mutual affinities
are characterized by independent, and possibly different microscopic interaction
strengths g1 and g2. By measuring the stationary molecule density ρ , one may
look for a global minimum as a function of the two interaction strengths. Fig. 5.5
shows the existence of a single global minimum of the total molecule density ρ

for g1 = g2 = gopt, suggesting that molecular sorting may be most efficient when
the distinct sorted molecular species have similar homotypic affinities, and that the
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Fig. 5.5 Optimal sorting of two distinct molecular species (lighter region) is obtained for
equal homotypic affinities (dashed line g1 = g2). Simulations were performed at fixed
incoming molecule flux φ/kD = 10−5 on a square lattice. Dots correspond to computed
values of ρ , level curves are obtained by linear interpolation of the computed values.

symmetry requirement imposed in the previous treatment may be not too restrictive,
as far as the optimal sorting regime is concerned.



Chapter 6

Sorting multivalent molecules

The content of this Chapter is based on the paper under review [91].

An increasing amount of evidence suggests that a crucial factor in a variety
of intracellular phase separation processes is valence, which may be defined as
the average number of interacting neighbors of a molecule in a phase-separated
domain [13, 12, 34]. Experiments have shown that multivalence promotes domain
stability [124, 13], and that multivalent protein interactions are responsible for the
assembly of endocytic sorting domains [125].

Sec. 6.1 contains a description of how valence can be modeled in this numerical
framework, while Sec. 6.2 concerns the effects of valence on the sorting process.

6.1 Modeling valence

A simple way to investigate the role of valence in the present numerical framework is
to consider the diffusion of molecules on regular lattices with different coordination
numbers z, i.e., on triangular (Fig. 6.1(a)), square (Fig. 6.1(b)), and hexagonal
(Fig. 6.1(c)) lattices (z = 3,4,6). The z = 8 case can be implemented by considering
the square lattice where nearest neighbors along the diagonals are considered in
addition to nearest neighbors along the horizontal and vertical directions. In this
lattice-gas framework, the lattice coordination number z can be treated as a proxy of
molecular valence. In order to correctly compare the sorting dynamics on lattices
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(a) (b) (c)

Fig. 6.1 Small periodic regular lattices with z= 3,4,6, with identical area A0 of the elementary
lattice site and approximately equal total area (light blue). The centers of the sites belonging
to each lattice are marked with a black dot.

with different coordination numbers, the microscopic rates were chosen in the
following way. The microscopic rate kD of jump to an empty neighboring site of
the lattice can be related to the macroscopic diffusivity D as follows. Consider the
diffusion of a single molecule on an otherwise empty lattice, and let nx(t) be the
probability that the molecule occupies site x at time t. At time t +δ t,

nx(t +δ t) = nx(t)+ kD δ t · ∑
y∈∂x

(ny −nx) (6.1)

where ∂x is the set of nearest neighbors of x. For the regular lattices with z = 3,4,6,
expanding ny in a Taylor series centered in x and dividing by δ t, Eq. 6.1 tends to
the diffusion equation for nx, with D = 1

4 zkD d2, where z is the number of nearest
neighbors of x, and d is the distance between the center of neighboring sites. The
same procedure applied to the z = 8 case with diagonal neighbors gives instead D =

3kD d2. For a correct comparison of the sorting dynamics in the presence of different
coordination numbers, regular lattices of different coordination number but identical
area A0 of the elementary lattice site (i.e., of identical area per molecule) were used
(Fig. 6.1). The total area of each lattice was chosen to contain approximately 1002

sites, and the microscopic jump rate kD was rescaled to provide the same value of
the macroscopic diffusivity D for all z = 3,4,6,8.
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Fig. 6.2 Snapshots of simulated optimal sorting of N = 1 molecular species with incoming
molecule flux φ/kD = 10−5 on regular lattices with different coordination number z and
equal area A0 of the elementary lattice site. The panels show enlargements of one quarter of
the total system.

6.2 Sorting efficiency

To focus on the dependence of the sorting process on z, the analysis is initially
restricted to the case where a single molecular species is sorted (N = 1). Snapshots
of optimal sorting of a single molecular species on lattices with different coordination
number are shown in Fig. 6.2.

Fig. 6.3(a) shows that higher valence implies larger values of the effective,
macroscopic interaction strength C at fixed values of the microscopic interaction
strength g, consistent with the intuition that molecules of higher valence can more
easily aggregate and form phase-separated domains, and that higher valence can
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Fig. 6.3 (a) Effective interaction strength C as a function of the microscopic interaction
strength g and of the valence z. Higher values of z compensate for smaller g. (b) Total
molecule density ρ as a function of the microscopic interaction strength g for different values
of the valence z. (c) Density ρ as a function of the interaction strength g for different values
of the valence z in a system with N = 150 molecular species. Simulations were performed
with φ/kD = 10−5.

compensate for smaller values of the microscopic aggregation strength. This tendency
is confirmed by Fig. 6.3(b), showing that optimal sorting (corresponding to the
minima of the density curves) is realized at lower values of the microscopic interaction
strength g for increasing z. Interestingly, the corresponding optimal values of the
stationary molecule density ρ also decrease for increasing z. Perhaps even more
importantly, Fig. 6.3(c) shows that the interval of values of g such that the sorting
process can take place for high N (here, N = 150) significantly widens for increasing
z: in this condition, sorting is impossible for z = 3 due to molecular crowding, but is
instead possible over more then a decade of g values for z = 6,8.

Altogether, these numerical results show that, at least in the present, highly
simplified modeling framework, higher valence promotes more efficient sorting. It
is interesting to speculate that this may also be true in the case of actual biological
systems.



Chapter 7

Coupled lipid-protein dynamics

The formation of phase-separated domains on cell membranes has been investigated
in the previous Chapters neglecting the effect of the topological changes induced by
vesicle fusion and fission. Here, we propose a simplified model of molecular sorting
where these effects are explicitly taken into account. In this model, protein crowding
explicitly induces membrane bending and vesicle nucleation. The lipid membrane
hosts a binary mixture of proteins which is continuously replenished by the fusion
of the membrane with incoming lipid vesicles. The binary mixture phase separates
into domains, which in their turn induce the formation of vesicles that are ultimately
extracted, thus generating a non-trivial statistical steady state.

In Sec. 7.1, a one-dimensional lattice-gas implementation of the model which
explicitly couples membrane and protein dynamics is proposed. Numerical details
are provided in Sec. 7.2. Preliminary results from numerical simulations of the
model are discussed in Sec. 7.3.

7.1 A coupled lipid-protein model

The lipid membrane is represented as a one-dimensional lattice of N sites with
periodic boundary conditions, embedded in a plane, hosting a binary mixture of
self-avoiding proteins. A schematic picture of the coupled membrane-protein system
is shown in Fig. 7.1(a). Let σk be the variable associated to each lattice site, with k =
1, ...,N, where σk =±1 if the site is occupied by a protein of one of the two species,
σk = 0 otherwise. Protein diffusion is implemented according to the asymmetric
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Kawasaki dynamics [126], i.e. a particle can exchange its position with its right
nearest neighbour (possibly an empty site), and the tendency of like proteins to
aggregate is described by associating to each configuration a Hamiltonian

Hpr =−κA

N

∑
k=1

σkσk+1, (7.1)

where κA is the intermolecular interaction strength.

In the time between two protein jumps, the membrane system composed of N
nodes xk (k = 1, ...,N), which is assumed to be immersed in a viscous fluid, evolves
according to the overdamped Langevin equation:

ẋk(t) =−∂Hmem(t)
∂xk

+ξξξ k(t). (7.2)

To maintain a unitary distance between subsequent nodes xk−1 and xk, the stochastic
force ξξξ k describing thermal fluctuations is assumed to have the form ξξξ k = ξ k×yk,
where k is the unit outward normal to the plane, yk = xk − xk−1, |yk| = 1, ξ is a
delta-correlated white Gaussian noise with ⟨ξ (t)⟩ = 0 and two-point correlation
⟨ξ (t)ξ (t ′)⟩ = δ (t − t ′)ΓkBT , with Γ a damping coefficient, kB the Boltzmann
constant, and T the temperature. To a given membrane configuration we associate
the discrete Helfrich Hamiltonian

Hmem =
κH

2

N

∑
k=1

(Ck −C0,k)
2, (7.3)

where κH is the bending rigidity, Ck is the curvature, and the curvature term C0,k

takes into account the presence of curvature-inducing proteins on the membrane
lattice (Sec. 2.5). The constraint |yk|= 1 is implemented by the use of the Lagrange
multipliers (see App. A for details). The discrete curvature Ck of a configuration is
defined as the reciprocal of the radius of the osculating circle shown in Fig. 7.1(b)
(see also Sec. 2.5) [127, 128]. By using simple trigonometric relations and the
constraint |yk|= 1, the curvature at node k is given by the expression:

Ck = 2tan
θk

2
, (7.4)

where θk is the angle shown in Fig. 7.1(b).
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(a) (b)

Fig. 7.1 (a) Schematic representation of the coupled membrane-protein system. The lipid
membrane (black line) is modeled as a 1D lattice with periodic boundary conditions, hosting
a binary mixture of proteins (blue and red dots). The dashed line indicates that the number
of lattice sites is not fixed. (b) Osculating circle for a given configuration at node k. Each
segment, denoted by yk, has unitary length.

The coupling of lipid membrane and protein dynamics is encoded in the curvature
term C0,k of Eq. 7.3, expressed as follows:

C0,k = cbg + cpr σkσk+1δσkσk+1 , (7.5)

where cbg is a background curvature, whereas cpr is the curvature induced in protein-
crowded regions. As a result of Eq. 7.5, the presence of two like proteins on
neighboring sites induces the bending of the lattice.

7.2 Numerical algorithm

Protein diffusion and membrane dynamics

The algorithm is composed of two main parts: protein diffusion and membrane
integration. Protein diffusion is implemented by using Gillespie’s algorithm [102],
consisting of the following steps:

• consider a given protein configuration σ = (σ1,σ2, ...,σk) with k = 1, ...,N at
time t;
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• make a list of all possible protein jumps with rates rk = e−β∆E , where β = logg,
g is the interaction strength, and ∆E = (σk+2−σk−1)(σk+1−σk) for all k such
that σk =±1;

• randomly extract a jump event according to the rates rk;

• advance the simulation time extracting a random number τ from an exponential
distribution with mean ∑k rk.

The Langevin equation describing the membrane dynamics (Eq. 7.2) is integrated
from time t to time t + τ using the Heun-Stratonovich algorithm, based on the Euler
method, with adaptive time step [129, 130].

Vesicle formation and fission

A vesicle is formed and detached from the membrane system as soon as a membrane
selfintersection occurs. The algorithm used to detect these events is described in
App. B.

Vesicle fusion

Events of vesicle fusion are implemented as follows:

• a lattice node is randomly chosen;

• a vesicle of 10 nodes is attached to that lattice node in a configuration that is
tangent to the endosome in that point;

• if the newly attached vesicle does not intersect with any part of the preexisting
endosome membrane, the vesicle insertion is accepted, otherwise another
lattice node is randomly chosen and the procedure is repeated.

7.3 Stationary state

Numerical simulations of this model were performed starting from an initial membrane
configuration of circular shape and size 100 nodes, populated by proteins positioned
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on random lattice sites, which was then allowed to relax to the steady state before
collecting statistics. The properties of the membrane system (referred to as endosome)
and of the extracted vesicles were explored as a function of the background curvature
cbg and of the protein-induced curvature cpr. Results obtained at a fixed value of the
interaction strength g = 4 are displayed in Fig. 7.3. At the stationary state, for low
values of cbg and cpr, endosomes have very large sizes, whereas for higher values
of both parameters smaller endosome sizes are observed (Fig. 7.3(a)). Fig. 7.3(b)
shows how the endosome shape depends on cbg and cpr. This can be quantified in
terms of the roundness 4πA/p2, where p and A denote the perimeter and the area of
the endosome, respectively. For cbg ≲ 2 endosomes are observed to be more regular,
while for cbg endosomes exhibit star-like shapes, which are unlikely to be assumed
by real endosomes. Some representative membrane configurations are reported in
Fig. 7.2. In correspondence to the parameter region where giant endosomes are
observed, also the size of the extracted vesicle is very large (Fig. 7.3(c)) and the
protein residence time is high (Fig. 7.3(d)). Altogether these preliminary results
indicate that, in the region where endosomes are characterized by regular shapes,
optimal sorting occurs for intermediate values of the protein-induced curvature.
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Fig. 7.2 Shape diagram of membrane configurations in the steady state for different values of
the background curvature cbg and the curvature induced in protein-crowded regions cpr at
fixed interaction strength g = 4. Three main regions can be distinguished: (i) for low values
of cbg and cpr regular giant endosomes are observed; (ii) for low and intermediate values
of cbg endosomes are smaller and characterized by regular shapes; (iii) as cbg is increased,
endosomes of irregular shapes are observed.
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Fig. 7.3 (a) Average endosome size at the steady state. For low values of cpr and cbg the
endosome size blows up and, correspondingly, longer and longer times are needed to reach
the steady state. (b) The values of cbg controls the endosome roundness. For low cbg
endosome are more regular, while for higher cbg endosome have star-like shapes (see also
Fig. 7.2. (c) The size of extracted vesicles is close to the size of the inserted vesicles, except
for regions where endosomes blow up and giant vesicles are extracted. (d) In the region
of round endosomes (cbg ≲ 2) optimal sorting is obtained at intermediate values of cpr.
Simulations are performed at fixed interaction strength g = 4.



Chapter 8

Conclusions

Achieving spatiotemporal control of the intracellular material is at the core of
the proper functioning of the cell, which relies on a multitude of specialized
compartments. Such inner structures are generated by a sequence of symmetry-
breaking events, whereby each intracellular region is endowed with a specific set of
molecular factors that determines its particular physiological function. Evidences
have recently shown that phase separation is a main organizing principle behind
the partitioning of biomolecules into distinct compartments in the cytoplasm, in
the nucleus, and on cell membranes [49, 39, 47, 41, 12, 33, 20]. In addition, the
assembly of molecules on cell surfaces has been observed to initiate membrane
bending and lead to the formation of lipid vesicles [83–85, 97], each of which
encloses specific groups of interacting molecules. Starting from these observations,
it has been recently proposed that at the basis of molecular sorting, the crucial process
cells exploit to maintain the specific biochemical identity of each compartment, is the
coupling of two fundamental mechanisms: molecule phase separation into localized
domains and vesicle nucleation induced by domain formation.

A central notion of the theory of phase separation is that only domains larger
than a critical size Ac are able to grow indefinitely, while smaller domains tend to
be dissolved. In combination with a contextual process of domain extraction at a
larger scale AE > Ac, this introduces a sort of “physical checkpoint”, such that only
domains that are able to reach the “critical mass” Ac can drive extraction events, and
are thus “productive”. This scenario is consistent with experimental observations
where, in addition to “productive” long-lived domains that grow into vesicles that
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are ultimately extracted from the membrane, a large number of short-lived, small
domains, which tend to disassemble and ultimately disappear, is also detected. The
existence of such a “physical checkpoint” is reflected in the particular shape of the
size distribution for productive domains (Eq. 3.5), which exhibits a maximum at sizes
of the order of the critical size Ac, a slowly (logarithmically) decaying intermediate
region, followed by a non-universal decaying tail at scales larger than the extraction
threshold AE (Fig. 4.6(a), blue histogram). On the other hand, the existence of a
biochemical checkpoint has also been postulated in this regard [106, 107]. It would
be quite interesting to further investigate the relation between these two effects.

It is worth observing here that in the actual biophysical process, a wealth of
different biomolecular species takes place in the formation and stabilization of sorting
domains. In the theoretical model, the complex interplay between these different
species is effectively encoded into the value of the single dimensionless interaction
parameter g. Intriguingly, even such a highly simplified abstract model, founded on
basic notions from the theory of phase separation, is able to capture relevant features
of the real process. This yields support to the hypothesis that endocytic sorting is
driven by an underlying phase separation process.

Although, for simplicity, a single molecular species was initially considered in
this framework, the sorting process taking place on lipid membranes actually consists
in the demixing of a myriad of different molecules. Therefore, it is interesting to
extend the model in order to consider a heterogeneous pool of molecules. Analytical
arguments provide a qualitative indication of the number of species which can be
sorted in parallel, suggesting that sorting of a large number of species is possible.
A more precise estimate is obtained by numerical investigations, showing that at
fixed incoming molecular flux the average time molecules spend on the membrane
increases with the number of species, following the simple scaling law N1/2. Due to
molecular crowding effects, this scaling law is observed to break down at N ≈ 102.
In this crowding regime, molecular mobility is reduced and domains are no longer
well-separated.

Motivated by recent experimental evidences pointing out the essential role of
multivalent proteins in driving endocytic sorting and favoring domain stability [13,
124, 125], the impact of molecular valence on the sorting process has been also
studied in this highly simplified framework. The implementation of regular lattices
with different coordination numbers allowed to simulate the aggregation of molecules
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with different valence, showing that the sorting process results to be most efficient
for higher-valence molecules.

The last part of this thesis work is dedicated to a preliminary study of the
interplay between molecules and lipid membrane. It is indeed reported in several
works that protein crowding drives membrane bending [85, 83, 84] and, conversely,
membrane dynamics affects the formation of protein assemblies. Changes in
membrane curvature can also lead to the formation of vesicles that, once mature,
detach from the donor membrane and can attach to a target membrane releasing their
content. To model the coupling of protein and membrane dynamics and to simulate
the topological changes the lipid membrane undergoes, a new model is proposed
and preliminarily investigated through numerical simulations on a one-dimensional
fluctuating topologically-varying lattice.

Finally, it should be kept in mind that other computational approaches could
be used to investigate the process of molecular sorting. It would be interesting,
for instance, to combine the scenario emerging from our minimal model with
investigations performed through Molecular Dynamics simulations, attaining a more
comprehensive description of molecular sorting.
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Appendix A

Discretization of the Helfrich
Hamiltonian

Two constraints are imposed on the membrane dynamics:

• membrane closure: ∑
N
k=1 yk = 0;

• the segments’ length: |yk|= 1.

The first constraint is implemented by introducing a Lagrange multiplier h = (h1,h2),
whereas for the second constraint N Lagrange multipliers λk are needed. Thus, the
Hamiltonian associated to a membrane configuration becomes

Hmem =VH +VL +VL′ =
κH

2

N

∑
k=1

(Ck −C0,k)
2 +h ·

N

∑
k=1

yk +
N

∑
k=1

λkyk. (A.1)
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For the Langevin equation one needs to calculate the bending forces:

∂ (VH +VL +VL′)

∂yk
=

∂VH

∂yk
+h+λkŷk (A.2)

0 =
∂ (VH +VL +VL′)

∂yk
· ŷk =

∂VH

∂yk
· ŷk +h · ŷk +λk = h · ŷk +λk

⇒ λk =−(h · ŷk)

∂ (VH +VL +VL′)

∂yk
=

∂VH

∂yk
+h− (h · ŷk) · ŷk

∑
k

yk = 0 ⇒ ∑
k

[
∂VH+L+L′

∂yk

]
= 0

∑
k
(h · ŷk) · ŷk −Nh = ∑

k

[
∂VH

∂yk

]
h1

1
N

N

∑
k1

ŷk,1ŷk +h2
1
N

N

∑
k1

ŷk,2ŷk −h =
1
N ∑

k

[
∂VH

∂yk

]
= b.

To guarantee numerical stability, two elastic-like contributions are introduced. The
complete expression of the membrane Hamiltonian is then given by

Hmem =VH +VL +VL′ +VE +VE′ =

=
κH

2

N

∑
k=1

(Ck −C0,k)
2+

+h ·
N

∑
k=1

yk +
N

∑
k=1

λkyk+

+
κE

2

N

∑
k=1

(|yk|−1)2 +
κE ′

2N

(
N

∑
k=1

yk

)2

.

(A.3)

To calculate the bending forces for the Langevin equation (Eq. 7.2), it is convenient
to express yk in terms of complex numbers:

yk −→ ωk = |ωk|eiφk = z2
k . (A.4)
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Thus, the membrane dynamics is given by

ω̇k =−
[

∂VH

∂yk
+h− (h · ŷk) · ŷk +

∂VE

∂yk
+

∂VE ′

∂yk

]
+ξ ŷ⊥k

=−

[
iωk

|ωk|2
∂VH

∂φk
+η − ωkRe(ηω̄k)

|ωk|2
+κE(|ωk|−1)

ωk

|ωk|
+

κE ′

N ∑
k

ωk

] (A.5)

where h = (h1,h2) in terms of complex numbers becomes η = ηR + iηI and

∂VH

∂φk
=

κH

2 ∑
k

2(Ck −C0,k)
∂

∂φn

(
2tan

φk+1 −φk

2

)

= κH

 |zk|2

|zk−1|2

Im(
zk

zk−1
)

Re( zk
zk−1

)
− C0,k−1

2[
Re( zk

zk−1
)
]2 − |zk|2

|zk−1|2

Im(
zk+1

zk
)

Re(
zk+1

zk
)
− C0,k

2[
Re( zk+1

zk
)
]2


(A.6)

and the corresponding equations to 7.2 are

żk =
ω̇k

2zk
. (A.7)



Appendix B

Vesicle extraction algorithm

In this simplified model of molecular sorting where the membrane is represented as a
one-dimensional lattice, the formation of a vesicle occurs when the membrane lattice
selfintersects. If that case, the newly formed vesicle is detached from the system
along with the proteins it contains. In order to check intersections only between
segments which happen to be close to each other, the space containing the membrane
lattice is subdivided into squared cells of unitary side and the following algorithm
has been implemented:

i) consider a segment with endpoints n1 and n2 (Fig. B.1);

ii) check if other lattice nodes are contained in the same cells of n1 and n2

(consider, for instance, the situation in Fig. B.1: p1 and p2 are contained in the
same cell of n1);

iii) for each node found in the cells containing the segment n1n2, we consider the
incoming and outgoing segments;

iv) check intersections only between segments identified at step (iii);

v) repeat the same procedure for all membrane segments.

Checking intersection

The algorithm to check if an intersection between segments any pair of segments has
occurred consists of the following steps:
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Fig. B.1 Intersections are checked only between segments of the membrane which are close
with each other.

i) check if p1 and p2 are located on opposite sides with respect to the segment
n1n2:

(n2 −n1)× (p1 −n1) · (n2 −n1)× (p2 −n1)< 0 (B.1)

ii) If condition B.1 is verified, check the following one

sign(D2)sign(D4)< 0, (B.2)

where D2 and D4 are given by

D2 = det

∣∣∣∣∣n2,R −n1,R p1,R −n1,R

n2,I −n1,I p1,I −n1,I

∣∣∣∣∣= Im(UV ) (B.3)

and

D4 = det

∣∣∣∣∣n2,R −n1,R p2,R −n1,R

n2,I −n1,I p2,I −n1,I

∣∣∣∣∣= Im(UW ) (B.4)

and, for convenience, n1, n2, p1, p2 are expressed in terms of complex numbers
and we define

U = n1 −n2, V = p1 −n1, W = p2 −n1. (B.5)
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iii) If Eq. B.2 is verified, intersections are found by solving the following system

n1 +λ (n2 −n1) = c+µ(p2 −p1), (B.6)

one obtains
λ =

D1

D3
, µ =

D2

D3
, (B.7)

where

D1 = det

∣∣∣∣∣p1,R −n1,R p1,R − p2,R

p1,I −n1,I p1,I − p2,I

∣∣∣∣∣= Im(V̄ X) (B.8)

D3 = det

∣∣∣∣∣n2,R −n1,R p1,R − p2,R

n2,I −n1,I p1,I − p2,I

∣∣∣∣∣= Im(UX), (B.9)

with X = V −W = p1 − p2. The intersection is found when the following
conditions are verified

0 ≤ D1

D3
≤ 1 ⇒ D1D3 ≥ 0 ⇒

{
D3 ≤ 0 ⇒ D1 ≥ D3

D3 ≥ 0 ⇒ D1 ≤ D3
(B.10)

0 ≤ D2

D3
≤ 1 ⇒ D2D3 ≥ 0 ⇒

{
D3 ≤ 0 ⇒ D2 ≥ D3

D3 ≥ 0 ⇒ D2 ≤ D3
, (B.11)

which implies

D3 ≥ 0,D1 ≥ 0,D2 ≥ 0,D1 ≤ D3,D1 ≤ D2 (B.12)

or
D3 ≤ 0,D1 ≤ 0,D2 ≤ 0,D1 ≥ D3,D1 ≥ D2. (B.13)
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