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Abstract

The aim of this PhD thesis is to develop tools for understanding and describing the
behaviour of silicon in the context of hybrid tunable lasers developed in the Silicon
Photonics platform. These lasers incorporate a III-V Reflective Semiconductor Opti-
cal Amplifier (RSOA) as an active component coupled with a passive mirror made
of ring resonators, which act as filters and determine the laser’s output frequency.
However, when propagating in the silicon ring waveguide, the optical field expe-
riences significant absorption due to non-linear (NL) effects such as Two Photon
Absorption (TPA) and Free Carrier Absorption (FCA). These effects result in the
accumulation of free carriers within the silicon core waveguide, which can adversely
affect the performance of the ring resonators, even with input powers of just a few
milliwatts. This thesis has two primary objectives: first to develop a compact model
that describes the impact of NL effects on the performance of ring resonators; second
to establish an experimental setup designed for the characterization of microrings
resonators in steady-state regime (as in the case of the hybrid tunable laser) or in
switching applications where a good knowledge on the ring response in time is
crucial.
Within this framework, I have numerically solved the non-linear problem associated
with the variation of silicon refractive index and optical losses coupled with the
Shockley-Read-Hall recombination (SRH) theory for trap-assisted recombination
processes of free carriers.
Furthermore, the developed theory has been effectively generalised to incorporate
more complex waveguide cross sections, such as rib waveguides. This extension
allows for a comprehensive description of the diffusion of free carriers in silicon,
resulting in an non-uniform distribution within the ring core cross section. In con-
trast, strip waveguides maintain a uniform distribution of free carriers throughout the
silicon core.
To validate our approach, I have developed a flexible experimental setup that supports
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the characterization of various types of ring resonators using continuous input power
and pump-probe experiments.
In the pump-probe experiment, high power pulsed input light is introduced into the
ring to analyse the impact of free carriers on the ring’s response and extract the free
carrier lifetimes in ring resonators. The experimental results are found to be in good
agreement with the developed theory.
Finally, I conclude this work by introducing the theoretical formalism that extend
our model beyond the simple ring resonator to incorporate the description of the
hybrid tunable laser composed of the RSOA and the passive mirror with non-linear
silicon microrings.



vii

Publications

Papers in peer-reviewed journals

• Marco Novarese, Sebastian Romero Garcia, Stefania Cucco, Don Adams,
Jock Bovington, and Mariangela Gioannini, "Study of nonlinear effects and
self-heating in a silicon microring resonator including a Shockley-Read-Hall
model for carrier recombination," Opt. Express 30, 14341-14357 (2022).

• Marco Novarese, Sebastian Romero Garcia, Jock Bovington and Mariangela
Gioannini, "Dynamics of Free Carrier Absorption and Refractive Index Disper-
sion in Si and Si/PolySi Microrings," in IEEE Photonics Technology Letters,
vol. 35, no. 8, pp. 450-453, 15 April 15, 2023.

Conference proceedings

• Mariangela Gioannini, Lorenzo Columbo, Antonino Bologna, Marco No-
varese, Sebastian Romero Garcia, Dominic Siriani, Jock Bovington, "Design
of hybrid lasers for silicon photonics: efficiency, optical feedback tolerance
and laser dynamics" European Conference on Integrated Optics ECIO, Paris,
France, 22 June, 2020.

• Marco Novarese, Sebastian Romero Garcia, Don Adams, Jock Bovington,
Mariangela Gioannini, "Study of nonlinear effects and self-heating in silicon
microring resonator including SRH model for carrier recombination," Proc.
SPIE 12006, Silicon Photonics XVII, 120060G (5 March 2022).

• Marco Novarese, Stefania Cucco, Sebastian Romero Garcia, Jock Bovington,
Rongqing Hui, Mariangela Gioannini, "Static and Dynamic Nonlinear Effects
in Silicon Micro-Rings: Impact of Trap Assisted Shockley Read Hall Carrier
Recombination", European conference on integrated optics 23rd Milan, 4-6
May 2022.

• Marco Novarese, Sebastian Romero Garcia, Jock Bovington, Mariangela
Gioannini, "Measurements and modelling of free carrier lifetimes in Si and
Si/poly-Si microrings", IEEE Silicon Photonics Conference (SiPhotonics)
Arlington VA, 4-7 April 2023.



Contents

1 Introduction 1

1.1 Silicon photonics: a key enabling technology for optical interconnects 1

1.2 Building blocks of silicon photonics ICs . . . . . . . . . . . . . . . 7

1.3 Hybrid tunable lasers . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Silicon microring resonators . . . . . . . . . . . . . . . . . . . . . 13

1.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Silicon microring resonators: electromagnetic and thermal modelling 17

2.1 Fundamental concepts of microresonators . . . . . . . . . . . . . . 17

2.1.1 Coupling regimes . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Optical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 FMM method . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Optical parameters: optical confinement factor and effective
area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Thermal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Thermal model . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Modelling of nonlinear effects in ring resonators 36

3.1 Overview of nonlinear effects in silicon . . . . . . . . . . . . . . . 36

3.2 Static analysis and SRH model for carrier recombination . . . . . . 39



Contents ix

3.2.1 Phase variation . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Propagation losses . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Refractive index variation . . . . . . . . . . . . . . . . . . 40

3.2.4 SRH model . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Distributed steady state formulation . . . . . . . . . . . . . . . . . 45

3.4 Time domain formulation . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Pump-probe differential equations . . . . . . . . . . . . . . 54

3.4.2 Pump-probe effective losses, generation rate and XPM . . . 57

4 Characterization of microring resonators 60

4.1 Devices under tests . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Thermal impedance . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Linear regime parameters . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Steady state measurements in nonlinear regime . . . . . . . . . . . 71

4.4.1 Racetrack resonator R1 . . . . . . . . . . . . . . . . . . . . 71

4.4.2 Ring resonator R2 . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Racetrack resonator self-oscillation . . . . . . . . . . . . . . . . . . 75

4.6 Pump-probe measurements . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 Racetrack resonator R1 . . . . . . . . . . . . . . . . . . . . 79

4.6.2 Ring resonator R2 . . . . . . . . . . . . . . . . . . . . . . 81

4.6.3 Ring resonator R3 . . . . . . . . . . . . . . . . . . . . . . 84

5 Design of microrings for hybrid tunable laser 88

5.1 Maximisation of the input power in ring resonators . . . . . . . . . 88

5.2 Silicon hybrid tunable laser model . . . . . . . . . . . . . . . . . . 91

6 Conclusion 99



x Contents

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

References 102

Appendix A Proof of equations 117

Appendix B Propagation losses measurements on straight waveguides 123

Appendix C FOMs for ring design of III-V/Si hybrid tunable laser 126

Appendix List of Figures 129

Appendix List of Tables 137



Chapter 1

Introduction

1.1 Silicon photonics: a key enabling technology for
optical interconnects

Silicon photonics capabilities

Silicon photonics (SiPh)is an emerging technology that combines the advantages
of photonics and electronics on a silicon substrate. The field is rapidly growing
and enabling the development of highly integrated and scalable photonic integrated
circuits (PICs) for optical communication, sensing, and computation [1–3]. One of
the primary advantages of SiPh is the possibility of integrating in a compact chip
transmitters and receivers, making it ideal for high-speed data transfer applications as
in data centers and high-performance computing [4]. Compared to traditional copper
wiring, this technology can also reduce power consumption while transmitting data
over long distances [5]; it guarantees immunity to electronic interference thanks
to the use of optical signals [6, 7], which is an important consideration for energy-
efficient computing and data transmission. Integrated silicon photonics circuits can
also combine multiple optical functions on a single chip, allowing for more compact
devices with increased functionality. On top of that, SiPh based technologies are
scalable and can be manufactured using existing semiconductor fabrication processes,
making it a cost-effective solution for high-speed data transmission.
One essential building block for silicon photonic systems is the standard multi-
project wafer (MPW) flow in the Silicon-on insulator (SOI) platform, which allows
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for the simultaneous implementation of multiple functions on a single wafer. Figure
1.1 shows a cross-sectional view of a standard MPW components such as optical
waveguides, phase shifters, photodetectors, grating couplers, and modulators. These
components are fundamental in enabling the efficient and reliable transfer and
manipulation of optical signals [3].

Fig. 1.1 Fundamental building blocks for silicon photonic devices: cross-sectional view of a
standard MPW flow displaying common components including phase shifters, photodetectors,
grating couplers, and modulators. Image reproduced from [3].

These advantages make silicon photonic PICs ideal for high-speed and high-
bandwidth applications, such as in data centers, telecommunications, and high-
performance computing. In addition to these applications, silicon photonic PICs can
also be used for sensing purposes, such as environmental monitoring and biomedical
sensing. For instance, silicon photonic-based sensors have shown high sensitivity
and selectivity in detecting biomolecules [8]. In this introduction we first give an
overview on silicon photonics application; then we will introduce the main SiPh
components. We will conclude by discussing tunable lasers integrated in SiPh
platform and optical micro-rings that are the focus of this thesis.

Silicon photonics for optical interconnects

A key property of silicon photonics technology is that it enables data transmission
over different distances, namely long-distance, short-distance, and inter-chip com-
munication [3].
Long-distance communication is typically facilitated by optical fibers, which trans-
mit data over hundreds of kilometers between different locations, such as between
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buildings, data centers, or across countries. Here optical transceivers serve the critical
function of converting electrical signals to optical signals and vice versa, enabling
the transmission of data over optical fibers. This technology is vital to the efficient
communication in data centers, where high-speed communication is essential for
processing and transmitting vast amounts of data [9]. This significantly reduces the
cost and space requirements in data center facilities while improving their overall
efficiency and performance. Conventional optical transceivers usually consist of sep-
arate modules that house optoelectronic components (e.g. lasers, photodetectors, and
photodetectors), and electronic components (e.g. drivers and amplifiers). In response
to the growing demand for smaller and more power-efficient solutions, co-packaged
optical transceivers have emerged as a new technology [10], integrating both the
optoelectronic and electronic components into a single module. Co-packaged optical
transceivers are also potentially lower-cost than traditional transceivers, as the in-
tegration of the components can reduce the number of interconnects and interfaces
required. They also present higher bandwidth and lower latency [11], which can be
beneficial in applications such as data center interconnects.
Dense Wavelength Division Multiplexing (DWDM) and Coarse Wavelength Division
Multiplexing (CWDM) [2] networks represent the two most important methods to
transmit data in long and short reach application based on silicon photonics. These
technologies are used in optical communication networks to increase the capacity
of fiber-optic cables by combining multiple optical signals of different wavelengths
(colors) onto a single fiber-optic cable, allowing for more data to be transmitted
simultaneously [12]. DWDM is mostly used for C and L band applications and is
able to reach a minimum spacing between wavelengths of 0.8nm. Whereas CWDM
can span from the O to the L band with a minimum spacing of 20nm. This property
can be achieved by converting multiple channels of data streams through thermal
tuning of microring modulator that modulates an external laser source into optical
signals at specific wavelengths through electro-optic modulation. The modulated
optical signals are then sent across optical fibers to a receiver side position, where
photodiodes at the drop port of microring filters extract the optical signals at spe-
cific wavelengths converting the optical signals back to the electrical data streams
[13]. The choice of one technology with respect to the other depends on the field
of application: for example in the optical transceiver DWDM−100G−Q28−120
by Edgeoptic uses DWDM and microring to filters to modulate the light generated
by a distributed feedback laser (DFB) making it possible to convert 425.78Gb/s
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electrical signals to a single 100Gb/s optical signal over a maximum distance of
120km. Similarly the SPT SHP3PMCDF optical transceiver by Intel can reach a
total of 400Gb/s with DWDM techonology and photodetectors (PD) integrated on
the same SiPh chip.

In contrast to long-haul or metro applications, the requirements for silicon pho-
tonics modules in short distance data center communications (e.g. in intra data
centers or rack-to-rack) focus more on cost-effectiveness, high-volume production,
energy efficiency, and frequency upgradability [3, 14]. Small Form-factor Pluggable
(SFP) transceivers are optical transceivers that can utilize both CWDM and DWDM
technology and are extensively employed for short-reach optical communication
applications due to their much cheaper cost when compared to long-haul counterparts
since the coherence of the laser beam must be ensured for distances lower than 1km.
The table in figure 1.2 shows some of the commercially available optical transceivers
for long and short reach.

Fig. 1.2 Performances comparison of long and short reach silicon photonics based optical
transceivers.

These devices are compared not only in terms of data rate, but also considering
the overall distance and power consumption. High data rata for a long communi-
cation distance always results in higher costs needed for a error-free information
propagation, which also explains the low price of the 100GCWDM4QSFP28 that
can reach up to 80km of maximum distance but with a lower data rate using CWDM
technology. Therefore in short reach communication optical transceivers present
lower costs when compared to similar data-rate long haul device even with the same
technology.
Optical communications in data centres and rack-to-rack are performed through
single mode (SM) or multimode optical fibers. We remark that single-mode fibers
are the preferred choice for optical communication in both intra-data center and
long-haul silicon photonics due to their superior performance when compared to
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multi-mode fibers. This is attributed to their smaller core diameter, which enables
better control over light propagation, resulting in lower loss, reduced modal disper-
sion, and higher bandwidth. Moreover, single-mode fibers are more compatible with
silicon photonic devices that have small waveguide dimensions that match the mode
size of single-mode fibers via the usage of spot size converter (SSC) (SSC).
Finally, communication between electrical components can be established using

Fig. 1.3 Block diagram of communication between different chips through optical intercon-
nects. The system uses one chip acting as the processor and the other acting as memory,
connected by an optical link. Each chip is an electro-optic system integrating electronics and
optical components such as waveguides, photodetector and microring resonators which have
the role of transmitting and receiving data from one chip to another. Image reproduced from
[15].

integrated optical circuits, which merge photonic devices with electronic circuits
also enabling data transmission between chips [15–17]. This approach is particularly
beneficial in high-performance computing, where rapid and efficient communication
between different components is essential for optimal performance. As shown in
figure 1.3, optical interconnects (single-mode fibers) can be employed to transmit
data between two different chips for memory applications [15]. Light is coupled
into the two chips by vertical grating couplers and converted back to electrical signal
by photodetectors, whereas the sender data is encoded by microring modulators all
integrated on the same chip. An off-chip solid-state laser acts as the light source to
the chips.
Optics links drastically reduce the power consumption associated to metal wires for
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data transfer [18], while maintaining a good compatibility with CMOS processes
[19] thanks to the silicon based technology.

Other silicon photonics applications

SiPh find applications in a wide range of areas. For example SiPh based Light detec-
tion and ranging (LIDAR) [20] is based on the concept of measuring distance and
reconstruct objects in 3D space. To this aim two main methods are usually pursued:
the time of flight (ToF) and frequency-modulated continuous-wave (FMCW) tech-
niques. In the first case a short laser pulse is sent towards a target and the time lapse
between the outgoing light pulse and the detection of the reflected (back-scattered) is
recorded; whereas in FMCW a laser source transmits a frequency-modulated optical
wave, which is reflected by a target surface. The beat frequency on the receiver pin
SiPh Photodetector encodes the distance to the target. Integrated optical phased
arrays (OPA) are one of the most important component in LIDAR application since
they can provide high coherence output power with a reasonable low cost [21]. OPA
consist of several coherent waveguides thermally controlled so that, by aligning
the phase of the propagating field in each of them, the emitted light interferes con-
structively in the far field at certain angles as shown in figure 1.4. Light can be

Fig. 1.4 Schematic of a silicon photonics chip for LIDAR applications based on the concept
of phase control of optical waveguides for generation of high coherence optical light. Image
reproduced from [22].

generated externally and coupled into the system with grating couplers or through
edge coupling. To this scope widely tunable hybrid laser integrated on the same
chip have been demonstrated as an alternative to large and expensive external light
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sources [23]. For example in [24], a low power high speed sensor has been reported
for autonomous driving applications. Here the authors propose an heterogeneously
III-V semiconductor optical amplifier (SOA) integrated in a SiPh chip for Lidar with
a very small device footprint of only 4.5mm2.
Neuromorphic photonics represents another emerging field that could bring improve-
ments in both speed and energy efficiency over common digital electronics thanks to
the high connectivity and linear operation provided by tunable waveguide elements
and WDM technology [25]. In fact metal wire connections pose huge limitations
in non-trivial distributed information processing in Neural networks, since large
distances are usually required leading to non-neglibile optical losses and heat genera-
tion. Optical interconnections do not suffer from frequency distortion effects related
to skin effect (higher carrier density closer to the surface of the wire) caused by AC
current. For the same reasons programmable photonic circuits [26] have seen the
light recently as a promising field made possible by SiPh.

1.2 Building blocks of silicon photonics ICs

Integrated photonics circuits consist of a variety of optical components incorporated
on a single chip, with either monolithic (grown directly on silicon) or heterogeneous
integration (molecular or ahdesive bonding of epitaxial layers of unpatterned III-
V dies or wafers to a pre-processed silicon on insulator wafer), dependent on the
materials selection. In this section we give a general list of frequently implemented
building blocks in PIC and a brief overview of their possible applications.

• Waveguides: silicon waveguides can have a simple rectangular geometry
(strip) or more complex structures such as in the rib waveguide, mostly used
in modulators where it is possible to insert doping regions outside the guiding
core. The optimisation of silicon waveguide geometry is fundamental to reduce
as much as possible nonlinear (NL) effects; for examples the implantation
of defects in rib waveguides has been shown to drastically reduce the free
carrier lifetimes [27] that can cause high free carrier absorption in silicon.
The propagation loss α0 in a waveguide determines the amount of losses
in dB/cm that the confined mode undergoes during propagation; while it is
usually negligible in Si3N4, for silicon it depends on the fabrication method
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with values as small as 0.1dB/cm [28] to 1−3dB/cm that we measured for
the devices tested in this thesis.

• Grating/Edge couplers:Surface grating couplers (SGCs) [29, 30] and Edge
couplers [31] represent the two main approaches to couple light to or from
integrated PICs [32]. SGCs are formed by a periodic diffraction grating often
connected to a waveguide which brings the light in the SiPh chip. This type of
coupling is said to be vertical since light is sent to the grating couplers by a
tilted optical fiber positioned above the device. On the contrary edge coupling
is performed on the same plane of the PIC.

• Mach Zehnder Interferometers: Mach-Zehnder Interferometer (MZI) are
the most important component in optical modulators [33–35]. The input beam
is divided into two arms respectively. The phase difference between the two
beams produces constructive or destructive interference in the output port
associated with an intensity and phase modulation [36]. This phase difference
is achieved by optical phase shifters that are based on plasma dispersion
or thermal effect. In the first case an electrical signal applied to electrodes
causes changes in refractive index and absorption of the material [37] (plasma
dispersion effect associated with the electro-refraction and absortpion relations
[38]) [39, 38], whereas in thermo-optic phase shifters the material refractive
index is changed by thermal tuning [40]. The latter is particular efficient
in silicon due to its high thermo-optic coefficient dnSi

dT = 1.86 ·10−4 K−1 [41,
42]. However, due to thermal dissipation limiting the performance of the
device, thermally controlled MZI are very slow compared to plasma dispersion
devices.

• Microring resonators A microring resonator (MRR) is a resonant cavity
which is the result of a looped waveguide where light can circulate either
clockwise or counterclockwise. They find applications in several SiPh PICs
where they can be used in the design of hybrid tunable lasers [43, 44]. In
MRR, the optical power is generated through constructive interference at
certain wavelengths called resonant wavelengths which makes it possible to
have hundred of mW of circulating power for just some mW of input power.
By stacking several MRRs it is therefore possible to build reliable and compact
tunable filters [45].
Thanks to their versatility, MRRs can also be used as modulators (micro-ring
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modulator MRM) where, by modulating the effective refractive index of the
ring, the transmission can be tuned towards or away from resonance. Silicon
microrings with lateral pn junctions waveguides have been demonstrated as
high speed modulators compatible with PAM4 modulation [46, 47]. Further
modulation speed can be reached by using vertical junctions, such as the
silicon-insulator-silicon capacitor platform (SISCAP) junctions [48], with the
concept of having a larger depletion region at the cost of higher fabrication
complexity [3].

• Photodetectors Photodetectors are semiconductor devices that convert optical
signals into electrical signals. This conversion is achieved by the absorption of
photons with energy equal or greater than the material bandgap resulting in
the formation of an electron-hole pair. The pin structure made of an intrinsic
region in between of p-type and n-type type regions is the most common struc-
ture, figure 1.5. Here the transit time of photogenerated carriers is kept low

Fig. 1.5 Schematic of a waveguide pin photodiode.

thanks to the small waveguide thickness d. By applying an external reverse
bias, a depleted area is created resulting in an high electric field that makes
it possible to collect the photogenerated carriers quantifying the amount of
optical power entering the device.
Germaniun is often used as the intrinsic material due to its high absorption in
the near infra-red and compatibility with CMOS deposition processes [49, 50].
These devices are characterised in terms of responsivity RPd , dark current Idark,
and detection bandwidth BW . RPd is the ratio between the generated photocur-
rent and the incident optical power, while the dark current is the total current
collected when the junction is reverse bias and with no illumination. Long
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waveguides ( parameter W ) makes it possible to have a better responsivity
but at the cost of a larger capacitance and therefore lower bandwidth of the
photodiode.
Very small dark current around 2nA with RPd ≈ 0.65A/W have been demon-
strated in [51] with a bandwidth as large as 40GHZ. Higher values of respon-
sivity RPd > 1A/W with Idark ≈ 8ns have been reached in [52] which results
in a lower bandwith, namely BW = 27GHz.

The previously introduced fundamental blocks are used for the realisation of complex
devices such as optical transceivers and hybrid tunable lasers. The silicon nitride-
on-insulator (SiN) platform [53] is an alternative to classic SOI-based devices due
to the very low propagation losses in Si3N4 when compared to silicon. Silicon
nitride is CMOS-compatible, and typically deposited by Low Pressure Chemical
Vapour Deposition (LPCVD) or by Plasma Enhanced Chemical Vapour Deposition
(PECVD). Since the refractive index contrast between the Si3N4 core and the cladding
is approximately equivalent to 0.55, scattering losses are reduced when compared to
Silicon [54], at the cost of a lower field confinement inside the core which ultimately
leads to a larger footprint of SiN based devices. The latter is crucial for silicon
nitride MRRs where the bend radius must be maintained above 95 µm to avoid too
large bend losses caused by the aforementioned poor field confinement in the core.
However Si3N4 thermo-optic coefficient is one order of magnitude lower than in
silicon, resulting in a worst thermal control of the material. Table 1.1 summarizes
the differences between the SiN and SOI performances. The main drawback of

Table 1.1 Comparison between SiN and SOI platforms.

Platform
Parameter SiN SOI Unit

Refractive index contrast (C-band) ≈ 0.55 2.06 −
Typical α0 < 0.01 1−3 dB/cm

Thermo-optic coefficient 2.51 ·10−5 1.87 ·10−4 1/K
Minimum bend radius ≈ 95 ≈ 5 µm

using silicon as optical medium is that extra losses are introduced due to power
dependent non-linear effects [41, 55–58]. This is especially relevant in MRRs where
the circulating power in the ring can reach hundred of milliwatts for input power as
small as 4mW [58], causing a wavelength shift and distortion of the ring spectral
response.
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TPA and FCA are the main mechanism responsible for such behaviour [59, 60],
leading to free carriers generation that affects the effective refractive index of the
material through free-carrier dispersion (FCD) and self-heating.
since silicon nitride has a wide band gap, SiN-waveguides and MRRs do not suffer
from TPA and FCA, making it possible to have high Q-MRRs employed in high
power narrow linewidth hybrid tunable laser [61, 62]. It is clear that the choice of
one platform in relation to another depends largely on the application. Since the goal
of this thesis is to model and characterise silicon MRRs to be used in compact and
small hybrid tunable laser, the SOI platform is the most appropriate choice for this
purpose.

1.3 Hybrid tunable lasers

An hybrid tunable laser is one of the most important component in an optical
transceiver, since its role is to generate a stable and narrow linewidth optical CW
signal that can be modulated by external modulator. Moreover wide-range wave-
length tuning and narrow linewidth tunable lasers are the main components of digital
coherence technologies and WDM where high coherence in the bit transmission
must be ensured [63] while providing good tunability and compact size impossible
to reach with common laser sources [64].
Silicon-only laser sources do not currently exist since silicon in an indirect band
gap material, as a result several technological solutions for efficient light source
integration on silicon photonic platforms have been adopted [65]; these include
hybrid integration [43, 61, 66–68], heterogeneous bonding [69, 70], and epitaxial
growth of III-V material on silicon substrate [35]. Hybrid or heterogeneous inte-
gration are widely employed for tunable lasers; hybrid tunable lasers have reached
the same performances of commercially available lasers [17, 43, 44]. Moreover
hybrid tunable lasers can also exhibit high tolerances to external feedback when
compared to common semiconductor laser emitting at the same power and with the
same wall-plug efficiency (WPE) [66] (WPE is the conversion efficiency of electric
power into optical power). Table 1.2 collects different SiPh tunable laser as reported
in the literature, these are compared in terms of tuning range, maximum output
power from the laser, laser linewidth, and side-mode-suppression-ratio (SMSR) as



12 Introduction

defined in Appendix B. The type of integration method of the active part with the
passive mirror is also reported.

Table 1.2 Comparison of tunable semiconductor lasers on different platform and integrations
methods.

Mirror Comp. Integration Method Tuning range, nm Pmax,out ,mW Linewidth, kHz SMSR, dB Ref.
Double Si MRRs+loop reflector Hybrid 65 100∗ < 15 > 45 [71]
Double Si MRRs+loop reflector Hybrid 65 150∗ 40 50 [72]

Double Si MRRs+ a-MZI Hybrid 99 35 − − [73]
Double Si3N4 MRRs+Sagnac loop Hybrid 172 26.7 0.75 > 40 [23]

Triple Si MRRs Heterogeneus 118 < 15 < 0.095 > 50 [74]
Four Si MRRs Heterogeneus 120 2 0.14 > 16 [75]

Double Si MRRs Monolitch 16 2.7 − > 45 [76]
*An integrated booster SOA is used to amplify the output power outside the laser cavity.

We report also of a case of monolitich integration [76] where the active medium, a
tunable quantum dot layer, has been grown directly on the silicon substrate. Although
in this case the laser properties are not as good as those of hybrid and heterogeneous
integration, monolithic integration has the great advantage of bringing low-cost
and mass production capabilities thanks to single-step epitaxy process for material
deposition on silicon.
We also highlight that the Si3N4 platform can reach very large tuning range and
output power without the need of any external booster as in [71] and [73] thanks
to the absence of NL effects litiming silicon based MRRs. However Si3N4 MRRs
present large ring radii of approximately 117 µm leading to a much larger footprint
area than for example in [73].
This thesis inserts in a project focused on the modeling and design of widely tunable
lasers that will be fabricated by a company. The laser is realised via the edge coupling
of a commercial reflective semiconductor optical amplifier (RSOA) representing the
III-V gain material and a SiPh passive mirror made of silicon or SiN waveguides as
shown in figure 1.6.

In this project it has been proposed a first design in [66] where the SiN platform
was used, whereas I contributed in [77] to the set-up of some preliminary consid-
erations for the implementation of Si MRRs. The basic working principle is the
same in both cases: the light, generated by the RSOA, is focused into the passive
photonic mirror after the anti-reflection coating (AR) (AR). The mirror is composed
of a spot size converter, phase control section (PS), a splitter, and two add-drop ring
resonators. The SSC role is to optimize the coupling of light from the RSOA to the
input waveguide of the passive mirror; the phase control section is needed in order
to tune the laser longitudinal modes to the maximum of the effective reflectivity
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𝑆𝑖/𝑆𝑖𝑂2 or 𝑆𝑖3𝑁4/𝑆𝑖𝑂2 photonic mirror

𝑟𝑒𝑓𝑓(𝜔)

𝑡𝑑𝑟𝑜𝑝2(𝜔)

𝑡𝑑𝑟𝑜𝑝1(𝜔)

Fig. 1.6 Schematic of the hybrid tunable laser analysed in [66, 77]. The III-V reflective SOA
(RSOA) provides the light that is focused on the photonic mirror by a spot size converter ;
here the the output power is collected at the output of the coupler. The tunable laser output
wavelength is selected by means of the Vernier effect thanks to the thermal tuning of two
similar ring resonators.

.

of the photonic mirror indicated with re f f (ω). The laser tunability is achieved by
the dual-ring Vernier filter [43, 78], i.e., the alignment of the resonant frequencies
of two similar ring resonators obtained in our case by thermal tuning. Lastly, the
tunable laser output is taken at the output coupler instead of the right end of the
passive mirror [70] allowing light to travel within the entire structure only once,
thereby reducing the total round-trip loss [43, 61, 66]. Monitor photodetectors are
included for calibration. In my thesis I focused on the characterisation of silicon
MRRs in linear and nonlinear regime with the aim of developing a model and a
general understanding of the rings characteristics to be employed in mirrors for
tunable lasers.

1.4 Silicon microring resonators

It is evident that ring resonators play a fundamental role in hybrid tunable lasers
[66, 79] and SiPh modulators. SOI MRRs have a small footprint of less than a
hundred microns [17, 80]. In addition, due to the storage properties of optical
resonators and possibility to reach large quality factors (Q > 106 [6]), MMRs are
also considered as efficient filters [81] and high resolution sensors [82, 83].
Today, MMRs are mainly realised on the SOI and SiN platforms due to their low
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cost integration with CMOS processes [17, 18, 65]. Compared to silicon nitride,
the use of silicon device layers for the manufacture of components such as optical
waveguides and ring resonators ensures a stronger field confinement in the silicon
core, and a superior miniaturization associated with a reduction of bend losses that
results in very small ring resonators [84]. In fact, crystalline silicon c-Si ring radius
can be as low as r ≈ 5µm with negligible bend loss.

In addition, the larger thermo-optic coefficient in silicon with respect to silicon
nitride [85, 86] makes silicon MRRs the preferred choice when a wide thermal tuning
of the ring resonant wavelength is required [67, 43, 69, 81]. Silicon non-linearities
are detrimental in applications where rings are utilized as narrow band mirrors, as
for example in high power hybrid tunable lasers [43, 44, 87]. For these applications,
the ring spectral response must be as close as possible to the linear regime; as a
result NL effects pose a limit to the maximum power that the tunable laser can
generate. An important figure of merit (FOM) regulating the impact of NL effects
is the free carrier lifetime: a smaller lifetime implies faster recombination of free
carriers, whose reduction is then associated with a lower propagation loss within
the cavity. At the same time self-heating is regulated by the ability of the ring to
dissipated heat, i.e., the thermal impedance ZT . A small thermal impedance means
rapid thermal dissipation which is required to limit the red wavelength shift of the
resonance when self-heating becomes dominant [58, 88].
Table 1.3 collects several examples of MRRs and related applications available in
the literature. We note how Si3N4 ring for tunable lasers such as in [23] can reach
very high quality factors since they are not affected by TPA and FCA at the cost of a
very large ring length as explained before.

Table 1.3 Comparison of different MRRs with silicon,Si3N4, amorphous silicon (a-si), and
polysilicon.

Ring structure Application Length, µm Quality factor FSR, nm Ref.
Add-Drop Si MRR Tunable laser 73 5166 7 [73]
Add-Drop Si MRR Tunable laser 3800 537630 0.18 [74]
All pass Si MRR Wavelength conversion 62 23000 8 [89]
All pass Si MRR Polarization Analyzer 31.4 3000 20 [90]

Add-Drop Si MRR Optical memory cell 803 1000 − [91]
All pass Si MRR 100Gb/s PAM4 modulation 75 3550 5.7 [92]

Add-Drop Si3N4 MRR Tunable laser 4553 6.6 ·104 1.5 [23]
Add-Drop a-Si MRR 25 ps Optical switch α0 > 50dB/cm 31.4 1300 − [93]

Polysilicon MRR 135 ps Optical switch α0 ≈ 10dB/cm 251 11200 − [94]
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Amorphous silicon and polysilicon are mainly used in optical switches thanks
to the very short free carrier lifetimes achieved by defects and grains, respectively.
The main disadvantage of using a-Si lies in the very high propagations losses α0 due
to scattering, polysilicon can partially mitigate this issue with lower losses and still
present free carrier lifetime which are on order of magnitude lower with respect to
what is typical measured for silicon MRRs where the free carrier lifetime is of the
order of ns.

Given the importance of the free carrier lifetime, it is therefore necessary to make
a careful estimate of the free carrier lifetime to determine the amount of non-linear
loss, FCD, and power absorbed in MRRs. To this end, accurate modelling of the
carrier lifetime is required so that the maximum power incident in the ring from
the laser gain section (see Fig. 1.6) can be predicted (keeping the ring transmission
unaltered from its linear characteristic). It is important to remind that many of
the available models of NL effects in MRRs in the literature are based on the
empirical values of the carrier lifetime obtained by fitting experimental measurements
[55, 41, 56]. The main objective of this thesis is to present a model that, together with
nonlinearity and self-heating, includes the formulation of Shockley-Read-Hall theory
for the recombination of carriers in order to find the spectral responses of MRRs
with different geometries in non-linear regime self-consistently. The capabilities of
the model are demonstrated through measurements and design of ring resonators.

1.5 Thesis organization

This thesis is organised as follows. In chapter 2 we set the basis for the study of the
MRRs by introducing the optical parameters in mircoring and the electromagnetic
and thermal simulations performed to calculate them.
Chapter 3 is dedicated to the description of the model we developed by including the
mechanisms related to nonlinear effects in silicon in both stedy state and pump-probe
experiments. We also introduce a distributed version of our steady state model
to model MRRs with generic waveguide cross-section where diffusion and heat
spreading are of fundamental importance.
Then in chapter 4 we show that the developed model is able to reproduce measured
ring transmission spectra in both steady state (SS) and pump-probe experiment with
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physically sound-appropriate parameters [58, 88]. We also analyse MRRs consisting
of polysilicon and silicon waveguides (Si/poly-Si MRR) and propose a method
for determining the impact of grain size on NL effects in polysilicon [95–97] by
extracting the nonlinear losses and FCD coefficients [98]. In fact these two quantities
are well reported for silicon [38] but not yet documented in the case of polysilicon.
To exemplify the strength of the developed model, in chapter 5 we show how it can
be employed to model MRRs of an hybrid tunable laser with the aim of reducing NL
effects. Chapter 6 summarizes the conclusions of this work and future prospectives.
Figure 1.7 summarises the main topics threaded in this thesis with references associ-
ated to chapter and sections.

MRRs theory and model MRRs experiments Outputs

Fundamentals of MRRs: steady 
state response in linear regime 
[Chapter 2]

Model of non-linearites in MRRs 
with CW input power
[Chapter 3.1-3.2]

Silicon Hybrid tunable laser model
[Chapter 5.2]

Development of the set-up and 
measurements of transmission 
spectra for CW small  input power
[Chapter 4.1]

Extraction of ring parameters: 
𝜶𝟎, η, 𝜿 etc.. 

Self-oscillation in the ring with a 
CW input power
[Chapter 4.4]

Pump-probe setup and 
experiments
[Chapter 4.5]

• Nonlinear model validation 
from comparison with 
experiments

• Extraction of density of traps 
• Validated NL MRRs model and 

parameters to be inserted in 
hybrid laser model and for 
hybrid laser design

Model of non-linearites in MRRs 
in time domain 
[Chapter 3.4]

Maximization of the input 
power in MRRs
[Chapter 5.1]

Development of the set-up and 
measurements of transmission 
spectra for CW high input power
[Chapter 4.3]

Free carriers lifetimes estimation 
in different MRRs

Modelling of NL effects in MRR 
with non-conventional waveguide 
cross section [Chapter 3.3] Future Work

Fig. 1.7 Conceptual map of the topics analysed in this thesis divided in theoretical, experi-
mental and output sections.



Chapter 2

Silicon microring resonators:
electromagnetic and thermal
modelling

2.1 Fundamental concepts of microresonators

A microring resonator is a resonant cavity which is the result of a looped waveguide
where light can circulate either clockwise or counterclockwise. The term ring refers
to circular-shaped resonators, whereas racetrack is used in all other cases. All
the equations and theory derived hereafter are valid in both cases since the only
geometrical difference between the two is the total resonator length.
Power can be injected in the MRR by coupling the evanescent light from one (all-pass
configuration) or two straight waveguides (add-drop) represented by the coupling
coefficient κ . Regardless of the configuration, if the phase shift of the roundtrip is a
multiple of 2π , the resonator is on resonance and constructive interference occurs
inside it. This causes a build-up of the circulating power Pc that can be as large as
100mW for just some mW of bus power. In an add-drop configuration destructive
interference occurs at the through port which presents the minimum output power,
the drop port experiences the maximum output power resulting from the circulating
power build-up. Therefore a MRR support multiple resonances, in other words it
has spectral response showing periodic peaks and dips at the drop and through ports
respectively, as shown in Fig 2.1
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Fig. 2.1 Spectral response of an add-drop MRR. Here the resonator is lossy, as a result
at resonance the output intensity is not 1 (0) at the through (drop) port resulting in finite
extinction ratio (ER) defined as ER =

Pthr,out,res
Pthr,res

where Pthr,out,res and Pthr,res are the output
power at the through port out of resonance and at resonance respectively.

At resonance we have that:

λ0 = ne f f ,0L/m (2.1)

where ne f f is the effective refractive index of the waveguide, L the total MRR length
and m an integer number.

The general structure of the ring and racetrack resonators analysed in this thesis
is shown in Fig. 2.2; in the case of a racetrack configuration, Lc is the coupler length
and Ld the length of the straight waveguide, r is the curvature radius. For the classic
ring configuration we have Lc = Ld = 0. The coupler has coupling coefficient κ

and transmission coefficient t. The coupling loss in the bus-ring coupling region
is indicated with parameter η2, such that, defining Pbus the power entering in the
coupler, the power loss per round trip in this region is η2 ·Pbus [99]. Here we assume
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that the coupling coefficients of the top and bottom bus waveguides, i.e., κ1 and
κ2 respectively, are equal; this holds for the racetrack resonator whereas they are
generally different in the case of the Si and Si/poly-Si rings.
The power conservation in the bus-ring coupling region is therefore t2 + κ2(1−
η2)+η2 = 1 from which we get t2 = (1−κ2)(1−η2).

𝐸𝑏𝑢𝑠 𝐸𝑡ℎ𝑟

𝐸𝑑𝑟𝑜𝑝 𝐸𝑎𝑑𝑑

𝐸𝑐
𝐸𝑏𝑢𝑠 𝐸𝑡ℎ𝑟

Type equation here.
𝑟

𝜅 −𝜅∗

𝑡∗

𝑡

𝜂

(a)

(b)

𝐿𝑐

𝐿𝑑

𝜂

Fig. 2.2 (a) Schematic of the resonator structure and zoom in the bus-ring coupling region
(b). The electric fields at the input bus port (Ebus), through port (Ethr), add (Eadd), and drop
(Edrops) ports are normalized such that |E|2 is a power in Watt. The electric field propagating
in the ring waveguide is Ec.

During the propagation in the ring, the field experiences modal losses expressed
as a = e−αe f f L/2, where αe f f is:

αe f f = α0 +αrad, (2.2)

α0 is the liner loss term attributed to light scattering, residual doping and single pho-
ton absorption (SPA) [100] in the silicon core, while αrad is the term accounting for
the bend loss and therefore for light radiated in the cladding. With this formulation,
the power transmission coefficients at the through port is:

Tthr = t2 |1− (1−η2)ae jθ |2

|1− t2ae jθ |2
, (2.3)
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whereas at the drop port it is:

Tdrop =
κ4(1−η2)2a
|1− t2ae jθ |2

. (2.4)

The optical power circulating in the ring waveguide can be calculated as shown in
Appendix A:

Pc = Pbus
κ2(1−η2)

|1− t2ae jθ |2
(2.5)

θ is the total phase variation per round trip:

θ = θ0 +
ng

c
(ω −ω0)L (2.6)

θ0 is the phase variation per round trip at the reference angular pulsation at resonance
(ω0) ng is group refractive index which is a function of the effective refractive index
in the resonator. It is generally defined as [101]:

ng = ne f f ,0 −λ
∂ne f f ,0

∂λ
, (2.7)

that takes into account the effective refractive index dispersion of the propagating
mode in the waveguide. Fig. 2.3 represents an example of the calculated group
index in the case of a silicon straight waveguide with height h and width W equal
to 107nm and 580nm respectively using Photon Design electromagnetic simulation.
This rather high group velocity dispersion is related to the lower field confinement in
the waveguide caused by dispersion in silicon [102].
Other important FOMs in the description of MRRs are the free spectral range (FSR),

quality factor (Q), and finesse (F). The former is the distance between two adjacent
resonance peaks, whereas the quality factor of a resonator represents the sharpness
of a specific resonance. It is computed as [101]:

Q =
λ0

FWHM
, (2.8)

where FWHM is the full-width-half-maximum of the resonance peak as shown in
figure 2.1. It also indicates how much power is circulating in the MRR; a large Q is
associated with an high Pc, which leads to stronger NL effects when compared to a
MRR with a smaller Q for the same input power, round trip losses and finesse [101].
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Fig. 2.3 Group index calculated with an optical mode solver in the case of a Si waveguide
with cross section 107x580nm [103, 104].

The latter is defined as the ratio of the FSR and the FWHM. Lastly, we note that eq.
(2.5) at resonance is a linear function with respect to the bus power that depends only
on the ring characteristic:

Pc,res = Pbus
κ2(1−η2)

|1− t2a|2
(2.9)

If we consider the propagation and coupling losses to be negligible and in the case
κ << 1, eq. (2.9) can be directly linked to the finesse as [101]

Pc,res = Pbus
F
π
, (2.10)

under the same approximations it also holds that Q =
ne f f ,0L

λ0
F , therefore Pc,res =

Pbus
Qλ0

ne f f ,0Lπ
.

When the ring experiences asymmetrical coupling coefficients, i.e., κ1 ̸= κ2, a new
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expression for the transmission coefficient is needed. For example we consider the
structure shown in Fig. 2.4 where the input field is injected from a splitter on the left
side of the ring to the bottom and upper arms. This particular configuration has been
chosen in order to be as close as possible to the structure implemented in figure 1.6
for the passive mirror of the hybrid tunable laser.

𝐸𝑏𝑢𝑠

𝐸𝑡ℎ𝑟,𝑃𝑜𝑟𝑡1

𝐸𝑡ℎ𝑟,𝑃𝑜𝑟𝑡2

𝑟

𝜅2

𝜅1

Fig. 2.4 Schematic configuration of a MRR where the power is injected in both upper and
lower arms thanks to a splitter.

In this case, the output power can be collected either on top or bottom right
output ports which are considered to be through port. For these rings, we mark the
two ports mentioned above as port1 and port2. Eq. (2.3) becomes at port1:

Tthr,Port1 =

∣∣∣∣t2
1 −

κ2
1 t2ae jθ (1−η2)

1− t1t2ae jθ

∣∣∣∣2 , (2.11)

while at port2 we have:

Tthr,Port2 =

∣∣∣∣t2
2 −

κ2
2 t1ae jθ (1−η2)

1− t1t2ae jθ

∣∣∣∣2 . (2.12)

Figure 2.5 shows an example of the transmission at both port1 and port2 for a
ring of radius r = 5 µm.

2.1.1 Coupling regimes

MRRs can work in different coupling regimes depending on the coupling coefficient
which is influenced by the bus-ring distance. Considering the simple case of an
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Fig. 2.5 Spectral response of a ring resonator with radius r = 5 µm at Port1 and Port2 with
the parameters:κ2

1 = 0.017,κ2
2 = 0.021, α0 = 1.02dB/cm, αrad = 1.73dB/cm, ng = 3.45,

ne f f = 1.95, η2 = 0.002.

all-pass MRR, the transmission coefficient is:

Tthr,ALL =

∣∣∣∣t2 − κ2ae jθ

1− tae jθ

∣∣∣∣2 , (2.13)

where we neglected bend and coupling losses. Depending on the value the trans-
mission coefficient t assumes with respect to the propagation losses a, the MRR
can be in three different regimes [105]. The ring is in the undercoupled regime
when t < a, while t = a corresponds to the critical coupling, and a < t < 1 to the
overcoupled regime as illustrated in figure 2.6. The bus waveguide and ring distance
for which critical coupling occurs is defined as dcrit , and it is particular important
since at this value the MRR shows the highest possible quality factor. However due
do tolerances during the fabrication process, it is usually difficult to ensure perfect
critical coupling. This is especially true in the case of add-drop MRR where this
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Fig. 2.6 Spectral response of an all-pass ring resonator with the parameters: α0 = 1.02dB/cm,
αrad = 1.73dB/cm, ng = 3.45, ne f f = 1.95.

condition happens only when t1 = at2 [106]. When the latter is not satisfied one port
will be undercoupled (t1 < at2) and the other one overcoupled (at2 < t1 < 1).

2.2 Optical simulations

In order to develop a model that simulates rings in linear and NL regime some
important optical parameters are needed. For example the confinement factor Γ

and the waveguide effective area Ae f f of the mode propagating in the waveguide
are important parameters which affects the impact of NL effects in the ring. These
quantities depends on the electromagnetic fields propagating in the resonators.
To this aim, the optical mode solver FIMMWAVE by Photon Design, was used to
compute the optical modes in the ring cross section. In this framework three main
solver are suited for our case: the film mode matching method (FMM), a finite
difference method (FDM) and a finite element method (FEM). All results were
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obtained by using the FMM, which is a semi-analytical solver based on the work
by Sudbo [103, 115]. The solver locates almost any horizontal or vertical mode
order of arbitrary or mixed polarisation. Since the FMM method is analytical, its
speed and accuracy are superior than any numerical technique such as FDM and
FEM. This makes the FMM solver of choice for epitaxially grown structures or
generally for waveguides which have large parts of uniform refractive index such as
the substrate and oxide typical of the SOI ring resonators. The FMM also includes a
bend solver version which computes the modes of bent waveguides in cylindrical
coordinates, which has been employed to calculate the bending loss for different radii.

2.2.1 FMM method

Given a rectangular-based structure, it can be divided in a a series of slices in which
there is no refractive index variation in the x-direction, see fig. 2.7 (a). Thanks to
this restriction, it is possible to represent an arbitrary physical field profile in the
waveguide as a linear combination of vertical 1D modes of each slice; these 1D
modes can be TE or TM polarised and represent the modes that would be found
assuming the slice to be infinitely wide. In a given slice, any electro-magnetic field
that is solution of Maxwell’s equations can be expressed as a linear combination of
all the 1D TE and TM modes according to:

F(x,y) =
(1D)nmode

∑
j=1

[uT E
j eikT E

x j x
φ

T E
j (y)+uT M

j eikT M
x j x

φ
T M
j (y)]. (2.14)

Here uT E/T M
j is the mode amplitude for the 1D mode, φ

T E/T M
j the 1D field profile,

and kT E/T M
x j the wavevectors. (1D) nmode is an input parameter in the solver and

defines the total number of 1D modes to be considered in each slice. Since this
method is rigours, the only limitation is given by the number of modes chosen for
the simulation.
Once F(x,y) has been computed, the 2D modes are obtained by solving the eigen-
system generated by the propagation of the vertical modes in the x-direction. The
appropriate number of 1D modes is usually determined by observing when the
calculated effective refractive index index does not change as the number of modes
increases.
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Fig. 2.7 (a) Schematic of the slices division in the FMM method for the simple case of a
rectangular Si waveguide. (b) Electric field in a waveguide with parameters listed in figure
2.5 for the fundamental mode at 1.533 µm, the asymmetry in field distribution is related to
the waveguide bending.

When dealing with a rectangular bent waveguide, two types of boundary con-
ditions (BCs) can be chosen on the leaky side, i.e., the outer direction of the bend:
perfectly matched layers (PML) (PML) and transparent boundary condition (TBC)
(TBC) [116]. Both BCs have to ensure that the radiated field is not reflected back
at the boundary so that the solver is able to find a correct solution of the problem.
In the PML case the wave is simply absorbed by a matched absorbing layer with
variable width. The latter must be long enough to ensure complete absorption of
the radiated wave. This problem is avoided with TBC where the whole travelling
wave is analytically transmitted at the radiation boundary without any reflection. The
convergence and accuracy of TBC depend on the complexity of the applied condition
[116]. In fig. 2.7 (b) the complex FMM method with TBC has been used to retrieve
the electric field distribution in the case of the bent waveguide whose parameters are
listed in figure 2.5. It is interesting to see that the fundamental mode is not symmetric
due to the non-negligible mode leakage in the waveguide towards the outer (right)
side of the simulation window. As a result a TE field propagating in the ring will
suffer bend losses αrad as radiated mode, since we have αrad = 1.73dB/cm.
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2.2.2 Optical parameters: optical confinement factor and effec-
tive area

Thanks to the FMM method, we are able to compute the transversal complex electric
and magnetic field profiles of the fundamental guided mode E(x,y) and H(x,y)
respectively. These fields are of great importance since they are needed in the
computation of the optical confinement factor (Γ) and the effective area Ae f f . Given
a mode of order µ , frequency ω , and propagation constant βµ , we have [117]:

EEEµ(r, t) = ℜe

(
Aµ(z, t)

Eµ(x,y,ω)√
Pn,µ

e j(ωt−βµ (ω)z)

)
(2.15)

For the electric field, while for the magnetic field:

HHHµ(r, t) = ℜe

(
Aµ(z, t)

Hµ(x,y,ω)√
Pn,µ

e j(ωt−βµ (ω)z)

)
. (2.16)

|Aµ |2 corresponds to the average power in the waveguide, and Pn,µ is the power
normalization constant for the mode µ such that:

Pn,µ =
1
2

∫ +∞

−∞

∫ +∞

−∞

ℜe
(

Eµ(x,y,ω)× H∗
µ(x,y,ω)

)
· eeezdxdy (2.17)

with ez the unit vector pointing in the propagation direction z.
The optical confinement factor (Γ) in the silicon cross section of the waveguide is
[118, 119] :

Γ =
nSicε0

∫ ∫
A

∣∣Eµ(x,y)
∣∣2dxdy∫ ∫

Atot
ℜe
{

Eµ(x,y)×Hµ(x,y)
}
· ezdxdy

. (2.18)

Where A is the area of the silicon cross section of the waveguide as in Fig.2.7 (b);
Atot is the total area of the simulation domain (including both Si and SiO2) where
the electromagnetic field has been computed. nSi = 3.48 is the refractive index of
Silicon. This definition of Γ refers to how well the optical medium is able to confine
the light [118, 119], it can be slightly larger than one indicating the possibility of
having a better field confinement in a waveguide than in the bulk case, a proof is
shown in appendix A. Note that Γ is different from the so called filling factor, defined
as:
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FF =

∫ ∫
A ℜe

{
Eµ(x,y)×Hµ(x,y)

}
· ezdxdy∫ ∫

Atot
ℜe
{

Eµ(x,y)×Hµ(x,y)
}
· ezdxdy

(2.19)

Which is a measure of the mode power in the core waveguide with respect to the
total power.
The effective area Ae f f is defined accordingly to the model in [117]:

Ae f f =
Z2

0

n2
Si

∣∣∫ ∫
Atot

ℜe
{

Eµ(x,y)×Hµ(x,y)
}
· ezdxdy

∣∣2∫ ∫
A

∣∣Eµ(x,y)
∣∣4dxdy

(2.20)

Z0 = 377Ω is the free-space wave impedance. The effective area is a measure of
the nonlinear interaction of the optical field with Silicon; as it will be shown later,
the generation of free carriers caused by light interaction with the material goes as
1/Ae f f .
Eq. (2.20) is completely general and holds for any refractive index contrast between
the core and cladding, in the particular case of low contrast index waveguide it
simplifies to the well-known expression [120]:

Ae f f =

(∫ ∫
Atot

∣∣Eµ(x,y)
∣∣2)2

∫ ∫
A

∣∣Eµ(x,y)
∣∣4dxdy

(2.21)

Figure 2.8 collects the different waveguides parameters needed for the linear
and NL modelling of waveguides and MRR in the example case of ring analysed in
figure 2.5.
As it is possible to see Γ decreases as the wavelength increases. The same applies to
the effective refractive and group indexes as explained earlier. While the bend losses
and Ae f f follow the opposite trend. Since the field is less confined in the structure as
the wavelength increases, a larger portion of the field is radiated outside of the core
causing an increment in bend losses.
To verify the correctness of our methodology, and of the expressions we implemented
in eq. (2.18)-(2.20) we analysed the same structure proposed by the work of Koos
et al. in [117], where they computed the effective area of a strip silicon waveguide
with WSi = 400nm and hSi = 200nm. Here the refractive index of the cover material
is sweeped from 1 to 2.5. In Fig. 2.9 are able to accurately get the same values as in
[117], meaning that the complex FMM method with TBCs and eq. (2.18)-(2.20) are
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Fig. 2.8 Main parameters as a function of wavelength for the same waveguide of figure 2.5
obtained with the complex FMM method with TBCs; (a) Optical confinement factor and
effective area; (b) effective index and group index; (c) bend losses.

consistent.

2.3 Thermal analysis

Self-heating in MRRs can be modelled by the so called thermal impedance of the
ring ZT which regulates the heat influence on the silicon refractive index caused by
free carriers recombination. COMSOL has been used for thermal simulation of the
complete resonator structures. Heat is generated in a silicon MRR in the self-heating
process caused by the recombination and relaxation of free carriers generated by TPA
and FCA. A MRR is a complex structure made of a silicon waveguide surrounded
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Fig. 2.9 Comparison of the effective area of a strip Silicon waveguide with SiO2 as substrate
and with variable refractive index from 1 to 2.5 in the cover. WSi = 400nm and hSi = 200nm.
Blue data reproduced from figure 3 (b) in [117].

by silicon oxide, silicon substrate, and air on top., since silicon oxide has a thermal
conductivity (kSiO2 = 1.4 W

k·m) much lower than silicon, the ring dissipates the heat
with difficulty.
This property is taken into account in the so called thermal impedance of the ring
defined in stationary regime and for strip waveguides as:

ZT =
∆T
Pabs

. (2.22)

With ∆T = Tmax −T0; Tmax is the temperature excursion in the core caused by heat
generated through absorbed power Pabs, and T0 is the ambient temperature set at
293.15K. The lower ZT the better is the thermal dissipation of the ring.

2.3.1 Thermal model

We use the COMSOL Multiphysic thermodynamic software to simulate the heat
propagation inside the resonators. Here thermal transport is generally modelled
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through the heat equation:

ρ(r) ·Cp(r)
(

∂T (t,r)
∂ t

)
−∇ · (K(r)∇T (t,r)) = Q(t,r), (2.23)

ρ(r), Cp(r), and K(r) are respectively the density (mass per unit volume) of the
material, specific heat and thermal conductivity in the structure which are space
dependent due to the different materials involved. Q(r, t) is the heat source, in our
case we assume the heat is generated uniformly in the silicon waveguide core with
volume VSi:

Q(t) = Pabs(t)/VSi (2.24)

In steady state, the rate of absorbed power by the resonator is constant, as a result
the first term in eq. (2.23) is zero.
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Fig. 2.10 (a) Cross-section of a silcon MRR, the cladding is silicon oxide on a silicon
substrate. The different colors at the interfaces refer to the type of boundary conditions
necessary to model the heat transfer between the different materials and with the environment;
these are surface-to-surface radiation (SSR) and surface-to-ambient radiation (SAR). (b)
Map of temperature increase in the MRR.

By exploiting the symmetry of the ring cross-section around its rotation axis, it
is possible to avoid the full 3D simulation in the case of MRRs through the so called
2D Axysimmetric approximation.
Such approximation is not possible in the case of the racetrack resonator where the
complete 3D model must be employed. In both cases eq. (2.23) is in cylindrical
coordinates and solved with a FEM method. Fig. 2.10 shows the typical resonator
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structure we consider in our study. Here the bending radius is R, whereas Rsub is
the radius of the silicon disk composing the substrate. Hsub,HSiO2 , DSi/SiO2 , are all
geometrical quantities related to the foundry specification. DSi/SiO2 is the distance
between the waveguide and the Si susbtrate, it is a critical parameter for heat dissipa-
tion. In fact the larger this distance is, the worst the heat dissipation will be in the
device due to the larger volume of oxide surrounding the silicon core. On the other
hand a too small DSi/SiO2 would make the guided mode in the waveguide coupled
with the silicon substrate. In Fig. 2.10 (b) the heat over one section of a MRR is
shown in the case of an absorbed power of 10mW .

It is important to remind that heat transfer in the resonator is through conduction
and convection. However the type of contact between the different material surfaces,
as shown in Fig. 2.10, takes into account additional types of irradiation:

• Surface-to-surface radiation (SSR): it defines the heat transfer between two
semi-transparent media by radiation. It is relevant when there is a non-
negligible difference of temperature between two media and the emissivity
εT , i.e., the ability of emitting radiation in comparison to a perfect black body
(εT = 1) is larger than zero. As a result a portion of the radiation is transmitted
over the surface and a portion is reflected back. In our case εT = 0.7 for both
Si and SiO2[121].

• Surface-to-Ambient radiation (SAR): these boundary conditions are used when
heat is radiated from the domain to the environment, which is composed by air
in our case.

• Thermal insulation: It is a BC that can be used at the outer edges of the structure
that are in contact with the air. With this condition, the system is considered to
be adiabatic and the additional air layers can be avoided. Such BC produces
the same results as in the case of SAR, but due to reduced simulation space
(since we no longer need the air layers), the simulation computational time is
lower.

To validate the approach implemented in Comsol, we take into account the work
done by Soltani in [122] where the author analysed the thermal conductance (1/ZT )
of a silicon microdisk resonator in steady state whose cross-section is shown in figure
2.11 (a) with r = 20 µm.
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Fig. 2.11 (a) Cross section of the silicon microdisk reproduced from [122] for a microdisk
radius of r = 20 µm. (b) Thermal conductance of the microdisk for two different oxide
thicknesses as a function of the microdisk radius. Our model results are compared with those
by Soltani [122].

Here, we report results on two different oxide substrate thicknesses (DSi/SiO2)
with Pabs = 10mW uniformly distributed on the border of 2µm of the microdisk
radius as shown in [122] through electromagnetic simulation of the fundamental
mode distribution in the microdisk. As mentioned earlier, an higher thickness of
SiO2 is associated with lower thermal conductivity (higher thermal impedance). Our
thermal model can reproduce the results of [122].

Stationary regime thermal analysis

The same procedure has been applied to MRR analysed before, the resulting thermal
impedance is plotted in fig. 2.12. Th good matching between full 3D model and
the 2D Axysimmetric approximation prove that the two method are equivalent
for simulating thermal conduction in MRRs. We note that the thermal impedance
decreases with increasing resonator length since the area where heat can be dissipated
increases and therefore the structure dissipates heat more easily.

Dynamic regime thermal analysis

In some cases and for certain levels of input CW optical power, the ring can enter
in a self-oscillation regime characterised by periodic oscillations of the resonant
wavelength. During these self-oscillation the power entering in the ring is high
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Fig. 2.12 Thermal impedance of a MRR as a function of the total resonator length. Results
of 2D Axysimmetric and full 3d thermal simulation are indicated with circles and asterisks;
whereas the black line represents a fitting of the type y = a/x.

enough that the free carriers lifetime becomes comparable with the resonator thermal
time-constants [122, 123]. To calculate these time constants, we solve in COMSOL
eq. (2.23); then the time dependent temperature variation in the ring is calculated
when at t = 0 we start to dissipate 10mW of power in the silicon waveguide core.
Results are shown in fig. 2.13 .

One of the most important outcome is that the transient response cannot be
modelled by a single thermal time constant as done in other works [122–124],
but multiple time constants are needed to characterize the thermal response of the
resonator.
In this work we consider an equivalent electrical circuit called Foster model [125]
made by the series of n nodes made by RC blocks as shown in the inset of Figure
2.13, where ∆Ti is the temperature variation at each node of the RC block. The total
temperature variation in time is then:

∆T (t) =
n

∑
i

∆Ti ·
(

1− e
t

ZT,iCi

)
. (2.25)
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Fig. 2.13 Temperature variation versus time obtained from thermal transient simulation of
the complete racetrack resonator in the case of a dissipated power set to 10mW starting from
t = 0. In the inset the schematic of the equivalent circuit model is displayed.

We attribute the number of nodes to the heat flow between the stack of different
Si and SiO2 layers in the device structure; each node is the parallel between the
thermal impedance Zi and thermal capacitance Ci [125], whose product represents
the thermal time constant [56, 123, 126]:

τth,i = ZT,iCi, (2.26)

By fitting the total temperature transient with eq. (2.25), τth,i and ZT,i can be obtained.



Chapter 3

Modelling of nonlinear effects in ring
resonators

3.1 Overview of nonlinear effects in silicon

As introduced earlier, Silicon is affected, in both C- and O-band [60], by strong
non-linear effects which cause a wavelength shift and distortion of the ring spectral
response [41, 56, 57, 127] when the power injected in the ring increases. Fig. 3.1
(a) summarises these effects, here Two-photon-Absorption (TPA) and Free-Carrier-
Absorption (FCA) are the main mechanisms responsible for the spectrum distortion
[56]. In TPA, two photons are absorbed generating an electron-hole pair; these carri-
ers can then absorb other photons due to free-carrier absorption (FCA) [41, 117, 127];
as a consequence, they are pushed to higher energies in conduction band or valence
band. Therefore TPA and FCA rise the overall optical loss reducing the quality factor
of the resonator. We refer to these free carriers as the free carrier density per unit
volume ne, in the conduction band, and pe in the valence band. Apart from TPA,
free carriers are also generated by surface-charge-absorption (SCA) [100, 128, 129],
which is a one-photon transition related to intra-gap states located at the waveguide
surface associated to surface state absoprtion (SSA), i.e., absorption of one photon
promoted to intra-gap states which occur near the material surface. SCA is generally
one order of magnitude lower in strength than TPA and often negligible.
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The generated free-carriers (FCs) cause also a change in the refractive index
called Free-carrier dispersion (FCD) which is responsible for a blue shift of the
resonant wavelength of the ring. Whereas the relaxation of FCs (thermalization)
and the recombination through SRH releases energy in form of heat (self-heating)
which leads to a temperature increase in the resonator causing a thermal refractive
index change and so a red shift of the ring resonant wavelength. Lastly radiative
recombination is impossible in silicon, whereas Auger recombination is neglected
in this thesis due to the low density of the generated free carriers [27]. We include
also the Kerr effect as slight red shift of the refractive index variation, even if its
contribution is negligible compared to FCA and self-heating.

Conduction band

Valence band

Two photon 

absorption

Free holes

Free carrier absorption

Free electrons

Thermalization

Traps
Shockley-Read-

Hall recombination

Thermalization

Free carrier absorption

(a) (b)

Fig. 3.1 (a) Schematic of Si band diagram showing TPA, FCA, and self-heating effects due
to free carriers thermalization. Carriers recombination is taken into account in the SRH
formalism. (b) Modelled transmission spectrum of a MRR in linear (black curve) and NL
regime (blue, red and green) showing the impact on NL effects and bistability in the ring
with Pbus = 2mW . The blue curve represents all the solutions of the NL model, while the red
and green curves correspond to the cases related to the laser source being swept from the
short wavelength to long wavelength or vice versa respectively.

The amount of spectral distortion in the ring, as shown in figure 3.1 (b), is
determined by the density of free-carriers accumulated in the conduction and valence
band, and also by the temperature increase, which is proportional to the thermal
impedance of the ring for the same amount of absorbed power. Here the resonant
wavelength of the MRR is shifted due to self-heating being dominating over FCD,
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and at the same time the quality factor decreases due to NL losses. The sharp
increase in the transmission around 0.2nm is a consequence of the ring entering in
the bistability region [122, 123] which is characterised by an hysteresis dependent on
the type of wavelength sweep performed, i.e., forward (from low to high wavelength)
or reverse sweep as indicated by the curves in red and green respectively.
In the particular case of a pump-probe experiment where two optical input of different
wavelength are present, the absorption of one pump photon and one probe photon
causes additional effective losses named cross two photon absorption (XTPA) or
non-degenerate TPA (XTPA) [59, 130]. Similarly the probe/pump fields induce
reciprocal phase variations through the Kerr effect, i.e., cross-phase-modulation
(XPM) [124, 130], although its impact is appreciable only in amorphous silicon
(a-Si) [124, 129].
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Fig. 3.2 Schematic of all NL effects acting on the pump and probe field.

In the next section we present the details of the NL model we developed that
includes the previously introduced effects in a generic MRR. We also propose a new
method for the modelling of all types of waveguide geometries based on the fitting
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of optical and thermal parameters extracted from COMSOL simulation. Lastly we
extend our lumped steady state model to the time domain.

3.2 Static analysis and SRH model for carrier recom-
bination

3.2.1 Phase variation

The total phase variation in eq. (2.6) is modified by nonlinear effects, self-heating
and Kerr effect as accounted in the term ∆θ(Pc,∆T ). As a result now the phase
depends on the circulating power, temperature, and free carrier densities ne and pe:

θ(Pc,T,ne, pe) = θ0 +
ng

c
(ω −ω0)L+∆θ(Pc,T,ne, pe). (3.1)

Where the nonlinear term is related to the refractive index variation ∆ne f f (Pc,T,ne, pe)

as ∆θ = 2πL/λ0 ·∆ne f f .

3.2.2 Propagation losses

The modal loss of the optical field per round trip now includes the total loss in
the ring waveguide due to linear, and non-linear effects. These effective losses are
expressed as:

αe f f (Pc,ne, pe) = α0 +αrad +∆α(Pc,ne, pe). (3.2)

With
∆α(Pc,ne, pe) = αT PA(Pc)+∆αFCA(ne, pe). (3.3)

αT PA(Pc) is the modal loss caused by two-photon absorption, which depends on the
power propagating in the ring and it is expressed as [117]:

αT PA(Pc) =
βT PA

Ae f f
Pc, (3.4)

which scales linearly with the circulating power; proof for this equation is shown
in Appendix A. βT PA = 0.8cm/GW is the TPA absorption coefficient in C-band
[41, 60, 127, 131]. The modal free-carrier-absorption losses αFC are expressed as
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a function of the free electron and hole densities through the empirical expression
reported in [38]:

∆αFCA(ne, pe) = Γ
(
8.88 ·10−21n1.167

e +5.84 ·10−20 p1.109
e

)
. (3.5)

Where the coefficients above are for C-band, while ne and pe are expressed in [cm−3].

3.2.3 Refractive index variation

We neglect in our model the variation of silicon refractive index due to TPA because
it is negligible compared to the contribution due to FCA and temperature [56]. The
effective refractive index is the sum of contributions due to generated free-carriers,
temperature and SPM, namely:

∆ne f f = ∆ne f f ,FCD +∆ne f f ,T +∆ne f f ,Kerr. (3.6)

The FCD effect, ∆ne f f ,FCD, is again modelled with an empirical relation in C-band
[38]:

∆ne f f ,FCD =−Γ(5.4 ·10−22n1.011
e +1.53 ·10−18 p0.838

e ) (3.7)

Thermal dispersion

For what regards thermal dispersion due to self-heating, its derivation is similar
to [41, 56, 126]. The power dissipated by the ring, Pd , is expressed as Pd = Prad +

Pabs, where Prad represents the light lost and radiated in the cladding, and Pabs the
absorption contribution which is converted into heat. The radiated power can be
written as :

Prad = η
2 · (Pbus +Pc · (a+a2 · t2))+Pc(1−arad)(1+ t2 ·a). (3.8)

The first term at the right hand side of eq. (3.8) is associated to the power lost at
the coupler whereas the second term is power lost due to ring bend and therefore
radiated in the cladding with arad = e−αrad ·L/2. The power absorbed in the core, Pabs

is due to TPA, FCA and also waveguide loss α0 [41, 56, 126, 132] and can be written
as:

Pabs = Pc(1−aabs)(1+ t2 ·a), (3.9)



3.2 Static analysis and SRH model for carrier recombination 41

with aabs = e−(α0+∆α(Pc))·L/2. The demonstrations of equations (3.8) and (3.9) are
included in Appendix A. Finally the absorbed power is converted into heat changing
the effective refractive index of silicon through the relation:

∆ne f f ,T = Γ
dnSi

dT
ZT Pabs. (3.10)

dnSi
dT = 1.86 · 10−4 K−1 is the silicon thermo-optic coefficient [41], while ZT , the

thermal impedance of the ring, is obtained from thermal simulation.

Kerr effect

The Kerr effect is modelled as a variation on the effective refractive index called self
phase modulation (SPM):

∆ne f f ,Kerr = Γn2
Pc

Ae f f
, (3.11)

where n2 = 4.4 ·10−18[m2/W ][60, 124] is the Kerr coefficient in silicon.
It is important to highlight that TPA and SPM can be considered as instantaneous
processes when compared to FC recombination and diffusion in silicon. The time
scale of this type of transition can be computed with the uncertainty principle as
|ω −Eg/ℏ|−1 [59, 133]. With Eg = 1.12eV in the C-band we get response times
around 2−10 f s which are completely negligible when compared with FC lifetimes
always larger than 100 ps as measured in our experiments.

3.2.4 SRH model

It is clear from eq. (3.5) and (3.7) that the free carrier density plays a fundamental
role in defining NL effects in silicon. In literature, rate-equations based on recombi-
nation rate such as N

τ
are often employed, where N is the free carrier density and τ a

generic lifetime for the recombination process. This recombination model implicitly
assumes that electron and hole FC densities are equal (i.e., ne = pe = N) and that
the carrier lifetime is a constant value independent on the carrier density and thus
on the pumping power. This assumption is not true for the silicon waveguide case;
in [134] experimental measurement on Si straight waveguides showed that the FC
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dynamics is rather non-linear and dependent on the optical power in the waveguide.
In the same work, the authors demonstrated that the non-linear carrier dynamics can
be well explained in the frame of the rigorous SRH recombination theory [135]. The
findings in [134] can also justify why in previous works on non-linear ring resonators
[55, 41, 56] it was necessary to assume an empirical carrier lifetime depending on
circulating power to explain measured results.
In order to reliably model different ring resonators without having to rely on the pre-
vious assumptions, we derive the free carrier densities through SRH recombination
[58] where traps act as recombination/trapping centers (trap-assisted recombination)
upon the capture/trapping of a hole and an electron.
We indicate with Et the trap energy level inside the energy band gap, and with N f the
bulk trap density per unit of volume in the silicon waveguide. The latter can be linked
to the density of surface traps Ns, referred to waveguide side-walls imperfection,
through the expression[134]:

N f = Ns ·
2(W +h)

W ·h
, (3.12)

which implies that the surface defects are equally distributed all over the surface of
the silicon core in contact with SiO2.
In this contest, defining a total carrier generation rate G, the rates of variation of
excess electron (ne) and hole (pe) densities in the MRR are [135]:

∂ne

∂ t
= G− 1

τn0

(
(n0 +n1 +ne)(ne − pe)

N f
− nen1

ne +no

)
∂ pe

∂ t
= G− 1

τp0

(
(p0 + p1 + pe)(pe −ne)

N f
− pe p1

pe + po

) (3.13)

The right hand side in eq. (3.13) are the recombination rate for electrons (Re)
and holes (Rh) with τn0 = (N f σnvn)

−1,τp0 = (N f σpvp)
−1 representing the shortest

capture time of carriers in the trap when it is not occupied by electrons and holes.
σn,p is the capture cross section, and vn,p the thermal velocity of electrons and
holes equal to 2.3 · 1015 m/s and 1.65 · 1015 m/s respectively [136]. We note here
that the different capture cross section and thermal velocity of electrons and holes
cause a different capture rate in the traps that eventually unbalance electron and
hole densities. Thus the assumption that ne = pe = N fails. We also see that in eq.
(3.13) it is rather difficult to identify a unique carrier lifetime τ; as discussed in the
following we can only define equivalent carrier lifetimes once the rate equations in
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(3.13) are solved and the carrier densities obtained.
n0 and p0 are electron and hole concentration in the absence of traps at equilibrium;
n1 = n0e(Et−ψ f )/kbT and p1 = p0e(ψ f−Et)/kbT depend on the difference between the
Fermi energy level, ψ f , of the silicon bulk (with a possible residual doping level)
and Et .
In steady state (∂ne

∂ t = ∂ pe
∂ t = 0) any thermal or carrier transient is concluded [134] and

eq. (3.13) reduces to two polynomial equations with unknowns ne and pe. Through
a normalisation with respect to p0 [135] and defining the normalised electrons and
holes carrier densities y = pe/p0, x = ne/p0, the equation for holes yields:

y3 + y2 [(2+b+ab)+Neb/(1+b)−Ge(1+ γ
−1)
]
+ . . .

y[(1+b)(1+ab)+Neb/(1+b)−Ge/γ(1+b)(1+a+2/γ)− . . .

−NeGe(1+2b)/γ(1+b)]−Ge
[
(1+b)2(1+a/γ)−Ne(Ge − γ)/γ

2]= 0.

(3.14)

Whereas for electrons:

x3 + x2 [(1+a+2ab)+Ne/(1+b)−Ge(1+ γ
−1)
]
+ . . .

x[a(1+b)(1+ab)+Neab/(1+b)−Ge(1+b)(1+a+2a/γ)− . . .

−NeGe(2+b)/(1+b)]−Ge
[
a(1+b)2(1+a/γ)−Ne(Ge −ab)

]
= 0.

(3.15)

In both eq. (3.15) and (3.14): a = n1/p0, b = p1/p0, Ge = G τn0
p0
, Ne = N f /p0, and

γ = τn0/τp0 are all normalised parameters with respect to the hole carrier density at
equilibrium.
Considering the hole equation, it can be solved through the search of all trigonometric
solutions of a depressed cubic equation with eq. (3.14) expressed in the form
ayy3 + byy2 + cyy+ dy = 0. The solutions yk with k = 0,1,2, are then uniquely
associated to the excess electron density xk through the expression:

xk = yk −
Ne

γ · (yk +1+b)

(
Ge −

γbyk

1+b

)
, (3.16)

which has been obtained from the hole rate equation in (3.13) in steady state. Among
the different solutions, only k = 0 provides a physically sound solution since it
guarantees that the excess electron and hole densities satisfy the condition:

0 < (pk,e −nk,e)/N f < 1, (3.17)



44 Modelling of nonlinear effects in ring resonators

that represents the fraction of occupied traps when we consider donor like trap that
suppose the electron capture cross section to be larger than the hole ones as proved
experimentally around the midgap [55]. For this reason, from now the index k is
dropped as it is always equal to 0.
As a consequence of the different capture cross sections, the electron and hole capture
times, τn0 and τp0, are different [55] resulting in an unbalance between electron and
hole densities. For any normalized generation rate Ge, we may write an equivalent
electron and hole lifetime defined as τn = ne/Ge and τp = pe/Ge. With this method,
the hole carrier lifetime can be explicitly written as:

τp =
τn0

Ge

{
2
√

− p
3

cos
[

1
3

arccos
(

3q
2p

√
− p

3

)
−2πk/3

]
−

by

3ay

}
p =

3aycy −b2
y

3a2
y

q =
2b3

y −9aybycy +27a2
y

27a3
y

(3.18)

and a similar expression is obtained for electron lifetime.
In the case of very high input power, such that we assume Ge → ∞, we get:

τe,∞ = τp,∞ = τ∞ = τn0(1+ γ
−1) (3.19)

Calculation of the total generation rate G

SRH rate equation are clearly dependent on the carrier generation rate G. In steady
state it is the result of SCA (GSCA) [100, 128] and TPA induced carrier generation,
namely:

G =
α0ηSCAPc

ℏω0AAe f f
+

αT PAPc

2ℏω0A
. (3.20)

ηSCA is the SCA efficiency which indicates what fraction of the total linear loss α0

contributes to the defect assisted single photon absorption (SPA) intra-gap states
where we have additional photon absorption; it is usually ηSCA < 0.1. The total SRH
generation rate is then the sum of free carriers generated by SCA [100, 128, 129]
and those from TPA. The factor 2 in the TPA generation rate is due to the absorption
of two photons, whereas SCA generation rate is associated with only one.
Inserting G in eq. (3.15) and (3.14) the excess electron and hole carrier densities ne
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and pe can be computed for any given Pc. This allows the computation of αe f f and
NL phase variation ∆θ as a function of Pbus and Pc. We highlight that now eq. (2.5)
is a complex non-linear equation with unknown Pc:

Pc = Pbus
κ2(1−η2)

|1− t2a(Pc)e jθ(Pc)|2
(3.21)

This equation can be solved numerically in steady state to get the circulating
power for a fixed bus power at any input wavelength λ . From the circulating power,
we then get the effective loss and the transmission coefficient at the through port
self-consistency as summarised in figure 3.3. When bistability occurs, the non-linear
equation can have up to three distinct possible solutions [126] as shown in figure3.1
(b). Experimentally only two cases are observable: one that corresponds to the stable
state obtained by increasing the injected wavelength with respect to a previous stable
state (i.e., wavelength sweep from blue to red), whereas the other solution is found
with the opposite wavelength sweep (i.e., from red to blue) [56, 117, 126].

Excess electron and hole carrier 
densities

𝑃𝑖𝑛, 𝜆𝑖𝑛

SRH 
MODEL

𝑛𝑒 , 𝑝𝑒 → 𝜏𝑛,𝑝 = 𝑛𝑒 , 𝑝𝑒/𝐺

Trap energy level 
𝐸𝑡

Trap density 𝑁𝑓

Propagation losses
𝛼𝑒𝑓𝑓

Refractive index variation
𝑛𝑒𝑓𝑓

Circulating power 𝑃𝑐

TPA

Self-heatingFCA

Generation 
rate G

Power absorbed
𝑃𝑎𝑏𝑠

FCD

Kerr

Fig. 3.3 Summary of the developed self-consistent model for NL effects in silicon MRRs
including SRH recombination to estimate excess electrons and holes densities. The trap
energy level and density are highlighted as the model fitting parameters.

3.3 Distributed steady state formulation

As we will show in the experimental section, the previous model is rather good
in predicting NL effects in MRR with strip waveguides where diffusion of FC is
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negligible. For rib or more complex waveguides geometries, FC tend to diffuse in the
device [137], see Fig. 3.4 (a), causing quantities such as the ring thermal impedance
ZT , FCD, and FCA to be calculated with 2D simulations.

2wings-rib Poly-Si Over SOI1 wing rib SOI2 wing rib SOI 4 wings-rib Poly-Si Over SOI

Free 
carriers

Silicon
𝑆𝑖𝑂2

(a) (b)

Fig. 3.4 (a) Sketch of diffusion process in a rib waveguides: free carriers, generated in the
middle of the waveguide, spread as a result of diffusion. (b) Different geometries waveguides
for MRRs including also composite waveguides with silicon and polysilicon ribs.

In this section we demonstrate that, by simulating with COMSOL the MRR, we
can extract the impact of NL effects in the MRR as a function of the circulating
power for any given geometry such as those shown in Fig. 3.4 (b).
To do so we import the electromagnetic field distribution in the ring cross section
simulated with RSOFT in COMSOL multyphisics semiconductor tool where a drift-
diffusion model is coupled with the thermodynamic model, eq. (2.23). The total set
of coupled equations are summarised below [138]:

∇(ε0εr∇φ(r, t)) =−q(pe(r, t)−ne(r, t)+Nd −Na), (3.22)

∂ pe(r, t)
∂ t

= ∇(Jp(r, t))− (Gcell(r, t)−Rp(r, t)), (3.23)

∂ne(r, t)
∂ t

=−∇(Jn(r, t))− (Gcell(r, t)−Rn(r, t)), (3.24)

Jp(r, t) = σe,p(r, t)∇φ(r, t)+Dp∇pe(r, t), (3.25)

Jn(r, t) = σe,n(r, t)∇φ(r, t)−Dn∇ne(r, t). (3.26)

Where: σe,n(r, t) = q ·ne(r, t)µn, σe,p(r, t) = q · pe(r, t)µp. φ is the potential caused
by FC accumulation, and Gcell(r, t) the local generation rate.
We remind that simulations are performed in the 2D-axisymettric approximation
(see chapter 2.4.1), therefore ne(x,y,z, t), pe(x,y,z, t), and φ(x,y,z, t) are constant
over the z direction. For this reason we focus the analysis only on the cross section
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of the ring and at steady state, i.e., ne(x,y), pe(x,y) φ(x,y). For this preliminary
study we neglect the Kerr and SCA effect whose strength is always lower than FCD,
self-heating and FCA.

Generation rate

In order to compute the generation rate for each cell of the mesh of volume Vsi =

dxdydz we first consider the Maxwell equations:

∇xEEE(r, t) =−∂BBB(r, t)
∂ t

(3.27)

∇xHHH(r, t) =
∂DDD(r, t)

∂ t
(3.28)

where BBB(r, t) = µ0HHH(r, t) and the electrical displacement DDD(r, t) = ε0n2
siEEE(r, t) +

PPPlll(nl)(r, t). Here PPPlll(nl)(r, t) is the local polarization in the material caused by third-
order nonlinear susceptibility tensor χχχ(3). By approximating the latter as a scalar
quantity, PPPlll(nl)(r, t) becomes [117, 139]:

Pl(nl)(x,y,ω) =
3ωε0

4
(χ(3))Eµ |Eµ |2Eµ (3.29)

With Eµ = Eµ(x,y) as defined in eq. (2.15). We remind that χ(3) is generally
complex i.e., χ(3) = χ

(3)
R − jχ(3)

Im . By performing the difference between eq. (3.27)
and (3.28) and following the same approximations done in [117], at steady state
when ∂Eµ

∂ t =
∂Hµ

∂ t = 0 we have:

∂ Iopt/A∗
µ

∂ z
=− j|Aµ(z)|2Aµ(z)Pl(nl)E∗

µ/4P2
n,µ (3.30)

Where the optical power per unit area Iopt is:

Iopt(x,y,ω,z) = Aµ(z) ·A∗
µ(z)

(Eµ ×H∗
µ +E∗

µ ×Hµ) · ẑ
4Pn,µ

(3.31)

where Pn,µ has been defined in eq. (2.17). The power flowing in a given cell of cross
section dx and dy and with section of length dz, is then P(x,y,z) = Ioptdxdy; the
power loss is ∆P(x,y,z) = P(x,y,z)−P(x,y,z+dz) . Thus we multiply eq. (3.30) by
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A∗
µdxdy and using the transformation dz = vgdt, after some calculations we get to:

∂∆P(x,y,z, t)
∂ t

=−2vg|Aµ(z, t)|4γL (3.32)

Where we used the property
(∂Aµ ·A∗

µ )

∂ z = Aµ ·
∂A∗

µ

∂ z +A∗
µ ·

∂Aµ

∂ z , γL is the local absorption
rate to the power [ 1

W ·m ] defined as:

γL(x,y,ω) =
3ωε0|Eµ(x,y,ω)|4χ

(3)
Im dxdy

16P2
n,µ

(3.33)

Since we want to derive an expression for the photons loss associated to free carrier
generation due to TPA, eq. (3.32) must be real; therefore we consider the imaginary
part of χ(3) as written in eq.(3.33) . In order to get the generation rate in the cell
dxdy, we first consider the number of photons Stot(x,y,z, t) related to the power
P(x,y,z, t) in a given cell, namely:

Stot(x,y,z, t) =
P(x,y,z, t)

dz
vgℏω (3.34)

We perform the derivative with respect to time of Stot and substitute eq. 3.32
reminding that the quantity 1

2
∂Stot

∂ t represents the number of photons absorbed due
to TPA, which ultimately results in free carriers generation. The total number of
carriers Ntot,cell in a cell with volume Vsi = dxdydz must then satisfy a rate equation
with Gcell the generation rate in a cell which is equal to

Gcell(x,y,z,ω) =
Pc(z)2βT PAn2

si|Eµ(x,y,ω)|4

ℏω8Z2
0P2

n,µ
. (3.35)

With χ
(3)
Im = 2n2βT PA

3k0Z0
[117] and Pc(z, t) = |Aµ(z, t)|2 . Eq. (3.35) represents the

local generation rate in our model, it can be seen that the integral of Gcell over the
whole area of a rectangular waveguide coincides with the lumped expression of
the generation rate, i.e., Gtot =

1
A
∫

Gcelldxdy =
βT PAP2

c
2ℏωAAe f f

. We highlight that this
generation profile directly follows the electric field distribution in the waveguide
without the need of relaying on Ae f f and the waveguide area A whose definitions
become ambiguous in more complex structures such as rib waveguides.
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Distributed FCD and FCA

By inserting eq. (3.35) in the SRH rate equations, eqs. (3.13), at steady state we
compute ne(x,y) and pe(x,y) over the ring cross section. These FC influence the
silicon refractive index through FCD and self-heating as in the lumped model. We
defined the local variation of losses and refractive index due to FC as ∆αFCA,D(x,y)
and ∆ne f f ,FCD,D(x,y). respectively. To calculate the variation of the complex prop-
agation constant of the waveguide, we start from the complex relative dielectric
constant ∆ε = ∆εr + j∆εi in the medium. The variation of propagation constant of
the guided mode [140, 141] is:

∆βr,i =
ω0
∫ ∫

∞
∆εr,i(x,y) ·Eµ(x,y,ω0)

∗Eµ(x,y,ω0)dxdy
4Pn,µ

(3.36)

By definition all quantities in eq. (3.36) except for ∆εr,i(x,y) refer to the unperturbed
model where the NL effects caused by TPA, FCA and FCD are considered as
perturbation.
The variation of the complex dielectric constant caused by FCD and FCA is:

∆εr,i(x,y) = ε0

[(
nSi +∆nFCD,D(x,y)+ j∆αFC,D(x,y)λ/4π

)2 −n2
si

]
(3.37)

Since we threat the NL effects as perturbation of nSi, it is possible to approximate
∆εr and j∆εi as:

∆εr(x,y)≈ 2ε0nsi∆nFCD,D(x,y)

∆εi(x,y)≈ 2ε0nsi∆αFC,D(x,y)λ/4π
(3.38)

Finally by inserting eq. (3.38) in eq. (3.36) we get, for any given Pc, the total ∆βr,i.
The effective refractive index variation is:

∆ne f f ,FCD(Pc) =
λ

2π
∆βr(Pc), (3.39)

and the modal loss:
∆αFC(Pc) = 2 ·∆βi(Pc). (3.40)

Which are completely equivalent to eq. (3.5) and (3.7) for rectangular waveguide
geometries or more generally in all cases when ∆nFCD,D(x,y) and αFC,D(x,y) are
constant over the entire waveguide cross section.
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Distributed self-heating

What is still missing in the previous formulation is the effect of temperature in
the MRR, we no longer assume the heat source to be uniformly distributed in the
silicon strip cross-section as done in eq. (2.24), since we expect the diffused FCs to
contribute differently to self-heating depending on where, over the ring cross section,
the carriers recombine. The total heat source is [142, 143]:

Q = qJ +qFCA +qSRH , (3.41)

where qJ(x,y) =
|Jn(x,y)|2
σe,n(x,y)

+
|Jp(x,y)|2
σe,p(x,y)

is the Joule effect related to the current densities
Jn and Jp, qFCA(x,y) = αFC,D(x,y)Iopt(x,y) is the thermalisation of free carriers, and
qSRH(x,y) = Re(x,y) · (2ℏω0 −Et)+Rp(x,y) · (Et −Ev) the SRH heat originating
from relaxation of TPA induced FCs to the trap states (with energies Et) from the
conduction (Ec) and to the valence band (Ev). The factor 2ℏω0 is a consequence of
TPA, in other words the energy of FC is slightly larger than the bandgap Eg, in fact it
holds that E2ℏω0 = 1.59eV > Eg,si as it is possible to see in the sketch in figure 3.1.
Performing the thermal simulation we get the temperature profile ∆T (x,y) whose
local impact on the refractive index is computed as ∆nT,D(x,y) =

dnSi
dT ∆T (x,y). By

following the same procedure explained earlier for FCD and FCA, first we compute
the local variation of the real permittivity:

∆εr,T (x,y)≈ 2ε0nsi∆nT,D(x,y). (3.42)

By substituting the latter in eq. (3.36), the effective refractive index variation as a
function of the circulating power Pc and due to self-heating is:

∆ne f f ,T (Pc) =
λ

2π
∆βr,T (Pc) (3.43)

Finally we can calculate equations (3.40), (3.39), and (3.43) from the 2D simulations
as a function of Pc and fit the curves obtained with a polynomial, we then insert these
relations in the lumped model as a replacement of equations (3.5), (3.7), and (3.10)
respectively. An example will be given in the next section
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Model validation

To validate our distributed model we consider the waveguide and ring structure of
[6] where the authors performed steady state measurements on a multimode ring
resonator of radius r = 100 µm and made of a rib waveguide as shown in figure
3.5 (a). We extracted the linear regime parameters, summarised in table 3.1, from
the fitting of the ring transmission at Pbus = −16.5dBm reported in [6] where the
fundamental mode was considered.

(a) (b)

𝑆𝑖𝑂2

𝑆𝑖

𝑆𝑖

𝐴𝑖𝑟

1000

620

231

2060

500

Fig. 3.5 (a) Dimensions (in nm) of the rib waveguide structure from [6]. (b) Non-uniform
mesh built in COMSOL for the simulation of the ring.

Table 3.1 Parameters of the silicon MRR analysed in [6] with radius r = 100 µm. The
waveguide geometries labels are defined in fig. 3.8 (c).

Parameter Value Unit
L 628 µm

W1 2.06 µm
h1 500 nm
h2 269 nm
κ2 0.0038 −
η2 0 −
α0 0.38 dB/cm
ng 3.74 −

αrad 0 dB/cm
ne f f ,0 3.25 −
βT PA 0.5 cm/GW

By importing the electromagnetic field distribution in MATLAB coupled with
COMSOL, we are able to define Gcell(x,y) in COMSOL over all the waveguide
cross section as shown in figure 3.6 (a). Here we used a non-linear mesh with higher
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density near the core of the rib, see figure 3.6 (b). Figures 3.6 (b) and (c) show

(a) Generation rate Gcell (b) ne(x,y)

(c) pe(x,y) (d) Heat source Qtot

Fig. 3.6 (a) Generation rate Gcell in the rib waveguide considered in [6]. (b) and (c) are the
electrons and holes FC solutions of the drift-diffusion model in COMSOL. (d) Heat source
in the rib waveguide as defined in eq. (3.41). In all cases the circulating power was fixed at
Pc = 100mW with a trap density N f = 2 ·1015 cm−3.

the simulation result assuming a circulating power in the ring of 100mW and a
trap denisty for the SRH model equal to N f = 2 ·1015 cm−3. We note how carriers
diffuse towards the wings, proving that this type of waveguide cannot be treated
with a lumped model, rather a distributed model is needed. In figure 3.6 (c) the
heat source, eq. (3.41), is shown as well. It is clear that it follows the generation
rate since qFCA is order of magnitudes larger than q j and qSRH whose impact is
therefore completely negligible. An uniform trap density distribution N f was then
used as a fitting parameter to reproduce the resonant wavelength shift and variation
of transmission at resonance as measured in [6] whereas the trap energy fixed around
the midgap, i.e., Et = 0.63eV . Figures 3.7 (a), (b) and (c) show the relations between
ne f f ,FCD, ne f f ,T , and αFC and the circulating power. These quantities have been
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obtained by using the previously introduced method, eqs. (3.39), (3.43), and (3.40)
respectively, for three different trap densities.
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Fig. 3.7 (a) Refractive index variation due to FCD and (b) self-heating, and (c)free carriers
losses versus circulating power in the ring for different trap densities. (d) Self-consistent
circulating power obtained with the lumped model at steady state versus bus power for
different trap densities using the expressions in (a), (b), and (c).

We can then include in the previously developed lumped model all the informa-
tion about the impact of NL effects in the ring by fitting the refractive index variation
due to FCD, self-heating and NL losses with ad-hoc polynomial expression of the
type y(Pc) = a3P3

c + a2P2
c + a1Pc. For example in the case N f = 2 · 1015 cm−3 we

have:

αFC(Pc) = 12.3P3
c +3.5P2

c −0.12Pc;

∆ne f f ,FCD(Pc) =−(1.9 ·10−3P3
c +1.7 ·10−3P2

c +1.3 ·10−4Pc);

∆ne f f ,T (Pc) = 3 ·10−2P3
c −1.3 ·10−3P2

c +4.1 ·10−4Pc.

(3.44)
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Simulation results are shown in figure 3.8 (a) and (b) where we demonstrate that
with our lumped model, fed with expressions taking into account carrier diffusion,
we are able to follow well the shift of the resonant wavelength and qualitatively the
transmission degradation at resonance due to NL effects. The low power spectrum
form which we extracted the model parameters is shown in figure 3.8 (c), whereas
the spectrum obtained with our model is superimposed to some of the curves (dashed
black lines) extracted from [6] for the same input powers. We attribute the discrep-
ancy between our results and the experiment at high bus power to self-oscillations in
the ring causing the value of the transmission coefficient to oscillate in time as we
will see also experimentally in chapter 4.4.
We also show that the trap density is a critical parameter in defining the FCs physics
inside the MRR.

3.4 Time domain formulation

In the previous section, the equations regulating TPA, FCA, and thermal effects were
investigated. In particular equations (3.4), (3.5), (3.7), and (3.10) are valid also in
the case of an input power variable in time Pbus(t); in this case the circulating power
Pc(t), ne(t), pe(t), and the temperature variation ∆T (t) are now time dependent as a
consequence of free carrier recombination in time and thermal time constants [88].
In the following, we develop the general lumped time domain formulation in the
case of a pump-probe experiment. In this case a pump pulse is injected: the probe
can be either a CW signal or a another single pulse. Additional terms related to the
interaction between probe and pump fields introduce further NL effects in the ring
that play an important role during the pulse duration. The self-oscillation regime
sometimes observed with CW input, represents a particular case of this model that
will be discussed as well.

3.4.1 Pump-probe differential equations

Generally in a pump-probe experiment, whose results are shown in chapter 4.5, we
have two input signals set at two different cold resonant wavelengths of the ring, λ0,1

and λ0,2 corresponding to the pump and probe field respectively. The high power
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Fig. 3.8 (a) Resonant wavelength shift ∆λCW and variation of the transmission coefficient
at resonance (b) as a function of the continuous wave input bus power before the ring Pbus,
black markers represent data extracted from figure 2 (a) in [6]. (c) Low power transmission
spectrum extracted from [6] fitted with ur model in linear regime. (d) Model spectrum
superimposed to some of the curves (dashed black lines) extracted from the experimental
spectrum in figure 2 (a) in [6], the legend is Pbus .

pump optical field excites NL effects resulting from strong free carriers generation,
whereas the probe field is used to monitor the FC effects and get information on the
ring dynamics. Therefore there are two circulating fields in the ring: Ering,1(t) =
Ec,1(t) · e(− j·ω0,1t), and Ering,2(t) = Ec,2(t) · e(− j·ω0,2t). In both cases subscripts 1 and
2 refer to the pump and probe cold resonances respectively. The coupling coefficient
κ (and the transmission coefficient as well t) and Γ may be different in the two cases
since they are wavelength dependent; this is especially true in high FSR rings such
as the Si/poly-Si one where FSR ≈ 40nm. The differential equations of the fields
inside the ring can be obtained through the inverse Fourier transform of eq. (2.5) by
performing the Taylor expansion of e j·θ1,2 around the phase-variation per round trip
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θ01,2 , see eq. (2.6); since the reference pulsation ω01,2 corresponds to the cold ring

resonance, we have that e j·θ01,2 = 1. We then get the equations for Ec,1(t) :

∂Ec,1

∂ t
=−(

κ1 ·
√

1−η2

t2
1 a1(t)

Ebus,1 +Ec,1(t)(
1

t2
1 a1(t)

−1)+

j · (L
c

∆ωr,1(t)+ τg1δω1) ·Ec,1(t))/τg,1,

(3.45)

and similarly for Ec,2(t)

∂Ec,2

∂ t
=−(

κ2 ·
√

1−η2

t2
2 a2(t)

Ebus,2 +Ec,2(t)(
1

t2
2 a2(t)

−1)+

j · (L
c

∆ωr,2(t)+ τg,2δω2) ·Ec,2(t))/τg,2.

(3.46)

With Pbus1,2 = |Ebus1,2|2,Pc1,2 = |Ec1,2|2, ∆ωr1,2 = ω01,2 ·∆ne f f1,2 , and τg1,2 = L ·
ng1,2/c. δω1,2 is the pump and probe detuning with respect to the cold resonances. In
our case it is δω1 ≈ 0 since the pump is tuned at the ring cold resonance to generate
highest possible circulating field for carrier generation; whereas the probe can be
detuned around λ0,2. In eq. (3.45) and (3.46), the round trip loss a1,2 and variation
of resonance due to NL ∆ωr1,2 are now time dependent, because the carrier densities
in eq. (3.13) and temperature vary with time. We note that, since Γ and Ae f f can be
different for the two resonances, we will have ∆ωr,1 ̸= ∆ωr,2.
The temperature dynamic can be written by using an approximated version the heat
equation defined in eq. (2.23) [123, 126], by assuming that heat is uniform inside
the waveguide, that is:

∂∆Ti(t)
∂ t

=−∆Ti(t)
τth,i

+
Pabs,1(t)+Pabs,2(t)

Ci
, (3.47)

for pump and probe fields with i = 0,1,2,3 referring to the four nodes equivalent
thermal circuit of the ring defined in the previous chapter.
Here Pabs1,2 has the same expression of eq. (3.9). At steady state, i.e., ∂∆Ti(t)

∂ t = 0, eq.
(3.47) reduces to eq. (3.9). The total temperature increase in the silicon core is the
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sum of the four nodes contributions: ∆Ttot(t) = ∑
n
i ∆Ti(t). The refractive index due

to self-heating is directly computed as:

∆ne f f ,T,1,2 = Γ1,2
dnSi

dT
∆Ttot . (3.48)

The dynamic response of the resonator can be obtained by solving the system of
ordinary differential equations formed by eq. (3.13), (3.45), (3.46), and (3.47).

3.4.2 Pump-probe effective losses, generation rate and XPM

The generation rate characteristic of steady state as shown in eq. (3.20) is generally
valid in the time domain description. However in a pump-probe experiment the
presence of two different fields gives additional contributions to carrier generation
G(t) and field losses αe f f ,1/2(t). In the case of NL losses, XTPA causes a pump
(probe) photon to be absorbed together with another probe (pump) photon in the
TPA process. For the pump field we have:

αe f f ,1 = α0 +
βT PA

Ae f f ,1
Pc,1 +2 · βT PA

Ae f f ,av
Pc,2 +Γ1∆αFCA, (3.49)

while for the probe:

αe f f ,2 = α0 +
βT PA

Ae f f ,2
Pc,2 +2 · βT PA

Ae f f ,av
Pc,1 +Γ2∆αFCA. (3.50)

Where Ae f f ,av =
√

Ae f f ,1Ae f f ,2. The term 2 · βT PA
Ae f f ,av

Pc1,2 is related to XTPA, here the

factor 2 originates from cross-term contribution of the nonlinear polarization χ3

causing the mixing of the pump and probe fields (which are set at two different ω)
to exhibit twice total components than in the case of SPM.[59, 130].
For the losses related to the pump field propagation, the effect of XTPA caused by
the probe is completely negligible with respect to the TPA by the pump since during
the pump propagation (i.e., when the pump pulse is On) the probe power is very low
(Pbus < −20dBm). However in the case of probe losses, see eq. (3.50), the XTPA
contribution by the pump causes losses that are comparable to FC losses. For this
reason in a pump-probe experiment, to retrieve the carrier dynamics, we have to
analyse the probe signal after the pump pulse has ended so that eq. (3.50) reduces to
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(3.2).
The losses due to XTPA causes additional free carrier generation, neglecting SCA
due to the probe, eq. (3.20) now becomes:

G = GSCA,1 +
βT PAP2

c,1

2ℏω0,1AAe f f ,1
+

βT PAP2
c,2

2ℏω0,2AAe f f ,2
+

βT PAPc,1Pc,2

ℏω0,1AAe f f ,av
+

βT PAPc,1Pc,2

ℏω0,2AAe f f ,av
.

(3.51)

The first three terms are the SCA and TPA contributions from pump and probe which

are completely analogous to those defined in eq. (3.20). Whereas
βT PAPc1,2 Pc2,1
ℏω01,2AAe f f ,av

is the

generation term related to XTPA free carriers. Here the factor 2 at denominator is
missing since in XTPA only one probe (pump) photon is absorbed instead of two
photons, as in TPA, since the other photon is provided by the pump (probe). The
third term in eq. (3.51) is completely negligible with respect to the pump case for
what said previously about the probe bus power. Moreover the XTPA cross terms
gives an important contribution only during the pump propagation, when the high
number of generated carriers will greatly increase NL losses. Lastly the pump and
probe influence each other also in the so called cross-phase modulation (XPM) effect
that adds up to the SPM effect defined in eq. (3.11):

∆ne f f ,Kerr,1,2 = Γ1,2n2

(
Pc,1,2

Ae f f ,1,2
+2

Pc,2,1

Ae f f ,av

)
, (3.52)

The second term represents the effect of the probe (pump) field on the other pump
(probe), and includes an additional factor 2 for the same reason as in the case of
XT PA.
We conclude this section by noting that the transmission at the through port given in
eq. (2.3) is valid only in steady state. Tthr(t) is a function of time and is obtained
by the sum the fraction of the input bus power not coupled with the ring and the
circulating power escaping from the ring, namely:

Tthr,1(t) =
∣∣∣√Pbus,1t1 +Ec,1(t)κ

√
1−η2a1(t)

∣∣∣2 /Pbus,1 (3.53)

We neglect here the short delay, τg between bus power and probe circulating power
in one round trip since it is much smaller than any carrier recombination lifetime: for
example when ng = 3.45 we have τg = 1.12 ps which is negligible when compared
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to free carrier lifetimes of the order of ns as measured in this thesis in the case of
silicon MRRs.

Self-oscillation

In a pump-probe experiment the self-heating effect is usually negligible with respect
to FCD due to the small pump pulses energies (µJ). However the thermal dynamics
is relevant when the ring enter in self-oscillation. Here the output power of the
ring suffers periodic oscillations with CW injection; this instability is caused by
the interplay between the temperature increase and free carrier generation and
recombination [123, 126] as we will show in chapter 4.5. Such scenario represents a
simplified case of the previous theory where only one circulating field related to a
constant bus power is considered, for example assuming to have Pbus,1 constant with
time and Pbus,2,Pc,2,Pabs,2 are all zero.



Chapter 4

Characterization of microring
resonators

4.1 Devices under tests

In this thesis we consider three types of SOI MRRs labelled as R1, R2 and R3 whose
layout is shown in figure 4.1 (a), (b), (c) and (d). We highlight that the racetrack
resonator R1 has been fabricated in a different foundry than the R2 and R3. In the
racetrack resonator R1, light is coupled vertically through surface grating coupler
(SGC), whereas in the cases of rings R2 and R3 an edge coupling technique is
adopted with SSCs used to optimise the coupling efficiency between the field and
small waveguide cross section in the chip [32]. Polarization controllers (PCs) have
been used to accurately select the polarization of the incident light on both SGCs
and SSCs, since these have been designed to work only for TE polarization.
The main characteristics of these rings are summarised in table 4.1 whose electric
field distribution of the bent waveguide is shown in figure 4.1 (e).

Table 4.1 Dimension of MRRs analysed in this thesis.

Parameter Si racetrack R1 Si ring R2 Si/poly-Si Ring R3 Unit
L 80 31.4 12.6 µm
W 450 580 WSi =Wpoly−Si = 400 nm
h 215 107 hSi = 115, hpoly−Si = 125 nm

In R1 case, the bending sections, see fig. 2.2, have a radius of 5µm, Ld = 19 µm,
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Fig. 4.1 (a) Layout of the racetrack resonator R1 and (b) zoom in the bus-ring coupling region
and (c) and (d) for MRRs R2 and R3. (e) Electric field distributions in the cross sections of
the three resonators considered in this thesis.

and Lc = 5 µm. Lastly, R3 structure is based on SISCAP platform [107] where the
ring waveguide consists in a rectangular undoped polysilicon core on top of a Si
core. In poly-Si, the defects within the crystalline grains act as recombination centers
for free carriers, dramatically decreasing the free carriers lifetimes with consequent
reduced impact of FCA and increase of switching time when the MRR is employed
as an all optical switch [108]. However polysilicon has generally larger linear losses
than silicon due to the defect state absorption caused by the high number of defects
associated to the grain boundaries. In this contest, the grain size plays a fundamental
role in determining the material properties [96, 97, 109–111]. In fact the carrier
electrical mobility, trap density, and thermal conductivity [112] are dependent on
the grain size and so on the deposition technique [113, 114]. What makes this type
of ring interesting is that the field propagating in the structure is almost equally
confined in both cores (at λ = 1579.1nm the optical confinement factors in silicon
and polysilicon are ΓSi = 0.46 and Γpoly = 0.51). As a result the total linear and
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NL losses affecting the circulating field in the ring will be the weighted sum of the
silicon and polysilicon contributes by the respective confinement factors, whereas
the free carriers lifetime will be different in the two materials due to the faster recom-
bination in polysilicon. Moreover the total height of the waveguide equal to 240nm
makes it possible to reach ring radii lower than silicon, in fact for ring R3 is r = 2 µm.

4.1.1 Thermal impedance

In order to reproduce the experimental results, we simulated resonators R1 and
R2 on COMSOL to retrieve the thermal impedance that accounts for self-heating
as explained in section 2.3. The geometrical parameters defined in section 2.3
associated to the distances between the different materials in resonators R1 and R2
are summarised in table 4.2.

Table 4.2 Si and SiO2 layers specifications for resonators R1 and R2.

Parameter Si racetrack R1 Si ring R2 Unit
Rsub 500 500 µm
Hsub 710 565 µm
HSiO2 3.6 14 µm

DSi/SiO2 1.9 8.6 µm

While the simulation results are shown in figure 4.2. We notice that, for the same
length, racetrack R1 has always a lower ZT than ring R2 due to the distance between
the substrate and Si core being lower in R1 case.
Finally, the set of thermal time constants and thermal impedances introduced in
section 2.3 for the characterization of the MRRs in time domain are summarised in
table 4.3, here the capacitance is computed by inverting eq. (2.26). The minimum
number of nodes required to have good fitting with the Foster equivalent circuit is 4
for both resonators R1 and R2. The significant difference between the time constants
of R1 and R2 is associated again with the distance between the core and the substrate,
see table 4.2 and to resonator R1 being more than twice longer than ring R2 making
heat dissipation easier.
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Fig. 4.2 Thermal impedance of resonators R1 and R2 as a function of the total resonator
length.

Table 4.3 Thermal time constants and impedance for each of the 4 nodes of the Foster
equivalent circuit of resonators R1 and R2.

time constant Si racetrack R1 Unit Si ring R2 Unit
τth,1 14.7 ns 1.15 µs
τth,2 130.8 ns 1.15 µs
τth,3 891.4 ns 18 µs
τth,4 5 µs 91 µs
ZT,1 538 Ω 3.4 kΩ

ZT,2 1.2 kΩ 5.5 kΩ

ZT,3 1.1 kΩ 4.1 kΩ

ZT,4 2.2 kΩ 5.8 kΩ

4.2 Experimental setup

In this section we validate our model by comparing the simulation results with
measurements of transmission spectra of different resonators. Then measurements
on ring R3 are introduced together with a method for the extraction of the carrier
lifetime in ring resonators.
A scheme of the experimental setup is shown in Fig. 4.3 for continuous wave and
pump-probe characterization of the MRRs.
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Fig. 4.3 Setup implemented in CW and pump-probe MRR measurement. We remind that
in the case of the racetrack resonator R1 the input power is sent only at the through port of
the ring, see Fig. 2.2. The optical coupling with the DUT is done by vertical coupling for
resonator R1, and by edge coupling for rings R2 and R3. Red stars indicate the instruments
used for steady state measurements. A sketch of the basic principle of the pump-probe
measurement is displayed in the inset: the pump wavelength is kept constant at one ring
resonance λ0,pump and the probe wavelength λprobe varied around an another resonance
λ0,probe.

Steady state setup

To measure the ring transmission coefficients in both linear and non-linear regime
in steady state, the power is injected in the bus waveguide from the tunable laser
labelled as TUN 1 (Agilent 81980A ) amplified with an Erbium Doped Fiber Am-
plifier (EDFA) . In this way it is possible to reach powers entering in the ring as
high as 7dBm , the residual Amplified Spontaneous Emission (ASE) is minimized
by an optical filter. Then by sweeping the tunable laser wavelength from blue to
red wavelengths around one selected resonant wavelength of the ring λ0,R1/R2, we
get the transmission coefficient at the through port measured as the ratio between
the power in the bus waveguide and the power at the through port of the ring by an
optical power meter (PM). The I/O fiber-chip alignment is achieved by means of a 6
degree mechanical stage positioning system with a precision of ±0.06µm. Lastly
the chip is positioned on top of a Peltier cell whose temperature is kept fixed at
25◦ by using a Thermo Electric Cooler (TEC) controller with an accuracy of ±0.05K.

To detect self-oscillation in the output power we use an optical receiver and an
oscilloscope with bandwidth (BW) 1.1GHz and 300MHz respectively.
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Pump and probe setup

In order to perform a pump-probe experiment two different CW tunable lasers, a
probe (TUN1) and a pump (TUN2: N7714A Agilent Multiport) must be usually
employed [123, 124, 144]; the pump-probe wavelengths are positioned on adjacent
ring resonances separated by one FSR as shown in the inset of Fig.4.3, i.e., λ0,pump

and λ0,probe. The high power pump CW signal is first modulated by a MZI (extinction
ratio ≈ 27dB) and subsequently amplified by an EDFA in order to achieve high
peak power pulses. A waveform generator (Anritsu WFG BW = 40GHz ) makes it
possible to have pump pulses from the MZI with period as small as 100 ps, while the
CW probe power in the bus is kept below −20dBm, in order to avoid any NL effect
and self-heating due to the probe. Furthermore, the pump repetition rate (4kHz) is
by design much larger than the pump pulse so that we avoid any thermal effects.
Filter1 is an optical grating filter which is centered at the pump wavelength and it
is used in order to remove the amplified spontaneous emission by the EDFA. The
pump is then fixed at λ0,pump and the probe wavelength (λprobe) varied around the
resonant wavelength (λ0,probe). After TPA and FCA partially absorb the pump pulse
and generate free electrons and holes, the CW probe monitors the nonlinear response
of the ring over time for any wavelength. An avalanche photodiode (APD Lab
Buddy, BW = 7GHz) coupled with a fast oscilloscope (Agilent Infinium 83484A
BW = 50GHz) are used to detect the weak probe signal collected at the output of
the resonator with the residual pump pulses filtered out by Filter2.

4.3 Linear regime parameters

To understand NL effects and precisely setting a pump-probe experiment, we need
to perform a preliminary study of the MRRs in linear regimes. In the next three
sections the low input power (LP) spectra of all three resonators considered in this
thesis are characterised. Since the power in the racetrack resonator R1 is injected
into the input port, and the resonator exhibits very similar coupling coefficients for
both upper and lower waveguides (i.e., κ1 = κ2), the ring response is measured only
at the through port, see fig. 2.2, making the steady state characterisation procedure
faster.
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Racetrack resonator R1

Figure 4.4 shows the low power transmission spectrum at the through port in the case
of the racetrack resonator R1 for two adjacent resonances, λ0 = 1540nm and λ0 =

1547nm . Since we have no NL effects, we can fit the experimental measurements
with eq. (2.3),(2.6) to get the coupling coefficient κ and coupling losses η2. The
linear losses in the resonator are estimated by the foundry, of about α0 = 2dB/cm,
whereas the group index is calculated by simulating the bent waveguide on Photon
Design.
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Fig. 4.4 Experimental and fitted linear transmission spectra at the through port of the racetrack
resonator R1 at two adjacent resonances of about 1540nm (a) and 1547nm (b).

Coupling losses do not depend on wavelength, but are caused by the bus waveg-
uide and resonator distance [99], therefore we fix η2 = 0.0047 for both resonances.
The fitting gives κ2

1540nm = 0.0668 and κ2
1547nm = 0.0811 associated to quality fac-

tors Q1540nm = 9738 and Q1547nm = 8378. We see that the dispersion causes the
ring quality factor to naturally reduce with increasing wavelength. Therefore, in the
pump-probe experiments, the pump is always placed at the lower wavelength reso-
nance, this allows an higher generation of free carriers in the MRR as a consequence
of the superior circulating power build-up .

Ring resonator R2

We repeated the same procedure for rings R2, however the coupling coefficients of the
upper and lower arms are different due to deviations of the bus-ring distances from
the nominal value of 250nm. This is clearly seen in figure 4.5 where we recorded
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the ring transmission coefficients at both Port1 and Port2. Here eqs. (2.11),(2.12)
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Fig. 4.5 Experimental (blue) and fitted (red) linear transmission spectrum of ring R2 (a) and
(b) at port1, (c) and (d) at port2.

have been used to fit the experiment. All the linear parameters for resonators R1 and
R2 are summarised in table 4.4. This ring has a Quality factor at the pump resonance
equal to Q1533 = 9900.

Table 4.4 Model parameters extracted from the transmission spectra of resonators R1 and
R2 at low input power and by simulation of the resonator bent waveguide with an the
electromagnetic mode solver (Photon Design).

Parameter R1 Pump R1 Probe R2 Pump R2 Probe Unit Source
λ0 1540.3 1547.4 1533.7 1555.8 nm Fitting of Tthr(λ )

κ2 0.066 0.081 κ1 = 0.0172, κ2 = 0.021 κ1 = 0.0175, κ2 = 0.02068 - Fitting of Tthr(λ )

η2 0.0047 0.002 - Fitting of Tthr(λ )
α0 2 1.02 dB/cm Foundry specification
ng 4.26 3.45 3.42 - Electromagnetic mode solver.

αrad < 0.01 1.73 3.8 dB/cm Electromagnetic mode solver.
ne f f ,0 2.34 2.33 1.95 1.93 - Electromagnetic mode solver.

Γ 1 0.69 0.67 - eq. (2.18)
Ae f f 0.075 0.104 0.109 µm2 eq. (2.20)
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Ring resonator R3

The linear regime characterisation of Si/poly-Si ring is shown in in fig. 4.6, with the
ring cross-section displayed in the inset of fig. 4.6 (b). As previously explained, the
total linear loss in the ring is written as the combination of the silicon and polysilicon
waveguide contributions weighted by the confinement factors ΓSi and Γpoly. For the
optical simulation we assumed the polysilicon refractive index to be the same of
silicon since, at 1.5 µm, the difference between c-Si and undoped poly-Si is marginal
(< 3% [110, 145]).
Considering that the distance between the bus and ring waveguides is the same for
ring R2 and R3 (250nm) and the two resonators are placed on the same chip, we
assume R3 coupling losses to be approximately the same of ring R2, i.e., η2 = 0.002.
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Fig. 4.6 Experimental (blue) and fitted (red) linear transmission spectrum of ring R3 (a) and
(b) at port1, (c) and (d) at port2.
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Table 4.5 Model parameters extracted from the transmission spectra of resonators R3 at low
input power and by simulation of the resonator bent waveguide with an the electromagnetic
mode solver (Photon Design).

Parameter R3 Pump R3 Probe Unit Source
Silicon Polysilicon Silicon Polysilicon

λ0 1534.1 1579.1 nm Fitting of Tthr(λ )

κ2 κ1 = 0.098, κ2 = 0.081 κ1 = 0.164, κ2 = 0.127 - Fitting of Tthr(λ )

η2 0.002 - Fitting of Tthr(λ )
α0 1.02 8 1.02 8 dB/cm Foundry specification
ng 4.2 4 − Electromagnetic mode solver

αrad 5.44 16.63 dB/cm Electromagnetic mode solver.
ne f f ,0 2.31 2.26 - Electromagnetic mode solver.

Γ 0.50 0.50 0.46 0.51 - eq. (2.18)
Ae f f 0.140 0.165 0.177 0.159 µm2 eq. (2.20)

Figure 4.6 shows the measured and fitted spectrum for two adjacent resonances
for ring R3, with the fitting parameters summarised in table 4.5. We note that in all
the cases the spectrum present oscillations. Back reflection between the fiber tip and
input waveguide cannot be ascribed as cause of these oscillations since we are using
fiber lens with anti-reflection (AR) coating. In fact these oscillation are not present
in the case of ring R2 where alignment conditions are essentially the same as for
R3. We believe they originate from contra directional coupling of the propagating
field inside the ring cavity caused by spurious reflections due to the grain boundaries,
which we can associate with an equivalent higher surface roughness of the material
[146]. This effect has also been observed in other studies involving polysilicon ring
resonators [147]. For even larger values of surface induced reflection inside the
ring, we have the splitting of the resonant wavelength, that we measured in other
Si/poly-Si rings not reported here.

SRH fitting parameters

To reproduce the experimental results of next section, we obtained the SRH model
parameters quantifying the capture dynamics of carriers in the traps by fitting steady
state measurements and cross checking the results with pump-probe experiment
(see section 4.6). In order to decrease the number of unknowns, we consider donor
type traps with non degenerate energy levels [134] which are usually assumed to be
close to the middle of the band gap [126, 132, 134, 135]; as a result we vary Et from
0.6eV to 0.7eV . The electron capture cross section is a function of the energy of the



70 Characterization of microring resonators

traps (i.e., σn(Et)), we extrapolate this function for energies above the mid-gap from
measurements reported in [55] as shown in fig. 4.7.
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Fig. 4.7 Electron capture cross section as a function of trap energy level extracted from [55].

As reported in the literature [55, 134], it is not possible to measure both the
electron and hole capture cross sections when the trap energy level is far from the
mid-gap, therefore we suppose γ = 0.05 [135] which was estimated from the ratio
of measured cross-sections when Et is at mid-gap [55]. As a result once Et is fixed,
σn(Et) and σp(Et) are uniquely defined since γ = τn0/τp0 =

vpσp
vnσn

. The residual
doping of silicon is set to Na = 1015 cm−3 following the technology guidelines by
the foundry in the case of ring R2 and corresponding to ψ f ≈ 0.23eV . This value
has also been used for the resonator R1 due to the lack of data about residual doping.
With the previous assumptions the total number of fitting parameters is reduced to
two: the trap energy level Et and trap density N f . In the next chapter we validate the
model by considering experimental measurements conducted on resonators R1 and
R2.
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4.4 Steady state measurements in nonlinear regime

In this section we characterize resonators R1 and R2 in steady state, we focus on
the resonances referred as pump resonances in table 4.4 which are associated to FC
generations.

4.4.1 Racetrack resonator R1

The measured and simulated transmission spectra are shown in fig.4.8 (a) and 4.8 (b)
for different bus input powers. Here, the black curve corresponds the linear response
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Fig. 4.8 Transmission coefficients at different input bus power measured (a) and simulated
(b) by sweeping the input wavelength from the blue to red side of the resonant wavelength in
the case of ractrack resonator R1. The simulated spectrum was obtained with Et = 0.65eV
and N f = 7.9 · 1015cm−3. (c) Resonant wavelength shift ∆λCW (top) and variation of the
transmission coefficient at resonance (bottom) as a function of the CW input bus power.

of the ring obtained with a low input power. For increasing Pbus, the circulating
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power increases leading to higher propagation loss and variation of silicon refractive
index. These cause first a slight blue shift of the resonant wavelength due to FC
effect being dominant over the temperature rise, then a significant red shift caused
by self-heating. The parameters we used to fit the experiment with our model are the
variation of the ring resonant wavelength (∆λCW = λres −λ0) and the transmission
coefficients at the through port at resonance (Tthr,res,CW ) as reported in Fig. 4.8
(c) and extracted from the measured transmissions spectra in fig.4.8 (a) and 4.8c
(b). The continuous line in fig. 4.8 (c) is the simulation result obtained with
Et = 0.65eV and N f = 7.9 · 1015cm−3. We set ηSCA,R1 = 0 since we do not have
this type of information from the foundry, while βT PA,R1 = 0.8cm/GW , i.e. the
bulk silicon TPA coefficient. Using eq. (3.12) the calculated surface trap density
is Ns = 1.82 · 1011 cm−2 that is in agreement with experimental measurements on
Si/SiO2 interfaces [55, 148]. Therefore the trap density and trap energy level play an
important role in defining the carriers dynamics which determines the density of free
carriers and hence the shift of the resonant wavelength and the degradation of the
transmission coefficient, as we reported in [58]. Nonetheless we clearly see that the
model can reproduce well the measured results with the only difference related to the
transmission spectrum in fig. 4.8 (a) between ∆λCW,res = 0 and ∆λCW,res = 0.2nm.
Such discrepancy is due to the self-oscillation of the output power at through port
that are observed when the bus power is high enough and the input field wavelength
close to the ring cold resonance as we will discuss later.
Based the on parameters extracted from the experiment, we have calculated with
our model the FC lifetimes, FC densities and corresponding NL loss and effective
refractive index change. The simulated free carrier lifetimes, calculated in chapter
3.2.3 as τp = pe/Ge and τn = ne/Ge, are shown in fig. 4.9 (a), we note that at Pc >

20mW which corresponds to a Pbus = 2.6dBm, the electron and hole FC lifetimes
are very close the saturated equivalent carrier lifetime which is equal to τ∞ = 59ns
as calculated with eq. (3.19). At this power (see for example figure 4.9 (b) ) free
electron are almost equal to free holes, i.e., equal to ≈ 1 ·1017cm−3. This value and
the τ∞ introduced before are in accord to what obtained from fitting of dynamic
measurements for a similar ring resonator structure reported in [132] which confirms
our procedure. Fig. 4.9 (b) shows the contribution to the effective losses of linear
losses (dotted red line), TPA losses (black dotted line) and total losses including
also FCA (blue curve). We note how TPA losses are completely negligible with
respect to FCA for this particular resonator. Lastly in fig. 4.9 (c) we summarise
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Fig. 4.9 (a) Free carrier lifetime and free carrier densities (b) of holes and electrons at
resonance. (b) Effective losses at resonance versus the circulating power in the ring. (c)
Contributions to the effective refractive index change of free carriers and temperature with
FC contribution displayed with reverse sign.

the contributions of free-carriers and temperature due to self-heating to the overall
refractive index shift in the silicon waveguide. The FC component is plotted with
reverse sign in order to compare it with the temperature contribution. For circulating
power below Pc < 30mW (Pbus ≈ 3dBm), the FC generation has a larger impact than
self-heating casuing a blue shift of the resonance that can be observed in the resonant
wavelength shift in figure 4.8 (c).

4.4.2 Ring resonator R2

In the case of ring R2, the foundry also provided power loss measurements on rectan-
gular straight waveguides with same dimension as ring R2 waveguide, we have used
these data to extrapolate values for ηSCA and βT PA. Fitting of these data revealed
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ηSCA,R2 = 0.04 and βT PA,R2 = 1.5cm/GW as shown in Appendix B. With these pa-
rameters, the reproduction of the experimental transmission and resonant wavelength
shift at resonance was possible with Et = 0.63eV and N f = 8.5 ·1016cm−3 associated
to Ns = 3.8 ·1011cm−2; results are shown in figure 4.10.
One main difference in the impact of NL effects on the ring response between this
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Fig. 4.10 Transmission coefficients at different input bus power measured (a) and simulated
(b) by sweeping the input wavelength from the blue to red side of the resonant wavelength
in the case of ring resonator R2 at Port1. The simulated spectrum was obtained with
Et = 0.63eV and N f = 8.5 · 1016cm−3. (c) Resonant wavelength shift ∆λCW (top) and
variation of the transmission coefficient at resonance (bottom) as a function of the CW input
bus power for both Port1 and Port2.

ring and resonator R1 is that here the ring becomes unstable (see section 4.4) for
input power as low as 1.7dBm (Pbus = 1.5mW ). The reason is that the circulating
power in this ring is more than twice the one in racetrack R1. In fact, in the case of
an input power of Pbus = 1mW at resonance, we have that Pc,R1,res = 12mW whereas
for ring R2 it is Pc,R2,res = 37mW . Also in the case of ring R2 we observe a good
match between the theory and experiment.
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It is important to remark that in order to reproduce the steady state measurements,
and also NL power loss measurements on straight waveguides reported in the ap-
pendix, we increased the TPA coefficient up to almost double the value used in the
case of racetrack R1, i.e., the bulk TPA coefficient. We associate this discrepancy to
the very small area of the silicon waveguide, which results in enhanced NL effects in
silicon with respect to the bulk case [100, 149, 150], in fact R1 height is more than
twice the one of ring R2, see table 4.1.

4.5 Racetrack resonator self-oscillation

As we see in both resonators R1 and R2, when the input power is high enough the
model is no more able to follow the experimental results, especially for what regards
the transmission losses in the ring. The reason is due to self-oscillation of the ring
output power over time [123, 126, 132], see figure 4.11 in the case of racetrack R1.
In order to detect any oscillation in the ring, the output power at the through port of
the ring is recorded by an optical receiver and visualised on an oscilloscope. The
bus input power is calculated to be around 10dBm with λin ≈ λ0; we inject such an
high power in order to clearly see the trace. As it is possible to see, the recorded
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Fig. 4.11 (a) Normalised measured output signal versus time out the optical receiver at the
through port of racetrack R1 for a constant input bus power equal to approximately 10dBm.
(b) Normalised model response at the through port. In both cases λin ≈ λ0.

signal is not constant when we inject CW input power. Because the input power is
high enough and the pump wavelength rather close to the cold resonance frequency,
we measure stable oscillations. The measured trace in Fig. 4.11 (a) is in line with



76 Characterization of microring resonators

experimental results from other studies [123, 126, 132] and can also be reproduced
by our time domain model, section 3.4, with constant input power as shown in fig.
4.11 (b). The model parameters have been fixed from the fitting of the steady state
measurements. In both figures the transmissions have been normalised as done in
[123]. The comparison of figs. 4.11 (a) and (b) shows that the model can reproduce
quite well the periodic oscillations of the output power with a measured period of
1.1µs in the experiment and 1 µs in simulations. The mismatch in the two curves can
be attributed to a possible experimental misalignment of the pump wavelength with
the cold resonant frequency. In addition the thermal time constant indicates the speed
at which free carriers cause the build up of the self-heating inside the ring: a smaller
τth,i would produce a faster thermal dissipation affecting the overall signal period
and relative position of the different peaks. In fact we remind that the thermal time
constants we are using in the simulations, see table 4.3, were determined by separate
thermal transient simulation in COMSOL; a better matching of the experimental
trace could be accomplished by coupling our ODE system with FEM COMSOL
simulation and train the model with experimental measurement as done in [132]. We
avoid this process here in order to maintain the model complexity low and reduce as
much as possible the total computational time.

To explain the measured trace in Fig. 4.11 we compare in fig. 4.12 (a) the
temperature contributions of the four thermal nodes being part of the equivalent
circuit illustrated in fig. 2.13. The nodes that exhibit longer thermal time constants,
i.e., ∆T2 and ∆T3, need a larger amount of time with respect to the other two to
dissipate the heat caused by self-heating. The overall effect of these 4 temperatures
on the refractive index, ∆ne f f ,T , is shown in fig. 4.12 (b) along with the contribution
of free-carriers to the effective refractive index change. To compare the strength of
these two effects, ∆ne f f ,FCD is reported with reversed sign. We also plot the variation
of the resonant wavelength of the ring in time λSO = λres,SO(t)−λ0, where λres,SO is
the instantaneous resonant frequency of the ring during self-oscillation and λ0 the
ring cold resonance.
By analysing this quantity we identify four regions marked with numbers (1 to 4)
in fig. 4.12 (b). In the time range marked with (1) the pump wavelength and cold
resonant frequency are almost aligned causing a large increase in circulating power,
this leads to FC generation responsible for a blue shift of the resonant frequency
(FCD) which causes the pump and cold frequency to misalign resulting in a rapid
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Fig. 4.12 (a) Temperature variation of the four nodes that form the equivalent thermal circuit,
see fig. 2.13 with parameters from table 4.3 . (b) Temperature and FCD contributions (with
reverse sign) to the effective refractive index in the silicon core (left), the variation of the
resonant wavelength ∆λSO = λres,SO(t)−λ0 within the racetrack resonator over time is shown
on the right. The red dashed line in (b) denotes the case when the resonance of the ring is
equal to its cold value, i.e., ∆λSO = 0. (c) Circulating power in the ring as a function of time.

decrease of circulating power. see for example figure 4.12 (c). In the meantime, the
self-heating, originated by FC absorption, starts red shifting the resonance to its cold
value (2). During this process, both FCD and self-heating increase in strength due to
carriers generated by the rise in circulating power as the ring resonance approaches
again the cold resonance. However, once the ring resonance is again at the cold
resonance λ0 (3), the maximum achievable circulating power is lower than in the
initial case (1), because the quality factor is greatly degraded by the presence of many
free carriers. The absorbed carriers translate into further heat dissipation making the
resonance keep on shifting towards the red. Thus Pc decreases and therefore also
the generated carriers. In time interval (4) the ring slowly cools down to the initial
state once the slowest thermal dissipation process have concluded; here Pc increases
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again and the whole process restarts. The complete behaviour explained above is in
agreement with the literature [123, 126, 132], indicating that the model can be used
to explain the experimental results even in this particular case.
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Fig. 4.13 Steady state output power at the through port in the case of racetrack R1 at different
bus power (left) and recorded period of the self-oscillation at the drop port (right). The two
measurements have been carried out simultaneously.

Self-oscillation depends not only on injected power, but also on the detuning
of the probe wavelength in terms of cold resonance wavelength. This concept is
well demonstrated in figure 4.13, where we collect the steady state spectrum at the
through port for different powers while the drop port is sent to the oscilloscope.
If some oscillations occur, the related period is simultaneously recorded on the
oscilloscope. Thus, it is possible to accurately see when the ring enters the self-
oscillation regime since both measurements are performed in the same alignment
conditions. In addition, the duration of the oscillation does not depend on the type of
port we consider, but only on the physics inside the resonator.
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4.6 Pump-probe measurements

Pump-probe measurements exhibits a unique feature when characterising MRRs, in
fact, thanks to the small energy high power optical pulses, it is possible to generate
many free carriers inside the ring while keeping the self-heating effect completely
negligible, with temperature variation estimated to be on the order of µK. In this
section, we retrieve the time resolved transmission spectra of the MRR as it recovers
to the linear state after a strong pump pulse has excited the non-linearity. By post-
processing the NL loss and the refractive index variation due to FC can be extracted,
making it possible to experimentally determine the free carrier density inside the ring.
This procedure has been fully carried out for ring resonators R2 and R3. Whereas in
the case of the racetrack resonator R1 we were unable to retrieve physically sound
NL losses because we used an EDFA to amplify the output signal from the through
port [124] since the APD was not available at that time and the signals were too
noisy because of EDFA noise. Our model was able to reproduce the experimental
results for both resonators R1 and R2. We remind that the pump pulse width is
100 ps with a period of 25 µs, in addition we experimentally set the pump pulse in
the time axis at approximately 5.1ns while the time resolved spectra were recorded
after 5.4ns. In this way we ensure that TPA and XTPA caused by the pump pulses
on the probe traces are all vanished, so that we can then extract information on free
carrier dispersion and ultimately the electrons and hole carrier densities in silicon
and polysilicon.

4.6.1 Racetrack resonator R1

Results of the pump-probe experiment are summarised in fig. 4.14. Fig. 4.14 (a) and
4.14 (b) show the probe trace as recorded on the oscilloscope. We note how the trace
trend depends on the detuning between the probe and cold resonance wavelength, i.e.
δλ = λprobe −λ0,probe. Whereas fig. 4.14 (c) collects respectively the maps of the
measured and simulated probe traces at different wavelengths.

Once the pump interacts with the material, a large amount of free carriers are
generated resulting in blue shift in the ring resonant wavelength. The upwards or
downwards direction of the probe traces in fig. 4.14 (a) and (b) can be understood
by looking at the time resolved spectrum in fig. 4.14 (d). This has been obtained
by sampling the map of probe traces in fig. 4.14 (c) at several time instants after
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Fig. 4.14 Probe powers traces signals recorded at the oscilloscope at the through port for
probe wavelength below (a) and above (b) the cold resonance. (c) Measured (top) and
simulated (bottom) probe traces at different wavelengths in the case of a pump pulse with
peak power equal to 21dBm. (d) Transmission spectrum of the ring reconstructed from fig.
4.14 (c) at different time instants after t = 5.4ns.

the maximum excursions at 5.4ns, as shown for example by the black lines which
corresponds to the curves in figure 4.14 (d). We observe the recovery of the ring
transmission spectrum from the maximum of the nonlinear response (blue spectrum
just after the pump) to the linear response (purple curve). For positive detuning we
usually have the upwards shift of the probe trace, see for example λ = 1540.35nm
in fig. 4.14 (d), since the whole spectrum shifts to lower wavelength due to FCD.
Whereas for negative detuning the probe trace experiences a downwards shift with a
maximum absolute value at approximately λ = 1540.2nm. We note that the model
can reproduce very well the experimental map of the probe response (fig. 4.14 (d)),
as also shown in fig. 4.15 where we plotted the variation of the resonant wavelength
due to FCD in the pump-probe experiment ∆λPP(t) = λres,probe(t)−λ0,probe.
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Fig. 4.15 Variation of resonant wavelength extracted from the time resolved transmission
spectrum in fig. 4.14 due to FCD for different pulse peak power. The black line represents
the model result.

The black lines in fig. 4.15 are the model results obtained by implementing the
same experimental procedure with the time domain model developed in section 3.4:
we inject a Gaussian pump pulse with FWHM ≈ 100 ps and peak power estimated
from the experiment. We then record the different probe transmission responses
expressed with eq. (3.53) and finally reconstruct the transmission spectrum at all
time instants after the pump has ended. We attribute the small discrepancy between
model and experimental results to the additional pump dispersion in the ring, NL
EDFA amplification [124] and system misalignment during the total measurements.
In fact the time duration of the measurement is sufficiently long (≈ 20minutes) that
the system suffers additional coupling losses with respect to the nominal value due
to the environment noise in the laboratory.

4.6.2 Ring resonator R2

We performed pump-probe measurement also on ring R2, as explained earlier we
were able to use an APD to detect the probe signal from the ring instead of an EDFA
coupled with a receiver. This allowed to further characterize the ring dynamics using
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a new method based on the empirical relationship between the electron and hole
carrier densities and the NL changes in the refractive index and propagation losses
in silicon, see eq. (3.5) and (3.7).
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Fig. 4.16 Measured (top) and simulated (bottom) probe traces at different wavelengths in the
case of ring resonator R2 and peak power of 18dBm. (b) Transmission spectrum of the ring
reconstructed from Fig. 4.16 (a) at different time instants after the pump.

Figure 4.16 collects the trace map (a) and time resolved transmission spectrum
associated (b) in the case of a peak bus power of 18dBm. Again the model is able to
reproduce very well the experimental map.
By fitting, with the analytical expression of the transmission spectrum of the probe,
the spectra measured at the different time instants, we can extract the variation with
time of the total optical modal loss (αe f f (t)) inside the ring, that is the sum of the loss
variation due to FCA, and linear losses α0,tot = α0 +αrad; Therefore FCA losses are
calculated as ∆αFCA,exp(t) = α(t)−α0,tot . TPA loss of the probe signal in the time
range after the pump pulse are negligible because the circulating probe power is low.
From the minima of the transmission spectra, we get the variation of the resonant
wavelength (∆λPP,exp(t)) with respect to the linear case and then the variation of the
waveguide refractive index due to FCD [151] (see appendix A for proof):

∆ne f f ,FCD(t) = ∆λPP(t) ·ng/λ0. (4.1)

The results are shown in fig. 4.17 (a), the black solid lines are the model results in
good agreement with the experiments, where we attribute the small mismatch in
NL losses between measurements and model to the noise of APD and additional
insertion losses in the filter-APD-oscilloscope configuration.
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Fig. 4.17 (a) Variation of nonlinear losses and resonant wavelength due to FCA and FCD for
two different pulse peak power extracted from the time resolved transmission spectrum in
fig. 4.16 (b); (c) Calculated electron and hole carrier densities versus time.

The variation of the silicon optical loss and refractive index depend on the density
of electrons (ne) and holes (pe) as expressed in eqs. (3.5) and (3.7). Having measured
in fig. 4.17 (a) these variations, we can compute numerically from eqs. (3.5) and
(3.7) the electron and hole densities with the constraint 0 < (pe −ne)/N f < 1 since
(pe −ne)/N f is the fraction of occupied traps and cannot be larger than 1, whereas
it must be larger than zero following our assumption of donor like traps. Note that
this condition is equivalent to the solution k = 0 we set in the SRH model in eq.3.16.
Results are displayed in fig. 4.17 (b), the difference between electron and hole
densities is justified by the respective capture cross section of traps in silicon. By
fitting the curve with a single exponential, we can extract the initial electron and
hole equivalent lifetimes referred to the first 10ns of carrier transient. These are
summarized in Table 4.6 and compared to those obtained with our model.

Table 4.6 Experimental and simulated initial electron and hole lifetimes.

τ [ns] Experiment Theory
τn,18dBm 3.6±1 2.7
τp,18dBm 4.35±0.5 5
τn,11dBm 1.15±0.6 0.83
τp,11dBm 6.5±0.4 6.4

We refer to these lifetimes as "initial" since in general the lifetimes are carrier
dependent: as the carrier density decreases the carrier lifetime tends to change as
has been reported also in other studies [134]. This effect is also observed in our



84 Characterization of microring resonators

measurements by the initial lifetimes reported in the table at different powers: with
higher pump power we generate more free carriers resulting in a reduction of the hole
lifetime while the electron lifetime increases with respect to lower peak power case
(Pbus,peak = 11dBm). Thus, with the SRH theory, we can determine the nonlinear
behaviour of both carriers which ultimately depend on the trap density and trap
energy level [58, 88, 135, 152]. Over a larger time window (t > 10ns), NL effects
are too small that the procedure becomes inaccurate. Nonethelees we consider this
method a good way to estimate the initial carrier lifetime in a resonator also thanks
to the fact that the extracted experimental values are quite close to the theoretical
ones as it is possible to see in table 4.6. These values present an uncertainty as
indicated in the table arising from the constraint 0 < (pe − ne)/N f < 1 we used
to solve numerically eqs. (3.5) and (3.7). For example considering the case at
high power, i.e. Pbus,peak = 18dBm, we repeated the procedure explained above by
assuming values for trap densities ranging from 1015 cm−3 to 1017 cm−3 resulting in
an absolute uncertainty of only δτn,18dBm = ±1ns and δτp,18dBm = ±0.5ns to the
associated values reported in table 4.6. We can then assert that this procedure does
not require any prior knowledge on the trap density in the material when estimating
the initial free carrier lifetime.

4.6.3 Ring resonator R3

With the developed procedure, it is possible to extract the carrier lifetime in materials
different than silicon, this is the case of ring R3 which is made of two rectangular
silicon and polysilicon waveguides. An higher pump peak power of approximately
24dBm has been injected to excite enough free carries in both Si and poly-Si cores,
since coupling losses for ring R3 are usually higher than in resonators R1 and R2
(4dB against 2−3dB typical). The time-resolved transmission spectra are shown in
fig. 4.18 (a) as reconstructed from the map of measured probe traces in fig. 4.18 (b).
We note that the probe experiences large losses in the first instants after the pump
absorption and moderate non-zero losses after 1.5−2ns. Therefore, since the two
waveguides are separated by a small gap of SiO2, and considering that the single
silicon waveguide analysis revealed carrier lifetimes longer than 1ns, see table 4.6,
we attribute this fast initial transient to the polysilicon material.
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Fig. 4.18 (a) Time-resolved transmission spectra of the Si/poly-Si ring and related probe
trace (b). The pump peak power is Pbus,peak ≈ 24dBm.

We make use of the optical confinement factors, ΓSi and ΓPoly, in silicon and
polysilicon, as reported in table 4.5, to weight the influence of the two waveguides
on the propagating field, hence we can write:

∆αFCA,exp(t) = ΓSi(∆αFCA,exp,Si(t))+Γpoly−Si(∆αFCA,exp,poly−Si(t)). (4.2)

Similarly for the variation of refractive index it is:

∆ne f f ,FCD,exp(t) = ΓSi(∆ne f f ,FCD,exp,Si(t))+Γpoly−Si(∆ne f f ,FCD,exp,poly−Si(t)).
(4.3)

Where ∆αFCA,exp,Si(t) and ∆αFCA,exp,poly−Si(t) are the losses due FCs in the silicon
and polysilicon waveguides respectively, while ∆ne f f ,FCD,exp,Si(t) and ∆ne f f ,FCD,exp,poly−Si(t)
the variation of refractive index due to FCD in the two waveguides.
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The silicon and polysilicon contributions have been separated by fitting eq. (4.2)
and (4.3) with a double exponential function (y=ΓSiaSie−bSi·t +Γpoly−Siapoly−Sie−bpoly−Si·t),
results are shown in fig. 4.19 (a).

5.5 6 6.5 7
t, ns

0

100

200

300

FC
A

,e
xp

, d
B

/c
m

Measurement
Si component
Poly component

5.5 6 6.5 7
t, ns

-4

-2

0

n ef
f,F

C
D

,e
xp

10-3

Measurement
Si component
Poly component

(a)

5.5 6 6.5 7
t, ns

0

5

10

15

C
ar

rie
r d

en
si

ty
, c

m
-3

1017

ne Si
pe Si
ne poly-Si
pe poly-Si

(b)

Fig. 4.19 (a) Losses and refractive index variation in the Si/poly-Si ring recovered from
the pump and probe traces with two exponential functions: the blue line is attributed to FC
recovery in poly-Si, and the dashed red line to Si. the black line is the total sum of the two.
(b) Extracted electron and hole carrier densities in the Si and poly-Si cores.

Assuming that βT PA is equal in both materials, we expect approximately the same
number of carriers (generated by TPA) in the Si and poly-Si cores after the pump
at t = 5.4ns (i.e., ne,Si(t = 5.4ns) = ne,poly−Si(t = 5.4ns) and pe,Si(t = 5.4ns) =
pe,poly−Si(t = 5.4ns)). We can use then eq. (3.5) and (3.7) to fit the red dashed
curves of the silicon response and retrieve the carrier density in silicon as done for
ring resonator R2.
FCA coefficients are expected to be larger in poly-Si when compared to crystalline
silicon [96, 97, 109–111] since FCA scales, as a first approximation, as 1/µn,p [59]
(with µn,p the carrier mobilities) and the mobility in poly-Si is lower depending on
the grain size and the number of grain boundaries that populate the material [95]. As
a result we should not use eq. (3.5) and (3.7) in polysilicon. For this reason, we take
advantage of the initial values of carrier density calculated in silicon at t = 5.4ns to
find, from the blue curves at t = 5.4ns, the coefficients Apoly,Bpoly,Cpoly,Dpoly of
the expressions:

∆αFCA,poly = Γpoly
(
Apolyn1.167

e +Bpoly p1.109
e

)
, (4.4)

∆ne f f ,FCD,poly =−Γpoly(Cpolyn1.011
e +Dpoly p0.838

e ). (4.5)
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The minimization procedure at the initial value t = 5.4ns results in Apoly = 5.2 ·
10−20 cm2,Bpoly = 1.2 ·10−19 cm2,Cpoly = 6.6 ·10−22 cm3, and Dpoly = 2.4 ·10−18 cm3.
We note that the coefficients Apoly and Bpoly are one order of magnitude higher than
those of silicon, which means that poly-Si suffers a higher FCA as previously ex-
plained.
Fixing these coefficients and using eq. (4.4) and (4.5) for the polysilicon components
and eq. (3.5) and (3.7) for silicon, at t > 5.4ns, we can get the carrier densities
dynamics in both materials as reported in fig. 4.19 (b); the extracted initial carrier
lifetimes are summarized in Table 4.7. We see that in polysilicon the free carrier

Table 4.7 Experimental initial carrier lifetimes in Si/poly-Si waveguides.

τ [ns] Silicon polysilicon
τn 6.4 0.17
τp 7.7 0.2

lifetime is greatly reduced due to the large trap density resulting in reduced free
carrier lifetimes. Lastly, we remark that the Si/poly-Si ring we analysed has a mea-
sured thermo-optic efficiency of KSi/poly−Si ≈ 75 pm/K which is close to what we
obtained for silicon in the same platform, i.e. KSi = 70 pm/K, making it possible to
maintain a good tunability, decrease the ring radius, and also have a reduction of NL
effects thanks to the smaller lifetime. However the main disadvantage of polysilicon
is the larger linear losses caused by grain boundaries and increased trap density with
respect to crystalline silicon; for this reason we investigated the hybrid structure of
ring R3 that is composed of silicon and polysilicon, which results in the contribution
of polysilicon to the total linear losses being half of its nominal value.



Chapter 5

Design of microrings for hybrid
tunable laser

In this chapter we present two possible applications of our model to the design of the
hybrid tunable lasers presented in [87]. First we show that we are able to quantify
the maximum power that can enter in the two MRRs to guarantee tuning range
covering the C-Band, high SMSR and narrow laser linewidth. Then we introduce
the theoretical framework needed for the modelling of a silicon hybrid tunable laser
with the inclusion of NL effects of the silicon MRRs.

5.1 Maximisation of the input power in ring resonators

As intensively shown in this thesis, NL effects in silicon MRR pose important
limitations to power entering the ring and so to the power the laser can generate. For
this reason hybrid tunable laser with Si MRRs and high output power employ an
additional semiconductor optical amplifier [87]to reach the same power of lasers
where silicon nitride rings are employed (for example as done in [62]).
Therefore we investigate in this section what is the maximum input bus power that a
Si microring can handle without a significant degradation of the ring transmission
by applying the model we developed for MRRs. The complete model of the hybrid
tunable laser, shown in fig. 1.6, was presented in [66] in the case of silicon nitride
MRRs. Here we use silicon MRRs with the aim of optimising the ring coupling
coefficient in order to have the best trade off between the minimization of NL
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effects and the FOMs that characterize the hybrid tunable laser. FOMs of the laser
are: the tuning range, the side-mode-suppression-ratio, and the laser linewidth, see
Appendix C for additional details. The radii of the two rings (r1 and r2) are selected
to provide wide tunability based on the Vernier principle [43, 78]. We fix one radius
to r1 = 20 µm since it represents the best compromise between the ring FSR (and
therefore tuning range), the maximum temperature increase (related to the thermal
tuning of the rings) to cover the FSR and laser SMSR. Then the radius of the second
ring is calculated such that the tuning range is sufficient to cover the C-band. We

0 0.05 0.1 0.15 0.2
Ring coupling coefficient 2

35

40

45

50

55

60

65
70
75

Tu
ni

ng
 ra

ng
e,

 n
m

23

23.5

24

24.5

25
R

ad
iu

s o
f t

he
 se

co
nd

 ri
ng

, 
m

(a)

0 0.05 0.1 0.15 0.2
Ring coupling coefficient 2

39

40

41

42

43

44

45

SM
SR

, d
B

(b)

0 0.05 0.1 0.15 0.2
Ring coupling coefficient 2

0

200

400

600

800

1000

La
se

r l
in

ew
id

th
, k

H
z

(c)

Fig. 5.1 (a) Calculated tuning range and radius of the second ring as a function of the ring
coupling coefficient; (b) SMSR and laser linewidth (c) versus the ring coupling coefficient.

report in figure 5.1 (a) the calculated tuning range, (b) the SMSR and (c) the laser
linewidth calculated at 4.7 times the threshold current of the laser as function of
the ring coupling coefficient in the case the design employs silicon rings similar to
ring resonator R2 whose parameters are summarised in table 5.1 [58]. Since the ring
radius is large enough, bend losses are negligible, i.e., αrad < 0.01dB/cm. Once κ is
chosen r2 is fixed as it is possible to see in the red curve in fig. 5.1 (a). Looking at fig.
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Table 5.1 Parameters and dimension of the ring resonator with radius r1 = 20 µm.

Parameter Value Unit
L 125 µm
W 580 nm
h 107 nm
Γ 0.679 −

Ae f f 0.1089 µm2

ne f f ,0 1.91 −
ng 3.38 −
α0 1.09 dB/cm
η2 0.002 −

5.1 we note how a small coupling coefficient seems to represent the best strategy for
the optimization of all 3 FOMs. For example considering a transition from κ2 = 0.2
to κ2 = 0.1 the laser linewidth is halved and the tuning range increases by 30%;
whereas the SMSR has a maximum excursion of only 12%. Nonetheless, the smaller
the coupling coefficient, the more NL effects will occur since the circulating power
will increase. We focus our analysis on the ring with radius r1 since, it is always
smaller than the second ring meaning that it will experience a larger circulating
power Pc for the same Pbus in the ring and so a larger spectral distortion. Therefore
we sweep the coupling coefficient in the range reported in figure 5.1 using the steady
state model and we calculate the quality factor of the ring as a function of the bus
power for three different trap densities, see figure 5.2 (a) and (b). The dashed line
indicates where the Q has reduced of 10% with respect to the linear regime value.
We note that with decreasing κ2 the low power quality factor (QLP) increases which
is a consequence of eq. (2.8) that goes as QLP ∝ 1/κ2 when κ << 1 in linear regime
[101]. With increasing surface trap density the generated free carriers are more easily
trapped resulting in a lower total free carrier density. As a result FCA, FCD and
self-heating caused by FCA are reduced, making it possible to send more power into
the ring. The maximum power incident in the ring, Pbus,max, such that the degradation
of the ring quality factor does not exceed 10% is displayed in fig. 5.2 (c). In other
words,Pbus,max determines the maximum power we can extract from the tunable laser
in the configuration reported in [66], as expected it increases with increasing κ2

since the linear quality factor decreases. Thanks to our model, we can quantitatively
predict how this maximum depends on the trap density for a fixed trap energy around
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Fig. 5.2 (a) Example of the quality factor degradation versus Pbus in the case κ2 = 0.1 and
for (b) κ2 = 0.2, the dashed line represents the reduction of the ring Q-factor to 10%. (c)
Maximum allowed bus power as a function of the coupling coefficient and for different
surface trap densities (to keep the quality factor degradation to 10%).

the midgap; a possible optimization process would then be based on increasing the
density of traps through the implantation of defects [27].

5.2 Silicon hybrid tunable laser model

The previous analysis gives a good insight on how NL effects impact the hybrid
tunable laser performances. We remark that in this case we only analysed one ring
with our NL model, the next step consists in coupling our time domain model with
the hybrid tunable laser theory that was developed in [66, 153]. The most important
feature of this approach is to lump the passive mirror physics of the hybrid tunable
laser in the so called effective reflectivity re f f of the mirror which is associated to an
effective length Le f f . In our case we neglect external spurious reflection [153]. For
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Table 5.2 Parameters definition for the effective reflectivity in a Si3N4 passive mirror.

Parameter Definition

tSSC Spot size converter transmission coefficient
Tc,out Output power coupling coefficient
∆ω ω −ω0
∆φ Phase control section detuning
τin Time delay in the Si3N4 straight waveguide.
t2
RR 1− k2

RR(1−η2)

a1,2 e−αe f f ,1,2L/2

ω0 Angular reference frequency

this purpose we set our reference plane after the reflective SOA (RSOA) at the AR
coating. We first retrieve the effective reflectivity of the mirror and then define the
set of differential equations needed to describe the laser dynamic.

Effective reflectivity

The work in [153] reports a compact expression for the effective reflectivity of a
Si3N4 passive mirror centred at the reference pulsation ω0, namely:

re f f (ω) =
γc1γc2t2

SSC(1−Tc,out)

(γt1 + j∆ω)(γt2 + j∆ω)
e− j∆φ e− j∆ωτin . (5.1)

With

γc1,2 =
vg1,2κ2

RR

2πr1,2t2
RRa1/4

1,2

(5.2)

γt1,2 =
vg1,2(1− t2

RRa1/2
1,2 )

2πr1,2t2
RRa1/2

1,2

. (5.3)

All the parameters definitions are summarised in table 5.2.

When silicon is considered inside the two rings, a1,2 becomes a function of
the circulating power through TPA and FCA. But most importantly, the spectral
response of the ring can diverge from the Lorentzian approximation due to FCD and
self-heating. This also results in a misalignment of the ring resonances from ω0, thus
eq. (5.1) cannot be used.
We did a first attempt at incorporating NL effects in silicon in [77] where we



5.2 Silicon hybrid tunable laser model 93

considered only NL losses and assumed the NL shift of the resonant wavelenght of
the rings to be counteracted by thermal tuning without any bistability. In that work
we showed how the implementation of silicon leads to smaller effective length Le f f

of the passive mirror cavity (and therefore a lower footprint of the hybrid tunable
laser) when compared to Si3N4, however a small Le f f and the presence of NL effects
result in a lower maximum external feedback level, i.e., the maximum amount of
power received by external sources Rext,max[dB], which the laser can withstand in
order to remain stable. In fact at κRR = 0.04, the passive mirror made of silicon
without considering NL effects has Rext,max,Si =−25dB, whereas with NL effects it
decreases to Rext,max,Si = −45dB. Which are both much lower than in the case of
Si3N4 where Rext,max =−15dBm.
A possible approach to modelling the effective reflectivity in silicon waveguides
and MRR should be divided in two stages. First, it is necessary to compute the
total circulating power in both rings to evaluate the NL losses and refractive index
variation in the ring by FCD and self-heating. Then the complex input field by the
SOA can be propagated in the passive mirror and the total backwards component
retrieved as influenced by NL effects in both rings and straight waveguides.

The main approach we followed in modelling the nonlinear propagation of the
power in the silicon waveguides in [77] is shown in figure 5.3. A waveguide of
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Fig. 5.3 Scheme of the sliced silicon waveguide with length L implemented for the computa-
tion of the propagating power as a function of the distance.

length L is divided into k slices with small thickness ∆z. Due to the fact that we can
have power flowing in both directions due to the splitter configuration, see fig. 1.6,
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the total power in each section will be the sum of a forward power P+(z) entering in
that specific slice and a backward outgoing power P−(z), these are defined as:

P+(i) = P+(i−1) · e−αe f f (i−1)∆z, i = 2 : k+1 (5.4)

P−(i) = P−(i+1) · e−αe f f (i)∆z, i = 1 : k (5.5)

since P+(1) and P−(k+1) are known, it is possible to solve the system of eq. (5.4)
and (5.5) self consistenly and find the power as a function of the position in the
waveguide.
The previous method cannot be followed in the case of ring resonator since the refrac-
tive index caused by FCD and self-heating impact the ring resonance . Generally the
structure we have to analyse is a series of two coupled ring resonators as shown in
figure 5.4. We threat the MRRs as lumped object, given the input power in the upper

𝑃+,𝑠𝑢𝑝(𝑘 + 1)

𝑃+,𝑖𝑛𝑓(k+1)

𝑃𝑐1

𝑃𝑑𝑟𝑜𝑝1

𝑃𝑑𝑟𝑜𝑝2

𝑃𝑐2→1

𝑃𝑐1→2𝑃𝑐2

𝑃−,𝑠𝑢𝑝(𝑘 + 1)

𝑃−,𝑖𝑛𝑓(𝑘 + 1)

𝑎1

𝑎2

𝜅1

𝜅1

𝜅2

𝜅2

𝑟1

𝑟2

Fig. 5.4 Scheme of the double ring resonator configuration employed in the hybrid tunable
laser.

and lower arms as P+,sup(k+1) and P−,sup(k+1) respectively, the total circulating
power in both rings is :
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Pc1,tot = (P+,sup(k+1)+a1Pdrop2)
κ2

1 (1−η2)

|1− t2
1 a1e jθ1|2

(5.6)

Pc2,tot = (P+,in f (k+1)a2 +Pdrop1)
κ2

2 (1−η2)

|1− t2
2 a2e jθ2|2

(5.7)

Where we assume negligible losses in the waveguide between the two rings. We
highlight that, a1,a2,θ1,θ2 are all expressed in terms of the total circulating power
in the respective rings as extensively discussed in this thesis. The power at the
drop ports can be computed as Pdrop1,2 = Tdrop1,2 ·P+,sup,in f (k + 1) with Tdrop1,2

defined in eq. (2.4). Solving equations (5.6) and (5.7) at steady state provides
us the amount of refractive index variation and losses impacting the circulating
field in both rings as a function of the input power in the upper nd lower arms,
i.e., αFC(P+,sup(k+ 1),P+,in f (k+ 1)), ∆ne f f ,FCD(P+,sup(k+ 1),P+,in f (k+ 1)) and
∆ne f f ,T (P+,sup(k+ 1),P+,in f (k+ 1)). Therefore we can propagate the input field
from the SOA, i.e., E+,SOA(ω), in the passive mirror and compute the backwards re-
flected field E−,SOA(ω,Pc1,tot ,Pc2,tot) at the SOA facet. The total effective reflectivity
is generally written as:

re f f (ω,E+,SOA) =
E−,SOA(ω,Pc1,tot ,Pc2,tot)

E+,SOA(ω)
, (5.8)

we emphasise that re f f depends on E+,SOA which is related to the circulating powers
in the two rings. ω0 is the reference angular frequency corresponding to the effective
reflectivity peak which is the result of the Vernier effect. Since we might have NL
effects occurring in the ring, we expect an additional detuning due to NL effects by
both MRRs. The new reflectivity peak is then placed at ωR.
The lasing frequency of the laser is then determined by the round-trip condition
inside the RSOA which is [154]:

re f f (ω,E+,SOA)r1e−2 jkSOA(ω,NSOA)LSOA = 1, (5.9)

where r1 is the reflectivity at the high reflectivity facet of the RSOA, LSOA the SOA
length, and kSOA(ω,NSOA) the wave vector of the field inside the SOA which is equal
to:

kSOA(ω,NSOA) =

(
ω

c
ne f f ,SOA(ω,N)+

j
2
(ΓgN(ω,N)−αi)

)
, (5.10)
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NSOA is the carrier density inside the SOA, ne f f ,SOA the refractive index in the SOA,
gN the modal gain coefficient, and αi the intrinsic losses in the SOA. Finally the rate
equation for the carrier density in the SOA at steady state is:

ηi,SOAIbias

qVSOA
=

NSOA

τSOA
+ vg,SOAgN ln(

NSOA

N0
)σSOA

|E+,SOA|2

VSOA
, (5.11)

where all parameters are defined in table C.1 in Appendix C. By solving the set
of coupled equations given by (5.8), (5.9), and (5.11) we can determine the lasing
frequency ωs and associated carrier density NSOA.

Model of the hybrid laser dynamics

The calculation of the effective reflectivity introduced in the previous section is fully
general in terms of complexity associated with the number of silicon sections. This
is a crucial part, since in a time domain analysis we would need to perform 2D
simulation due to the spatial and time dependence on the field propagating in the
passive mirror. In this preliminary analysis we remove the spatial dependence by
considering that the straight waveguides, SSC,splitter and coupler are made of Si3N4,
with silicon used only in the MRRs. This scenario is also enforced by the fact that
the hybrid tunable laser we plan to test in the laboratory presents this same type of
passive mirror composition.
Therefore the laser dynamic can be modelled as done in [153] by defining a set of
differential equations at the reference plane at the AR SOA facet just before the
passive mirror. The general equations relating the carrier density in the SOA to the
output field E+,SOA(t) is:

E+,SOA(t) =
e j(ωs−ωR)τSOAexp( f (ωs,NSOA))

re f f (ωs)
A−(t − τdl)+F(t). (5.12)

∂NSOA(t)
∂ t

=
ηi,SOAIbias

qVSOA
− NSOA(t)

τSOA
− vg,SOAgN ln(

NSOA(t)
N0

)σSOA
|E+,SOA(t)|2

VSOA
,

(5.13)
where

f (ωs,NSOA) =
1

τSOA

∫ t

t−τSOA

LSOA(1+ jαH,SOA)
ωs

ωR
gN ln(

NSOA(t̂)
Ns

)dt̂, (5.14)
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and F(t) accounts for the fraction fo spontaneous emission coupled into the lasing
mode s at frequency ωs. All parameters are defined in table C.1 in Appendix C.
A−(t −τdl) is the sum of the propaagting fields coming back from the passive mirror
with τdl the total delay in the Si3N4 components. In our case it is that:

A−(t − τdl) = tSSC(1−Tc,out)(−E−,sup(1)(t − τdl)+E−,in f (1)(t − τdl)). (5.15)

where we used the property E−,sup,in f (1)(t − τdl) = E−,sup,in f (k+1)(t −2τdl/2).
Equations (5.12) and (5.13) must be coupled with the system of equations governing
the NL effects dynamics in a double ring resonator structure. In particular we have a
total of 4 circulating fields: two clockwise Ec,1 and Ec,2−>1 , with the latter being
the circulating field component induced in the bottom ring (ring 2) by top one (ring
1), and two counter-clockwise field components Ec,2 and Ec,1−>2. In these two
cases, we reverse the sign of the input field in the ring so that all 4 circulating field
ultimately result to be clockwise. Therefore we will have a total of 4 differential
equations for the circulating field. Neglecting again the time delays in the two ring
and in the middle waveguide, the clockwise component in the top ring is:

∂Ec,1

∂ t
=−

(
κ1 ·
√

1−η2

t2
1 a1

E+,sup(k+1)(t − τdl/2)+ . . .

Ec,1(t)(
1

t2
1 a1

−1)+ j · (L
c

∆ωr,1 + τg1δωs,1) ·Ec,1(t)
)
/τg,1,

(5.16)

and the counter-clockwise field induced by the bottom ring:

∂Ec,2−>1

∂ t
=−

(
κ1 ·
√

1−η2

t2
1 a1

Ec,2(a
1
2
1

√
1−η2) · (−κ2)(1+ j · (L

c
∆ωr,1/2+ τg1δωs,1/2)) . . .

Ec,2−>1(t)(
1

t2
1 a1

−1)+ j · (L
c

∆ωr,1 + τg1δωs,1) ·Ec,2−>1(t)
)
/τg,1.

(5.17)
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Similarly in ring 2 we have for the clockwise and counter-clockwise components
respectively:

∂Ec,1−>2

∂ t
=−

(
κ2 ·
√

1−η2

t2
2 a2

Ec,1(a
1
2
1 κ1
√

1−η2)(1+ j · (L
c

∆ωr,1/2+ τg1δωs,1/2))+ . . .

Ec,1−>2(t)(
1

t2
2 a2

−1)+ j · (L
c

∆ωr,2 + τg,2δωs,2) ·Ec,1−>2(t)
)
/τg,2.

(5.18)

∂Ec,2

∂ t
=−

(
κ2 ·
√

1−η2

t2
2 a2

E+,in f (k+1)(t − τdl/2)(a
1
2
1 κ1
√

1−η2) · . . .

(−1)(1+ j · (L
c

∆ωr,2/2+ τg1δωs,2/2))+ . . .

Ec,2(t)(
1

t2
2 a2

−1)+ j · (L
c

∆ωr,2 + τg,2δωs,2) ·Ec,2−>1(t)
)
/τg,2.

(5.19)

with the detuning of the lasing frequency with respect to the cold resonant frequencies
of the two ring being ωs,1,2 = ωs −ω0,1,2.
Thanks to this formulation, the total circulating power in both ring is simply Pc1,tot =

|Ec,1|2 + |Ec,2−>1|2 and Pc2,tot = |Ec2|2 + |Ec,1−>2|2. Which is associated to the
generation rate of FC and absorbed power in the ring that follow the same equations
introduced in the pump-probe experiment in chapter 3, i.e., equations (3.9), (3.47),
(3.13), and (3.20). Finally the backwards fields from the two rings, E−,sup,in f (k+1),
are:

E−,sup(k+1) =−Ec,2−>1κ1
√

1−η2. (5.20)

E−,in f (k+1) = Ec,1−>2κ2
√

1−η2. (5.21)

Therefore we can get information on the laser dynamics by solving the system of
differential equations: (5.12), (5.13), (5.16), (5.17), (5.18), and (5.19) coupled with
eq. (3.13), and (3.47).



Chapter 6

Conclusion

The aim of this dissertation was to present some fundamentals tools, techniques and
methods to characterise silicon-based MRRs with the final goal of modelling hybrid
tunable laser with NL rings. The growing demand in SiPh based interconnections
and compact hybrid tunable laser, where silicon ring resonators represent one of the
main components, have been the driving force behind the work of this PhD thesis.
To optimise MRRs and reduce the impact of power dependent NL effects in silicon a
compact and reliable model is therefore mandatory.
First, electromagnetic and thermal simulations of the device under tests were carried
out, which made it possible to retrieve the optical confinement factor of the field
inside the ring and the device thermal impedance. These parameters are of great
importance when modelling nonlinear effects and when comparing different rings
since they directly impact on the strength of FCA,FCD and self-heating.
We then developed the NL model which resulted to be robust in predicting not
only the steady state response of MRRs but also the pump-probe experiments and
self-oscillations. One of the most important feature of our model is that, thanks to
the inclusion of the Shockley–Read–Hall theory, we demonstrate the free carrier
lifetime to be strongly dependent on the power circulating in the ring due to trap-
assisted recombination. As a result we avoid any empirical expressions for the
carrier lifetime as it is common in other works to explain the NL distortion of the
ring response. This is an important concept because it allows to design MRRs by
changing physically sound parameters such as the trap density or the doping in the
rings, which is impossible with empirical lifetimes.
To validate the model we developed an experimental bench that can be used for
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steady state and pump-probe characterisation of racetrack and ring resonators in
edge and vertical coupling configurations. With the knowledge gained in the study of
MRRs, we can summarize the overall process for the full characterization of MRRs
in three main steps:

• Linear regime steady state

• NL regime steady state

• Pump-probe experiment

Thanks to the progress we made in the pump-probe setup, we were also able to
retrieve the time resolved transmission spectra in nonlinear regime in Si microring
resonators excited by strong pump pulses. The analysis of the measured spectra
allows the extraction of the absorption and refractive index variation in time. From
these two quantities, we have shown that it is possible to study the dynamics of free
electrons and holes and their equivalent initial lifetimes. We believe that this tool
is of great use since it can quantifies the FC lifetime of MRRs even in structures
where other materials with unknown composition are used as we proved in the case
of the Si/poly-Si ring resonator. From the analysis of this peculiar ring we have
also calculated for the first time the electro-refractive relationship in polysilicon,
showing the influence grains have on the latter. To show our model capabilities we
also designed a MRR to be employed in the hybrid tunable laser considered in this
work using the trap density as a controllable physical parameter, for example through
ion implantation.
To conclude, our model proved to be a compact and versatile tool that might be used
for the development of silicon based hybrid tunable laser with the aim of overcoming
current footprint limitations given by high radius Si3N4 ring resonators.

6.1 Future work

One of the natural continuation of this work involves the implementation of the
model described in Chapter 5.2 to simulate a tunable hybrid laser with silicon based
MRRs. The first step consists in introducing NL effects in the general model, then
we will also test the laser stability to an external feedback. At the same time we plan
to extend our experimental bench to be able to align a RSOA to a passive mirror and
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so manually build the hybrid tunable laser and test it. To this scope we currently have
the possibility of implementing passive mirror composed by Si3N4 MRRs, silicon
MRRs, polysilicon MRRs and hybrid ring such as ring R3 analysed in this thesis.
Once we will be able to build the laser and validate the model, we will finally reach
the goal of optimising the laser by reducing the FOMs introduced in chapter 6.1.
Another important aspect in the optimization of the MRR is the waveguide geometry,
in fact in Chapter 3.3 we presented the theoretical framework behind the modelisation
of non-rectangular waveguide where the FC lifetimes are influenced by electrons
and holes diffusion in the waveguide. Our goal in this direction is to simulate several
waveguides geometries and composition (for example a double rib structure with
polysilicon in the upper rib) by solving the drift-diffusion equations on COMSOL
and retrieve the NL FOMs as a function of Pc so that we can directly use our lumped
model to easily design MRRs.
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Martijn J. R. Heck, and John E. Bowers. Heterogeneous silicon/iii–v semi-
conductor optical amplifiers. IEEE Journal of Selected Topics in Quantum
Electronics, 22(6):78–88, 2016.

[10] P. Kennedy. Nvidia gtc china 2020 co-packaged photonics and infer-
ence. https://www.servethehome.com/nvidia-gtc-china-2020-co-packaged-
photonics-and-inference/, 13(2):17–26, 2019.

[11] Saeed Fathololoumi, David Hui, Susheel Jadhav, Jian Chen, Kimchau Nguyen,
M.N. Sakib, Z. Li, Hari Mahalingam, Siamak Amiralizadeh, Nelson N. Tang,
Harinadh Potluri, Mohammad Montazeri, Harel Frish, Reece A. Defrees,
Christopher Seibert, Alexander Krichevsky, Jonathan K. Doylend, John Heck,
R. Venables, A. Dahal, A. Awujoola, A. Vardapetyan, Guneet Kaur, Min Cen,
Vishnu Kulkarni, Syed S. Islam, R. L. Spreitzer, S. Garag, A. C. Alduino,
RK Chiou, L. Kamyab, S. Gupta, B. Xie, R. S. Appleton, S. Hollingsworth,
S. McCargar, Y. Akulova, K. M. Brown, R. Jones, Daniel Zhu, Thomas
Liljeberg, and Ling Liao. 1.6 tbps silicon photonics integrated circuit and
800 gbps photonic engine for switch co-packaging demonstration. Journal of
Lightwave Technology, 39(4):1155–1161, 2021.

[12] Di Liang, Sudharsanan Srinivasan, Geza Kurczveil, Bassem Tossoun, Stanley
Cheung, Yuan Yuan, Antoine Descos, Yingtao Hu, Zhihong Huang, Peng Sun,
Thomas Van Vaerenbergh, Chong Zhang, Xiaoge Zeng, Songtao Liu, John E.
Bowers, Marco Fiorentino, and Raymond G. Beausoleil. An energy-efficient
and bandwidth-scalable dwdm heterogeneous silicon photonics integration
platform. IEEE Journal of Selected Topics in Quantum Electronics, 28(6:
High Density Integr. Multipurpose Photon. Circ.):1–19, 2022.

[13] Chin-Hui Chen, Cheng Li, Rui Bai, Kunzhi Yu, Jean-Marc Fedeli, Sonia
Meassoudene, Maryse Fournier, Sylvie Menezo, Patrick Chiang, Samuel
Palermo, Marco Fiorentino, and Ray Beausoleil. Dwdm silicon photonic
transceivers for optical interconnect. In 2015 IEEE Optical Interconnects
Conference (OI), pages 52–53, 2015.

[14] Po Dong, Young-Kai Chen, Guang-Hua Duan, and David T. Neilson. Silicon
photonic devices and integrated circuits. Nanophotonics, 3(4-5):215–228,
2014.

[15] Chen Sun, Mark Wade, Yunsup Lee, Jason Orcutt, Luca Alloatti, Michael
Georgas, Andrew Waterman, Jeffrey Shainline, Rimas Avizienis, Sen Lin,
Benjamin Moss, R. Kumar, Fabio Pavanello, Amir Atabaki, Henry Cook,
Albert Ou, Jonathan Leu, Yu-Hsin Chen, Krste Asanović, and Vladimir
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Marek Osiński, and Yasuhiko Arakawa, editors, Physics and Simulation of
Optoelectronic Devices XXVIII, volume 11274, page 112741L. International
Society for Optics and Photonics, SPIE, 2020.

[62] Youwen Fan, Albert van Rees, Peter J. M. van der Slot, Jesse Mak, Ruud M.
Oldenbeuving, Marcel Hoekman, Dimitri Geskus, Chris G. H. Roeloffzen,
and Klaus-J. Boller. Hybrid integrated inp-si3n4 diode laser with a 40-hz
intrinsic linewidth. Opt. Express, 28(15):21713–21728, Jul 2020.

[63] J. C. Hulme, J. K. Doylend, and J. E. Bowers. Widely tunable vernier ring
laser on hybrid silicon. Opt. Express, 21(17):19718–19722, Aug 2013.

[64] Changjin Yang, Lei Liang, Li Qin, Hui Tang, Yuxin Lei, Peng Jia, Yongyi
Chen, Yubing Wang, Yu Song, Cheng Qiu, Chuantao Zheng, Huan Zhao, Xin
Li, Dabing Li, and Lijun Wang. Advances in silicon-based, integrated tunable
semiconductor lasers. Nanophotonics, 12, 01 2023.

[65] Aditya Malik, Songtao Liu, Erman Timurdogan, Mark Harrington, Andrew
Netherton, Mitra Saeidi, Daniel J. Blumenthal, Luke Theogarajan, Michael
Watts, and John E. Bowers. Low power consumption silicon photonics data-
center interconnects enabled by a parallel architecture. In 2021 Optical Fiber
Communications Conference and Exhibition (OFC), pages 1–3, 2021.

[66] Lorenzo Columbo, Jock Bovington, Sebastian Romero-Garcia, Dominic F.
Siriani, and Mariangela Gioannini. Efficient and optical feedback tolerant hy-
brid laser design for silicon photonics applications. IEEE Journal of Selected
Topics in Quantum Electronics, 26(2):1–10, 2020.

[67] Théo Verolet, Antonin Gallet, Xavier Pommarède, Jean Decobert, Dalila
Make, Jean-Guy Provost, Maryse Fournier, Christophe Jany, Ségolène Olivier,
Alexandre Shen, and Guanghua Duan. Hybrid iii-v on silicon fast and widely
tunable laser based on rings resonators with pin junctions. In 2018 Asia
Communications and Photonics Conference (ACP), pages 1–3, 2018.

[68] Chong Zhang, Di Liang, Cheng Li, Geza Kurczveil, John E. Bowers, and
Raymond G. Beausoleil. High-speed hybrid silicon microring lasers. In
2015 IEEE 58th International Midwest Symposium on Circuits and Systems
(MWSCAS), pages 1–4, 2015.



References 109

[69] Takuma Aihara, Tatsurou Hiraki, Takuro Fujii, Koji Takeda, Tai Tsuchizawa,
Takaaki Kakitsuka, Hiroshi Fukuda, and Shinji Matsuo. Heterogeneously
integrated widely tunable laser using lattice filter and ring resonator on si
photonics platform. Opt. Express, 30(10):15820–15829, May 2022.

[70] Tin Komljenovic, Michael Davenport, Jared Hulme, Alan Y. Liu, Christos T.
Santis, Alexander Spott, Sudharsanan Srinivasan, Eric J. Stanton, Chong
Zhang, and John E. Bowers. Heterogeneous silicon photonic integrated
circuits. Journal of Lightwave Technology, 34(1):20–35, 2016.

[71] Naoki Kobayashi, Kenji Sato, Masahiko Namiwaka, Keisuke Yamamoto,
Shinya Watanabe, Tomohiro Kita, Hirohito Yamada, and Hiroyuki Yamazaki.
Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers.
Journal of Lightwave Technology, 33:1241–1246, 03 2015.

[72] Yongkang Gao, Jiann-Chang Lo, Shing Lee, Ronak Patel, Likai Zhu, Jocelyn
Nee, Diana Tsou, Rob Carney, and Jibin Sun. High-power, narrow-linewidth,
miniaturized silicon photonic tunable laser with accurate frequency control.
Journal of Lightwave Technology, 38(2):265–271, 2020.

[73] Tomohiro Kita, Rui Tang, and Hirohito Yamada. Compact silicon photonic
wavelength-tunable laser diode with ultra-wide wavelength tuning range.
Applied Physics Letters, 106(11):111104, 2015.

[74] Paul A. Morton, Chao Xiang, Jacob B. Khurgin, Christopher D. Morton,
Minh Tran, Jon Peters, Joel Guo, Michael J. Morton, and John E. Bowers.
Integrated coherent tunable laser (ictl) with ultra-wideband wavelength tuning
and sub-100 hz lorentzian linewidth. J. Lightwave Technol., 40(6):1802–1809,
Mar 2022.

[75] Minh A. Tran, Duanni Huang, and John E. Bowers. Tutorial on narrow
linewidth tunable semiconductor lasers using si/iii-v heterogeneous integra-
tion. APL Photonics, 4(11):111101, 2019.

[76] Yating Wan, Sen Zhang, Justin C. Norman, M. J. Kennedy, William He,
Songtao Liu, Chao Xiang, Chen Shang, Jian-Jun He, Arthur C. Gossard, and
John E. Bowers. Tunable quantum dot lasers grown directly on silicon. Optica,
6(11):1394–1400, Nov 2019.

[77] M. Gioannini, L. Columbo, A. Bologna, S. R.Garcia M. Novarese, and J. Bov-
ington D. Siriani. Design of hybrid lasers for silicon photonics: efficiency,
optical feedback tolerance and laser dynamics. European Conference on
Integrated Optics ECIO 2020, 2020.

[78] Yingxuan Liu, Xuegang Li, Ya nan Zhang, and Yong Zhao. Fiber-optic sensors
based on vernier effect. Measurement, 167:108451, 2021.

[79] Liwei Tang, Jiachen Li, Sigang Yang, Hongwei Chen, and Minghua Chen. A
method for improving reflection tolerance of laser source in hybrid photonic



110 References

packaged micro-system. IEEE Photonics Technology Letters, 33(9):465–468,
2021.

[80] Dan Yi, Xinru Wu, and Hon Ki Tsang. Ultra-compact polarization ana-
lyzer based on micro-ring resonators. IEEE Photonics Technology Letters,
33(24):1371–1374, 2021.

[81] Matteo Petrini, Maziyar Milanizadeh, Francesco Zanetto, Giorgio Ferrari,
Marco Sampietro, Francesco Morichetti, and Andrea Melloni. Reconfigurable
fsr-free microring resonator filter with wide hitless tunability. In 2021 IEEE
Photonics Society Summer Topicals Meeting Series (SUM), pages 1–2, 2021.

[82] Tymon Barwicz, Miloš A. Popovic, Peter T. Rakich, Michael R. Watts, Her-
mann A. Haus, Erich P. Ippen, and Henry I. Smith. Microring-resonator-based
add-drop filters in sin: fabrication and analysis. Opt. Express, 12(7):1437–
1442, Apr 2004.

[83] Desheng Zeng, Qiang Liu, Chenyang Mei, Hongwei Li, Qingzhong Huang,
and Xinliang Zhang. Demonstration of ultra-high-q silicon microring res-
onators for nonlinear integrated photonics. Micromachines, 13(7), 2022.

[84] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja,
T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets. Silicon
microring resonators. Laser & Photonics Reviews, 6(1):47–73, 2012.

[85] Bradley J. Frey, Douglas B. Leviton, and Timothy J. Madison. Temperature-
dependent refractive index of silicon and germanium. In Eli Atad-Ettedgui,
Joseph Antebi, and Dietrich Lemke, editors, Optomechanical Technologies for
Astronomy, volume 6273, pages 790 – 799. International Society for Optics
and Photonics, SPIE, 2006.

[86] Hani Nejadriahi, Alex Friedman, Rajat Sharma, Steve Pappert, Yeshaiahu
Fainman, and Paul Yu. Thermo-optic properties of silicon-rich silicon nitride
for on-chip applications. Opt. Express, 28(17):24951–24960, Aug 2020.

[87] Yongkang Gao, Jiann-Chang Lo, Shing Lee, Ronak Patel, Likai Zhu, Jocelyn
Nee, Diana Tsou, Rob Carney, and Jibin Sun. High-power, narrow-linewidth,
miniaturized silicon photonic tunable laser with accurate frequency control.
Journal of Lightwave Technology, 38(2):265–271, 2020.

[88] Marco Novarese, Sebastian Romero Garcia, Don Adams, Jock Bovington,
and Mariangela Gioannini. Study of nonlinear effects and self-heating in
silicon microring resonator including SRH model for carrier recombination.
In Graham T. Reed and Andrew P. Knights, editors, Silicon Photonics XVII,
volume 12006, page 120060G. International Society for Optics and Photonics,
SPIE, 2022.

[89] Amy C. Turner, Mark A. Foster, Alexander L. Gaeta, and Michal Lipson. Ultra-
low power parametric frequency conversion in a silicon microring resonator.
Opt. Express, 16(7):4881–4887, Mar 2008.



References 111

[90] Dan Yi, Xinru Wu, and Hon Ki Tsang. Ultra-compact polarization ana-
lyzer based on micro-ring resonators. IEEE Photonics Technology Letters,
33(24):1371–1374, 2021.

[91] Andrey A. Nikitin, Ilya A. Ryabcev, Aleksei A. Nikitin, Alexandr V. Kon-
drashov, Alexander A. Semenov, Dmitry A. Konkin, Andrey A. Kokolov,
Feodor I. Sheyerman, Leonid I. Babak, and Alexey B. Ustinov. Optical
bistable soi micro-ring resonators for memory applications. Optics Communi-
cations, 511:127929, 2022.

[92] Yuan Yuan, Wayne V. Sorin, Zhihong Huang, Xiaoge Zeng, Di Liang, Ankur
Kumar, Samuel Palermo, Marco Fiorentino, and Raymond G. Beausoleil. A
100 gb/s pam4 two-segment silicon microring resonator modulator using a
standard foundry process. ACS Photonics, 9(4):1165–1171, 2022.

[93] Michael Waldow, Tobias Plötzing, Martin Gottheil, Michael Först, Jens
Bolten, Thorsten Wahlbrink, and Heinrich Kurz. 25ps all-optical switching
in oxygen implanted silicon-on-insulator microring resonator. Opt. Express,
16(11):7693–7702, May 2008.

[94] Kyle Preston, Po Dong, Bradley Schmidt, and Michal Lipson. High-speed all-
optical modulation using polycrystalline silicon microring resonators. Applied
Physics Letters, 92(15):151104, 2008.

[95] John Y. W. Seto. The electrical properties of polycrystalline silicon films.
Journal of Applied Physics, 46(12):5247–5254, 1975.

[96] J. Martinez and J. Piqueras. On the mobility of polycrystalline semiconductors.
Solid State Electronics, 23(4):297–303, April 1980.

[97] D. P. Joshi and R. S. Srivastava. Mobility and carrier concentration in poly-
crystalline silicon. Solar Cells, 12:337–344, August 1984.

[98] Marco Novarese, Sebastian Romero-Garcia, Jock Bovington, and Mariangela
Gioannini. Dynamics of free carrier absorption and refractive index dispersion
in si and si/polysi microrings. IEEE Photonics Technology Letters, 35(8):450–
453, 2023.

[99] Chih-Wei Tseng, Chih-Wei Tsai, Kaung-Cheng Lin, Ming-Chang Lee, and
Yung-Jui Chen. Study of coupling loss on strongly-coupled, ultra compact
microring resonators. Opt. Express, 21(6):7250–7257, Mar 2013.

[100] Andres Gil-Molina, Ivan Aldaya, Julián L. Pita, Lucas H. Gabrielli, Hugo L.
Fragnito, and Paulo Dainese. Optical free-carrier generation in silicon nano-
waveguides at 1550nm. Applied Physics Letters, 112(25):251104, 2018.

[101] Dominik G. Rabus. Integrated Ring Resonators. Dover Books on Physics
Series. Springer-Verlag Berlin Heidelberg, 2007.



112 References

[102] Calvin D. Salzberg and John J. Villa. Infrared refractive indexes of silicon
germanium and modified selenium glass∗. J. Opt. Soc. Am., 47(3):244–246,
Mar 1957.

[103] A Sv Sudbo. Film mode matching: a versatile numerical method for vector
mode field calculations in dielectric waveguides. Pure and Applied Optics:
Journal of the European Optical Society Part A, 2(3):211–233, may 1993.

[104] Daniel de zutter, P. Lagasse, J. Buus, T. Young, and Bernice Dillon. Compari-
son of different modelling techniques for longitudinally invariant integrated
optical waveguides. IEE Proceedings J: Optoelectronics, pages 273–280, 10
1989.

[105] Henry Frankis, Khadijeh Miarabbas Kiani, Daniel Su, Richard Mateman,
Arne Leinse, and Jonathan Bradley. High-q tellurium-oxide-coated silicon
nitride microring resonators. Optics Letters, 44:118, 01 2019.

[106] Christopher J Kaalund. Critically coupled ring resonators for add-drop filter-
ing. Optics Communications, 237(4):357–362, 2004.

[107] M. Webster, C. Appel, P. Gothoskar, S. Sunder, B. Dama, and K. Shastri.
Silicon photonic modulator based on a mos-capacitor and a cmos driver. In
2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS),
pages 1–4, 2014.

[108] Christina Manolatou and Michal Lipson. All-optical silicon modulators
based on carrier injection by two-photon absorption. J. Lightwave Technol.,
24(3):1433, Mar 2006.

[109] Amal K. Ghosh, Charles Fishman, and Tom Feng. Theory of the electrical and
photovoltaic properties of polycrystalline silicon. Journal of Applied Physics,
51(1):446–454, 1980.

[110] Y. Laghla and E. Scheid. Optical study of undoped, b or p-doped polysilicon.
Thin Solid Films, 306(1):67–73, 1997.

[111] Navneet Gupta and B Tyagi. Effect of grain size on the mobility and transfer
characteristics of polysilicon thin-film transistors. Indian Journal of Pure and
Applied Physics, 42, 07 2004.

[112] A.D. McConnell, S. Uma, and K.E. Goodson. Thermal conductivity of doped
polysilicon layers. Journal of Microelectromechanical Systems, 10(3):360–
369, 2001.

[113] S. Pizzini. Polycrystalline silicon as against amorphous silicon for photo-
voltaic applications: A subject for speculation and a challenge for the late
1980s. Solar Cells, 12(1):163–165, 1984.

[114] Ted Kamins. Polycrystalline Silicon for Integrated Circuits and Displays
Second Edition. Dover Books on Physics Series. Kluwer Academic Publishers,
1998.



References 113

[115] A.S. Sudbo. Numerically stable formulation of the transverse resonance
method for vector mode-field calculations in dielectric waveguides. IEEE
Photonics Technology Letters, 5(3):342–344, 1993.

[116] C. Vassallo and J.M. van der Keur. Comparison of a few transparent boundary
conditions for finite-difference optical mode-solvers. Journal of Lightwave
Technology, 15(2):397–402, 1997.

[117] C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude. Nonlinear
silicon-on-insulator waveguides for all-optical signal processing. Opt. Express,
15(10):5976–5990, May 2007.

[118] Jacob T. Robinson, Kyle Preston, Oskar Painter, and Michal Lipson. First-
principle derivation of gain in high-index-contrast waveguides. Opt. Express,
16(21):16659–16669, Oct 2008.

[119] T.D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra. Confinement fac-
tors and gain in optical amplifiers. IEEE Journal of Quantum Electronics,
33(10):1763–1766, 1997.

[120] Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal. Effective
mode area and its optimization in silicon-nanocrystal waveguides. Opt. Lett.,
37(12):2295–2297, Jun 2012.
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Appendix A

Proof of equations

This chapter collects demonstrations of various equations introduced in the main
text.

Circulating power in the ring

To obtain the power circulating in the ring, eq. (2.5), we consider that the total
circulating field is the sum of all contributions associated to round trips in the
ring, where the first term is related to the input field Ein in the add-drop MRR,
−κ · (1−η2)Ein. Then all other terms are:

Ec(ω) =−κ · (1−η
2)Ein(1+ t2ae jθ + t4a2e2 jθ + ...). (A.1)

We note that (1+ t2ae jθ + t4a2e2 jθ + ...) is the geometric series of the fraction
1

1−t2ae jθ = ∑
∞
n=0
(
t2ae jθ)n, therefore the circulating power is Pc(ω) = |Ec(ω)|2 =

κ2(1−η2)

|1−t2a|2
.

Optical confinement factor

We give here a proof of the optical confinement factor as defined in eq. (2.18) which
follows what done in [118, 156].
The confinement factor is generally defined as:
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Γ ≡ αm

αb
(A.2)

where αm and αb are the modal and material loss respectively.
Considering the electromagnetic field propagating in the waveguide, eq. (2.15), the
propagation constant βµ(ω) is generally complex:

βµ = βµ0 +∆β (A.3)

∆β = k0(n̂e f f ,r + jn̂e f f ,i) is a perturbation of the propagation constant (β̂µ0). βµ0 is
the propagation constant of the waveguide with no loss and effective refractive index
ne f f ,0. k0 is the field wavevector at angular frequency ω , and n̂e f f ,r and n̂e f f ,i the
modal variation of the real and imaginary part of the effective index each. The loss
of the guided mode is associated to the imaginary part as:

αm =−2Im(∆β ) =−2k0n̂e f f ,i (A.4)

while the bulk material losses are

αb =−2k0nA,i (A.5)

with nA,i the imaginary part of the bulk refractive index variation which is assumed
to be uniform over the waveguide cross section A. We can link equations A.4 and
A.5 by writing the variation to the complex dielectric constant in the silicon material
as:

∆εi = ε0

[
n2

si − (nSi + jαbλ/4π)2
]

(A.6)

which can be simplified since nA,i is considered to be small with respect to the
refractive index:

∆εi ≈−2ε0nsiαbλ/4π (A.7)

The variation of the imaginary part of the propagation constant of the guided mode
is then obtained from coupled mode theory [140, 141]:

∆βi =
ω
∫ ∫

∞
∆εi ·Eµ(x,y,ω)∗Eµ(x,y,ω)dxdy

2Pn,µ
(A.8)

By substituting eq. (A.7) in (A.8) and using (A.4) we get:
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αm = 2ε0nsi
λ

4π

ω
∫ ∫

A αb ·Eµ(x,y,ω)∗Eµ(x,y,ω)dxdy
2Pn,µ

(A.9)

where the integral has been limited over the waveguide area A since the material
loss αb is not defined outside of it. By using the equality c = λω

2π
and eq. (2.17) we

finally get:

αm = αb
nSicε0

∫ ∫
A

∣∣Eµ(x,y)
∣∣2dxdy∫ ∫

Atot
ℜe
{

Eµ(x,y)×Hµ(x,y)
}
· ezdxdy

. (A.10)

By comparing the previous equation with eq. (A.2), we obtain the expression for the
optical confinement factor defined in eq. (2.18).

Optical losses due to TPA

The expression for TPA losses , eq. (3.4) is based on the work by Koos et al. in
[117].
We consider the nonlinear Schrödinger equation for the field propagation Aµ(z, t) in
the waveguide, where P(z, t) = |Aµ(z, t)|2 is the average power of the mode µ . In
steady state (∂Aµ (z,t)

∂ t = 0), we have:

dAµ(z)
dz

=−γi|Aµ |2Aµ (A.11)

with γi the imaginary part of the nonlinear waveguide parameter in the waveguide
defined as [117]:

γi =
3ω0ε0Z2

0

4Ae f f n2
si

Im(χ3) (A.12)

Z0 is the free space impedance and χ3 the complex scalar third-order nonlinear
susceptibility. In order to compute the TPA coefficient, we multiply eq. (A.11) by
A∗

µ and use the property
(∂Aµ ·A∗

µ )

∂ z = Aµ · ∂A∗
µ

∂ z +A∗
µ · ∂Aµ

∂ z leading to:

dP(z)
dz

=−2γiP ·P (A.13)

which has a solution of the type P(z) = e−βT PAz where the term βT PA = 2γiP is by
definition the TPA coefficient. The latter is related to the imaginary part of χ3 as
[117]:
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Im(χ3) =
2n2

si
3k0Z0

βT PA (A.14)

By substituting eq. (A.14) in (A.12) we finally get:

αT PA = 2γiP =
βT PA

Ae f f
P (A.15)

where we used the identity ω0ε0Z0
k0

= 1.

Power absorbed and radiated in a MRR

In this section we give a demonstration of the power absorbed and radiated in a
MRR, since these are fundamental in determining the self-heating due to linear and
nonlinear losses. We first start with the power dissipated in the ring (Pd,MRR) and
then separate the absorption contribution Pabs from the power radiated away from the
ring due to bend loss Prad,BL. Then we also include the power radiated by coupling
losses Prad,η , such that Prad = Prad,BL +Prad,η .
The power dissipated in an add-drop MRR without considering coupling loss is:

Pd,MRR =−
∫ L/2

0
αe f f Pce−αe f f zdz+ t2

∫ L

L/2
αe f f Pce−αe f f zdz (A.16)

The first term takes into account the circulating power lost during propagation in the
first half length of the ring before coupling with the drop port, while the second term
consider the power not coupled outside the resonator (which is taken into account
by the transmission coefficient t) lost in the second half of the ring. The minus sign
indicates that this type of power is considered lost. Solving eq. (A.16) leads to

Pd,MRR = Pc(1−a)+Pct2a(1−a) (A.17)

Which is equal to Pd,MRR = Pc(1−a)(1+ t2a). To decouple the power lost due to
absorption and bend losses we make use of the approximation:

(1−a)≈ (1−aabs)+(1−arad) (A.18)

where we remind aabs = e−(α0+∆α(Pc))·L/2 and arad = e−αrad ·L/2. This approximation
holds when 1− a ≈ 0 which holds even for circulating power higher than those



121

achieved in this thesis as shown in figure A.1. Here we consider R2 since it has the
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Fig. A.1 Proof of the approximation performed to separate the absorbed power causing
self-heating from the one radiated due to bend losses as a function of the circulating power
in the case of ring R2.

highest Q between all the analysed ring and therefore represent the worst case since
Pc ↑ −> αe f f ↑ −> a ↓.
The power absorbed in the ring is then

Pabs = Pc(1−aabs)(1+ t2a) (A.19)

while the radiated due to bend losses:

Prad,BL = Pc(1−arad)(1+ t2a) (A.20)

Lastly the power radiated due to coupling losses is composed of three contributions:
first the power lost before coupling with the ring η2Pbus, then the power circulating
in the ring lost at the drop port η2Pca, and finally the power lost after one complete
round trip η2Pca2t2. The total radiated power due to coupling loss is :

Prad,η = η
2 (

η
2 · (Pin +Pc · (a+a2 · t2))

)
(A.21)

Summing equations (A.20) and (A.20) gives eq. (3.8).
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Relation between ∆ne f f ,FCD and ∆λPP

In order to demonstrate eq. (4.1) we first write the round-trip condition of the propa-
gating field inside the ring considering FCD caused by free carriers at resonance:

L
c

(
ω0(ne f f ,0 +∆ne f f ,FCD)+ng(ωr −ω0)

)
= 2πm (A.22)

where ωr is the new resonant frequency associated of the shifted NL spectrum and
ω0 the cold resonance of the ring.
Since the index m must be the same index of the cold resonance case, we can simplify
the terms related to the cold resonance round trip condition, i.e., L

c

(
ω0(ne f f ,0)

)
=

2πm, leading to

ω0(∆ne f f ,FCD) =−ng(ωr −ω0) (A.23)

which is written in terms of wavelengths as:

∆ne f f ,FCD =−ng(
λ0 −λr

λr
) (A.24)

By defining ∆λr = λr −λ0 we have

∆ne f f ,FCD = ng(
∆λr

λr
) (A.25)

We note that the quantity (∆λr
λr

) is always much smaller than 1 since the maximum
variation of resonant wavelength are on the order of 1−2ns (Si/poly-Si ring case).
As a result we can write ∆ne f f ,FCD = ng(

∆λr
λ0

) which is exactly equal to eq. (4.1)
introduced in the main text. We perform this approximation since λ0 is well known
during the experiment whereas a precise value for λr is difficult to retrieve due to the
noise involved in the pump-probe experiment.
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Propagation losses measurements on
straight waveguides

Measurements of non-linear losses in silicon waveguides based on the same tech-
nology used for ring resonator R2 were provided by the foundry. These data were
useful for our model as an additional validation tool and also to fix some important
parameters such as βT PA.
We considered two different waveguides widths WSi equal to 450nm and 580nm
with height hSi = 107nm and different total lengths Lwg as reported in table B.1.

Table B.1 Lengths of the straight waveguides analysed for NL power loss measurements.

WSi,nm Lwg,µm
450 and 580 2895 3400 5240 7160 37700 52700

The propagation loss of the field in the waveguide was estimated as the ratio
between the measured output Pout and input power Pin. Following the approach
discussed in section 5.2 in the case of only one forward propagating field and a
number of k slices, the power at each slice i is:

P(i) = P(i−1) · e−αe f f (i−1)dz, (B.1)

with i = 2 : k+1, P(1) = Pin, and P(k+1) = Pout . αe f f is dependent on z through
the circulating power and carrier density, here we use eq. (3.2) with αrad = 0 since
the waveguides are not bent. We can reproduce the experimental results with the
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SRH model by using as fitting parameters ηSCA, βT PA and the trap density in the
waveguides N450, f and N580, f . More precisely at each slice dz the power will gener-
ate an amount of free carriers es expressed in eq. (3.20). We assume the same trap
density for waveguides with the same cross section, while the values for ηSCA, and
βT PA have been kept constant in both cases. Measurements and model results are
displayed in figure B.1.
In both cases we have that βT PA = 1.5cm/GW and ηSCA = 0.04, whereas N450, f =
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Fig. B.1 Propagation loss αe f f as a function of the input power in the waveguide for
different waveguides lengths from blue (Lwg = 2895 µm) to green (Lwg = 52700 µm) when
(a) WSi = 450nm and (b) WSi = 580nm.

3.4 · 1016cm−3 and N580, f = 1.9 · 1016cm−3. Lower values of the TPA coefficient
would not make it possible to have such large losses in our waveguides for any phys-
ical sound values of trap densities. Comparing the two waveguides, it is interesting
to see that, for the same input powers and Lwg, the larger waveguide, WSi = 580nm,
presents higher propagation losses. This is well explained by the fact that we have
N f ,450 > N f ,580, which results in higher free carrier lifetime for WSi = 580nm as
shown in figure B.2. Here the SRH free carrier lifetime for different set of powers is
plotted as a function of the waveguide length, i.e, calculated at each slice k of length
dz. By looking at fig. B.2 (b) and (d) we note how the hole lifetimes are very similar,
however τn is much larger in the smaller waveguide, see fig. B.2 (a), which is the
cause for the higher propagation losses in the waveguide with WSi = 580nm.
The values of βT PA and ηSCA were fixed and used to characterise ring R2 in chapter 4.
We also remark that the trap densities estimated in this section are of the same order
of magnitude as those calculated for ring R2, which further validates our theory.
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Fig. B.2 Free carriers lifetime in the waveguide with length Lg = 52700 µm as a function of
the propagation distance in the waveguide for several input power for electrons (a) and holes
(b) in the case of Wsi = 450nm, (c) and (d) for Wsi = 580nm. Legend colours of figures (b)
and (d) are the same of (a) and (c).



Appendix C

FOMs for ring design of III-V/Si
hybrid tunable laser

In this appendix we define the figure of Merits of the hybrid tunable laser mentioned
in section 4.1 whose schematic is shown in figure 1.6. The laser consists in an
active part (RSOA) that provides light into a passive mirror composed of waveguides
and ring resonators that allow the laser output wavelength to be finely tuned by the
Vernier effect through thermal control of the rings. The model for the design of this
laser has been developed in [66]: the parameters of the RSOA are the same as in
[66] whereas here we employ silicon instead of silicon nitride for the realization of
the rings as summarised in table 5.1.

Ring radii

The determination of the two ring radii is the first step in the design. By fixing the
radius of one ring to r1 and the coupling coefficient of both rings to κ2, the radius
of the second ring r2 must be selected in order to maximise the tuning range and
minimize the overlap between the two non-aligned nearest adjacent resonances [66].
Assuming the resonant frequencies of the two rings to be aligned at the frequency f0,
we denote with f1 and f2 the distance, from f0, of the nearest non-aligned resonances
of ring1 and ring2 respectively, i.e., the FSR of ring1 and ring2. r2 is then computed
by imposing that the quantity ∆ f1,2 = f1 − f2 is C f times larger then the full width
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half maximum (FWHM f 1) of ring1 resonance:

∆ f1,2 =C f ·FWHM f 1. (C.1)

Where C f = 2.5 is in general enough to ensure a laser SMSR higher than 40dB. r2 is
therefore a function of r1, κ2 and ring loss because it depends on the ring1 FWHM.

Tuning range

The maximum tuning range, which represents the maximum frequency range where
we have again the maximum overlap of resonance frequencies of the two rings,
∆ ftune originates in the Vernier effect and is equal to:

∆ ftune =
f 2
2

∆ f1,2
− f2. (C.2)

As a result the maximum thermal tuning (i.e., maximum temperature increase of the
silicon waveguide core) requires to cover the ring free-spectral range f2.

SMSR

For the calculation of the side mode suppression ratio, we must consider two possible
competing longitudinal modes: the laser cavity longitudinal mode with frequency
fm closest to the lasing frequency f0 (i.e., fm = f0 +∆ fFSR, with ∆ fFSR the laser
cavity free spectra range) and a laser cavity longitudinal mode with frequency fworst

corresponding to the peak of the overlap between the two resonances at f 1 and f 2.
We calculate the SMSR for both cases and to be conservative we consider the worst
scenario between the two. The SMSR is calculated as [141]:

SMSR = 1+∆αm/∆g (C.3)

where ∆αm is loss margin between the lasing mode and the competing longitudinal
mode [141] and ∆g is:

∆g = βspηr ·
αSOA,i +αSOA,m

Ibias/Ith −1
. (C.4)
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Table C.1 Parameters definition in the RSOA for the tunable laser design.

Parameter Definition

βsp Spontaneous emission factor
ηr Radiative efficiency

Ibias bias current
Ith threshold current

vg,SOA group velocity
ng,SOA group index
LSOA cavity length
τSOA cavity round trip
VSOA active region volume
N0 transparency carrier density

σSOA
|E+,SOA(t)|2

VSOA
Photon density

αH,SOA linewidth enhancement factor
ηi,SOA internal quantum efficiency

gN modal gain coefficient

here αSOA,i is the internal loss in the SOA section and αSOA,m the mirror effective
loss provided by the foundry. The rest of the parameters are defined in Table C.1 and
are the same as in [66].

Optical linewidth

Finally the optical laser linewidth is [66]:

∆ν = ∆g
(1+αH)

2

4π

(
ng,SOA ·LSOA

ng,SOA ·LSOA +ng,Si ·Le f f

)2

. (C.5)

αH is the linewidth enhancement factor, Le f f the effective length of the entire passive
mirror, andng,Si the group index of silicon in the SiPh waveguides.
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