
Doctoral Dissertation

Doctoral Program in Civil and Environmental Engineering (35thcycle)

Innovative Computational
Techniques and Constructability

Issues for the Optimum Structural
Design of Steel Structures

Algorithms and applications

By

Raffaele Cucuzza
******

Supervisor(s):
Prof. PhD. Giuseppe Carlo Marano

Doctoral Examination Committee:
Prof. PhD. Alessandra Fiore, Referee, Politecnico of Bari, Italy
Prof. PhD. Nikos Lagaros, Referee, National Technical University of Athens, Greece

Politecnico di Torino

2023



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Raffaele Cucuzza
2023

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).



A mio Padre, che ogni giorno mi indica la via

A mia Madre, che mi ha insegnato a sognare

A mia Sorella, che guardandola ricordo chi sono



Acknowledgements

Ricorderò per sempre questi anni di dottorato come i più belli della mia vita. Una vita
colorata da mille emozioni e sfide. A renderli speciali hanno contributo tantissime
persone dalle quali ho ricevuto più di quanto abbia dato.

Per primo, vorrei rivolgere un pensiero affettuoso al prof. Giuseppe Marano per
avermi indicato la via quando mi sentivo perso. Credo che il giorno in cui il destino
ci ha fatti incontrare, la mia vita sia cambiata inesorabilmente. La mia crescita
accademica e personale è stata resa possibile solo grazie alla sua enorme pazienza e
bontà d’animo. Il suo amore per la scienza è stata la più grande fonte di ispirazione e
il dono più grande che potessi ricevere come giovane ricercatore. Vedere la vita con
i suoi occhi mi ha fatto scoprire delle verità che altrimenti non avrei mai raggiunto.
Spero di poter vivere ancora tante avventure insieme, trovandola in quell’ufficio ad
aspettarmi, con quel "ciao, bidduzzo" che mi dice ogni mattina e che mi strappa
sempre un sorriso.

Conosco il prof. Giuseppe Ferro da tanti anni e amo le nostre conversazioni. La
sua visione lungimirante e strategica delle cose mi ha sempre affascinato. Durante il
mio mandato come senatore accademico, ogni suo suggerimento, ogni sua parola è
stata fondamentale per compiere le scelte giuste nei momenti più critici per il nostro
Ateneo. Le confesso che farla arrabbiare è una delle cose che amo di più del nostro
rapporto. E anche se non lo ammetterà mai...sono sicuro che piaccia anche a lei!
A volte due persone trovano canali di comunicazioni anticonvenzionali e, il nostro,
ne è un esempio raro. Spero che i nostri sguardi si continueranno ad incrociare e la
nostra intesa continui ad essere quella di sempre.

Vorrei ringraziare anche il prof. Marco Domaneschi, o meglio, "lo zì" come
ormai sono solito chiamarlo. La sua continua presenza (giorno ma soprattutto notte)
mi ha reso più sicuro e consapevole dei miei mezzi. Sei e rimarrai per sempre il
"Dorian Gray" del politecnico di Torino.



v

Vorrei ringraziare anche il prof. Amedeo Manuello con il quale ritengo di aver
costruito un rapporto sincero e leale. In quest’ultimo anno, la nostra collaborazione
scientifica si è trasformata in un rapporto che va aldilà di un mero rapporto lavorativo.
Sono sicuro che avrà finalmente l’occasione per darmi tutte le "mazzate" che mi ha
promesso e che, ne sono consapevole, merito fino all’ultima.

Infine, ringrazio te, Eugenia, che ispiri tutto quello che faccio, che sei nell’apice
dei miei pensieri. La vita è semplicemente più bella con te al mio fianco!
Ti prometto che smetterò di fumare!



Abstract

Since the first half of the last century, the scientific community was fascinated by the
potentiality of structural optimization as an efficient tool to solve hard computational
problems. Moreover, the need of adopting these strategies became more evident
when traditional approaches and thumb rules derived by experience appeared to be
insufficient to face society’s new challenges for which counter-intuitive solutions and
innovative methodologies were required. In a wide variety of fields, benefits derived
from the development of this branch is worth of noting. Ranging from mechanical
engineering to aerospace, from civil engineering up to architecture, and again from
the biomedical field to medicine the effectiveness of optimization strategies has been
widely demonstrated.
Especially, civil engineering seems to be benefited the most by the growth of this
branch. Bold and unusual layouts of buildings with optimal structural and economic
cost-impact or new sustainable solutions represent still nowadays the main target of
this subject. Therefore, soft computing techniques results to be extremely useful for
the identification of optimal properties of control devices, retrofitting systems and
monitoring methodology applied to existing buildings.

At first, once the goodness of the results derived by optimization processes was
largely proved for simple application case studies, an increasing complexity was
addressed and the main focus moved towards the identification of the most efficient
and robust methods for achieving the global optimum of the problem. Different
deterministic or heuristic methods appeared in literature aiming to guarantee feasible
solutions with high efficiency during the exploration phase as well as accuracy during
the exploitation one.

When a certain level of maturity was achieved and a deep awareness of the most
promising techniques has been attained, conventional optimization strategies for the
assessment of the optimal solution in terms of least structural cost (i.e. weight or
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volume), highest performance rates, as well as competitive economical cost, have
given way to problem statements in which constructability issues or practical design
problems were accounted. The gap between theoretical approaches and practical
ones represents the last obstacle to large-scale deployment in the common design of
new or existing structures.

The goal of this thesis is to pursue this scope by showing how problems during
industrial production processes or practical issues during the design and construction
phase can be solved for a specific class of structures like steel trusses and frames.
In order to deal with these problems efficiently, various already existing algorithms
and novel methodologies were developed. If the first part of the thesis was dedicated
to showing the improvement derived by coupling well-known optimization tech-
niques with more efficient search strategies, the second part is focused on interesting
applications where structural complexity during the assembly process or cutting
pattern of steel members at the production stage become the variable parameters to
be optimized.

The dissertation consists of eight chapters in total, plus the bibliography and
three appendices that for clarity purposes were placed at the end of the correspond-
ing chapter. It is organized as follows: Chapter 1 provides an overview of the
optimization strategies in which all the most interesting papers were classified into
sub-categories and the most significant information for each contribution was summa-
rized in thematic tables. Chapters 2 and 3 deal with the formulation of a new machine
learning approach for non-penalty constraint handling in evolutionary algorithms
and the introduction of novel enhanced PSO with a Multy-Strategy Implementa-
tion, respectively. Optimal strengthening by steel truss arches in prestressed girder
bridges is presented in Chapter 4 while in Chapter 5 results obtained by the size and
shape optimization of a Guyed Mast Structure are illustrated. Problems related to
constructability constraints for optimal sizing, geometry and topology of industrial
buildings and the use of cutting stock problem in truss beam optimization are dis-
cussed in Chapters 6 and 7, respectively. Finally, Chapter 8 contains the conclusions,
the original contribution of the thesis, and directions for future research.
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Chapter 1

An overview of the Optimization
strategies for steel structures: a
critical review

1.1 Introduction

Recently, though the need for sustainable materials such as stone, masonry or new
hybrid-composite represents the new goal of this century, steel remains one of
the most widely used materials in the whole world thanks to the adoption of new
maintenance and monitoring techniques, i.e. Structural Health Monitoring (SHM),
and its incredible structural performance. The age of steel was inaugurated by
the second industrial revolution with a famous structure that determined an era of
unprecedented growth in history. The Eiffel Tower was built on the occasion of
the first Universal Exposition in 1899 by Engineer Gustavo Eiffel. At the time it
represented the world’s most audacious structure thanks to both its slenderness and
high structural capacity.

Taking a look at the statistics provided by the non-profit organisation World Steel
Association (2021), the authors have pointed out a trend of the World crude steel
production from 1950 up to 2021 expressed in terms of Million tonnes. As shown in
Fig.1.1, at the beginning of the European Reconstruction Plan realized after World
war II, the crude steel production was 189 million tonnes. 10 years later the recorded
value was about double and, then, the growth kept constant until the beginning of the
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Fig. 1.1 World crude steel production from 1950 up to 2021 (million tonnes))

new century. At the end of the 19th century, in just 50 years the production of crude
steel has quintupled. The highest slope was recorded between 2000 and 2005 during
which the steel production passed from 850 to 1148 million tonnes respectively
with an unparalleled growth ever observed. Due to the developing technologies in
this field and the extensive use of this material in several engineering fields such
as mechanical, aerospace and civil, the maximum crude steel production of 1951
tonnes was recognised at the end of 2021.

Several further interesting considerations have been pointed out by the authors
by mapping the World-top 20 steel-producing countries at the end of 2021. In
Fig. 1.2, the Circle size is proportional to the steel-producing country value. It is
worth noting that the main steel-producing countries are concentrated in the Asian
continent. In particular, China results still now the most steel-producing country
in the world with 1032.8 million tonnes and its productivity results in being 10
times the producing value exhibited by the second country in the ranking (India).
Generally, the observed trend is derived by historical or economic reasons but also
practical needs. Though China and India are almost considered emerging economies
with important companies in different industrial fields; Japan, for instance, which
ranks third in the above-mentioned list, allocates the majority of the available steel
resource to improve the seismic resistant strength of buildings and infrastructures.
The geographical location of several countries, such as the presence of tectonic
plates or aggressive environments, leads to requiring strict safety and structural
requirements in the construction process.
Nonetheless, steel material has gained popularity for its crucial role in challenging
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Fig. 1.2 Top 20 steel-producing countries 2021 (million tonnes)

design in which extreme and refined shapes have been requested or as a friendly
environmental solution.

These preliminary considerations concerning the widespread use of steel in
various structural application fields are testified by the increasing attention to steel
structural optimization from the scientific community. A bibliometric investigation
was conducted by the authors with the aim to compare the growth of the total
number of publications in the structural optimization field, independently of the
adopted optimization strategies, with those that are exclusively focused on the
optimization of steel structure as generic steel frames, trusses, bridges, seismic
isolation devices, etc. The underlying platform for finding the relevant works of
literature was Elsevier’s abstract and citation database Scopus. Two main keywords
as "structural optimization" (SO) and "Steel structural optimization" (SSO) were
utilized for our purposes. With the former, all the papers concerning optimization
processes applied in any field have been involved while the latter referred solely to
applications on steel structures or devices (isolation system, optimal parameters for
dampers’ identification, etc.).

In order to give an overview of the trends derived by the analysis paper article,
conference paper, book chapter and review article published in engineering journal
indexing by Scopus have been included and a time frame of the last 31 years, from
1990 up to 2021, was considered. In Fig. 1.3, it is evident how the increase of the
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Fig. 1.3 Trend of the total number of publications by searching the keywords "Structural
Optimization" and "Steel structural Optimization" within the manuscripts’ title between 1990
and early 2000.

published article in the SSO sub-field is growing up faster and faster. Moreover,
at the beginning of the ’90s and for the further 20 years, the difference between
the two trends was negligible; then, thanks to the spreading of new computational
techniques in several fields of engineering, the application was extended to new
frontiers of knowledge and to new case studies. However, though the gap with
respect to the main field is still so marked, SS0 covers an important part of the total
papers published in the SS topic still nowadays.

The main approach in SSO can be broadly classified as reported in figure 1.4
depending on the type of algorithm adopted to fulfil the scope.
At first, optimization algorithms can be classified into Deterministic and stochastic
approaches. The former makes use of derivatives of the objective function and
constraints in the search for the optimum solution and no random process is involved
while the latter, also called the metaheuristic algorithm, relies on stochastic search
paradigms inspired by different kinds of natural phenomena.

Historically, among the Deterministic solution techniques, mathematical pro-
gramming techniques were first to be used to obtain the solution of the optimum
for both linear and nonlinear programming problems (Schmit et al. 1960, Majid et
al.1974, Saka et al. Saka (1980), Atrek et al. 1984, Arora et al. 2004, Kirsch et al.
2012, Belegundu et al. 2019).
There are several mathematical programming techniques available in the literature.
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Fig. 1.4 Classification of algorithms in optimization field

The authors have selected the ones which have been applied successfully for the
optimum design of steel structures.
As reported in Saka et al. (2013), three groups were recognized: in the first group, all
the algorithms approximation in which the linearization concept was adopted, were
collected as the Sequential Linear Programming method developed by Griffith and
Stewart (1961), improved strategies where cross-sectional properties of members (i.e.
Reinschmidt et al. 1966, Johnson et al. 1969, Arora et al. 1976) or joint displace-
ments (i.e. Saka et al. 1980 and Schmit et al. 1976) was assumed as design variables.
In the second and third groups Penalty Function Method through sequential un-
constrained minimization techniques (i.e. Carroll et al. 1961, Fiacco et al. 1990,
Kavlie et al. 1971 and Gisvold et al. 1972) and Gradient Method for constrained
optimization problem were solved, respectively. In the latter, gradient-projection
method proposed by Rosen (1960 and Zoutendijk (1960) or geometric (Morris et al.
1972) and dynamic programming (see Bellman et al. 1966 and Sheppard et al. 1972)
were introduced.

Alternatively to linear programming techniques, Optimality Criteria Methods
(Prager et al.1968) were largely used as a valid deterministic approach aiming to
overcome numerical difficulties when real-size practical steel structures with more
than a few dozen of design variables were taken into account. With respect to
mathematical programming techniques, few structural analyses were required to
achieve a near-optimum solution by deriving criteria based on intuition such as
fully stressed design or based on a mathematical statement such as Kuhn-Tucker
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conditions for both continuum (Venkayya et al. 1969) and discrete large-size practical
structures (see Venkayya et al. 1973, 1989, Berke et al. 1987, Khot et al. 1979 and
1981a).
More in detail, different strategies were developed within the Optimality criteria
field by distinguishing between the Displacement constraints-based method (Berke
et al. 1970), strength constraints-based method (Tabak et al. 1981), axial and
lateral stability constraints-based methods (Ulker et al. 2001) and combined stress
constraints based method (Khot et al. 1981b).

If Deterministic techniques were preferred since the beginning by several re-
searchers for solving theoretical problems or quite simple practical examples, stochas-
tic metaheuristic and heuristic algorithms proved to be an efficient alternative to
the conventional solvers for highly complex real-world problems and/or no-convex
problems.
The most significant advantage of these intelligent techniques is that they do not
require prior knowledge of the tackled problem. Though these do not guarantee that
the best solutions can be found or whether the algorithm will work and why if it does
work (Yang 2010a, 2010b), they can be an efficient way to produce acceptable solu-
tions by trial and error aiming to find a reasonable feasible solution in an acceptable
timescale.
Despite the popularity of metaheuristics, there is no agreed definition of heuristics
and metaheuristics in the literature. Some researchers use ‘heuristics’ and ‘meta-
heuristics’ interchangeably. However, the recent trend tends to name all stochastic
algorithms with randomization and global exploration as metaheuristics. Random-
ization provides a good way to move away from local search on a global scale.
Therefore, almost all metaheuristic algorithms are usually suitable for nonlinear
modelling and global optimization.
In this review, inspired by the work of Kashani et al. (2022), random strategies are
classified into two main categories: Metaphor based and Non-Metaphor based.
Metaphor-based algorithms are including bio-inspired (e.g. genetic algorithm, Hol-
land 1992) and particle swarm optimization (e.g. Kennedy and Eberhart, 1995a),
art-inspired (e.g. harmony search, Geem et al.2001) and interior search algorithm (
e.g. Gandomi 2014), science-inspired as the simulated annealing (e.g. Van Laarhoven
and Aarts 1987) or the gravitational (Rashedi et al. 2009) and Charged System Search
algorithm (e.g. Kaveh 2010), social inspired like the teaching–learning-based op-
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timization (e.g. Rao et al. 2011) and school-based optimization (Farshchin et al.
2018).

The paper has the following organization. Section 2 introduces the gap of
the research and the purpose of this review. Section 3 is totally focused on the
organization and classification criteria adopted by the authors. Section 4 traces a
historical excursus of academic research in this field selecting the main papers within
a temporal range from 1968 to 2000. In section 5 the mathematical formulations of
the traditional problems in structural optimization are introduced and the three main
optimization strategies are defined. Section 6 explains the search method procedures
and a brief description of the existing reviews realized by other authors is discussed.
Section 7 is entirely dedicated to the bibliometric analysis and graphical outcomes
are used for preliminary considerations. In section 8, all the papers involved in the
bibliometric analysis are examined and classified into main fields and sub-categories.
Finally, the conclusion is pointed out aiming to highlight the lack in the literature or
propose future research areas and present some (deserved) critique of the field.

1.2 Purposes of this review

These preliminary considerations show that increasing attention to the steel material
represents a crucial aspect of understanding the development of building construction
trends. Several works are already available in Literature in which a list of the most
efficient optimisation algorithm are collected with the aim to detect the best strategies
for obtaining the optimal solution within imposed constraints (see e.g. Kashani et al.
2022).
However, few practice case studies in the Civil Engineering field have been included
and, mainly, final considerations derived from these investigations are focused to
prove the computational efficiency of algorithms in well-defined benchmark cases.
In other words, an overview of the main structural fields in which optimization
strategies have been effectively adopted to solve real design problems is missed.
Hence, adopting a critical review of the most recent scientific contributions, the
authors will try to answer to some interesting questions: nowadays the findings
from the structural optimization fields can be assumed as efficient solutions to the
most challenging design problems or they have remained, in the most of cases,
only theoretical applications due to their critical application issues? What are the



8 An overview of the Optimization strategies for steel structures: a critical review

main fields which have benefited the most by using these relatively young techniques?

1.3 Organization

In order to achieve the above-mentioned purposes, a critical study must be conducted
and a classification in specific main areas, chosen by the authors, of the most
interesting steel application case studies must be provided. The research is oriented
to collect the most common structural optimization problem statements with specific
regard to steel structures. The problem formulations and the corresponding case
studies have been analyzed by capturing the main trends in structural design. It has
been considered:

• Problem formulation: Single or multi-Objective Function (OF) considered
as the target value to be maximized or minimized by respecting the various
numerical tolerance and structural boundary imposed. The most efficient
exploring approach to a dynamic change in the research area represents the
crucial aspect of this kind of optimization process;

• type of algorithm and optimisation strategies adopted for achieving the best
fitness: soft computing techniques as population-based or Nature-inspired
algorithms and deterministic techniques as gradient-based approach and linear
or non-linear programming;

• Practical application case studies, selected by the authors, as interesting real-
world applications of optimization processes.

All the structural engineering optimization papers have been organized considering
three levels of optimization identified by the authors: size, shape and topology.
Moreover, in order to involve simultaneous optimization approaches, all possible
combinations of the mentioned-above pure formulations have been investigated as
depicted in the in-scale representation of Figure 1.5.
In future sections, we will define pure size/shape/topology optimization all those
papers in which the optimal solution will be affected by only cross-sectional, geomet-
rical and topology properties, respectively. Once a first classification was provided,
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papers were allocated in main application fields by considering the nature of the
target function as described following:

• Structural performance: all the optimization problems formulated aiming to
improve the mechanical or structural efficiency of structures (self-weight,
volume, surface, displacement, the natural frequency for the dynamic response,
energy dissipation of isolation and/or dissipation devices, etc..);

• Cost impact: all the optimization problems in which the economical aspect is
specifically considered as the main parameter affecting the design process;

• Environmental impact: all the optimization problems in which the environ-
mental aspect is taken into account by proposing alternative solutions for
sustainable purposes;

Moreover, an entire section was dedicated to the most interesting application
cases in order to show what is the structural optimization field that best fits with the
real-world Civil Engineering design challenges.
In the end, final remarks and deep considerations have been reported in the conclusion
based on the results derived by the critical analysis conducted by the authors.

1.4 Three approaches for optimal structures: Size,
Shape and Topology optimization

Each engineering problems require a specific approach which should guarantee to
achieve the correct solution with the minimum effort. In this sense, practitioners
and researchers focused on detecting the most promising optimization strategies for
coping with single or several problems simultaneously.

For the first time, Rozvany and Prager, in some of their works (Rozvany 1995
and Prager 1974), introduced the concept of layout optimization as the simultaneous
selection of the optimal topology (i.e. a spatial sequence of members and joints),
geometry (i.e. the location of joints) and cross-sectional dimensions (sizing). Hence,
the main three levels of optimization were clearly defined.
Generally, optimization problems can be formulated in different ways depending
on the final scope that must be achieved and the boundary conditions to which
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Fig. 1.5 Graphical representation of the classification criteria adopted in this review. The
size of each circle is representative of the number of papers corresponding to the specific
optimization level. In this sense, overlapping zone among each circle gives an idea of the
frequency of combination among all three strategies. Sub-fields assumed in this review as
Structural performance, cost impact, environmental impact are labelled 1,2 and 3 simultane-
ously.

the final solution is subjected. The formulation of structural design problems as
decision-making problems has yielded a new branch in structural engineering called
structural optimization (Majid 1974, Saka 1980 and Arora 2004).
The mathematical model of a decision-making problem has the following form:

Minimize W = f (xi), i = 1, ...,n (1.1)

Subject to h j(xi) = 0, j = 1, ...,ne (1.2)

g j(xi)≤ 0, j = ne +1, ...,m (1.3)

xl
i ≤ xi ≤ xu

i (1.4)

where xi represents the decision variable i of the design vector x. Decision variables
may take continuous or discrete variables. Continuous decision variable can assume
any real value within the range fixed by Eq.1.8. The design vector collects all the
variables of the problem which change iteration by iteration during the optimization
process. The nature of these variables depends on the optimization strategies as
discussed at the end of this section. On the other hand, discrete design variables can
be selected from the commercially available set of steel sections or, generally, by
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adopting a database representative of the main geometrical and mechanical features
of variables (moment of inertia, stiffness, etc.).
f (xi) in Eq.1.1 represents the objective function which is used as a measure of the
effectiveness of the decision. Depending on the nature of the optimization process
(minimization or maximization), the evaluation of f (xi), called in structural opti-
mization fitness, represents the capacity, in terms of efficiency and robustness of the
method, to achieve an optimal or sub-optimal solution.
The equalities, h j(xi), and inequalities g j(xi) conditions in Eqs.1.2 and 1.7 respec-
tively, represent the limitations imposed on the overall structural performance of the
structures.

In the last 30 years, different heuristic and metaheuristic algorithms, linear
or non linear iterative approaches, have been developed aiming to detect the best
approach starting from simple to hard computational class of problems. However,
the scientific community agrees in recognizing three main optimization strategies
with an increasing level of complexity: size, shape and topology optimization. Based
on the specific purpose of the research, each one of these can be adopted individually,
in pairs or by considering all three optimization levels simultaneously.

Size optimization represents one of the first processes that appeared in literature
since its simplicity and applicability to a wide range of interesting industrial and
technical problems. In this level of optimization, the engineer can choose the
geometrical characteristic of each member while the outer shape and the arrangement
of the structures remain unchanged. In other words, all the changing performing at
each iteration of the process are referred to a well-defined section of the member
or along the full length of itself when the hypothesis of constant sections of the
structures is assumed.

The second level of optimization is represented by shape optimization in which
nodes and/or joints are free to move around the starting position without varying the
topology or sizes within the structures.

Finally, the third level of the optimization process is represented by the hard-
est computational effort procedure through which the topology of the structures is
changed. This means that topology optimization is a process in which an optimal pat-
tern of the connectivity members is explored through the decision to activate or not a
specific joint placed in an exact position in the 2D or 3D dimension. Consequentially,
new load paths are investigated in order to provide the optimal arrangement under
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determined load and boundary conditions.
Though Eq.1.1 subjected to Eq.s1.2 and 1.7 result to be valid as a general expression
of an optimization problem for both size and shape level, little differences in the
formulation of a topology optimization problems occur.
In this case, the optimization problem is formulated as a minimum compliance prob-
lem in which the objective function is performance-based. The minimum compliance
problem maximizes the stiffness (or minimizes the flexibility) of the entire structure
under some given volume constraint by minimizing strain energy or external work
done by applied loads. The entire problem formulation can be written as:

Minimize FT d, (1.5)

Subject to K(ρi)d = F (1.6)

∑ρ
T
i Li ≤Vmax (1.7)

ρmin ≤ ρe ≤ ρmax (1.8)

where ρ is the decision variable and Li its length, F and d, whose product represents
the external work, are the vector of applied force(s) and nodal displacements at free
degrees of freedom respectively, K is the global stiffness matrix while Vmax, ρmin

and ρmax represent the upper and lower bound of volume and members respectively.

During the review, all the formulations introduced in this section for each size,
shape and topology optimization will be treated and the adaptability to several
engineering problems will be discussed.

1.5 A historical excursus: a look to the past

In this section, the authors give a look at the past in the structural optimization field
by emphasizing the most promising techniques which were adopted between 1968
to 2000. The purpose of this section is that to collect the first problem formulations
appeared in Literature. The authors believe that conducting an investigation of past
scientific works allows a clearer understanding of recent trends.

Historically, iterative loops or parametric analysis represent the first optimization
strategies that appeared in Literature. Some efforts in this direction were provided by
R.M. Brach (1968) and W. Yau (1974) where maximum-minimum dynamic deflec-
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tion was obtained as a function of the cross-sectional variation. A simply supported
beam with varying cross-sections along the length and different types/positions of dy-
namic impulse was investigated. Increasing interest in these topics was demonstrated
by the development of new computational approaches for structural optimization
in the dynamic response regime (i.e. Fox and Kapoor 1970) and applications to
more complex case studies as that one pointed out by L.J. Icerman (1969) in which
structures of various type were optimized following the smallest possible amount of
a given structural material criteria. Dynamic excitation was realized by harmonic
vibrations variable with time.
In 1972, at the end of the first decade from the birth of this branch of research,
Pierson (1972) organized a survey of optimal structural design under dynamic con-
straints: methods for handling constraints on natural frequencies or for treating
generic dynamic constraints on quantities directly related to the dynamic response
were clearly summarized.

Though, material saving represented the first issue addressed by the Scientific
Community, developments related to the mathematical formulation for the minimiza-
tion of economic cost were not long in coming.
Lee and Knapton (1975a) published pioneering research, in which the authors con-
ducted investigations about the minimum cost design of a steel portal framed building
aiming to evaluate the least cost design solution from the hyperspace of the feasible
region in accordance with the relevant B.S. Codes and common industrial practice.
Two years later, Jr. Thomas (1977) inspired by the concept of the least cost, intro-
duced an optimization method for the elastic design of roof systems composed of
rigid steel trusses, web joints and steel roof deck. In this work, cost voices achieved
an important level of detail by including different grades of steel and several types
of standard sections at each iterative step. Similarly, Cheng et al. (1989b) adopted
the same mathematical formulation, meanwhile two-dimensional steel frameworks,
with and without bracing members, subjected to both static and seismic forces were
investigated. In addition, a cost-objective function of the same structures has been
compared to the classical weight minimization. Regarding the cost minimization
target function, the parameters considered included the cost of structural members,
painting, and connections (steel plates and welding), together with the damage ex-
pense, limited to the repair of non-structural elements. The results show that the
optimum solution of the minimum weight design was close to that of the minimum
cost case with the exception of the column sizing.
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However, though the minimization of the cost represented promising research
not only for the Academy but also for the industrial field, the first 10 years of this
new branch of research was characterized by the enhancement of the mechanical
properties and, subsequentially, the global efficiency of the structural response under
static and dynamic configuration. This goal was achieved by conducting optimization
at all three optimization level introduced in the previous section: size, shape and
topological.
In this direction, Al-Salloum (1995) employed an interactive approach based on
the fully stressed design to find an efficient search path of the optimum design for
statically indeterminate elastic frames.
One of the first works, in which a generalized steepest descent method was employed
in developing a computational algorithm for the optimal design of elastic structures
under dynamic loads, was introduced by T-T Feng et al. (1977a). As declared
by the same authors of the manuscript "This paper deals with optimal design of
elastic structures under dynamic loads, a problem that has received little attention
to date". With the aim to test the performance of the developed algorithm, planar
truss-frame-type structures was adopted as a structural benchmark. Minimization
of the total weight of the structures subjected to dynamic loads under displacement,
stress, frequency and design parameter constraints was achieved by performing
a finite element model of the structural response and modal analysis techniques
to solve the dynamic problem. This approach was preferred over solving purely
analytical methods for dynamic analysis since its low computational cost.
After that, several works were published with the aim to test the performance of
computer programs for processing both structural analysis and the optimal level of
design of frame structures under proportional loadings and variable loadings (see e.g.
N.D. Hung 1983 and M.G. Stewart 1989). Others like Brach (1968), M.P. Kapoor et
al. (1987a) and F.Y. Cheng et al. (1989a) aimed to minimize the dynamic response
for a class of specific structures, like frames, or theoretical application like a simply
supported beam. The last two authors carried out deep considerations regarding the
optimal configuration of multistorey and regular or irregular two-dimensional steel
frames for which structural analysis including static, earthquake and wind forces
were performed. Obviously, in this exploring phase of this new topic, research was
focused mainly on the computational approach instead of interesting application case
studies.
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Until the end of ’90s, majority of the most interesting applications in SSO field
were related to 2D or 3D frames and trusses ( Thevendran et al. 1992a, Soegiarso
and Adeli 1997 and Memari et al. 1999a).
With specific regard to the beginning, applications of formers resulted in the majority
of works despite the latter ones (see e.g. Stasa 1998 and Ishikawa et al. 1993) which
have received more attention only after the spread of Metaheuristic algorithms (see
e.g. Coello and Cristhiansen 2000a, Jakiela et al. 2000a and Erbatur et al. Erbatur
et al. (2000)).
Specifically, Balling (1991a) developed a strategies for discrete optimization of 3D,
six-story, unsymmetrical steel frames. The optimization was performed by treating
multiple section per member and a probabilistic criterion was adopted to evaluate
whether the candidate design should replace the current design or be rejected. The
minimization of the weight was often adopted as Objective Function by varying
elastic range of material behaviour (see e.g. Erbatur et al. 1992a), by considering
linear variation of cross-section defined as the ratio of areas between both beam ends
(Hayalioglu and Saka 1992a) or for achieving the least-weight of a three-dimensional
tall building under multiple loading conditions, the story drifts, member strength and
size constraints in accordance with Standard regulation and fabrication requirements
(Chan et al. 1994, 1995a, Liew et al. 2019).
Different interesting structural case studies that respect those mentioned above were
included in the Literature at the beginning of 1980. During these years, in fact,
Crawford et al. (1980) introduced nonlinear programming techniques for the optimal
prediction of seven different types of steel roofs based on a suitable cost model.
Haque (1985a) and Scholz et al. (1986a) developed a general methodology for the
optimization of skeletal rigid frames in which structural specifications provided by
American Institute of Steel Construction’s (AISC) was included in the optimization
phase as structural constraints. More in detail, Scholz used an approximate second
order for performing elastic-plastic analysis of multi-storey frames. It can be con-
sidered the first example of a micro-computer program in which a large number of
variables were considered in the design method.
Other interesting case studies in which geometrically nonlinearity was provided
by Saka and Hayalioglu (1992a) and (1991a) where in-plane and lateral buckling
of members were included as constraints for the optimum design of elastic-plastic
frames. Park and Adeli (1995) investigated the plastic design of structures using
a neural dynamic model. O’Brien (1997), attempted to perform an optimal design
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of pitched roof frames by using algebraic linear programming by using the Kine-
matic Theorem of plastic collapse as constraints of the problem. Machaly (1986b)
approached the problem of the minimization of the weight of steel grid bridges. 4
Different types of bridges subjected to the same load combinations were investigated
and, mainly, the truss, the plate girder, the box, the cabled system and the grid
type were analyzed. Non-linear programming techniques were adopted in which
behaviour constraints like strength requirements (normal and shear) or stiffness
requirements (bending translation) were introduced. On the other hand, the side
constraints were required to assure non-violation of the practical dimensions of cross
sections. Important results are relieved by the author and optimal configurations for
each typology were obtained in terms of maximum deflection admitted and height of
cross-section.
Some author in (1986a) discussed the crucial problem related to the optimal per-
centage of rigidity in the semirigid connections which guaranteed the optimum steel
weight for common types of steel frame structures such as portal and gable frames.
The optimum solution to the structural design problem is expressed in the form
of a solution vector whose elements represent member sizes. Simple frame test
benchmarks convinced the author that the use of the semirigid connections could
lead to a saving in weight of 28% in the portal frame when a rigidity ratio equal to
0.90 was fixed. Lower values were detected when gable frames were analyzed.
Other works (Xu and Grierson 1993a, L.M.C. Simões 1996, Al-Salloum and Al-
musallam 1995a, Xu et al. 1993b and 1994) attempted to explore the efficiency of
computer-automated methods for the optimum design of steel frameworks accounting
for the behaviour of semirigid connections. In all these works, the authors performed
optimization processes by considering stiffness and member size as continuous or
discrete value design variables. All the authors agreed on the crucial role played by
the connections into the steel structures as the main parameter for achieving the most
efficient and economical solution simultaneously. Few years later, a preliminary
study conducted by Weynand et al. (1998) and Steenhuis et al. (1994) found that
cost savings are possible with the use of semi-rigid connections.

At the beginning of the ’90s, several authors were convinced that performing
optimization procedures by considering a single target function was not complying
with the real engineering challenges. The minimization of a single Objective Function
like the weight or the cost of structures did not guarantee the global optimum
when it was dominated by several parameters. Takewaki et al. (1991) developed
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a probabilistic multi-objective approach (Auto-Regressive Moving Average) for
concentrically braced steel frames in order to incorporate uncertain features of design
earthquakes and to provide a simplified formula for the preliminary design based
on the concept of decomposed stiffness design. Then, Marks (1997a) attempted to
determine the optimum dimensions of a building following the criteria of minimum
building costs, including costs related to materials and construction, and minimum
yearly heating costs. Others as Zhow et al. (1999) introduced a new application
of multiobjective and multilevel optimization techniques for steel frames. Two
objectives as maximum total structural strain energy and minimum total structural
cost should be evaluated with a two-level optimization procedure: first level (system-
level) in which the optimal configuration of the entire structure was achieved in
terms of structural strain energy and structural weight subjected to global constraints;
second level (element-level) in which the optimization was performed for each
member based on the results of the system-level optimization.

Once a certain level of maturity was achieved, Literature in the structural opti-
mization field was populated by several reviews with the aim to emphasise the main
outcomes in this area.
The first review surveys on the topic of optimization of steel structures were realized
by venkayya and Vipperla (1978) and Griersoni et al. (1984) in which the authors
tried to classify the main adopted static and dynamic constraints as constraints on
service and ultimate loading condition or structural frequency and transient dy-
namic response. Other authors as Topping (1983) and Yen-Liang Hu (1994a) tried
to classify the best strategies for performing shape optimization mainly on skele-
tal structures, by considering frequency constraints (Gandhi 1992) or showing the
specific difficulties in truss topology optimization with stress and local buckling
constraints (Zhou 1996).
At the end of the ’90s, Hernandez (1998) published an interesting work in which
performance comparisons between iterative methods and mathematical programming
for specific class of steel frames were faced.
Finally, only two reviews published by Osman et al. (1996) and Lin et al. (1994)
appeared in Literature where an extensive bibliography related to Metaheuristics and
first issues into Single-objective optimization by using genetic search were discussed,
respectively.
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1.6 Search method procedure

The searching method of finding the relevant papers for doing the current survey is
discussed in detail in this section.

1.6.1 Search method

In this study, the relevant works of literature were collected by adopting Elsevier’s
abstract and citation database Scopus. During the searching phase, all the articles
published in journals without indexing by Scopus, conference papers and book chap-
ters have been excluded. Additionally, papers focused on reliability and/or robust
optimization approach or probability-based formulations have been also excluded.
Moreover, the bibliometric analysis was conducted only for scientific works pub-
lished from 1990 until 2022. The time range of searching was specifically chosen by
the authors in order to analyze the whole growth of the SSO field from its origins to
the present.
Subsequently, the entire obtained database was automatically filtered by the plat-
form selecting only the papers belonging to the "Engineering" sub-area. The search
was conducted among all the scientific works which included the two keywords
"Structural optimization" and "steel optimization "within the "article title, abstract,
keywords and authors".
Finally, the collecting phase provided by the platform was completed by the authors
by removing irrelevant articles or adding other ones which were considered particu-
larly significant.
Once the database was finalised, the authors reviewed the entire database in order to
place each contribution into the mentioned-above categories.

1.6.2 Other reviews

A search through Scopus revealed that there are numerous extensive review papers in
which all aspects of relevant research papers are discussed. However, none of those
review papers addressed the Structural Optimization applied to steel structures or,
specifically, proposed an original clustering of the most relevant works based on the
target function and design vectors involved in the optimization process for solving
real-world engineering problems. All the papers collected in this section, in fact,
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have the common characteristic of summarizing or comparing the most promising
techniques in the SSO field without any critical discussion concerning the nature of
the OF formulation adopted (structural, economical, environmental, etc.).

At the beginning of the new century, the first review papers that appeared in the
literature were totally focused on summarising the first preliminary results obtained
by performing structural optimization with Soft computing techniques.
Krishnamoorthy (2001) and Pezeshk et al. (2002) collected all the most promising
applications of genetic algorithms. Practical design, by performing genetic modelling,
of structural systems such as steel trusses, towers, bridges, reinforced concrete frames,
bridge decks, shells and layout planning of buildings was largely discussed. Then,
two surveys were entirely dedicated by Kicinger et al. (2005) and Coello (2002) to
the potentiality of using evolutionary strategies for engineering problems.

After the first decade, metaheuristic approaches resulted to be the most common
optimization strategies as demonstrated by the huge number of reviews that appeared
in the literature Ramaswamy and Eekhout (2002).
Saka and Geem (2013) realized an extended survey on the most common mathemati-
cal formulations solved by either mathematical programming, optimality criteria and
metaheuristic algorithms.
Kaveh (2014) and Platt et al. (2018b) collected all the most famous metaheuris-
tic algorithms in two famous books published by Springer. Detailed descriptions,
pseudo-codes of each algorithm and interesting applications of these were shown.
In a work published by Yang (2010b), Nature-inspired Metaheuristic algorithms
received deep attention.
Only when a certain level of seniority reached on the matter was achieved, the
literature papers, considered by the Scientific Community as the most completed,
were published by Gandomi et al. (2013a), and by Kashani et al. (2022). However,
the usefulness of non-gradient approaches in topology optimization was discussed
by Sigmund (2011). In this forum article, the author raises doubts about the practical
and scientific relevance of adopting soft computing techniques that use immense
computational resources for solving simple problems for which there already exist
efficient solution techniques. Consistent with what was introduced before, Rozvany
(2001, 2009) published a critical review of established methods of structural topology
optimization where SIMP and ESO numerical topology optimization was discussed
in detail.
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Once the benefit of these new approaches was largely tested, several researchers
focused on increasing the level of complexity within the investigated case studies.
In this way, Platt et al. (2018a) in chapter 6 of their book tried to collect all the
scientific papers related to interesting application cases like trusses, frames, bridges
or seismic devices but several papers resulted to be excluded by the process review.
Other authors provided review papers entirely dedicated to specific topics like
Rahane et al. (2022) for industrial trusses or Fan et al. (2007) in which special
attention was given to the optimization of large-span steel structures or high-rise
buildings (see e.g. Lawson et al. 2012, Li et al. 2011 and Lacey et al. 2019). The
latter realized a full review of the research on structural damage criteria in terms
of material, structural members and global structures for tall buildings. Moreover,
other authors as Frangopol and Maute (2003) presented a brief review of the life-
cycle reliability-based optimization field with specific regard to civil and aerospace
structures.

If the majority of the mentioned-above review papers were based on single-
objective optimization problems, a limited number of review papers treating multi-
objective optimization were identified by the authors.
Marler and Arora (2004) provided a survey of current continuous nonlinear multi-
objective optimization (MOO) concepts with specific regard to their applicability to
engineering problems.
Foley et al. (2007) carried out an overview of state-of-art model-code performance-
based design methodology into multiple-objective optimization problems for single-
story and multistory structural steel frameworks with fully and partially restrained
connections.
Machairas et al. in (2014) were able to review the most used methods and tools
for building design optimization in an effort to explore the reasoning behind their
selection, to present their abilities and performance issues and to identify the key
characteristics of their future versions.

All these review articles can be considered as comprehensive reviews and compar-
ative studies mainly oriented to detect the optimization strategies which guarantee, as
the only target function of the optimization, the highest structural efficiency related
to the specific application case study.
Other relevant authors attempted to identify other crucial aspects in the formulation
of the most impactful target function considered within the optimization process of a
structure like the economic and environmental purposes. Sarma and Adeli (2002a)
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presented a chronological review of the journal articles on the cost optimization
of steel structures. It represents one of the few authoritative works on this topic in
which all the economic aspects, involved within generic steel structure realizations
such as material cost, fabrication cost, cost of transporting the fabricated pieces to
the construction field and the erection cost including the material costs of connection
elements were taken into account.
A few years ago, Lagaros in Lagaros (2018a), tried to answer the question "Is it
worth performing structural optimization studies?". The author investigated, by ana-
lyzing real-world case studies as frames or high-rise buildings, how the optimization
tools applied for the life-cycle assessment of structures have a drastic environmental
impact and contribute to the economic development of the construction industry.

1.7 Overview on the number of publications and bib-
liometric analysis

In the following, the authors tried to organize available publications on different
structural engineering optimization problems. To this end, the official Elsevier’s
abstract and citation database Scopus was used and, subsequently, each paper was
extracted and placed in the targeted field.
In the first step, it is found a total of 2,811 publications by searching keywords such
as "Steel structural optimization", "steel optimization" and "structural optimization".
The official platform considered all the publications with those keywords within the
"title, abstract and authors keywords" of each paper.
Once conference papers, reviews, book chapters and conference reviews were ex-
cluded by the search platform, the total number of papers dropped to 1,797. Sub-
sequently, the research was conducted considering only scientific papers belonged
to the "Engineering" subject area and published between 1975 and 2022 for a total
number of 1,281 papers. In Figure 1.7, the total number of publications per year has
been shown.
Finally, from a total of 1,281 papers, the authors reviewed 446 papers in three main
categories as follows: Size, Shape and Topology.
For each category, further classification was realized based on the OF type adopted
into the problem statement. (1) Structural performance-based, (2) cost impact-based
and (3) environmental impact-based optimization problems were identified as sub-
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Fig. 1.6 Total number of publications obtained by reviewing 446 papers

Fig. 1.7 Cake-chart rapresentation of number of publications in each sub-field identified by
the authors

categories.
The observations based on the number of publications in every sub-field are demon-
strated in Figure 2. Of all the revised papers, the majority focused on pure size
optimization (55,8%) followed by topology only (20,0%) and coupled size+topology
strategies (11,1%). The other hybrid approaches appear to have received less atten-
tion from the scientific community.
From the reviewed publication, it is obtained the statistics of publication per journal.
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Fig. 1.8 The most relevant sources carried out from the Bibliometric analysis

Fig. 1.9 The most local cited sources carried out from the Bibliometric analysis

In figure 1.8, the most relevant sources have been shown and the first 15 journals
with at least 10 publications per journal have been plotted. The total number of
publications calculated as the sum of the scientific paper published in each journal is
335 which can be considered representative of the whole database.
On the other hand, a bibliometric analysis was conducted in order to identify the
most locally cited sources. A ranking of the highest cited journals has been provided
in which the number of citations for each journal has been shown (figure 1.9).

With the aim to analyze the trend of the keyword in recent years, VOSviewer
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software was adopted for a graphical representation of the data. It is a software tool
for constructing and visualizing bibliometric networks.
Fig. 1.10 depicts network visualization co-occurrence analysis, and Fig. 1.11 shows
the keyword trend in recent years. Maps created, visualized and explored using
VOSviewer include items. The item that was used in Fig.s 1.10 and 1.11 are the
authors’ keywords.
In the network visualization (see Fig. 1.10), items are represented by their label and
by default by a circle. The size of the label and the circle of an item is determined by
the weight of the item. The higher the weight of an item, the larger the label and the
circle of the item. Moreover, between any pair of item there can be only one link.
A link is a connection or a relation between items. In this case, we are interested to
detect the keywords which occur together in the reviewed documents and, hence,
finding the research topics which have a sort of relationship one each other. Each
link has a strength, represented by a positive numerical value. The higher this value,
the stronger the link. Sometimes the links between items all have a strength of one.
Moreover, if the link attribute indicates the number of links of an item with other
items; the Total strength attributes indicates the total strength of the links of an item
with other items.
Hence, a network is a set of items together with the links between the items.
Set of items can be grouped into clusters. clusters are non-overlapping in VOSviewer.
In other words, an item may belong to only one cluster. clusters are represented by
colours, hence, the items which have the some colour belong to the same cluster.
The distance between two items in the visualization approximately indicates the
relatedness of the journals in terms of co-citation links. In general, the closer two
items are located to each other, the stronger their relatedness.
In the network visualization depicted in Fig. 1.10, it is quite evident that among
the 1141 keywords contained within the overall reviewed documents "Structural
optimization", "Optimization" and "Steel" resulted in the most popular.
In Fig. 1.11, a so-called Overlay visualization is shown. The Overlay visualization
is identical to the Network visualization except that items are coloured differently.
The colour of items is assigned depending on the scores of the item. The score is a
specific attribute that the user wants to include during the analysis. In our case, score
is represented by the year of appearance of each item (keyword).
It becomes clear how the most used keywords as "optimum design", "steel frames",
"optimization" and "genetic algorithms" belong to documents which were published
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between 2010 and 2014. On the contrary, other topics such as "reliability", "incre-
mental dynamic analysis", "passive control" and "composite beam" represent the
most challenging research field, considered by the Scientific Community, from ap-
proximately 2016 to nowadays. Fig.s 1.12 and 1.13 shows, respectively, the networks
of a total of 839 authors among collaborating researchers and the year during which
the collaboration occurs. Each item in the network displays an author/co-author, and
the link between items illustrates the co-occurrence of the knowledge channels.
The previous analysis conducted on the co-authorship can be enriched by other
considerations aiming to identify the most relevant authors in this field (see Fig.
1.14) and the most locally cited ones (see Fig. 1.15). In Fig.s 1.14 and 1.15, the
ranking of the first 10 authors with the highest number of publications and citations
are respectively plotted. Kaveh. A. results to be, at the same time, the most active
and the most cited authors in this field.
Finally, in the last figure (fig. 1.16) a country collaboration map was carried out in
order to show the countries with the highest level of scientific collaboration. The
strength of the scientific collaboration corresponds to the thickness of the links
between the countries. In this way, frequency and intensity, in terms of number of
published papers derived by the collaboration, are crucial parameters that have been
considered in the map.

1.8 Size Optimization

1.8.1 Structural performance-based optimizaton problems

In the present section, we have collected all the papers regarding size optimization
problems, focused on structural performances. Due to the number of papers that ap-
peared in the literature, a division into main topics rather than a simple chronological
ordered list was proposed for clearness purposes. By means of the following chart
1.17, it is possible to appreciate the number of studies dealing with each of the 5
presented themes, i.e. non-linear behaviour of structures, optimization under seismic
loadings, connection flexibility considerations of frames, soil-structure interaction
investigation, large roof structures and multi-bays, multi-storeys frames.
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Fig. 1.10 Network visualization of the co-occurrence author’s keywords

Fig. 1.11 Overlay visualization of the co-occurrence author’s keywords in the last years
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Fig. 1.12 Network visualization of the co-authorship and collaborations within the SSO
Scientific Community

Fig. 1.13 Overlay visualization of the co-authorship and collaborations within the SSO
Scientific Community in the last 10 years

Non-linear behaviour of structures Many researchers on frames or truss struc-
tures have primarily concentrated on their linear-elastic behaviour, entirely neglecting
their resistance capacity to loads outside the elastic domain. However, geometrical
and material non-linearity play a crucial role in the realistic modelling of structural
behaviour and the influence on the minimum weight search was investigated.
For instance, in Saka et al. (1991), a minimum weight design of a non-linear elastic-
plastic frame with displacement limitations has been investigated such that large
deformations were admitted. By employing the Newton-Raphson-type iteration tech-
nique, small load increments are imposed and plastic hinges appear when members,



28 An overview of the Optimization strategies for steel structures: a critical review

Fig. 1.14 The most relevant authors in the SSO field

Fig. 1.15 The most cited authors in the SSO field

with variable geometrical properties at each iteration, reach yielding. By comparing
the results obtained from a multi-storey and multi-bay elastic frame with that one in
which non-linearity was included, optimal design with lighter frames was provided
by the latter at the cost of a higher computational time.
The same author in Hayalioglu and Saka (1992b), extended the design of geo-
metrically non-linear elastic-plastic steel frames including tapered members. Two
variables were involved in the design problem: the cross-sectional area at one end
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Fig. 1.16 Country collaboration map

Fig. 1.17 Collected papers with size optimization approach

of the beam and the area ratio of each edge member resulting in a well-defined
linear reduction function. A minimum weight solution was performed for three
elastic-plastic steel structures in which large deformation was considered during the
analysis. As in the previous study, a greater saving in the mass of structures with
respect to the traditional linear-elastic modelling was recognized.
At the beginning of the century, Choi et al. (2002) proposed a non-linear inelastic
analysis for an optimal design of steel frames. The optimization framework was
realized by substituting at each iteration all the unfeasible cross-section elements
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(structural verification not satisfied) with stiffener flange sections (i.e. W-section)
taken from the AISC-LRFD (American Institute of Steel Construction) database.
This routine was repeated until the serviceability, strength verifications and ductility
requirements were satisfied. Results showed that the weights can be reduced by 8.0%
and 3.7% for the planar portal frame and for the space two-story frame respectively,
if compared with those of the conventional design using LRFD specifications.
The latest research was focused on reducing the computational time due to the non-
linear analysis calculation. Conventionally, Non-linear static analysis (Pushover) is
preferred for its effectiveness in the prediction of the structural behaviour as well
as its competitive computational effort (e.g. Izadpanah and Habibi 2015 and 2018,
Ozgenoglu et al. 2017, Costa et al. 2017 and Tiana et al. 2018). Robustness of this
approach is strongly related to the shape of the lateral load pattern (Gupta et al. 2000
and Jan et al. 2004). However, researchers agreed to consider Non-linear dynamic
analysis (Time-history) analysis as the most accurate method for the evaluation of
the inelastic behaviour of structures (Antoniou and Pinho 2004 and 2004). In this
sense, minimising the difference between the results obtained by the former and the
latter result in an appropriate prediction of the responses with a low computational
cost.
An attempt in this way was provided by Habibiet al (2019) in which a novel optimiza-
tion technique was developed aimed to evaluate the optimal shape of lateral action for
the minimum disparity between the floor displacements calculated adopting pushover
analysis and that one derived by Non-linear Dynamic Analyses (NDA). Once the
lateral floor displacements obtained by benchmark NDA analysis are calculated,
the lateral load pattern that produced the least difference between the lateral floor
displacements of the NDA and those of the pushover analysis was identified. The
adopted OF was simply the ratio between the difference of floor lateral displace-
ments resulting from non-linear time history and pushover analysis, normalized with
respect to the floor lateral displacement from the non-linear time history analysis. 5
story- 2 bay, 10 story-3 bay and 15 story-3 bay special moment resisting steel frames
were analysed to validate the applicability of the recommended method and a final
comparison with well-known lateral shape action modelling as uniform, linear and
parabolic was pointed out.

Optimization under seismic loading Undoubtedly, a crucial topic for academi-
cians and practitioners regards the dynamic behaviour of structures under seismic
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actions. Though first approaches appeared in Literature regarded mainly determin-
istic approaches as state space steepest descend method developed by Feng et al.
(1977b) or traditional gradient method as in Memari et al. ( 1999b) or, generally,
iterative procedures (Hall et al. 1989) for the optimum seismic design of different
types of braced, unbraced, regular and irregular frames; at the beginning of the
century, authors experienced soft computing techniques for the reduction of the
effectiveness during the exploration phase and limited computational effort (pezeshk
et al. 2000, CHen et al. 1997).

More in detail, Feng et al. (1977b) presented a state space steepest descend
method for the weight minimization of elastic structures subjected to dynamic loads,
where the elements’ cross-sections were taken as continuous design variables. The
adopted constraints were applied to the dynamic response, i.e. displacements and
stresses, at critical points of the structure. In addition, upper and lower bounds on
natural frequencies were imposed, as well as a design parameters boundary.
A step forward in the application of weight minimizations was proposed by Memari
et al. ( 1999b). A comparative study of different types of braced, unbraced, regular
and irregular frames, subjected to combined gravity loads and seismic lateral forces,
has been carried out by the authors. Thought cross-sectional areas were chosen as
design variables in a continuous range, round-off strategies were applied and the
closest section properties from the German standard database were assigned. the
design had to satisfy combined bending and axial stresses, shear stress, compression
buckling and tension slenderness criteria, according to the AISC.
Similar approaches were experienced by Rosso et al. (2021c) and Cucuzza et al.
(2022) for trussed structures in which issues related to discrete design variables have
been overcome by realizing round-off strategies at the end of the optimization.
In Palizzolo et al. (2015), minimum volume optimization was achieved for 4-storeys
elastic-plastic frames. In the static condition, the structure had to remain in the
elastic field when subjected to fixed loads, while, for seismic excitations, the elastic
shakedown limit could not be violated by the plastic frame. Specifically, the thickness
of the box-shaped cross-sections was allowed to vary within a specified range. As
expected, the structural volume related to the discrete variable design was higher
than the continuous variable one.

In the context of structural optimizations under seismic loading conditions, many
studies agreed on considering uniform distribution theory (UDT) as an efficient goal
for optimal design. In other words, following this approach, an optimal design under
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seismic loads must require that all the strength and serviceability performance of
each member are maximized (see Lv et al. 2015)
The first outcome was carried out by Kapoor et al. (1987b), in which the best stiffness
distribution of a multi-storey frame was investigated. The objective function of the
optimization was tackled as the minimum structural weight evaluated by means of
a nonlinear programming technique. In the probabilistic procedure presented, the
multi-storey frame has been idealized as a multi-degree “shear beam” subjected to
earthquake ground motion treated as a random process. The design variables were
chosen as the moments of inertia of the columns of different storeys, expressed as a
function of the areas, section dimensions and modulus of all the available I-sections
listed in the Indian Standard Institution (ISI) specifications. From the comparison
between the probabilistic and deterministic formulations (spectrum analysis), it has
been demonstrated that the first one provided more realistic results.
Later on, Moghaddamet al. 2005, proposed a strategy for enhancing the dynamic
response of concentrically braced steel frames, subjected to seismic excitation, based
on the concept of uniform distribution of deformation. As demonstrated in previous
studies, during strong earthquakes the deformation demand in structures does not
vary uniformly, but there are some stiffer elements that do not fully exploit their
seismic capacity. Therefore, the goal of the proposed iterative optimization technique
was to gradually shift inefficient material from strong to weak areas of a structure, by
changing its structural features. At first, the optimizer attempts to size columns and
beams according to the code drift requirements. Finally, optimal bracing systems
were assigned in order to reach the uniform deformation state. From the analysis,
it has been demonstrated that generally there is a unique optimum distribution of
structural properties, independent of the seismic load pattern used for the initial
design.
The effects of strength distribution pattern on the seismic response of tall buildings
have been examined by Moghaddam, H., et al. (2008), which proposed an effi-
cient optimum performance-based seismic design aimed to identify the optimum
pattern for distribution of seismic lateral loads. A lumped mass model of the tall
building was realized by placing perfect elastic–plastic shear springs at each joint.
The total mass of the structure is distributed uniformly over its height. The optimal
loading pattern is derived when the minimum required structural weight would is
achieved. To accomplish this, the total weight of the seismic resistant system has
been calculated for shear building models with various fundamental periods, ranging
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from 1 to 3 s, and different target ductility demands. Fifteen selected strong ground
motion records have been considered and modal analysis has been performed at each
iteration to retrieve the building’s seismic response. It is shown that having the same
story ductility demand, models designed according to the average of optimum load
patterns have relatively less structural weight in comparison with those designed
conventionally.
Interesting outcomes were pointed out by coupling the uniform deformation theory
with a novel Performance-Based Design (PBD) approach (i.e Mohammadi et al.
2014) and for the optimal design of eccentrically braced frames (EBF) (see Moham-
madi et al. 2004)). Hence, the uniform distribution of shear deformation in the link
beams resulted in a less damage level in the EBF system. In PBD frameworks (see
Moghaddam et al. 2005 and 2004), performance objective is usually defined as a
given level of performance for a specific hazard level. More in detail, a performance
level is representative of the level of expected loss, while the hazard level of the
seismic intensity. In the considered paper, the authors focused the attention on the
optimization of 3, 5 and 10 storeys eccentrically braced steel frames (EBF), subjected
to 12 earthquake ground motions. Once again, the weight minimization has been
defined as OF, while design variables of the problem were mainly dependent on the
properties of the link beams that basically govern the seismic behaviour of EBF.
Due to the improvement in strength capacity and dissipation energy guaranteed by
EBF systems, they represent interesting application case studies for several authors
(see Brognoli et al. 1998, Fathali et al. 2020, Balling et al. 2009 and Abedini et
al. 2020). For instance, in Ohsaki et al. (2012) locations and thickness of Link
members between the connections of beams and braced of EBF were adopted as
Design Variable while plastic dissipated energy before failure was assumed as the Ob-
jective function of the Tabu search algorithm. Others, focused mainly on the weight
optimization of EBT or its performance-based optimum seismic design (Gholizadeh
et al. 2022, Stromberg et al. 2012a and 2016a) via dissipation energy maximization
(i.e. Kaveh et al. 2020b) and, generally, plastic analysis of braced frames (i.e. Palizi
et al. 2020, 2020).
The benefits of adopting UDT were also recognized by Moghaddam et al. (2021)
for the optimal design of steel moment-resistant frames (MRFs). In the minimum-
weight optimization, the design variables were always the members’ cross-sections,
while constraints were applied to maximum plastic rotations for the monitoring of
the deformation of the frame and strength-based demand to capacity ratios for the
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acting forces verifications. The efficiency of the proposed optimization has been
demonstrated considering 3, 5, 7, 10 and 15-storey steel MRFs and a set of five
strong earthquake records from the Pacific Earthquake Engineering Research Center
(PEER) database.
Moreover, The optimization process of MRFs for multiple performances and mul-
tiple hazard levels under various performance objectives was deeply investigated
by Qimao et al. (2015). In this work, authors compared minimum weight solutions
obtained for each hazard and performance level by varying geometric characteristics
of all the beams and columns at each story.
The potentiality of the PBD was also appreciated by adopting different soft com-
puting techniques such as the well-known population-based algorithms PSO, DEO,
ECBO (e.g. Gholizadeh et al. 2016), or in combination with metaphor-based al-
gorithms (Kaveh et al. 2021) and novel optimization approaches as the Constraint
Control Method (CCM) developed by Mansouri et al. (2019). This approach re-
quires that the most conservative member sections are first chosen for each member
and then, iteration by iteration, lighter solutions are progressively assigned toward
the global optimum design, meanwhile, problem limitations and constraints are
respected. Three-storey four-bay frame and nine-storey five-bay frame steel sway
frames were analyzed, and the efficiency of the proposed method was demonstrated
by a drastic reduction in the number of structural analyses when compared to other
well-known metaheuristic algorithms.

As noted by some authors, parameters which affect the structural performance
during a seismic event can assume opposite trends or the optimum can not be
achieved by simply minimizing a single target function. As briefly mentioned in this
section, multi-objective optimization procedures are quite challenging if compared
to single-objective problems. The main issue is that they work with competing
goals, meaning that the design accounting for one target may lead to a decrease
in the performance of the other objectives. As a result, rather than a single global
optimum solution, that maximizes or minimizes more than one objective function
simultaneously, there is a set of incomparable optimal solutions, each of which
is superior to the others for the target function of competence. Decision-makers
can choose from a variety of options in this collection of non-dominated or Pareto
optimal solutions, in order to best meet the needs of a given project.
In order to fulfil different goals simultaneously during the optimization, the first stud-
ies were focused on coupling minimum construction cost in terms of sections weight,
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minimum structural damage using a damage index, and minimum non-structural
damage under the applied ground motions (see Xu et al. 2018 and Hong et al. 2020).
More in detail, Kaveh et al. (2013) experienced the minimization of some seismic
eccentric braced frame (EBF) features as cross-sectional area, inter-story drift and
level of damage expressed in terms of inter-story drift or dissipation energy. While
for the first objective function, they have been simply varied to meet the minimum
weight of the structure, for the other two objectives a balance needed to be found on
the strength of the material. In fact, high yield strengths could not ensure decreasing
damages, especially for non-structural elements. Essentially, when subjected to high
strength, the structure will experience high accelerations even during mild excitations
that could lead to local failure due to non-structural damages. Results have revealed,
as expected, that an increase in volume, led to a decrease in the inter-story drift
but also to a damage index larger than a given threshold. Thus, high computation
time was required to find a good balance between the three OF, even though neural
networks helped in the decrease of the number of calculations.
In the same year et al. (2013) performed the multi-objective seismic design of special
moment resisting frames (SMRF) taking into account hierarchical design in order
to obtain a concentration of plastic hinges in the beams before then in columns.
Consequently, the scope of the work was to minimize not only the structural weight
but also the column-to-beam strength ratio which ruled the activation of hinge mech-
anism. Constraints were imposed to control member strengths, inter-story drift ratio,
prevention of formation of the plastic hinge at columns connected at joints, and cross-
sectional areas of vertically continuous columns. In particular, the multi-objective
optimization was performed through Non-dominated Sorting Genetic Algorithm-II
(NSGA-II), based on multiple Pareto-optimal solutions. Predictably, the results on
both three-story and nine-story steel moment frames presented decreasing optimal
strength ratios for increased structural weights.
The crucial role of an optimal capacity design was investigated by Karimi et al.
(2019) and Kaveh et al. (2019) where a performance-based seismic design was
proposed for frames and steel plate shear wall (SPW) systems, respectively. In
these studies, the goals were weight minimization and a uniform distribution of
inter-story drift along the structure’s height avoiding soft-story mechanics during
seismic excitation. The optimization has been carried out considering not only the
performance-based design (PBD) method at the Collapse Prevention performance
level, but at first accounting for the load and resistance factor design (LRFD) method.
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Uniform Damage Distribution (UDD) theory was also widely adopted for multi-
objective optimization problems.
Ghasemof et al. (2021) developed the so-called multi-objective uniform damage
optimization (MUDO) method in which structural weight and maximum inter-story
drift ratio (IDR) have been treated as two conflicting objectives, representing econ-
omy and safety measures, respectively. Not only constructability constraints were
included but also the flexural behaviour of beams and columns was controlled, in
order to avoid strong columns and weak beams effects. To demonstrate the effi-
ciency and robustness of the proposed algorithm, 3-, 6- and 9-story steel moment
frames have been compared with those of two well-known NSGA-II and MOPSO
optimization metaheuristic algorithms. A similar approach was adopted by Liu et
al. (2013) in which optimal robust design of steel frames structure was achieved by
considering three objective functions: the weight of the structure, the mean value
and standard deviation of the maximum inter-story drift for the assessment of the
global robustness of the structure.
In the multi-objective seismic design framework, it is worth mentioning other two
studies that in different ways addressed the importance of the connections’ role
in frames under seismic loads. If in the first work (see Mojtabaei et al. 2021)
thin-walled cold-formed steel (CFS) components and connections used in portal
frames were investigated with the aim to maximize the seismic resistance in terms
of ductility and energy dissipation; the second approach (e.g. Moradi et al. 2017
) is entirely focused on the post-tensioned (PT) steel beam-column connections in
frame structures, able to significantly reduce long-term seismic damages and the
corresponding post-earthquake maintenance costs. The goal was to increase the
PT connection’s initial stiffness, load capacity and final drift. In particular, it was
desired to produce a ductile behaviour for a PT steel beam-column connection by
maximizing the ultimate drift meanwhile, the cost minimization has been accounted,
for in terms of the amount of material.

Connection flexibility of frames Historically, many authors are interested to
investigate the role of connection flexibility in structural optimization (see Xu et al.
2001 and Simoes et al. 1996).

In fact, most of the time, in the analysis and design of steel frames, beam-to-
column connections are generally assumed to be either fully rigid or perfectly pinned
(see Chen et al. 1995, 2018). In the former case, bending moment, as well as
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shear and axial forces are transmitted from one element to another and no relative
rotation of the connection is allowed; in the latter, only shear and axial forces can be
transmitted between the joined elements. Since experiments have revealed that the
real behaviour of the frame’s joints can be modelled with semi-rigid connection in
order to allow comparison of different connections’ rigidity through the variation
of their stiffness (e.g. Da Silva et al. 2008, Wang et al. 1999 and Gorgun et al.
2012). Moreover, Researches have shown that the assumption of a constant value
for the stiffness of a connection is not realistic because it changes as the load as
demonstrated by Nethercot et al. (1985) and Ballad and Chen (1995). Specifically,
two modelling strategy of semi-rigid connections was investigated consisting in
adopting new elements with a specific constitutive law (hsieh et al. 1991 and Dhillon
et al. 1999) or by using lumped rotational springs with negligible lengths (Kaveh et
al. 2008, Chen et al. 1989). In literature, considering semi-rigid connections’ effect
on size optimization processes led to contrasting results.
For example, one of the earliest studies herein examined was published by Machaly
et al. (1986c). They demonstrated the advantages of using semi-rigid connections
modelling in several weight optimizations. Gables, portal frames and multi-bay
three-storey frames have been optimized, using a nonlinear programming technique.
During the process, I-shaped cross-sections were assumed for the columns and
girders and their geometrical properties were chosen as design variables (i.e. breath
of flange and height of web). In addition to strength requirements, side constraints
regarding physical limitations of the cross-sections and buckling considerations were
applied too. Results show that a semi-rigid connection is able to provide a weight
saving from 10% to almost 30%, depending on the structure considered. In particular,
such material reduction can be mainly addressed to girders rather than columns.
In agreement with such results, Csébfalvi et al. (2007) presented a study focused
on discrete minimal weight design of steel planar frames with semi-rigid beam-
to-column connections through the use of a Genetic Algorithm (GA). During the
procedure, the connection spring’s characteristics had been allowed to vary within a
defined range of spring rotational stiffness. Then, semi-rigid joints were adjusted in
order to account for both displacements and internal forces distribution. By means
of two examples, a simple-bay frame and a two-bay frame, it has been shown how
semi-rigid connections modelling improves the design, if compared to the case of
rigid or pinned connected frames. However, it is worth of noting that the optimal
solution highly depended on the loading condition and geometry of the structure.
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The effectiveness of the genetic method was also proved for discrete optimum de-
sign problems where semi-rigid connections were considered as in Kameshki et al.
(2001), (2003) and Hayalioglu et al. (2004a, 2004b).
The beneficial effect of semi-rigid connection in the optimal design of steel frames
was also demonstrated by adopting other metaheuristic algorithms such as the har-
mony search method (HS) (Degertekin et al. 2009) or the improved HS-PSO Hadidi
et al. (2014). In both works, a computer code is developed for the optimal sizing
design of non-linear steel frames with various semi-rigid and rigid beam-to-column
connections
Also Korkmaz and El-Gafy (2018) demonstrated that neglecting the effects of beam-
to-column connection flexibility in the design would lead to unrealistic predictions
of the overall stiffness of the structures and to heavier designs. More in detail,
in the proposed analysis, the target function of the optimization was the weight
minimization of structures considering geometric non-linear behaviour (Pushover
analysis). The constraints were applied to the stresses and displacements, while the
design variables were representative of the members’ cross-sections, taken from a
list of available sections. Optimal design examples of 3,10 and 20-story rigid and
semi-rigid connected frames were investigated and designs with rigid connections
not only exhibited over-stressed members and lower accuracy in the drift predictions
higher value of the total weight.
So far, all the authors agreed to consider optimal design including semi-rigid con-
nection as the most promising one. However, some exception was identified and
interesting application cases demonstrated an opposite trend. The principle of virtual
work was largely used for the investigation of semi-rigid connections’ behaviour as
reported in Elvin and Strydom (2021) and (2018). In another study, Al-Salloum and
Almusallam (1995b) developed a novel approach called the virtual work optimization
method (VWOW) based on the principle of internal virtual work. VWOM is an
automated method that aims to minimize the weight of the structure while remaining
consistent with building code standards for a particular geometry, deflection criteria,
and load scenarios. A section adjustment was considered efficient if it caused a
significant decrease in deflection at all critical points for a small increase in mass.
To illustrate the method, four case studies of tall buildings were presented. Results
showed that buildings with semi-rigid connection stiffness lead to optimal solutions
with heavier (6% of mass increase) or almost the same weight as the same structures
with rigid connections. In some scenarios, It seems that the connection flexibility
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lead to stiffer and, hence, heavier members. However, based on economic considera-
tions, the authors’ outcome is that the semi-rigid connection leads to cheaper design.
A well-detailed analysis concerning the connection flexibility topic has been illus-
trated by Oskouei et al. (2012). A genetic algorithm has been employed for the
minimum weight optimization, in which the variation of the degree of rigidity of
the structure has been carried out by changing the cross-sections of beams and
columns. To demonstrate the main differences between using rigid or semi-rigid
connections, nine frames were analyzed. If the first group of investigated structures,
results showed a simultaneously increasing in the natural period and overall weight
of the structure; in the second and third groups, the trend was exactly the opposite.
Solutions seem to be critically affected by the natural period of the structure: in
the case of low-rise frames with low periods, the weight obtained for semi-rigid
connection frames increased; meanwhile, medium-high-rise frames with higher
periods experienced a weight reduction of the structure.
A comparison between fully restrained and semi-rigid connected steel frames has
been reported also by Doğanet al. (2018). In particular, this study presented a
Hunting Search method-based optimum design algorithm for unbraced steel frames.
The non-linear problem, aimed at the weight minimization, was formulated as a size
optimization in which wide-flange shape sections were assumed as design variables.
According to the previous observations, since a great amount of horizontal displace-
ment exists in the flexible connections, displacement constraints became dominant in
the design, hence, stronger sections has been selected. As a result, the weight of the
whole structure was greater than the one designed with fully restrained connections.
Another interesting research has been illustrated by Artar et al (2015b and 2015c)
in which the benefic effect of the concrete slab effects in steel frames with both
semi-rigid beam-to-column and column bases connections was introduced. Three
different plane frames with semi-rigid beam-to-column and column-to-base plate
connections were carried out, at first considering only plain steel beams in the finite
element analyses. The same optimization procedures were then repeated for the
case of frames with composite beams. From the results, it can be noticed that by
adopting rotational spring stiffness of frames at the level of joints, an increase of
the structural weight is recognized due to the effective length factor K related to the
buckling verification. However, optimum weight is decreased by about 5-8% when
the effect of concrete slab on the behaviour of beams is considered.
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Soil-Structure Interaction and geotechnics Another factor, influencing size opti-
mizations of steel frames, that has raised the interest of some researchers is related
to the soil-structure interaction effects. Most of the investigated papers adopt soft
computing techniques for counterbalancing the huge computational cost due to the
soil-structure interaction analysis (see Bybordiani et al. 2019).
Daloglu, Ayse, et al. (2016), have investigated such a topic using metaheuristic algo-
rithms. Three-parameter foundation model has been adopted to incorporate the effect
of soil foundation on the behaviour of the frames in the optimum design process.
The moduli of subgrade reaction and soil shear parameter have been calculated in
terms of vertical deformation profile. A computer program was coded in MATLAB
(2009) for the optimization processes and connected to SAP2000 (2008) to perform
the dedicated analysis of the frames. Both Genetic Algorithm (GA) and Harmony
Search (HS) algorithm were used for the minimum weight optimization process
and appropriate cross-sections, chosen as design variables, were selected from a
predefined list of W-shaped sections. Results have shown that consideration of soil
effects increased the steel design weight of the frames.
Later on, Fathizadeh et al. (2021) introduced a Performance-based design (PBD) op-
timization of two-dimensional moment-resisting steel frames (MRSF) that accounted
for the effects of the soil-structure interaction (SSI). In particular, an engineering
cluster-based genetic algorithm (ECGA) has been employed to run the optimization
problem. The minimum weight of structural elements of the frame was tackled as the
objective function and cross-sectional elements profiles, taken from the W-shaped
American profiles, were assumed as design variables. In the connection between
beam and column, weak beam–strong column constraint was assumed, regulating
the amount of plastic moment in the node. In addition, strength and drift constraints
were imposed, together with checks on displacements and rotation of the foundations,
to control their uplift and settlement. Results obtained by practical applications of
the proposed methods to investigate Soil Structure Interaction (SSI) effects on the
PBD Optimizations show that with decreasing soil stiffness, stronger cross-sections
are selected. For a frame on a type IV soil (loose soil) an increase of weight equal to
12.94%, in comparison to a frame with a fixed foundation, was detected.
Soil-structure interaction was also taken into account for solving multi-objective prob-
lems as shown in the study of Dehghani et al. (2019). A cluster-based non-dominated
sorting genetic algorithm (NSGA II) was introduced to study the effects of the re-
habilitation objectives on multi-objective design optimization of two-dimensional
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steel X-braced frames. The target functions taken into consideration were weight
minimization and maximum storey drift minimization. Geometric and strength con-
straints were applied and rotations and displacements at the level of the foundation
were checked for three different performance levels. The efficiency and accuracy of
the proposed method have been demonstrated by way of different examples of frame
structures. It is worth noting that, in agreement with the previous studies, soft soils
lead to an increase in the structural weight of the structure.

Finally, metaheuristic algorithms were also widely employed to face specific
topics in the geotechnical field as the slope stability problem (1980) solved by using
PSO algorithm (Gandomi et al. 2015), ACO algorithm (Baker et al. 1980), SA
(Cheng et al. 2007). The same problem was faced by Cheng et al. (2007) where
performance studies on six heuristic methods (SA, GA, PSO, simple HS, modified
HS and Tabu search) were performed.
However, deterministic approaches were adopted by Basha and Bubu (2008) and
Leung et al. (2010) for the optimum design of an anchored cantilever sheet pile wall
and lenght optimization of pile groups, respectively.

Large roof structures and multi-bays, multi-storey frames In this last section,
we have collected all the articles concerning the application of size optimization on
large span structures, large multi-storeys and multi-bay frames.
Interesting research has been proposed by Scholz et al. (1986b). It has been described
as the computerization of the interaction method, developed by Scholz, applied on
a storey-by-storey basis, from top to base, of large multi-storey frames. The goal
of the optimization was to obtain a value of the storey failure load factor within
a specified range. In the procedure, at first, a simplified method has been used
to obtain trial member sizes for the whole structure. Then the structure has been
analysed using the programmed interaction method. This analysis was carried out in
order to obtain the elastic-plastic failure load of each storey, whose members later
have been adjusted if the failure load was not within its acceptable threshold limits.
In the examples reported to demonstrate the validity of the proposed method, the
frame’s members were chosen among the American standard sections and the loads
applied on the structure were simply the gravity ones, multiplied by given design
load factors. Results have shown a good agreement between the proposed method
and the rigorous elastic-plastic second-order analysis. It has been argued that the
technique can greatly reduce analysis time as well as simplify the optimization of
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members in the design of such frames.
Later on, multi-bay and multi-storey steel frames have been optimized, in a three-
step numerical procedure, by Thevendran et al. (1992b). Volume minimization has
been developed in the optimization, where I-shaped sections have been chosen as
design variables, taken from a list of available steel sections. The peculiarity of such
analysis was that at the beginning the design variables were considered continuous
and then, from the obtained results, the members’ cross sections were selected from
the database. In fact, in the first stage, both columns and beams have been treated as
continuous variables, in the second stage only columns have been approximated with
the available sections and finally, in the third stage, also beams sections have been
converted into the real ones. The frame was finally re-analysed to check whether
any design criteria have been violated. In particular, the frame structure, subjected
to dead, live and wind loads, have been designed considering beams’ maximum
deflection and both shear and moment capacities requirements, as well as stresses
and buckling verifications for columns. Moreover, the horizontal deflection of the
structure has been checked, along with geometric constraints referred to limiting
bounds of the cross-sectional areas and to the variation of column sizes with levels.
The simplicity of the procedure has been shown in a number of examples of such
structures.
For industrial, commercial, and leisure buildings, single-story frame structures, also
known as large-span portal frames, are frequently employed. Such buildings require
the design of a structural system that can cover wide regions without requiring
intermediary columns. Moreover, since steel offers a cost-effective alternative, the
majority of these buildings are made of it. Pitched roof steel frames belong to that
category of the single-story frame and their design has been the subject of Saka’s
studies (2003).
Although the design of pitched roof steel frames has been compared to simple
one-story buildings, it nevertheless had to take into account several difficult issues.
Design variables, considered to proceed with the optimization, were rafters and
columns sections, chosen from the standard universal beam sections set, and the
depth and length of the haunches. Regarding the design variables, it is important to
underline that it is standard practice to use the same universal beam section for both
rafters and use other cross sections for stanchions when designing steel portal frames.
Additionally, for economic reasons, the haunches were made from the same section
as the rafters. The minimum weight design of the frame was taken as the Objective
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Function of the problem and different constraints were considered. First, due to
serviceability requirements, the horizontal displacement of a column due to unfac-
tored imposed and wind loads was limited to a height of the column/300. Similarly,
the constraints have restricted the deflection of a beam to its span/360 if it has been
carried plaster or other brittle finish. In addition, local capacity check for beams and
columns with semi-compact or slender cross-section needed to be properly verified
against bending and compression(buckling). A genetic algorithm was exploited to
find the optimum design and an exterior penalty function was considered during the
iterations. To illustrate the procedure, a practical example was reported regarding a
frame with 20 meters span and 5 meters in height. Results have revealed that while
the displacement and strength constraints didn’t approach their upper bounds in the
final design, the lateral torsional buckling has reached the allowable value. This had
an impact on the ideal depth and length of the haunch among the iterations.
McKinstry et al. (2015), focused their attention on the design of large-span portal
frames with fabricated beams. Fabricated beams were used, in contrast with the most
common hot-rolled steel sections for column and rafter members, for weight reduc-
tion purposes. In particular, the advantage of employing fabricated steel beams, over
the hot-rolled steel section, relies mainly on the maximum span achievable. Using
the latter, spans can reach only 50 m, while 100m can be achieved by employing
the former. Fabricated beams were built-up through the welding of steel plates. The
dimensions of steel plates were the considered design variables of the optimization.
With more details, discrete design variables were adopted for the thickness of the
steel plate used for the web and flange, while continuous design variables for the
breadth and depth of the section. The overall design optimization goal was to find
the portal frame with the least amount of material for the main members while
satisfying the design specifications. Columns, rafters and haunches were considered
primary members of the structure and their weight was used to define the objective
function. Both ultimate and serviceability limit states were included in the optimiza-
tion, adopting deflection limits, recommended by the Steel Construction Institute
(SCI), and accounting also for the buckling stability of the sections. To optimize the
size of the plates used for the columns, rafters, and haunches, a genetic algorithm
(GA) was used. For practical purposes, three different frames have been considered
with different spans (40 to 60 meters) and different heights (10 to 12 meters). To
make a comparison, each of the previously introduced frames was designed and
analyzed with both universal beams (UB) and fabricated beams. Four types of UB
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have been examined, each of which with a different number of design variables,
concerning column, rafter and haunch sections, as well as haunch length. Instead, for
the fabricated beams cases, the design variables were chosen between height, breadth
and thickness of the column, haunch, web, flange and rafter. Moreover, in this case,
they could vary according to geometric constraints. Interesting considerations can be
drawn from the results, beginning with an achievable weight saving of 15% in frame
weight for large-span frames (> 40 m). Instead, fabricated beams will be ill-advised
for small frames where savings were minimum.
In the design of large-span portal-frames, the large span and elements’ slenderness
make them very sensitive to applied loads, especially wind loading. Regarding this
last aspect, an interesting approach is given by Fu et al. (2019). In this research,
long-span portal frames with inclined roofs were designed when subjected to dy-
namic loads, particularly wind loading. The evaluation of the wind loading on the
inclined roof was more complex than ordinary rectangular buildings. To overcome
these limitations, the load imposed by the wind was evaluated as an Equivalent Wind
static Loading (EWSL) by means of Gust Loading Factor (GLF), Load Response
Correlation (LRC) and Proper Orthogonal Decomposition (POD) method. Basically,
those methods allowed us to transform the dynamic loading induced by the wind into
a linear static pressure. The objective function was the minimization of the structural
weight of all the elements in the portal steel frame, while the design variables were
the tapered sections. Sizes need to be determined for several components of the
tapered section, including the web’s thickness and height as well as the flanges’
width and thickness. Constraints of the optimization problem were based on the drift
induced by wind pressure, with particular attention to displacements at the top of
columns and vertical displacement at the mid-span of the rafters. In the examples
reported, the main focus was on the effects of different combinations of EWSL,
on the stiffness of elastic rotational restraints at supports and on the stiffness of
semi-rigid connections between rafters and columns. It has been demonstrated that
the optimized weight was generally reduced with an increase in the stiffness of both
column support and the semi-rigid raft-column connection. The GLF technique
yielded the highest optimal weight for ESWLs.
The same type of structure has been analysed also by Kavehet al. (2019). In par-
ticular, a comparison of different metaheuristic algorithms has been proposed for
two different multi-span pitched roof frames with tapered members. Moreover, in
the analysis, the apex height of the structures has been investigated, in order to find
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the best design with minimum weight. The I-shape of the cross-sections of beams
and columns was assumed, and specifically, the height and the thickness of the web
together with the tapered length ratio have been chosen as design variables in the
optimization. Their values were allowed to vary between feasible discrete ranges, as
reported in the paper.
The structures under study have been subjected to the load combinations specified
in the ASCE7 code (Minimum Design Loads and Associated Criteria for Buildings
and Other Structures), in which dead, earthquake, wind, snow and roof live loads
were considered. The constraints were applied to the strength of structural members,
subjected to compression axial forces and bending. Moreover, displacement limits
were imposed, depending on the loading cases, and construction criteria were applied
to horizontal and vertical elements of the structure. The optimization algorithms used
in the analysis were the following ones: Teaching-Learning Based Optimization,
Colliding Bodies Optimization, Enhanced Colliding Bodies Optimization, Vibrating
Particles System and Harmony Search. MATLAB software has been used for the
algorithm implementation, while SAP200 for the modelling, structural analysis and
design of the structures. From the optimization of the two-spans roof frame, the
performance of all algorithms resulted to be appropriate, while for the three-span
roof frame, ECBO algorithm has been demonstrated to be the best one. In both
examples, the diagram representing the optimized weight as a function of the roof
angle has shown that the best weight can be achieved by employing the minimum
angle.
Another comparison between metaheuristic algorithms has been depicted by Kaveh
et al. (2020a) for multi-storeys and multi-bays structures. Seven population-based
meta-heuristic algorithms have been used to optimize the size of two-dimensional
steel frame structures. The optimization was aimed at minimizing the weight of
rigid-jointed steel frame structures while satisfying some requirements on stress and
displacements, according to AISC and Load Resistance Factor (LRFD). Minimum
weight design has been obtained by selecting an appropriate cross-section from a
catalogue containing 267 W-shaped sections. The well-known penalty approach
has been used to handle the constraints of the optimization problem. Specifically,
the parameters considered in the penalty were related to the total amount of the
constraint that was violated and two constant parameters that had to be properly set
in order to achieve a good balance between the intensification and diversification
of the algorithm. Three benchmark frame structures have been analyzed, which
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have a number of stories varying from 10 to 24 and 1 or 3 bays. Optimized frames
have been examined considering Artificial Bee Colony (ABC), Big-Bang Crunch
(BBC), Cyclical Parthenogenesis Algorithm (CPA), Cuckoo Search (CS), Thermal
Exchange Optimization (TEO), Teaching-Learning-Based Optimization (TLBO),
and Water Evaporation Optimization (WEO) metaheuristics techniques. The results
of the optimization showed that WEO, CS, and TEO algorithms performed better
in terms of the best weight, average weight, and standard deviation on average
weight, according to a close examination of the optimization results. In addition,
TEO, TLBO, and WEO have exhibited faster convergence rates than other examined
algorithms, as shown by convergence curves.

1.8.2 Cost impact-based optimization problems

At the beginning, several authors believed that by performing a structural optimiza-
tion aiming to obtain the smallest solution meant to obtain the most economical
design. In other words, optimization guided by saving material criteria was confused
with the optimal economical cost.
In the first applications, the economic cost is indirectly evaluated as the amount
of steel employed for the construction (e.g. Van Mellaert et al. 2016, Kaveh et al.
2013). Other authors as Foley et al. (2003) adopted an Evolutionary Algorithm
for the minimum weight building frame components. The cost of the connections
was expressed as an increment in steel weight by adopting a suitable amplification
factor. Further considerations related to the connections cost of shrunken segments
in bridge Warren trusses were pointed out by Cheng et al. (2013). As reported by the
same author " the cost rise due to steel strength enhancement of shrunken segments
is taken into account in the nominal weight of the whole truss". In some works (e.g.
Cucuzza et al. 2021a, Lagaros et al. 2020), economical aspects related to optimal
steel retrofitting system were pointed out aiming to demonstrate the optimal solution
performed by minimum weight results into cheapest design when compared with the
traditional approach as external prestressing.

The weight optimization correlated with cost was used also as a way to take into
account the cost in a more wide structural performance optimization. For instance,
this kind of resolution was implemented for coupling the material minimization
with the improvement of seismic performances. Xu et al. (2006) and Gong et al.
(1989) conducted an optimization in which seismic performances were taken into
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consideration in terms of uniform ductility demand at the inter-story drift level. As
reported by the same authors in their works "Minimizing structural cost (interpreted
as structural weight) is taken as one objective".

After that, other components were directly implemented in the cost objective
function as connection, fabrication, transportation and erection costs Pavlovvcivc et
al. (2004). The new cost function called total initial cost, Ali et al. (2009), results to
be more representative of the effective price of the entire structure and an increasing
level of accuracy in the evaluation of each detailed cost item can be obtained. Further
developments in cost optimization were to evaluate the cost along the entire service
life of the structure by including the maintenance, demolition and disposal Life Cycle
Cost (LCC) (e.g. Fragiadakis et al. (2006), Lagaros and Magoula (2013), Lagaros
and Karlaftis (2016)). The procedure called Life Cycle Assessment (LCA) was used
to evaluate not only the cost but also the structure’s environmental impact for the
entire duration of the construction service (see Sarma et al. 2000).

As demonstrated by several authors, cost optimization should take into account
different aspects involved in the realization phase as erection, fabrication, transporta-
tion and labour cost. Moreover, while the weight of a steel building is a crucial
component of the total cost, cost reduction should be the ultimate goal to guarantee
the best use of available resources.
The first approach experienced by researchers consists in multiply the weight or
the volume of each member by the unitary cost of material such that an actual cost
function expressed in monetary terms can be derived. Undoubtedly, the outcomes
obtained by this simplified approach represent a crucial part of the overall cost of
construction and they can be adopted in a preliminary estimation phase. However, it
is not sufficient when a real estimation is required. Specific production procedures
or activities realized on the construction site may represent up to 30% of the total
cost (Jamai et al. 1999).
In this sense, a very detailed cost function was developed by Pavlovcic et al. in
Pavlovčič et al. (2004) that considers both manufacturing and material costs. The
cost function was a sum of the prices due to steel elements, welding, cutting, painting,
surface preparation, flange aligning, joints, transportation and erection based on
the Slovenian market. The discrete design variables of the problem were related to
the geometrical properties of the cross-section (i.e. section shape, the height of the
section, length of the flange, the web and flange thickness).
In particular, an approach to consider the welding cost in the objective function
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was developed in Jin et al. (2017) where the welding cost was the sum of the fac-
tory welding cost (welding that was done in the factory before the installation on
site) and the site welding cost (welding that was done directly in construction site).
Specifically, each welding cost is computed by multiplying the unit length price of
a 6 mm fillet weld by each length member. For allowing a correct design of the
welding joint constructability, constraints were added to guarantee the feasibility of
the connection.
Another interesting application was provided by Gatheeshgar et al. (2020) in which
size optimization was performed for a predefined Modular building system (MSB).
The paper performs a comparative study between three types of cross-sections:
lipped channel, folded flange and super-sigma. During the optimization process, an
optimal sizing for each member typology is performed by choosing the most feasible
solution among the available ones.

The main problem associated with using a unit cost for materials, fabrication,
assembly and erection is that the various procedures are closely related to local
market prices. That issue entails the difficulty to translate these methods into
different geographical and economic regions.
To overcome this problem Jamai et al. in (1999) proposed a solution for considering
the fabrication cost, with specific regard to the role of welding as a percentage of the
material cost. This method computes the fabrication cost as a specific cost ratio of
k f /km, in a range between 0 and 2kg/min, where k f and km represent the fabrication
and the material cost respectively. In this way, it is possible to adapt the minimization
of the cost function as directly dependent on the time needed to accomplish that
specific work in different economic conditions. The paper advances some extension
of this method for other fabrication costs like flattening plates, surface preparation,
cutting and edge grinding.

Even if the considerations of the fabrication and erection cost improved the
accuracy of the final cost evaluation, it did not take into account other important
factors which were introduced by Sarma et al. (2002b), in which the concept of life
cycle cost (LCC) was suitable used for the calculation of the maintenance cost. This
optimization was based on four criteria: a) selection of the discrete commercially
available sections with the lowest cost; b) recognition of the standard section with
the lightest weight, c) search for the minimum number of different types of com-
mercially available sections and d) identification of the section with the minimum
total perimeter length. Those four criteria guarantee not only a low initial cost but
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also a low maintenance cost since, for instance, the least perimeter of the element
cross-section assures a low painting cost during the building life.
LCC analysis was also widely used to evaluate the cheapest solution when structures
are subjected to seismic actions. Specifically, the seismic damage cost and repair
cost has been evaluated in different manners with the expression of the total cost as
a single-objective function or through a multi-objective function where conflicting
target functions have been simultaneously optimized.
To achieve this goal, the single-objective function is generally formulated as the
sum of the initial cost function and new contributions related to the seismic risk. Li,
Jiang et al. (2012) developed an objective cost function as the summation of the
initial material cost and the future expected damage loss. In this paper, the initial
cost was simply computed as the addition of the column and beam cost. Meanwhile,
the damage loss was calculated as a function of the inter-story index evaluated by
pushover analysis according to Chinese regulation.
On the other hand, Sarcheshmehpou et al. (2021) substituted the future expected
loss with an LCC analysis. To achieve this goal three different approaches were
performed: code-based design, cost-based design and fixed-weight design. The code-
based approach aims at minimizing the construction cost of the building while two
other approaches result in a design with the least cost in the lifetime of the building.
Finally, the fixed weight approach redistributes the total structural material of the
code-based design to attain a new design with less LCC. For the dynamic analysis
and the computation life cycle, the Endurance Time (ET) method was performed.
Moreover, for the computation of the LCC, Ghaderi (2021) proposed the use of Wen
and Kang’s formulation applied to multiple damage states. For each damage state,
the exceedance cost is determined as a percentage of the initial cost.
As mentioned above, there are also multi-objective approaches to solving the LCC
optimization. Liu et al. (2004), for instance, adopted, as objective functions, the
initial construction cost and the degree of complexity of the structure expressed in
terms of the number of different standard steel section types and the lifetime seismic
damage cost. While the initial cost was simply the weight of the structure multiplied
by the unitary cost, the damage cost function, for each damage state, was formulated
as the sum between the direct structural and non-structural damage and repairing
cost due to loss of contents, relocation cost, direct and indirect economic loss, human
injury cost and human fatality cost.
Conversely, Saadat et al. (2016) implemented a multi-objective optimization problem
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where the two objective functions were the initial construction cost associated with
the weight of the building and the expected annual loss (EAL) considering direct
economic losses. Seismic performance and loss estimation of a structure can be
organized into four steps: (1) probabilistic seismic hazard analysis (PSHA), (2)
probabilistic seismic demand analysis (structural analysis), (3) probabilistic capacity
analysis and (4) probabilistic loss analysis. PSHA’s purpose is to quantify the uncer-
tainties in the location, magnitude, and resultant shaking intensity of a hypothetical
future earthquake at a specific site. The second and third phase in a structure’s loss
assessment procedure is to find the optimal engineering demand parameters (EDPs)
and evaluate fragility curves from probabilistic capacity analysis, respectively. Fi-
nally, the probabilistic loss analysis aimed to convert the damage estimate in the
previous point into direct dollar losses, downtime (or restoration time) and deaths.
Others as Gholizade and Fattahi (2021), Rezazadeh et al. (2018 and Farhat et al.
2009, 2020) focused on performing multi-objective optimization where the structural
cost (weight corresponding to each element) and overall damage index (ODI) for
the assessment of the structural damage during seismic events were included into
dedicated target functions.
These approaches require a huge computational effort due to the complexity of the
seismic analysis like a pushover, time-history analysis end direct dynamic integration
of ground motion. To achieve time competitive techniques, Kaveh et al. (2012)
developed a multi-objective problem where the two objective functions were the
initial cost of the structure simply computed as the weight function (linked with the
unit initial cost of the building) and the life cycle cost computed with the Wen and
Kang’s formula as a percentage of the initial cost. The importance of this research
lies in the advances implemented into the optimization algorithm that was based
on a non-dominated sorting genetic algorithm (NSGA-II) with the aid of a specific
meta-model utilized for reducing the number of fitness function evaluations.
When the buildings are subjected to horizontal loads, the traditional approach de-
veloped by researchers aimed to estimate the fitness of the objective function by
evaluating the violation of seismic constraints according to the various technical reg-
ulations. However, several authors demonstrated that hybrid optimization techniques
for cost and seismic performance evaluation must be preferred in order to improve
the accuracy of the optimal solution and the computational time too.
Following this trail, Tu et al. in (2020) created a multi-objective collaborative optimal
design procedure for steel frames equipped with buckling tension bracing (BRB)
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to minimize seismic damage and material cost. For this purpose, two objective
functions were built in order to create a Pareto front. The first one was simply the
material cost, while the second objective function taken the maximum energy dissipa-
tion ratio referred to a story among all stories, where the dissipation coefficient was
evaluated as the ratio of the hysteretic energy dissipated by the BRB at the level of
the retrofitted story and the hysteretic energy dissipated by the entire frame (columns,
beams and BRB system) at the level of the same story.
Moreover, in 2020 Barg et al. in (2020), for the evaluation of the inter-story drift
limitation and the optimum seismic design, used a multi-objective solution where in
addition to a material cost function they added the displacement participation factor
(DPF) as a second objective function. The DPF can be derived by the virtual internal
work where all stresses and strains are assumed to be constant throughout the length
of the element. As a result, without analyzing again the structure, we can compute
the influence on any global drift for all scaled scenarios by managing DPF.
Moreover, regarding the performance optimization coupled with an economic design,
Xu et al. in (2020) performed a size optimization for a supertall structure subjected
to wind load. This study first addresses the optimization formulation of a complex
structure system which includes concrete-filled steel tube (CFST) frame members
and shear wall members. The adopted cost function was simply the volume of the
structural elements multiplied by the unit volume material cost of concrete and steel.
The objective function was expressed in terms of the problem design variables de-
pendent on the size of the elements (thickness of the shear wall and external diameter
and thickness of the CFST element). The optimization method was tested on the
Guangzhou West Tower and results revealed that a significant decrease of 20.56%
from 136.8 to 108.7 million yuan was obtained. Meanwhile, wind-induced reactions
such as displacement response at the top of the structure, inter-story drift response,
and acceleration response drastically decreased.

1.8.3 Enviromental impact-based optimization problems

This Chapter presents an overview of the most potent methods used for environmental
optimization.

It is essential to note that in the context of energy optimizations, the prior cat-
egories have been interpreted differently. Size optimization typically involves the
sizing, and thus the choice of typology, of HVAC systems according to the amount
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of energy consumption and the degree of thermal comfort that is desired and needed;
this achievement of indoor thermal equilibrium is frequently combined with the need
to design openings (envelope optimization) of favourable size and with convenient
thermal properties to balance heat gains and losses. The latter ones include losses
through external walls and the ones resulting from ventilation. On the other hand,
heat gains are due to solar radiation through the windows. The difference between
losses and gains represents the amount of energy that must be provided by the in-
stalled heating system.
Clearly, the issue of window sizing is insufficient to yield an optimum solution. As a
result, shape optimization, often in conjunction with size optimization, employs the
orientation of the building as a design variable in order to maximize the structure’s
exposure to sunlight during the day and during the cold and temperate seasons.
Azimuth and Window-to-Wall Ratio are the parameters that show the most commonly
in literature. The azimuth is defined as the angle formed by true North and a line is
drawn from one location to the Sun. This angle changes as the Sun moves across the
sky during the day, making it critical to properly orient, for example, solar panels
and optimize their performance. The window-to-wall ratio, on the other hand, is a
measure of the amount of window area on a building in relation to the total amount
of exterior wall area and it can be differentiated for exposure.
Finally, similar considerations made for shape optimization are worthwhile in terms
of topology optimization. Topological environmental optimizations have been dis-
cussed in the literature as a strategy to attain a certain architectural appeal of the
optimal structure (Coley et al. 2002b).

It has been noted that most of the research in the literature focuses on case studies
of composite or reinforced concrete structures, with little focus on pure steel ones.
In order to find a strategy that is also applicable to the latter, it has been discovered
that in optimizations that use CO2 equivalent emissions (or the Global Warming
Potential, GWP) as an environmental indicator, the Objective Function is frequently
presented as the sum of the product between construction and emission units. Quite
often, instead of emission units, the cost of greenhouse gas emissions is found, which
represents the monetary value of environmental damage caused by greenhouse gas
emissions linked to the building. Typically, these data are acquired either from dis-
crete national or regional databases or product-specific data sets with the support of
professional LCA software. Most of the papers identified in the literature belong to
the size optimization category. In particular, numerous studies regard multi-objective
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optimizations that minimize costs and environmental indicators simultaneously.
The environmental effects of buildings are measured in terms of CO2 equivalent
emissions and energy use, which, as a matter of fact, correspond to the first groups
of papers reported afterwards.
Moreover, among size optimization, LCA-implemented strategies have been high-
lighted.

CO2 emissions and embodied energy Over a 50-year period, the structural frame
of a building accounts for 20–30% of the total whole lifecycle GHG emissions.
In addition to financial benefits, the employment of optimization techniques in
the creation of a structural design can lower the consumption of materials whose
extraction, fabrication, and transportation cause significant environmental harm.

As cross-section optimization is the most feasible type of optimization, several
studies look either at the frame structures or at column/beam elements to evaluate
the carbon and cost savings that may be obtained without modifying the floor
system and the beam arrangement. Indeed, according to Drewniok et al. (2020),
for an assumed 60-year lifespan, mass reductions of 35% in the steel structure
can result in up to 5% total-life carbon savings. The authors developed a tool
called The Lightest Beam Method (LBM), which selects the lightest beam from a
concrete catalogue of Universal Beams (UB) in line with European design regulations.
According to each design constraint, the tool minimizes the needed section mass
and then indicates which constraint is influencing the member. The reductions
from steel floor beam optimization can range between 17% and 35% of the frame’s
initial embodied carbon. The research of Paya-Zaforteza et al. (2009), instead,
outlines an approach for designing reinforced concrete (RC) building frames with
a minimum amount of costs and of embedded CO2 emissions, incorporating two
single-objective functions optimized by a Simulated Annealing (SA) algorithm.
The emissions of the building frame materials and costs are computed similarly
by multiplying unit values and measurements of the materials. The Institute of
Construction Technology of Catalonia’s 2007 database was utilized to get the unit
emissions for the study’s concrete, steel, and formwork materials. When cost rather
than emissions were the goal, the comparison of the solutions revealed a maximum
3.38% increase in CO2 emissions. On the other hand, CO2 solutions might raise
the price by a maximum of 2.77%. These results support the hypothesis that both
objectives were quite coincident and provide comparable results. Since prices
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are more susceptible to changes in market values than emissions, which depend
on industrial processes, the CO2 target function looks to be also more robust and
environmentally favourable. In a similar way, other authors (e.g. Kaveh et al. 2017,
Arpini et al. 2021, Camp et al. 2013, Park et al. 2014 and Santoro et al. 2020)
performed optimizations using discrete national databases for unit emissions and
costs applied both to materials and construction units. In particular, Guimarães et
al. (2022) formulated a design problem of concrete-filled composite columns with
different types of sections. Steel was shown to be the most expensive and least
eco-friendly material across all scenarios, accounting for more than 80% of the cost
and emissions in columns without reinforcement and more than 70% in all other
cases. Furthermore, longitudinally reinforced columns had reinforcing steel as the
second most costly material, while concrete had the greatest CO2 effect. Comparably,
Yeo et al. (2015) and De Medeiros et al. (2014) performed a design optimization
based on the CO2 footprint of reinforced concrete (RC) structures and made an
economic comparison with basic cost optimization. In the research of Yeo et al., the
two single-objective functions were computed as the homogenized volume of the
structure, obtained by using cost and CO2 footprint ratio coefficients, which were
simply the ratios of the cost/CO2 footprint of steel and the one of concrete per cubic
meter, multiplied by the cost and CO2 footprint of concrete per cubic meter. The
CO2 footprint is reduced by 5% to 15% by optimizing the design to achieve the
lowest possible carbon emissions. On the other hand, De Medeiros et al. suggested
ways to reduce the environmental costs associated with the section of rectangular
reinforced concrete columns utilizing the Harmony Search heuristic approach. The
following environmental costs associated with reinforced concrete inputs are taken
into account: carbon dioxide (CO2), equivalent carbon dioxide (CO2e), or global
warming potential (GWP), energy consumption, and environmental scoring units,
also known as Eco indicator. The optimized monetary solutions were likewise more
favourable in terms of the environment, leading to the overall conclusion that the
reduction of environmental costs is directly tied to the optimization of monetary
costs.
An interesting and peculiar application on modular building systems (MSBs) was
developed by Gatheeshgar et al. (2020). This type of system offers the benefits
of high productivity, improved structural performance, and quicker construction
times, and it is a practical answer for areas with rising housing demand. MBS may
minimize the operating energy required in buildings due to its highly insulating



1.8 Size Optimization 55

and airtight design, helping to fulfil the rising need for environmentally friendly
structures.

In the matter of tall buildings, parametric research on environmental assessment
was conducted by Mavrokapnidis et al. (2019) to compare five distinct cost-optimized
tall building typologies. The cross-sectional dimensions of structural elements serve
as the design variables in the optimization problem. Then, a Life Cycle Assessment
(LCA), also referred to "cradle to grave", was conducted on the five cost-optimized
outcomes to compare the various environmental profiles across tall structure typolo-
gies. The LCA computes the environmental effect from the acquisition of each
material to the disposal and recycling. When comparing structural systems made
of concrete and steel, it can be relieved that the latter need approximately twice as
much energy and produce twice as much CO2 as concrete-based systems. However,
steel constructions are most widely employed due to structural efficiency even if it
has been demonstrated, through this study, that concrete works well for tall buildings,
up to 60 stories.
The embodied energy content of buildings has drawn the attention of researchers, as
well as the embodied carbon emissions, derived from industrial processes of building
materials. In the study of Lagaros (2018b) two actual test cases are illustrated, a high-
rise building and an athletic stadium. For the high-rise structure, an environmental
benefit of 11.2% and 12.7% in terms of energy consumption and Greenhouse gas
(GHG CO2 equivalent) emissions was achieved. The embodied energy is calculated
as the sum of the initial embodied energy of design, which is a function of the
quantity of building material and its unit energy content, and the recurring embodied
energy, which is likewise a function of the structure’s and material’s life span.
Consequently, the realization of sustainable future designs relies heavily on reducing
the embodied energy of building materials. In the work of Whitworth et al. (2020)
a Matlab algorithm is presented to optimize a composite beam for tall structures
for five different objective functions. The amount of material multiplied by the
cradle-to-gate energy content of the material per unity quantity added to the energy
utilized on-site for construction will be used to quantify only the initial embodied
energy of the structure, which results to be a reduction for each of the OFs.

The attention of various authors has been drawn to bridges, one of the most
important civil engineering structures. However, because of the numerous design
variables that characterized the structural problem, building a sustainable bridge is
challenging.
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To cover these difficulties, the study of Penadés-Plà et al. (2019) proposed the
use of metamodels, in particular the Kriging one, and of a simulated annealing (SA)
algorithm. The structure under examination was a concrete box-girder pedestrian
bridge and its design variables were the depth of the cross-section, the bottom slab
and web inclination width, the top slab and external cantilever thickness, and the
bottom slab and webs slab thickness. This problem involves a single-objective
optimization of the embodied energy of the structure, used as a representative
criterion of its environmental impact. The embodied energy is computed as the
summation of each unit of energy, obtained from the BEDEC ITEC database of the
Construction Technology Institute of Catalonia, multiplied by the measured values of
each element. Simple and combined solicitations, cracking, compression and tension
stresses, and vibration are all structural constraints to check the serviceability and
ultimate limit states (SLS and ULS). In terms of the best solution, the comparison
demonstrates that Kriging raises the optimal energy by 2.54%.

Several multi-objective optimizations were proposed to demonstrate the strict re-
lation between costs and CO2 emissions in bridges’ case studies. The objective func-
tions were computed similarly for emissions and for costs, as unit emissions/prices
multiplied by construction units. The values of CO2 emissions for materials were
taken from the same database of the previous single-objective problem also for Yepes
et al. (2015) and Garcìa-Segura et al. (2016). In the case of Martínez-Muñoz (2022),
a cradle-to-gate analysis for each unit of the material multiplied by the amount of
material used is performed for emissions’ computation.
Also costs are acquired from discrete databases, such as the BEDEC ITEC one, or
from surveys of precast structure constructors and subcontractors and updated to
current values.
Metaheuristic methods, in particular, have done well in handling complex Steel–Concrete
Composite Bridges (SCCBs) optimization. For example, in Yepes et al. (2015) a
hybrid glow-worm swarm optimization (SAGSO) method is employed to combine
the synergy effect of local search with simulated annealing (SA) and global search
with glow-worm swarm optimization (GSO); while, in Martínez-Muñoz (2022), a
hybrid k-means discrete (KMDA) approach that combines the Sine Cosine Algorithm
(SCA), the Cuckoo search algorithm (CS), and the k-means unsupervised learning
methodology were adopted.
Structural and safety (ULS and SLS) constraints imposed by advice from experts
and standards (CEN Eurocodes) are placed on the bridge design process as well as
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the problem’s geometry and constructability criteria.
From these three studies, similar results has been obtained. In particular, it turned
out that CO2 emissions and cost are tightly associated. Specifically, a euro decrease
in cost translates into a 1.75 kg reduction in CO2 emissions (2015). As long as
cost and CO2 emission criteria result in a decrease in material consumption, the
results demonstrate that cost optimization is a solid strategy for achieving an envi-
ronmentally friendly design.; when emissions are decreased, however, it does not
always follow that costs are also optimized. This has to do with the fact that whereas
material types vary in price, emissions are the same.

LCA implementation Implementing LCA as a method for planning environ-
mentally acceptable buildings, and retrofitting that use less energy are commonly
recognized as the most economical approach to reducing the environmental impact
of buildings. They are also seen as a possible opportunity to make a substantial
contribution to this cause. As a result, enhancing the energy efficiency of existing
structures while limiting extra CO2 emissions and costs has emerged as a critical
issue and challenge in minimizing the life cycle effect of buildings. The case study
building examined in Schwartz et al. (2016) is a recently refurbished council housing
complex in Sheffield (UK). Two objective functions were minimized: the life cycle
carbon footprint (LCCF) and the life cycle cost (LCC). The LCCF (kgCO2) was
computed as the summation of embodied carbon per material and the operational
energy-related carbon (OERC), which is obtained by multiplying the predicted en-
ergy consumption values by the CO2 emissions of the fuel. Similarly, LCC was
calculated. The findings suggest that the best models have envelope components that
reduce OERC or operating costs more than they do. For instance, the best models
avoided using brick as an insulating layer and had the fewest windows possible
because these materials cost more than the OERC or the money they save.
Similarly, the goal of the study of Mostavi et al. (2017) was to create a multi-objective
design optimization model that would reduce life cycle costs and emissions (Global
Warming Potential, GWP) while maximizing occupant satisfaction (thermal comfort)
in a typical small office building in Pennsylvania (USA). This study revealed that
making wise choices early in the design process might help designers produce the
best sustainable designs.
In the research of Van Cauteren et al. (2022), instead, the environmental life cycle
assessment (E-LCC) and life cycle cost analysis are combined in two case studies of
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hybrid (steel/timber) truss structures. The findings demonstrate that any intermediate
Pareto optimum design is a hybrid steel/timber structure in each situation. According
to this, a hybrid steel/timber structure seems to be the best option for a designer who
is focused on a sustainable building but constrained by the available financial means.
Other problems’ formulations based on a combination of LCA and discrete structural
optimization were given by Brütting et al. (2018, 2020a and 2020b). The author
suggested looking into truss structures that were planned and built using reused ma-
terials that were selected from stocks of pre-existing supplies in order to significantly
minimize material consumption and waste created by the construction industry.

Energy consumption Building design must balance two basic yet opposing goals:
energy usage and indoor climate. Even for highly experienced engineers, finding a
design that fully exploits a situation while fulfilling both of these goals is difficult
because of the enormous amount of factors and techniques involved. Global optimiza-
tion methods, like genetic algorithms, can be used to greatly reduce energy usage
while keeping a comfortable indoor environment (2010). Building envelopes make
up the barrier separating a structure from the outside world, and their construction
really determines the building’s future energy needs for heating and cooling, which
has a significant impact on how the structure behaves thermally. A multi-objective
decision model proposed by Diakaki et al. (2010) enables the examination of a
potentially infinite number of alternative measures and evaluates them in accordance
with a set of criteria, such as the building’s annual primary energy consumption, its
annual carbon dioxide emissions, and the initial investment cost. Choices are made
about space heating, cooling, and hot water distribution systems based less on their
generating efficiency and more on the release of CO2 emissions. The categories of
systems with fewer CO2 emissions are therefore favoured, and from these categories,
the systems with the highest generating efficiencies are chosen.
On the other hand, for retrofitting buildings, the research of Antipova et al. (2014) is
based on the combined application of multi-objective optimization and LCA con-
cepts. It considers two objective functions: an environmental one, expressed as the
total environmental impact associated with the quantity of natural gas and electricity
used for space heating and cooling and water heating; and an economic indicator
quantified by the total cost which includes the retrofit and operation (energy) cost.
The retrofit measures contribute to a 10.7% decrease in the overall effect of the
minimal environmental impact solution. This reduction is made possible by a 4%



1.8 Size Optimization 59

reduction in the impact of electricity and a 68% reduction in the impact of natural
gas.
A process for applying sustainable design principles to both new construction and
building retrofits has been outlined by Brunelli et al. (2016), in which five objectives
have been identified: minimization of thermal energy consumption, electric energy
consumption, Net Present Value (NPV) of the investment, emissions of CO2, and
maximization of comfort level.

Frequently, researches in literature face the particular problem of optimal sizing
of windows in a building to optimize lighting, heating and cooling performances.
This issue is typically dependent on climate, as in the single-objective optimization
of Caldas and Norford (2002). The structure is investigated under two different
locations, Phoenix and Chicago, and the problem was dependent also on the glazing
used, the orientation of windows and the type of use of the building. The objective
function was expressed as annual energy consumption, which was computed as
the sum of the energy spent in heating and cooling and the lighting energy. Suga
et al. (2010), instead, proposed multi-objective research for a window format
that optimizes the lighting environment, energy consumption, initial cost, and draft
(natural ventilation) performance, while maintaining a constant thermal environment.

Few studies have been recorded that compare the ideal envelope design with
those specified in standards and regulations, taking into account the three Es: energy,
economics, and environment. The study of Al-Saadi and Al-Jabri (2020) uses a
life cycle cost (LCC) analysis in conjunction with the EnergyPlus simulation tool
to optimize envelope design for houses in hot regions of Oman. This research also
recommended solutions derived from regional thermal codes. As expected, design
scenarios based on tight code requirements have a lower environmental effect.
A new multi-stage framework, instead, is proposed by Ascione et al. (2017), called
CASA. The recommended packages of energy retrofit measures (ERMs) are chosen
using a multi-objective genetic algorithm (MOGA), which minimizes primary energy
consumption (PEC), thermal discomfort hours (DH) and global cost for energy uses
during building lifetime (GC). Clearly, this approach provides significant benefits for
both the private, as building lifespan expenses are reduced, and the public, as energy
consumption and building environmental effects, may be drastically reduced. For
example, a decrease of around 14.3 tCO2-eq/a is achieved. On the other hand, Flager
et al. (2009) evaluated the potential of Process Integration Design Optimization
(PIDO) technologies to support more successful Multidisciplinary Design Optimiza-
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tion (MDO) processes in the Architecture, Engineering, and Construction (AEC)
industry. Using MDO techniques integrated into PIDO software, some civil engi-
neering sectors have surmounted comparable constraints, resulting in a shortened
design cycle and better product performance.
Another interactive optimization framework built on MATLAB is created by Li et
al. (2017) to make it easier to create performance optimization solutions. Using
computer simulations and a basic building energy model, a performance comparison
of three optimization strategies has been done. Three functions are chosen as the
optimization application’s objectives of a typical residential building in China: the
total percentage of cumulative time with discomfort (TPMVD) over the course of
the whole year, the life cycle cost (LCC) corresponding to the total amount of costs
during the building’s lifespan and, the total carbon dioxide equivalent (CO2-eq)
which is the summation of the CO2-eq emissions of each material and the electricity
CO2-eq emissions.

In the academic and professional worlds, interest in low-energy and zero-energy
buildings is also growing. The EPBD defines two particular categories of Zero-
Energy Buildings (ZEB), called "nearly-Zero Energy Buildings" (nZEB) and "Net-
Zero Energy Buildings" (NZEB). In a ZEB, the actual yearly supplied energy is less
than or equivalent to the on-site renewable exported energy, measured on a source
energy basis. These structures are intended to work with less overall greenhouse gas
impact on the environment than traditional structures.

It is feasible to see how literary studies differ based on the type of developed
method (one article examines both single and multi-objective algorithms) (2015).
The collection of works that uses multi-objective optimization, which is frequently
favoured over single-objective algorithms, is unquestionably the most prevalent. The
intricacy of a building’s energy optimization is brought to light by this orientation.

When it comes to multi-objective optimizations, heuristic algorithms are used the
most frequently, with the Non-dominated Sorting Genetic Algorithm predominating
(NSGA II).

Another insightful analysis focuses on the following variables for the building’s
optimization:
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• the building envelope (including the use of PCMs, the form and direction of
the structure, and the walls, roofs, and layers’ thermophysical characteristics)
(e.g. Gilles et al. 2017, Ascione et al. 2016);

• Fixtures (window and door thermal characteristics, glass emissivity) (e.g.
Ascione et al. 2016);

• HVAC and equipment (air conditioning systems, energy storage);

• Renewable Energy Sources (RES) plants (solar collectors, PV, wind turbines,
bio-diesel generators) (e.g. Lu et al. 2015).

Fig. 1.18 Building energy optimization: possible objective functions and main design
variables.

Moreover, regarding the need for a global approach for ZEB, many performance
indicators should be taken into account, including cost (Life cycle cost, LCC),
thermal comfort, embodied energy, CO2 emissions, energy usage, the output of
renewable energy sources, and durability (as in Gilles et al. 2017, where these main
classes of objective functions were simultaneously analyzed).

Therefore, it is likely that the building industry is evolving toward sophisticated,
robust optimization techniques that use a variety of criteria, many disciplines, and
meta-models established through the appropriate adaptive design of trials. Life cycle
approaches emerge logically as a result of the decrease in yearly consumption, which
has underlined the importance of taking into account the embodied energy related to
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building. When optimizing the design of ZEBs under these circumstances, the life
cycle should be taken into consideration.

1.9 Shape optimization

1.9.1 Structural performance-based optimization problems

Shape optimization attempts to integrate geometric modelling, structural analysis
and optimization into one complete automated computer-aided design (Hsu 1994b).
During the entire shape design optimization process, the design domain keeps on
changing through design variables updating and subsequent internal and/or external
boundary variations. The design variables that characterize a shape optimization are
the nodal coordinates of the structure under study, while constraints on the geometry
and structural responses such as stress, displacements and natural frequencies are
generally considered. Throughout a shape optimization process, a change in the
coordinates of the elements will lead inevitably to a change in the state of stress.
Due to that, a Finite Element Analysis and mesh refinement are always required at
each iteration of the optimization process. Moreover, it is worth mentioning that in
most of the studies, shape optimization is generally coupled with size or topology
techniques, seldom implemented alone.

Size and Shape Optimization An early coupled optimization of size and shape
techniques has been reported by Haque, M.I. in (1985b). The design of skeletal
geometry of plane rigid frames has been tacked as the paper’s aim, by using a
gradient-based method called the complex method of box. The design variables
considered in order to obtain a minimum weight of the optimized skeletal structure
are simultaneously the cross-section of the structural members and joint coordinates.
A plane symmetrical frame has been considered and weight saving with low compu-
tational effort was proved for symmetrical plane frames.
Later on, another study conducted by Gil and Andreu 2001 developed a method for
the identification of the optimum shape and cross-sections of a plane steel trussed
bridge under stress and geometrical constraints. The novel full stress-gradient-based
approach was adopted in order to overcome the difficulties related to the different
nature of the design variables (discrete for sizing vs continuum for geometry). In
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the last decade, Kazemzadeh et al. 2018 proposed an application of size and shape
optimization on steel truss structures subjected to dynamic excitations. By adopting
the big bang-big crunch algorithm, the minimum-weight design has been pursued a
22-member cantilever truss, optimized under sinusoidal excitations, as well as for a
44-member truss, designed under rectangular periodic excitations, and a 37-member
truss, subjected to step forces with different finite rise time values. The same state-
ment of the optimization problem showed in the previous paper was adopted and the
effect in minimum weight obtained for different excitations was discussed.
In the last year, several authors ventured into evaluating optimal designs of very
challenging shape structure as curved beams, domes or, simply, 3D frames Kaveh et
al. 2020a proposed a design procedure for curved steel roof frames via Enhanced
Vibrating Particles System (EVPS) Algorithm. A combination of size and shape
optimization was employed to find respectively the minimum weight design and
the slope angle of the curved roof frames. In particular, for an assigned slope angle
of the roof, the amount of load carried by the frame is evaluated. The results have
shown optimal roof slope angle values were obtained in a range between 9 to 22
degrees and buckling or displacement limitations were proved to be the most critical
verifications. In this way, a practical recommendation for the optimal design of steel
curved roof frames was derived.
Kameshki et al. (2007) adopted genetic strategies for the optimum geometry de-
sign of nonlinear braced domes. The optimal value of the height of the crown and
cross-section of members were obtained according to instability check serviceability
requirements as well as serviceability requirements, combined strength limitations
set by BS 5950. Promising outcomes were obtained by Phan et al. (2020). In this
research, the optimization of cold-formed steel (CFS) structures has been addressed,
giving a deeper look at the design of thin-walled CFS sections which are generally
affected by various buckling modes. Cold-formed steel sections are employed in
construction because of their great benefits, including a relatively high strength-to-
weight ratio, better production flexibility and simplicity in handling, shipping, and
installation. Size and geometry optimization was carried out considering discrete
cross-section features and layout properties such as the roof pitch, frame spacing
and knee brace configuration (i.e. knee depth and knee angle) as design variables.
Finally, a cost-saving equal to 20% was recognized. Differently from all the works
mentioned above in which steel frames were analyzed, Mam et al. (2020) investi-
gated the influence of semi-rigid dowel-type connections in timber structures. The
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authors developed an iterative process for the minimum number of dowels for a
given load-bearing capacity according to EC2 verifications. Moreover, the benefit
obtained by adopting semi-rigid connections was proved when changes in the shape
of the single module frame were performed for minimal tip deflection.

1.9.2 Cost impact-based optimization problems

The goal of shape or geometry optimization is to obtain an ideal shape by defining
certain critical points whose motions condition the structure’s overall shape with a
given size, topology and/or some set boundary conditions. In the case of a truss or
generic skeleton frame structures, for example, the key points are the nodes where
the members converge. When a node is moved, all the linked elements must change
their length and inclination, affecting the overall geometry of the structure. In the
literature, no interesting applications of pure shape optimization, fitting with the
purpose of the current work, were recognized. Indeed, it is often implemented as an
aid to cross-sectional size optimization (which is more efficient for the minimization
of the material cost) and topological optimization.

Size and Shape optimization As mentioned above shape optimization is mostly
used as an improvement of the already efficient size optimization.
Due to the higher material cost of raw steel materials with respect to reinforced
concrete, reducing the former results in the cheapest design. In this sense, two
studies were developed by Aydin et al. (2015, 2022) where combined shape and size
optimization was performed on prestressed steel trusses in order to reduce the total
amount of employed steel. While the first paper referred only to Warren’s prestressed
truss, the second investigated a more generic problem in which the objective function
was a cost function that summed up the price contribution of steel elements and
tendons by multiplying the weight with the unitary cost of the steel and prestressed
tendons, respectively. Design variables involved in the process are the cross-sections
of the truss system’s bars and deviators’ position, while shape variables are the height
of the beam and the eccentricity of the prestressing tendon.
Results shew that prestressing leads to a cutting of the overall cost of steel truss
beams by up to 25% when feasibility conditions such as strength, stability, and
displacement limits are considered.
Concerning truss optimization, another relevant work was done by Tiainen et al.
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(2017), in which different size-shape Warren truss configurations were investigated
by varying steel grades and geometrical properties as truss height, the locations of
joints, the gap width at the joints (continuous variables) and the member sections
(taken from a catalogue of cold-formed square tubes). Minimum weight and mini-
mum cost were obtained separately by using the PSO algorithm. Cost calculations
were performed by means of a general feature-based costing method (Haapio 2012).
The constraints were derived from the Eurocodes and consisted of strength, buckling,
serviceability and geometrical limitations. The results analysis indicate considerable
weight savings when high-strength steel (HSS) was considered. With respect to
this one, cost reduction was smaller but still around 20 % for the scenario in which
structure was the most stressed
One of the most comprehensive and complex size-shape optimizations was advanced
by De Santana Gomez et al. (2013). This article covers the difficulties of addressing
real-world structural optimization issues while considering the effect of the failure
risk. The optimization consists of a risk optimization problem that was implemented
by adding the expected cost of failure to the other terms that constitute the total
life-cycle expected to cost. The total cost function was formulated in terms of the
manufacturing cost, the operation cost, the inspection and maintenance cost, the
disposal cost and finally the expected cost of failure. The expected cost of failure
was computed as the sum of the expected cost for each failure mode. For each failure
mode, the expected cost of failure was given as the product of failure cost by the
failure probability.
Shape optimization can be also performed by considering perforated beams with
optimal web openings in order to reduce the mass of the members. This strategy was
experienced by Kaveh et al. (2021) who adopted the vibrating particle system (VPS)
meta-heuristic algorithm for the optimal cost of supported castellated beams (CBs).
The evaluation of the fabrication cost in representing a floor system composed of
concrete slab and CBs resulted to be dependent on the cutting, welding and, generally,
assembly procedures. Moreover, the entire process considered 25 design variables
including geometrical properties related to both composite deck-slab system and
web openings (angle of inclination of the hexagonal castellation, height of the hole,
etc).
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1.9.3 Enviromental impact-based optimization problems

It has been observed that shape optimization study tends to focus primarily on the
issue of energy usage. Many studies have been hybridized by coupling size and
shape optimization in order to best combine the energy, aesthetic, and functional
requirements of buildings.

Shape Optimization Because the building shape controls the size and orientation
of the external envelope exposed to the outside environment, it may impact building
performance in a variety of ways, including energy efficiency, cost, and aesthetics.

As the environmental implications of buildings are recognized, it becomes in-
creasingly important to include environmental performance in building design. Green
construction is a new design concept that demands the consideration of resource
depletion and waste emissions over its whole life cycle. The building life’s phases
investigated are natural resource extraction, building material production, on-site con-
struction, operation, and transportation associated with the aforementioned phases.
Two studies by Wang et al. (2005a) and (2006) employed exergy as an environmental
parameter to overcome common issues in the optimization process. The amount of
work that a system can accomplish when brought into thermodynamic equilibrium
with its surrounding environment is known as exergy. The evaluation of exergy is
dependent on both the status of the system under study and the circumstances of
the reference environment, and it may be included in Life Cycle Assessment (LCA)
to solve natural resource depletion characterization and valuation difficulties. The
optimization models were set to minimize both life cycle cost (LCC) and life cycle
environmental impact (LCEI). Using LCEI as an indicator for life cycle environmen-
tal performance, the optimization issue may be simplified by combining all examined
impact categories into a single objective function. In particular, in the study of Wang,
Rivard, and Zmeureanu, the study’s variables were divided into four categories:
shape (orientation, edge length and bearing), structure (building structural system),
envelope configuration (wall and roof types and layers) and overhang, which is a
passive solar architectural feature put over windows to prevent direct solar radiation
through the windows in the summer.
An alternative solution is proposed by Tuhus et al. (2010) to find a minimum op-
timized solution for four different cost functions (annual electricity use, annual
gas use, annual total energy cost and life-cycle cost) to the problem of residential
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buildings envelope energy efficiency. Different building shapes were considered,
including the rectangle, L-shape, T-shape, H-shape, U-shape, cross and trapezoid.
The functions were optimized using the aspect ratio (ratio between width and height),
the orientation and two characteristic shape parameters (normalized concerning
width or height) for each configuration through a genetic algorithm (GA). It was
found that the trapezoid and rectangle were consistently the best shapes. However,
the reference square design offers the lowest life-cycle costs across all climates when
all building envelope parameters are permitted to vary.

A high-performance, sustainable structure has been defined in modern buildings
as one that uses the least amount of energy during each of the four major phases of a
building’s lifetime: material manufacture, construction, usage and maintenance, and
end-of-life. Since many classic optimization approaches have only found limited
application, the research of Brown et al. (2016) focuses on multi-objective optimiza-
tion (MOO), which prioritizes structural efficiency and operational energy efficiency
applied on three case studies of structures with long-span roofs (the enclosed arch
of the Montreal Olympic stadium, the “PI” cantilever overhang of Suvarnabhumi
Airport and the “x-brace” cantilever overhang of Qingdaobei Station). The goal
of structural optimization was to reduce the amount of steel necessary; while, en-
ergy optimization aimed to reduce the yearly operational energy of the building,
which includes needs for lighting, heating, and cooling. Similarly, an intriguing
multi-objective optimization was proposed by Quaglia et al. (2014) to minimize both
structural performances and energy efficiency of an origami-inspired deployable
shelter for military and disaster relief housing use. In particular, the Lever Shelter
Module (LSM) was analyzed, which is made up of sandwich panels constituted by
two fiber-reinforced polymer (FRP) rigid faces and a foam lightweight core. Two
objective functions were formulated: the structural one was a deflection function
computed as the maximum between the deflection in any direction of the two mod-
ules under self-weight, wind and snow; the energetic one, instead, was the total
thermal energy load for the modules obtained as the sum of heating and cooling
loads. The design variables were constrained by demanding that the shelter can be
packaged on a 463L pallet interfacing with Tricon containers. When compared to
the minimal deflection result, the multi-objective optimization demonstrates a 12%
reduction in thermal energy load while only marginally increasing deflections. It
also demonstrates a considerable reduction in deflections when only increasing the
thermal energy load by 12% compared to the minimal thermal energy load result.
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A novel technique, called agent-based, was also explored by Yi and Malkawi (2009)
to control building shapes by creating hierarchical relationships between geometry
points. The agent-based representation begins with the establishment of hierarchical
relationships between points (nodes) that represent and regulate the geometry. Three
distinct major points are required: the centre point, the agent point, and the child
point. The centre point acts as a pivot between agent and child points, while the
agent point defines the position of the child ones. Lastly, child points are the points
that control a surface, which construct the building form. The objective function min-
imized the heat flow between indoor and outdoor spaces, including targets, surface
heat flow, heat gain, heat loss and volume.

Size and Shape Massive energy savings may be realized throughout the oper-
ational stages by implementing passive and active tactics. According to certain
research, increased operational energy savings led to exponential increases in em-
bodied energy. Over 45% of the lifespan energy in low-energy buildings might
be attributed to embedded energy usage, therefore from a lifecycle viewpoint, the
embodied energy could outweigh the operating energy savings. It is consequently
essential to reduce operational energy consumption while maintaining embodied
energy performance. The optimal design of several building envelopes with local
materials typical of climatic conditions in Africa’s Sub-Saharan area was investigated
in the study of Ansah et al. (2021). In the first step, the building geometry and
renewable energy are optimized and used as the foundation to design the building
model for assessing the trade-off between embodied and operational energy with
different façades in the second stage. Similarly, depending on climate, Echenagucia
et al. (2015) proposed an integrated strategy for the first phases of building design.
The energy required to heat, cool, and light a case study was minimized by varying
the number, position, shape and type of windows and the thickness of the masonry
walls. The results of the search process can give designers important information that
will help them make better-informed decisions. For instance, designers can choose
the objective function they want based on the environment and the HVAC system
they have chosen.
Several papers discuss multi-objective optimizations exploited in three sectors: the
optimization of the building envelope to reduce Heating, ventilation and air condi-
tioning (HVAC) usage as well as construction costs, the optimization of building
form (windows sizing and positioning), and the optimization of HVAC system design
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and operation (e.g. Caldas and Norford (2003), Negendhal and Nielsen 2015, Wang
et al. 2005b and Raphael 2011). In particular, the study of Marks 1997b aimed to
optimize the dimensions of a structure with known volume and height in order to
minimize building and annual heating costs. The problem is formulated in two ways,
by making as first an optimization of a building of an arbitrary shape and secondly of
a building on polygonal plans, both solved numerically by a computer system, called
CAMOS. As a consequence of optimizing the design of the structure, construction
and heating costs over the N-year period can be reduced by several to several dozen
per cent. Likewise, due to the enormous number of interactions between the elements
that contribute to the overall behaviour of a structural solution, also the research
of Caldas et al. (2003) benefits from the use of computer simulations (DOE-2.1E)
for the case study of the Alvaro Siza’s School of Architecture. The use of this
new generative system (GS) that combines a search technique (GA) and DOE-2.1E
showed that it may be used to change building geometry to make it better suited
to its environment. Although the GS made several adjustments to each façade of
the building, which may have resulted in a better-balanced use of daylighting, the
building’s overall artificial lighting usage did not decrease significantly. However,
a significant gain in terms of heating and natural lighting is recognized due to the
crucial role played by the overhangs: decreasing its depth results in greater bene-
ficial south sun absorption in the winter and reduces heat loss sources simultaneously.
An innovative comprehensive framework for building energy design, called Harlequin,
has been suggested by Ascione et al. (2019). Because each façade can have a variable
composition and thermal-radiative qualities depending on the exposure, the obtained
solutions are called "Harlequin buildings". As a result, the proposed architectural so-
lutions are referred to as "Harlequin" buildings because of how irregular their colour
and composition are, which is evocative of the well-known figure "Harlequin". The
three objective functions to be minimized are: the annual percentage of discomfort
hours over occupied hours (DH), the annual electrical energy demand for artificial
lighting (EEDL), and the annual thermal energy demand for space conditioning
(TEDSC). Depending on the chosen solution, considerable decreases in primary
energy consumption (PEC), global cost (GC), and CO2-eq emissions can be made
in comparison to a reference design. The maximum reductions are 12.3 kg/m2 for
CO2-eq, 43.9 kWhp/m2 for PEC, and 63.9 /m2 for GC.
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1.10 Topology optimization

Topology optimization not only seeks the optimal spatial arrangement of structural
elements within a given domain that affects structural layout, but it also examines
how the available material might be structured to achieve the greatest structural
performance. For instance, the purpose of topology optimization for a fixed span is
to specify the type of truss to utilize for the specified loads and boundary conditions.
Another way to perform topology optimization in continuous design space is to
remove the less stressed material while adding material in the more strained locations.
Actually, topology optimization is not simply the change in the arrangement of
the elements but also every modification that varies the internal load path in the
structure. Therefore, the change in the connection typology (pinned or fixed joint) and
stiffness (semi-rigid connection) should be considered as a specific case of topology
optimization since variations of the stress distribution occur in the structures. As
demonstrated by the research reported in the future section, topology optimization
results in a refined optimal strategy in which novel efficient load paths can be
recognized. Subsequently, though size optimization brings a simple reduction of the
overall weight, changing the topology of the structures permits to the achievement of
innovative arrangements with a higher cost-saving impact. For these reasons, once a
preliminary weight cutting is performed by using size optimization, topology can be
adopted as a second-level strategy to achieve a more refined solution. This aspect is
demonstrated by the fact that any pure topology optimization has been recognized in
the literature. Most frequently, authors preferred a hybrid optimization by coupling
size and topology or size, shape and topology.

1.10.1 Structural performance-based optimization problems

Topology Topology optimization is generally employed in the conceptual design
phase of a high-rise building, in which the main focus is related to the overall
stiffness/drift requirements under lateral loads. Therefore, many of the decisions
made during this process are related to defining the lateral system that allow to
reach an optimal structural design to satisfy certain conditions. The balance between
engineering and architecture is another issue that frequently affects the topology
optimization industry today. Traditionally, an architect’s focus is more on the aes-
thetics, or "form," of a structure, whereas an engineer’s target concerns stability and
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efficiency, or "function", of the structure Beghini et al. (2014). To overcome those
conflicting goals, for example, we can think to add some architectural constraints
during the optimization process.
Mark et al. in (2000b) presented the Genetic Algorithm(GA) for structural topology
optimization, through the use of examples and reviews. By applying this algorithm,
the design domain has been discretized into small rectangular elements, as said
before, representative of the presence of material or void by means of a specific code
number (respectively number 1 and 0). In this way, the topology has been defined,
so the next step was its structural verification through a finite element analysis. Then
the fitness of each chromosome, thus of each topology, was computed as a function
of the stiffness value, determined as the inverse of the displacement. In fact, the
Objective Function was aimed at the minimization of the structure’s compliance,
by finding the optimal configuration of material and voids within the design, while
stress and displacement constraints were applied. An example related to a cantilever
plate subjected to vertical load has been provided and discussed.
A classical approach to topology optimization was provided also by Pan et al. (2006)
in which truss structures with 12, 20 and 72 bars were analyzed using Adaptative
Genetic Algorithm(AGA). The objective function of the optimization problem was a
minimization of the truss structural weight when subjected to frequency domain exci-
tations. Minimum weight was achieved by removing extra bars and nodes, classified
as removable and non-removable. The analyzed truss structure was subjected to three
kinds of constraints: fundamental frequency, displacement responses and accelera-
tion responses in the frequency domain. The maximum amplitude of displacements
and frequency acceleration response had to be lower with respect to an upper bound
limit. Those types of constraints have been evaluated from the structural vibration
equation, based on the finite element method, in which the mass, damping and
stiffness matrix of the structure needed to be known. Moreover, to obtain accurate
natural frequencies and dynamic responses, it was necessary to renumber every bar
and node in the structure and rebuilt the stiffness and mass matrices when some bars
or nodes were removed.

Another important topic addressed in topology optimization techniques deals
with the design of conventional moment-resisting steel frames. This type of structure
as is well-known, exhibits good behavior under gravity-induced forces. However,
the structure is likely to be ineffective in self-resisting lateral forces promoted by
wind and/or earthquake actions. The use of a hybrid system that integrates cross
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braces to the moment-resisting frames is widely accepted for its cost-efficient and
safe performance. Due to that, founding optimal bracing positions and their sizing is
one of the most treated issues in this field. Cross bracings designs, especially when
the braces are added afterwards as part of a retrofitting scheme, traditionally use a
simple trial-and-error procedure, with the overall goal of minimizing the distance
between the floor’s mass and stiffness centres and ensuring that the lateral resisting
system has a workable load path. A more systematic approach is to set up and solve
an optimization problem that automatically computes optimal brace layouts and sizes
while satisfying the safety of the targeted structural performance.
In the research Safari and Maheri (2006) proposed a straightforward Genetic Algo-
rithm was used to perform topology optimization of steel braces in 2D steel frames.
In this paper, the optimal position of X-braces was explored, with the objective to
reduce the weight of steel used in the 2D frame-brace system. The constraints related
to the problem included: total drift of the frame, column uplift force, number of
braced panel and architectural limitations. Focusing on the latter, it involved limits
on the allowable bracing, restricted to some bays only. For example, in the case of
the three-bays structure, bracing was first allowed in the two right hand bays and then
only in the outer bays. Different examples related to 2D frames, having different
numbers of storeys and bays, have shown the efficiency of the proposed algorithm.
In fact, over 5% reduction in weight and 8% reduction in drift was achieved by GA
topology optimization when compared with conventional frames, in which brace
location was admissible horizontally along the same bay or in vertically along the
same storey.
Always in the topology optimization environment, since in recent years, seismic
rehabilitation for existing buildings has been an increasingly important issue, studies
on brace systems have been emphasized due to their applicability and effectiveness
as reinforcing structure techniques.
An interesting research, targeting seismic assessment of steel frames using braces,
was provided by Qiao et al. (2016). This study has been focused on the seismic
analysis of steel frame structures with brace configuration, using topology optimiza-
tion based on truss-like material model. Zhou and Li (2006) have introduced such a
method for continuum topology optimizations, which has been further investigated
by Zhou and Chen (2014), by considering natural frequency constraints. In the
present paper, the truss-like model has been applied by considering stress constraints
and both earthquake and wind loads. Initial truss-like members were used to fill the
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design domain for topology optimization, based on the original steel frame structure.
The final layout of the least-weight structure was obtained by applying a fully-stress
criterion and by considering as design variables, in the finite element analysis, both
the density and orientation of the truss-like members. The optimized structure ob-
tained by Zhou and Chang in 2014, referred to as a 10-storey 2D frame, has been
repeated in order to see how the brace configuration could be improved in order not
to have braces in the middle of columns but instead in the middle of beams. Thus,
the new arrangement was created with diagonal braces or inverted "V" braces. The
engineering requirements of the building function have been considered, further en-
hancing the optimal brace configuration. To reinforce the advantage of the proposed
optimized structure, a comparison with two common optimized brace configurations
under different earthquakes intensity was done. Common brace configurations were
characterized by a “V” brace and a single bar brace that were placed vertically along
the same bays.Results have shown that the first period of the optimized structure
was reduced by 51.4% with respect the original frame without brace, while around
45% was the reduction of common brace configuration with respect the original
one. Regarding the drift, an average reduction of 56.69 among the 10 storeys was
obtained, in comparison of 50% average reduction of common braces.
An alternative lateral resisting solution to the common brace system is the Steel
plate shear walls (SPSW) described in Bagherinejad and Haghollahi (2018). In
recent decades, the efficacy of steel plate shear walls (SPSW) as lateral resistance
solutions have been proved, even in comparison with brace systems or RC shear
walls. In fact, they are characterized by large energy dissipation capability, and
a stable hysteric behaviour along with considerably light and thin configurations,
which ensure rapidity in the erection and suitability for seismic retrofitting. In this
paper, topology optimization has been exploited to find a new configuration for the
perforated steel plate shear wall (PSPSW) based on the maximization of reaction
forces as the objective function. Finally, another application of topology optimization
can be related to the optimal location of the connections inside the structure. This
topic was treated by Baghdadi et al. (2021). The connection placement strategy, also
known as the connections-placements approach(CAP), was the topic addressed by
the article, which focuses on improving the position of connections in prefabricated
buildings. Elements forces and connections properties were evaluated in order to
define the optimum type and location of the connections.
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Size and Topology In this section, all the studies that combined size and topology
techniques for structural optimizations have been collected.
A first example was reported by Saka, in (1991b). The author presented an algorithm
for the optimum design of steel frames, studied with both fixed or pinned supports,
as well as with and without bracing systems. At first, a simple size optimization
has been accounted for in the investigation of flexible support behaviours. Then,
considering a specific condition, bracing configurations have been analysed in order
to find the optimal arrangement. The objective function to be minimized was the
weight of the structure, while at first the cross-sectional areas of members have been
treated as design variables. In the process, the optimum value of the design parameter
was chosen as the one related to the most severe between displacements constraints,
combined stress constraints and minimum size constraints. The examples reported
for simple portal frames, subjected to a distributed vertical load and a horizontal
force, have shown that, with specific regard to pin supports in the static scheme, dis-
placement limitations were dominant, while fixed-supported frames were governed
by the combined stress constraints. Moreover, in the second case, the final design
was lighter. Then, when the effect of bracing has been investigated in pin-ended
portal frames, the resulting weight was further reduced. Also, pitched roof frame
examples have been reported, where the structure subjected to distributed vertical
loads has been studied with different support conditions, fixed and pinned ones, with
and without bracing and, lastly, with the application of a horizontal force too. In the
simple vertical load configuration, fixed supports showed lighter weights, but the
best design was found with pinned supports and a bracing bar between the eaves.
The same conclusions cannot be made with the second load configuration, where
the best design was obtained with fixed supports and without bracing. In any case,
the dominant constraint was the one regarding the combined stresses. Finally, also
multi-storey and multi-bays frames have been analysed, which led to the conclusion
that rigidly jointed frames yielded lighter designs if they were only subjected to
vertical loads. However, in the presence of lateral loads too, frames with simple
beam-column connections and bracing produced better designs.
Optimization under seismic loadings, addressing the topic of uniform distribution
of certain structural properties, an application of such study has been conducted for
simultaneous size and topology procedures by Hajirasouliha et al. (2011). They
proposed an efficient method to design nonlinear truss-like structures, subjected
to seismic load, in which the objective was to obtain a minimum weight truss by
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shifting material from strong parts to weak parts until a uniform distribution of
deformation demands was reached. In fact, during strong earthquakes, some struc-
tural elements’ deformation requirements do not fully utilize the allowable level of
seismic capacity; therefore, if the strength of these underused elements was reduced,
a status of uniform deformation could be reached, maximizing the dissipation of
seismic energy and fully utilizing the material capacity. Assuming that the cost of a
member is proportional to its material weight, the least-cost design was interpreted
as the least-weight design of the structure. Moreover, indirect considerations about
the joints cost have been accounted by the fact that as the algorithm decreased the
number of elements, the number of joints was minimized too, thus their overall
expense. The minimum cost was achieved by considering as design variables the
cross-section areas, specifically their material density and length, while constraints
on element buckling and target ductility of each structural member had to be satisfied.
The algorithm started from a ground structure with all possible connection members
between nodes. Then nodes that were carrying external loads or that was needed
to support the truss structure have been maintained in the design, while the ones
used just for load sharing have been excluded. In the next step, based on the design
load applied, the maximum ductility of each structural member has been computed
and iterations proceeded until the maximum ductility demand of all truss elements
reached the target ductility. Basically, if the calculated ductility demands were close
enough to the target value, the optimization stopped, otherwise inefficient material
was reduced. The assumption that the uniform deformation demand led to the full
exploitation of material capacity has been previously demonstrated by other studies,
such as Hajirasouliha I, Moghaddam H. Hajirasouliha and Moghaddam (2009) and
Moghaddam H, Hajirasouliha I. Moghaddam and Hajirasouliha (2006). Based on
the results of the presented study, the concept of uniform deformation can be used
efficiently for topology optimization of nonlinear truss structures subjected to grav-
ity loads and seismic excitations. It has been demonstrated that there is a unique
optimum distribution of structural properties, which is independent of the initial
cross-sectional area of the ground structure. Moreover, this method was dependent
on the variation of target ductility demand, meaning that a fixed arrangement of truss
members cannot be appropriate for different performance levels.
Additionally, it has shown that using conventional optimization methods based on
elastic behaviour and equivalent static loads could lead to heavier design, up to
an increase of 60% compared to the non-linear dynamic model. It was concluded
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that the non-linear dynamic behaviour of truss structures should be considered in
the optimum topology design of trusses subjected to seismic excitations. One year
later, an application of size and topology optimization has been conducted to model
braced frames in the lateral design of high-rise buildings, developed by Lauren L.
Stromberg, Alessandro Beghini, William F. Baker, Glaucio H. Paulino in Stromberg
et al. (2012b). Braced frames have been used in several noteworthy buildings like
the John Hancock Center (Chicago, IL), Broadgate Tower (London, UK) and Bank
of China Tower (Hong Kong), a picture of the building is reported in Figure.
The design of such systems is traditionally based on diagonal braces arranged at 45°
to 60° angle. In this research, size and topology optimization have been combined
to derive the optimal bracing layout of 2D high-rise frames. The energy method
in conjunction with the principle of virtual work has been employed in size opti-
mization. During the process, the cross-sectional area of the elements has been
changed until the optimal configuration of beams and columns was found, while only
gravitational loads were applied. Constraints on maximum allowable material that
can be used and maximum stress in structural elements had to be properly checked
among the iterations. The structural system was modelled using beam elements
and quadrilateral elements(Q4); Q4 represent the region enclosed by two columns
and two beams. Beam elements, used for beam and columns, consist of six degrees
of freedom (two translation and rotational at each node). While four-node bilinear
quadrilateral elements have eight degrees of freedom (two translations per node). To
effectively connect the finite elements, the interaction between the rotational and
translational degrees of freedom must be considered. Two types of design were
explained, where in the first one, the beam consisted of simply connecting the beam
ends to the extreme corners of the quadrilateral mesh. Thus, the end rotation of the
beam had no influence on the quadrilateral finite elements because the rotational
degree of freedom was decoupled and all the interior nodes along the length of
the beam were free to move independently of the quadrilateral node translations.
In the second design case, beams were discretized into beam elements with nodes
coincident with the nodes of the quadrilateral mesh. Consequently, the translational
degrees of freedom of both beam and quadrilateral elements were shared throughout
the beam’s length. Thus, the quadrilateral elements have been constrained to move
jointly with the beam elements when the frame deformed.
An interesting observation that can be derived from the design example is that mini-
mum compliance led to constant stresses, which was the condition of optimality.
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Retrofitting and rehabilitation of the existing building are employed following a
topology optimization approach in order to find optimal brace locations. Moreover
in some studies also the cross-section of the braces is considered as a design variable,
alongside brace positions, in order to reduce the amount of volume.
In the paper Tangaramvong and Tin-Loi (2015) Tangaramvong and F. Tin-Loi in 2015,
presented a mathematical programming–based approach for optimal retrofitting of
steel structures with braces, subjected to some system performance criteria. The aim
was to ensure the safety of the post-retrofitted structures under applied forces and
limited displacement conditions. In the present study, three distinct optimization
cases have been addressed, in which the inclusion of non-linear elastoplastic con-
stitutive behaviour of materials, considered a traditional complementary constraint,
made the optimization problem nonconvex and non-smooth. For all three cases,
the objective function was the minimum volume design of braces, while for the
last analysis, also the minimization of the number of braces has been accounted.
Displacement constraints were applied in all the analyses, whose value has been
restricted within a limiting range. The authors started the optimization problem by
considering a simple ground structure concept, in which all possible braces were
first generated between direct neighbouring predefined nodes within a rehabilitation
domain. Once the simple ground structure was known, brace members during the
optimization procedure were then retained (non-zero brace areas) or eliminated (zero
braces area). For all design cases, the structural performance of the repaired struc-
tures has been ensured and validated through comparisons with the corresponding
exact elastoplastic responses. Specifically, the outcomes of the study have shown
that the first practical example provided the least volume, which however resulted to
be unpractical because a large number of sections were excessively small. Improve-
ments in the design were obtained for the intermediate analysis, at the cost of larger
computational time. Finally, the authors have considered the case with a limitation
on the number of braces with the most realistic cost-effective design strategy because
it has incorporated not only the material-related costs but also brace fabrication and
erection expenses.
Finally, another contribution to retrofitting of existing frame structure was carried out
by Apostolakis et al. (2020). The goal of this paper is to present an evolutionary com-
putational framework that integrates hierarchical multiscale mega-bracing architec-
ture for the seismic design of both regular and irregular three-dimensional multistory
structures. Particularly, two steel three-dimensional buildings with moment-resisting
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frames an 8-story irregular and a 14-story regular one are taken into consideration
and retrofitted with friction dampers. Friction dampers are added to the structure
to improve its seismic performance; in reality, by adding more damping, it absorbs
some of the seismic energy that is induced in the building. The evaluation criteria
used in this paper are based on story drifts and absolute accelerations on each floor. It
is possible to build an objective function using relative or predetermined performance
target levels. In the former, the objective function can be expressed in terms of the
ratio of the story drift and absolute acceleration between the un-retrofitted struc-
ture and the structure retrofitted with damping devices. In the latter, the objective
function can be expressed in terms of the ratio of the previous criteria between the
retrofitted structures and prescribed performance target levels. By selecting the latter
approach, the objective function of the structure is expressed as the ratio between the
maximum and allowable floor displacement plus the same ratio but in terms of floor
accelerations. Moreover, in the expression of the OF also a penalty is added, which
takes into account the number of X-braces used. The value of the OF is then found
for different earthquakes and the overall objective function value assigned to the
structure is the minimum obtained. Design variables of the evolutionary framework
are the parameters that characterize the friction dampers: multiscale configuration,
or rather “V, inverted “V”, “X” and diagonal braces, section area and slip force. For
the design applications presented in this paper, the 25 ground motions with a 5%
probability of exceedance in 50 years were used as the seismic environment. Three
design scenarios were considered for practical applications, the difference was the
brace configuration that was allowed to be used, varying from all possible choices to
a limitation on X-brace configuration.
The ideal design for the 8-story irregular building has the maximum inter-story lateral
stiffness and slip force values at the bottom levels and gradually decreasing values
as you climb the stories. For the 14-story structure, the best designs for all scenarios,
however, preferred a layered architecture with vacant stories first, followed by stories
with fitted dampening devices.
Phan et al. (2012) explored the performance of combined size and topology opti-
mization for a slightly different type of application. The case study presented is
related to low-rise commercial, light industrial, and agricultural buildings made of
cold-formed steel portal frames. This type of construction has been proven to be a
competitive alternative to traditional hot-rolled steel portal frames for structures with
moderate spans, up to 20 m. Cold-formed sections are lighter than hot-rolled ones,
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making it possible for semi-skilled workers to bolt and erect the structural members
on site without the use of a crane. As a result, the erection costs were significantly
lowered if compared to those of hot-rolled steel portal frames, highlighting the im-
portance of this research. Therefore, the authors proposed a combination of size and
topology optimizations applied to cold-formed steel portal frame buildings through
the use of areal-coded Genetic Algorithm (RC-GA). In place of earlier GAs, which
were known for their slow convergence and lengthy computation times, RC-GA has
been employed. A niching technique, that effectively increases the dissimilarity
of the solutions in each generation, has been described in an effort to enhance the
performance of the traditional GA. The objective of the overall design optimization,
including the building topology and section sizes of members, was to determine
the portal frame building having the minimum cost, whilst satisfying the design
requirements. The design variables were related to some geometric characteristics
of the frame, like the span length, height of eaves and the inclination of the pitch,
as well as the member’s cross-sections, which were chosen from a list containing
40 channel sections. It’s important to highlight that the decision variables were
both discrete and continuous. A case of a frame with a span of 20 meters and a
column height of 4 meters has been analyzed in order to demonstrate the efficiency
of the proposed method. The algorithm’s computational effectiveness and robustness
have also been proven and the computational time has been cut in half compared to
standard GA.
Another study related to the validation of the application of a metaheuristic algorithm
for size and topology optimization has been carried out by A.Kaveh, Mahdavi V.R. in
Kaveh and Mahdavi (2015). In this paper, steel truss structures have been optimized
using a meta-heuristic algorithm called Colliding Bodies Optimization (CBO). In
the layout (simultaneous size and topology) optimization problem, two objectives
have been taken into account: the best topology or shape for a ground structure
and the best cross-sections of that topology. Therefore, the problem began with the
ground structure, which was made up of all potential nodes and members. Then, the
cross-sectional areas and node layout have been determined to gain the minimum
cost. In particular, the cost of the entire structure has been calculated as the sum of
the members expense, related to their masses, and of the nodes, evaluated by means
of a constant mass value if the node was present. Design variables taken into account
to obtain the outcomes included the cross-sectional areas (regarded as a continuous
variable) and both the node and member positions. The constraints applied were
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related to the upper and lower bound of stresses, buckling, displacements and natural
frequencies requirements of the structure. The finite element model had to be revised
and adjusted when members and nodes were eliminated, which was an important
part of topology optimization that needs to be highlighted. This change resulted in
a significant amount of useless computing work. Wang and Sun (Wang and Sun
1995) developed a technique in which the members suggested to be removed by
the optimization, thus elements with zero cross-sectional value had to be associated
instead with a very small value. The employment of such a technique was able
to overcome the problem of having elements with the null area, which require the
re-computation of the stiffness matrix. In this way, the computing effort has been
reduced while maintaining the finite element model’s integrity. Moreover, when
a tiny cross-sectional area was chosen, the corresponding stress and local stability
constraints were ignored. To compare the effectiveness of the CBO algorithm with
other techniques, four numerical examples of various truss designs with increasing
numbers of nodes and elements have been taken into consideration. In all the exam-
ples tested the cost of the optimized structure was minimum when using the proposed
methodology. Moreover, while the majority of meta-heuristic algorithms had some
parameters that needed to be carefully adjusted for various types of problems, CBO,
being independent of settings, was easy to be implemented.
In another research, conducted by Kaveh, Ali Neda and Farhoudi Kaveh and Farhoudi
(2015), topology and size optimizations have been exploited to find an economical
solution for concentrically structural steel frames. Differential Evolution Algorithm
(DE) and Dolphin Echolocation Optimization (DEO) have been applied for structural
optimization, to find the best results in terms of minimum weight. Both placements
of the bracings and size members have been considered as design variables, while
the considered constrain were related to drift, deflection, compaction and strength
of the structure.In particular, the structure taken into account was a steel braced
frame with a dual building system, in which an essentially complete frame pro-
vided support for gravity loads, while resistance to lateral loads was provided by a
specially detailedmoment-resisting frameand shear walls or braced frames. Three
examples of 3 types of frames with different storey heights,have been illustrated to
demonstrate that both DE and DEO have good performance in discrete structural
topology optimization. Also, DEO leads to better results with less standard deviation
in comparison to Genetic Algorithm (GA) and other metaheuristic algorithms.
The same authors in Kaveh and Farhoudi (2016), introduced another metaheuristic
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algorithm, called Dolphin Monitoring (DM) for layout optimization of structures.
Actually, the dolphin monitoring ability to control the convergence of the Dolphin
Echolocation Optimization (DEO) algorithm has been demonstrated and it has also
been applied to other metaheuristic algorithms, such as GA, PSO, BB-BC, CBO
and their modified variants. More in detail, DM do not change the nature of the
algorithms, but it is used only to set the convergence in a predefined number of
loops. Specifically in this paper, the OF was the minimum weight of dual systems,
characterized by the best placement of bracings and the best cross sections of the
elements of both the moment frames and the X-bracings. The placement of bracings
and the size of members have been considered simultaneously as optimization vari-
ables. The members had to satisfy constraints on the design storey drift, deflection,
compaction (limiting width over thickness for compression members), strength,
stability coefficients and slenderness ratio limits. The structures taken into account
were subjected to both dead loads, as well as live loads and earthquake excitations.
To evaluate the effectiveness of the suggested strategy, three numerical examples
with 3-, 5-, and 10-story braced frames have been provided. The findings of applying
DM to numerical examples of GA, ACO, PSO, BB-BC, and CBO demonstrated that
DM enhances the minimum, maximum, mean, and standard deviation of the results
of all these algorithms. Comparing the results of all the aforementioned algorithms
to their modified versions, DM also produced better results in terms of minimum
weight.
In the same year also Gholizadeh, S., Poorhoseini, H., performed a layout opti-
mization, illustrated in Gholizadeh and Poorhoseini (2016b). Their interest was
focused on the process of developing new structures or upgrading existing ones to
fulfil specified performance objectives for likely future earthquakes, by applying the
seismic performance-based design. Thus, the present paper exploited such a method
on steel-braced frames subjected to earthquake loading. In the SPBD methodology,
a nonlinear analysis tool was typically used to determine the seismic demands of
structures at predetermined performance levels. According to FEMA-273 (1997),
IO, LS, and CP performance levels have been considered in this study. The design
variable of the optimization problem included the cross sections of all the structural
members: beams, columns and X-bracing, as well as the optimal position of the latter
ones. SPBLO process has been applied to five-bay steel braced frames with different
numbers of storeys, with the aim of minimizing structural weight. To ensure that all
potential solutions were workable, various design restrictions were examined, among
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which serviceability and ultimate limit state constraints were considered. In detail,
geometric and strength assessments were included in the serviceability restrictions.
Geometric checks had to be completed in beam-column and column-column framing
joints to meet practical requirements. Moreover, a hierarchy of the constraint has
been considered, in fact, if the serviceability restrictions were not met the design was
discarded. Otherwise, a nonlinear pushover analysis was carried out to assess the
seismic response of the structure at the desired performance levels. Then, the design
criteria and capacity demand levels have been presented in terms of displacements.
The constraints of the optimization problem are handled by the exterior penalty func-
tion method (EPFM). An enhanced dolphin echolocation meta-heuristic method was
suggested to carry out the optimization task. Additionally, as previously mentioned,
nonlinear pushover analysis was carried out to analyze the structural responses at
the performance levels, which can greatly increase the computing complexity of the
layout optimization problem. The adoption of an effective optimization technique
is required in order to search the vast design space of the SPBLO problem due to
this important issue. An enhanced version of the Dolphin Echolocation (DE) Meta-
heuristic was suggested in the current study to address this problem. By merging
Chaos Theory (CT) and conventional DE, a novel meta-heuristic algorithm dubbed
Improved Dolphin echolocation (IDE) is developed. Three examples including 6,
9 and 12 story SBFs were solved in the framework of SPBLO formulation. The
numerical results of the SPBLO example revealed that in the framework of SPBSO
the optimal solutions attained by IDE were respectively 3.61, 3.20, and 3.32% lighter
than those obtained by DE.
So the results state that the computational performance of IDE was better than that
of the DE in terms of optimal structural weight and convergence rate.
Going back to concentrically structural steel frames, an important aspect is related to
the fact that braced steel structure’s integrity may be compromised by the occurrence
of some extremely serious events. This risk had driven researchers to create novel
techniques for evaluating structural collapse, among which Jeriniaina Tantely and He
in Tantely and He (2019) investigated such a topic. The introduction of incremental
dynamic analysis (IDA), which allows for the creation of a collapse probability
curve for the examined structure, was suggested as a technique to understand seismic
events. Although the experts agree that the IDA is effective and reliable, they also
believe that it is a long process. By using a few series of time history analyses(THA)
to approximate the fragility curve, they were able to overcome these limits. It sig-
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nificantly reduced the calculation time for the collapse assessment and provided
a reliable approximation of the fragility curve. The use of the fragility curve was
extended by proposing a collapse margin ratio (CMR), which become the primary
parameter associated with the evaluation of structural safety. The scope of this work
was to propose a design optimization of steel structures, using concentric braces,
based on collapse safety assessment. Brace locations and sections were the variables
of this investigation, while the objective was the maximization of the CMR of the
structure. The higher the CMR value, the safer the structure. Constraints were the
candidates’ non-null vectors, meaning that each level of steel frame structure must
have at least one brace. The idea of the designable matrix was presented in relation
to the best placement for bracing in the structure and derived from the reality that,
in actual projects, engineers are not always free to choose where to put the braces
because of architectural constraints or owner preferences. So undesignable bay
refers to the bay where bracing cannot be installed. An initial matrix describing the
building’s elevation was created in order to quickly count the number of designable
and undesignable bays in a given structure. Sizing brace optimization of seismic steel
frame structure aimed to reduce the total steel weight of the braces, which acted as a
rough indicator of bracing construction cost. During the procedure, the optimal shape
brace section at each story has been evaluated and then the optimal discrete brace
section related to that story was identified. The authors advised utilizing a single
section of brace for each story since employing several sections might imply the
occurrence of weak braces, which would result in unequal lateral force dissipation
at that story. Another reason was that premature damage of the structure’s frame
could be caused by the achievement of the strength limit by the weak brace before
the other ones. The algorithm used a database of steel brace sections, selected from
commercially available hot-rolled, wide-flange standard steel sections.The authors
investigated four steel frame structures, in which the main difference was both the
presence of undesignable bays on different sides of the structure and the number of
storeys. From the interpretation of the results, the proposed methodology has been
proved to be capable of a quick and practical estimation of the collapse margin of
several structures in a short time, compared to the prior methods in this field.
Also the study of Hassanzadeh and Gholizadeh, illustrated in (2019) focused on
the collapse-performance-aided optimization of steel concentrically braced frame
(SCBF) structures. The interest of the authors had its roots in the evidence that the
placement of braces directly affects the seismic performance of SCBF structures,



84 An overview of the Optimization strategies for steel structures: a critical review

therefore finding an appropriate configuration had become increasingly important.
In this analysis, both size and topology optimization have been performed in the
framework of the performance-based design (PBD) methodology, using the collapse-
margin-ratio (CMR) algorithm. In particular, CMR algorithm has been chosen for its
ability to make an appropriate balance between exploration and exploitation. The
proposed optimization was aimed at minimizing the structural weight, starting from
a fully braced frame and gradually removing unnecessary bracing members. During
the procedure, the design variables were representative of the discrete cross-sectional
areas of columns, beams and braces, along with the placement of the brace members
as topology variables. Moreover, due to practical requirements, symmetry in the
structure was used to group the design variables. The applied constraints regarded
practical geometric specifications about column-to-column and beam-to-column
framing joints, strength requirements in terms of the elements demand-capacity
ratios (DCR), according to LRFD-AISC code (Load and resistance factor design
- American Institute of steel design), and PBD constraints as well. Actually, PBD
constraints were not tested until the geometry and strength requirements were met
in order to decrease the computational time. However, if PBD constraints were
verified, a pushover analysis was performed at each performance level to assess
the structural responses, i.e. the maximum inter-story drift and the maximum de-
formation of columns and braces, which had to be less than their permitted values.
After the application of the PBD method, in order to evaluate the collapse potential
of the structure, an incremental dynamic analysis (IDA) was carried out accord-
ing to FEMA-P695 (Federal Emergency Management Agency – Quantification of
building seismic performance factors). Consequently, the SCBFs were compared
in terms of structural weight and seismic collapse capacity until the best optimal
design was found. Three different frames have been analysed with the proposed
methodology, which provided optimized structural solutions with simultaneously
improved structural weight and collapse performance. The designs with the best
bracing topologies were, respectively, 11.59%, 18.68%, and 16.0% lighter than the
best SCBFs with fully braced frames in all examples of 5-, 10-, and 15-story SCBFs.
Moreover, the best-optimized frame was the one with the largest safety factor, that
does not necessarily imply heavier weight. Sotiropolous and Lagaros (2022) tried
to identify the structural system’s ideal layout and, more specifically, to determine
the best lateral brace system configuration in tall buildings subjected to dynamic
seismic loadings. Both topology and size optimization have been exploited to reach
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a minimum value of the objective function (OF), that was tackled as the compliance
of the structure. The minimization of the compliance of the structure means the
maximization of the building stiffness and it was carried out by varying both the
cross-section areas of the structural elements and the building topology. Standardized
cross-sectional frame elements have been considered and specifically, the European
HEA, IPE and CHS sections were used with the aid of regression analysis, while a
number of possible brace configurations defined the design domain. Cross-sections
were taken from a list, in which minimum and maximum values have been defined to
avoid the singularity of the stiffness matrix. During the iterations, the final material
volume used was restrained to a limiting value, while stress and strain constraints
have been applied to the different frame elements. Two cases of dynamic loading
have been examined: harmonic loading and earthquake ground motion excitation.
The examples were focused on the optimization of tall structures, like High-rise
buildings and Mega-braced frames.
Moreover, they can be divided into three groups, in which the first one addressed
the maximization of a specific eigenfrequency while the structure was subjected to
free vibration; in the second one, time history analysis has been employed and both
concentrated harmonic load and ground motion seismic excitation were considered,
leading to different formulations of the minimized OF, i.e. dynamic compliance for
half-cycle sinusoidal concentrated load and roof deflection (using the sum root of
sum squares), respectively; finally, in the third group the response spectrum of EC8
has been implemented for simulating the seismic load. Due to the different natures of
the three cases tested, a great variety of observations can be made. More specifically,
results from the first case showed how by giving more freedom to the initial ground
structure, the optimization leads to larger and thus better OF. Then, in the first case of
the second group of analyses, it has been observed that when the driving frequency
was close to an eigenfrequency, more braces were developed to prevent resonance,
while for high driving frequency, the structure had braces only in its upper half.
Regarding the minimization of SRSS in which a real earthquake is applied, it has
been noticed that the optimized structural system was derived from denser ground
structures, more types of braces were produced and so the moment-resisting steel
frame had smaller tip deflections. In conclusion, relative to the final depicted case,
it has been noted that an important role has been played by the number of modes
considered. In fact, by the comparison of two different moment-resisting frames,
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the optimized structure had the best structural response if the first three eigenmodes
were used for the evaluation of the sum of the compliance.

Size, Shape and Topology Optimization In the context of simultaneous size,
shape and topology optimization was provided by Lagaros et Al (2008). In this
paper, the authors have applied a combined size, shape and topology optimization in
order to reach an optimum design of perforated I-section beams. Web openings in
beams are suggested and the major advantages are: reducing the material volume
without changing the strength properties of the structures, alleviating stresses in
beam columns joints and finally also architectural limitations sometimes impose
the necessity of web opening in the building. The considered design variables for
size, shape and topology were respectively cross sections, coordinates of the open
boundary and number of web openings. The Objective function of the problem was
the weight minimization, however, the optimal design was obtained considering
some design criteria like shear, bending and Vierendeel bending resistance as well
as provision for local buckling and web buckling. The design constraints were
mainly focused on the size of the openings. In fact, it need to be highlighted that
any increase in size of the web openings will result in a lower global shear and the
global moment resistances of the perforated sections. Due to that some geometric
restrictions were implemented to control the size of the openings., in fact all web
openings should be located along the centre line of the web, and the maximum
diameter of the openings cannot exceed 0.75 times the total height of the beam and
the distance between the edges of adjacent openings should not be less than the total
height of the beam. Evolutionary Algorithms (EA) has been employed in order to run
the optimization problem, practical example is related to a frame with different web
opening diameters. Results have shown the efficiency of the considered structural
system, in fact up to 20% in weight savings was achieved compared to the case with
no openings. Another stimulating research has been proposed by Hasançebi, O.,
Doǧan, E., (2011), where several truss bridges have been analyzed. In particular, a
comparison based on the design weight efficiency of single-span steel truss bridge
topologies, subjected to gravity load, has been employed. Through a combination
of size, shape and topology optimization, nine distinct topological forms of truss
bridges (namely, Pratt, Parker, Baltimore, Petit, K-Truss, Warren, Subdivided Warren,
Quadrangular Warren and Whipple) have been designed for minimum weight.
It should be stressed that truss bridges are widely used, especially in the last years,
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due to their advantages from both a structural and constructional point of views.
Moreover, they allow to reach very large spans, using less amount of material.
Specifically in this analysis, the bridges were first configured according to these
topological forms and the resulting structures have been then optimized considering
strength, stability and displacements provisions of ASD-AISC. In the optimum
design process, both size (discrete) and shape (continuous) design variables have
been employed. In this context, size variables have been used to choose appropriate
dimensions for the bridge members, whereas the optimal height and/or shape of the
bridge’s upper chord have been explored with shape variables. In particular, the
number of shape variables used in a model was dependent on the bridge topological
form. For example, a single shape variable was used to define the height in bridge
models with Pratt, Baltimore, Warren, Subdivided Warren, Quadrangular Warren,
Whipple and K-truss forms, since they have a straight upper chord. Moreover, four
different span lengths, namely 100, 200, 400 and 600 ft have been considered as
separate case studies and for each of these span lengths nine bridges have been
generated. In conclusion, it has been found that the topological form selected to
create the structural system of a bridge significantly affects the weight of the bridge’s
final design. For span lengths of 100, 200, 400, and 600, respectively, the design
weight disparities between the best (lightest) and worst (heaviest) models was 15%,
30%, 43%, and 55%. Consequently, the selection of economical topological form
became more pronounced when span length of the bridge increased. The bridge’s
ideal forms, created using Petit and Parker trusses, lowered the height of the structure
moving from the middle of the span to the ends, reducing the amount of material
used in the design. The findings also suggest that, in order to maximize the weight
efficiency of the final bridge, some bridge designs, such as Whipple and Pratt, should
be avoided for all span lengths. Warren and Quadrangular Warren should also be
avoided for relatively large span lengths. Baltimore, Subdivided Warren and K-truss
topology led to similar design weights.
Finally, the work done by Ohsaki, M., Iwatsuki, O., Watanabe, H. in Ohsaki et al.
(2014) gives a clear demonstration of the complexity and at the same time of the
power of such procedures. In this research, a reverse rocking response was exploited
to investigate the behaviour of a steel frame structure with a foundation modelled
as a flexible base, with the objective to reduce roof displacements. Due to the
foundation’s flexibility, the frame had areverserocking when the base beam was
rotating against the frame’s drift to minimize the displacement of the roof. The
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foundation beam, on the other hand, if above a stiff base, would be rotating slightly
in the same direction as the frame. Topology, size and shape optimization have been
carried out to find the best configuration of the base structure, modelled as a truss
structure and the OF of the entire optimization was aimed at the reduction of the
roof displacement. Running the analysis, unnecessary members have been removed,
starting from the highly connected ground structure. Nodal locations have been also
considered as variables to comply with shape optimization, while elements with
square tube sections have been used as size discrete design variables. Constraints
were mainly related to the maximum allowable displacements of the flexible base’s
elements, as well as to the upper and lower boundary of the node coordinates. A
practical example of a frame, characterized by 10 meters of span and with a base
made of rigidly-jointed frame with square tube sections, has been analyzed. The
outputs have shown that the displacement as well as the acceleration of the roof of a
frame under seismic ground motion can be effectively reduced using a flexible base
structure, which exploits rocking of the base in the opposite direction to the drift
of the upper frame. Such reverse rocking response is dominated by the 2nd mode
rather than the 1st mode. Moreover, in the examples reported, the mean maximum
roof displacement, computed using the SRSS method, was successfully minimized
compared with the stiff model.

1.10.2 Cost impact-based optimization problems

Size and Topology optimization Without any doubt, coupled size and topology
represent the most common optimization adopted by researchers due to their adapt-
ability to different engineering problems. Specifically, this approach is chosen when
the topology of the structures is changed by varying the properties connections at
the level of each node. The most relevant and used a topological improvement to
a simple size optimization was to consider the connection inside the original prob-
lem. In general, authors agreed to name with simply connections the joint between
the columns and beams and column base connections the connection between the
columns and the foundation.
Since the beginning, the authors noticed that traditional approaches to steel frame
design ignore connection behaviour (see Chan et al. 2000). Although the theoretical
pinned and totally rigid scheme was utilized to make analysis and design methods
easier, the expected frame response could lead to no real results. In real-world
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structures, most connections are designed in order to transfer moments and rotations,
which can contribute significantly to the final stress and displacement distribution
within the structure. The term semi-rigid is widely used to describe the intermedi-
ate behaviour of stiffness connections between extreme cases (i.e. double pinned,
double fixed or pinned-fixed joints). In this way, a more reliable prediction of frame
behaviour can be achieved by optimizing the mechanical properties of connections
aiming to investigate how these changes affect the overall structural behaviour.

To involve economic consideration taking into account trivial details related to
connections, Simoes et al.(1996) modelled the semi-rigid connections like springs
with a certain stiffness. The objective function was composed of the members’
weight and the cost of the connection which is the product between the fixity factor (
usually chosen into the range [0,1] and representative of the stiffness grade of the
connection) and a cost coefficient. In this way, the cost associated with a semi-rigid
connection is evaluated as an extra cost to be summed to the base cost of a generic
connection which is assumed to be equal to a pinned constraint scheme.
Further improvement in semi-rigid connection optimization was accomplished by
Hayalioglu et al. (2005). In this study, the design of the connections was modelled
with both Frye and Morris polynomial model and linear spring model for the standard
connection and column base respectively. In particular, the cost function was given
by the sum of the cost of the elements (that are simply the weight of the member
multiplied by the cost for unit weight), the cost of the beam-column connection and
the column base connection. At each iteration, either the connection cost and column
base, are upgraded proportionally to the rigidity of the joint stiffness through some
cost coefficients.
Moreover, another procedure in which the semi-rigid connection was included in
the design was developed by Truong et al. (2017). The suggested approach for
optimizing semi-rigid steel frames was built in such a way that the cost function
considers both the steel frame weight and semi-rigid joints, while structural con-
straints such as member stresses and nodal displacements and/or inter-story drifts
were adopted. When the stiffness values of the semi-rigid connections change, the
sizing of each member was performed by choosing the optimal cross-sectional areas.
If the percentage of the cost related to members (columns and beams) was simply
assumed equal to the weight for the unitary cost, the complexity of the connection
was evaluated by adopting a proportional trend between cost and the increasing level
of the joint’s rigidity.
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Meanwhile, the previous work treats only connection cost related to well-known
static constraints (pinned-pinned, fixed-pinned, etc.), Prendes et al. (2016) and
Jarmai et al. (2004) tried to investigate the effect of welded and bolded connections
into the global optimum solution. In this way, the optimization was able to include
all the technical procedures required by each phase of the welding operations. In
addition to the cost function previously described, the semi-rigid connection cost
was obtained as a percentage of the element price multiplied by a suitable value of
stiffness grade of joints, while the welding cost is simply the sum of the filler mate-
rial, gas, machines and operation cost of the work. Joint stiffness and cross-sectional
properties were chosen as design variables.
Basically, the same problem described above was solved by developing different
optimization approaches in order to guarantee the effectiveness and robustness of the
procedure and the simplicity of the implementation. (e.g. Rafiee et al. (2013), Hadidi
and Rafiee (2014), Shallan et al. (2018)). Some authors added a specific constraint
to guarantee the constructability of the connection (e.g. Hadidi and Rafiee (2015),
Truong and Kim (2018)). The constructability constraints assure the feasibility of
the connection between the beam and columns by checking the correct matching of
the members (i.e. the web of the beam connected to the flange of the column should
be shorter or equal to the flange length).
While so far only work challenged in associating connection cost with an optimized
grade of joint’s stiffness has been discussed, several authors focused on involving
specific types of connections with a well-defined degree of constraints into the cost
function.
For instance, Kaveh et al. in (2017) arranged an objective function which was a
simple cost function composed of the cost of the structural members (computed
as usual like weight by unit cost) and the cost of the connections assumed to vary
between 0 (rigid) and 1 (pinned). While the latter is associated with a cost equal to
900$/connection, the former cost was assumed to be equal to zero based on the au-
thors’ practical evaluation. As a set of variables of Design Vector, all cross-sections
(taken from the AISC steel construction guidebook) and beam-end connection types
are chosen.
The effect of different types of static schemes for each connection was investigated
by Laberdi et al. (2015). In this study, the connection can be either a pin or a moment
connection. More in detail, the pin connection does not transmit a bending moment
while the moment connection transmits a percentage of the moment. Combining
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the information derived by coupling beam sizes and connection types, four types
of beams were defined: fully moment-connected, fully pinned, left-end moment-
connected and right-end moment-connected.
Other authors used a combined approach where only some specific connections
typologies were taken into consideration by neglecting some useless values of the
entire stiffness joint spectrum. One of these was Jarmai et al. (2006) which takes into
account only four different connection types. The structure was subjected both to
vertical and horizontal (seismic) loading. For the structural analysis of the building,
the framework was decomposed into three parts and only the central part was anal-
ysed through a fish-bone model. For the columns and the beams was used a welded
square box cross-section and a rolled universal beam I cross-section respectively and
their dimensions were adopted as design variables of the optimization problem. Four
types of assembled connections are considered and the most economical one was
entered into the model. The cost function was evaluated as the single contribution of
fabrication, connection and material cost.
Further developments in this field were done by Ali et al. (2009) who evaluated all
the fabrication and erection phases by considering the most convenient connection
typologies usually adopted by practitioners. A realistic optimization of frame design
was performed by considering the effective costs of various phases of production
activities, including manufacturing and erection, hence, a multi-stage production
cost optimization was developed. The optimization problem considers the cross-
sectional sizes of structural members, the type of beam-to-column connections and
the type of column bases as design variables. The optimal size of the structural
member was selected from available steel profiles, while the most adopted technical
solutions by engineers of internal connections and column base connections were
identified. If The material price was simply derived by using the unit price for
different section types and different steel grades, the fabrication and erection cost
was obtained by multiplying the unit cost per hour of workshop labour and machine
power, respectively.

Up to now, topological optimization has been discussed with only connections in
mind. Other applications rely into change the arrangement or the connectivity matrix
of structural elements when size optimization is performed simultaneously. In this
sense, steel portal frames result to be the most common case of interest for several
optimization strategies.
In this regard, Phan et al. (2013) make a notable contribution in which several
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optimization strategies and interesting real-world applications were proposed. The
authors studied the rigid-jointed cold-formed steel portal frames largely chosen as a
design solution for light industrial and agricultural buildings. One of the advantages
is the competitive cost compared to the hot-rolled systems. The variables were taken
into account where the spacing and pitch of the frame as continuous variables and the
section size as discrete ones. The optimization of the minimum cost was performed
with a real-coded genetic algorithm that minimizes a cost function considering the
unit length cost multiplied by the member length and the frame spacing. The greater
the spacing of the frames, the lower the total cost of the structure, hence, fewer
steel portals are required. A few years later, the same author (Phan et al. (2017))
included also joint effects and secondary members. The cost function included in the
portal frames’ cost, variables representative of spacing and pitch of main beams, the
secondary members (purlins) and the brackets used in the bolted joint. The analysis
was performed by employing both rigid and semi-rigid joints .
Finally, in a third work (Phan et al. (2015)), he tried to reduce the cost of the industrial
building consider the stressed skin action of the roof profiles with a beneficial effect
on the global strength and economy of the design. The frame layout was fixed and 6
building configurations were investigated. The stressed-skin was considered in order
to evaluate the additional rigidity to the overall structure thanks to the shear stiffness
of these panels. This resulted in a global cost-saving of the structure thanks to stress
limitation at the level of connections. The objective function was a cost function
per square meter of floor area which takes into account the cost of the members
and the cost of the angle brackets divided by the span length and the frame spacing.
Moreover, grouping strategies were performed to minimize the length of the bolt
connections which range in a continuum interval of 200 up to 2000 mm.
The beneficial effect of stressed skin action was taken into account by other authors
like Wrzesien et al. (2016). In this work, the effect of stressed skin action on
cost optimization of cold-formed portal frame buildings was studied by comparing
different structures with a different number of bays. As in the previous case, the
overall building shape was fixed and the objective function was expressed as the
sum of the cost of members and angle brackets per unit floor area. The design
variables representative of the columns and rafters were selected from the standard
cross-section available in the UK, while the bolts’ dimensions and position were
assumed to range within a continuous domain. The optimization was performed by a
real-coded Genetic Algorithm for a different number of bays. The comparative study
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shows that the stressed skin action is relevant for buildings with few bays(threshold
value found to be equal to 9), meanwhile, the effect can be considered almost
negligible for more than 12 bays.

The seismic field was the research branch which receive the most benefit from
the employing of optimization procedures.

Several applications have been recognized in literature and several works focused
on optimizing specific aspects related to the seismic behaviour of structures.
For instance, bracing system design is usually an interesting case study chosen by
researchers such as Braga et al. (2019). He developed an optimality procedure which
allows the design of a bracing system by minimizing the intervention cost. The pro-
cedure leads to obtaining the minimum cost through a dimensional and topological
optimization of the bracing. IDR (inter-story drift ratio) and braces displacement,
derived by performing a linear modal analysis, were assumed as serviceability con-
straints of the problem. The independent variables of the problem are the ones
required for a bracing design like the area of each steel truss, the yielding force and
the yielding displacement. The objective function was the sum of material and works
price for the realization of the intervention and was composed of the cost of steel
elements, dissipative devices, masonry works (removal and reconstruction or drilling
and traces of the infills) and foundation system improvement). The optimization
aims to minimize the dimension of the global stiffness matrix of the consolidated
system through an iterative algorithm. In this way, the optimal dimensions of the
stiffness matrix correspond to the optimal retrofitted configuration with the optimal
number of bracings.
Seismic device performance were investigated in Shin and Singh (2017) in which the
yielding metallic devices are optimized. Yielding metallic devices are very useful to
reduce inter-story drifts and contribute to ductile behaviour during seismic events.
This article treats the cost optimization of a specific type of dissipator which is
realized by assembling a determinate number of triangular plates whose thickness
was assumed as design variables. The least cost is reached by performing a Genetic
algorithm that minimizes the sum of the total failure cost and the cost of the devices
including their replacement cost. The failure cost is linked to the story drift and
floor acceleration responses computed by assigning to the devices a proper stiffness.
The randomness of the seismic events with various probabilities of occurrence is
included in the optimization by a seismic hazard curve.
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Size, shape and Topology optimization The most effective and powerful approach
to achieving the minimum cost of a structure is a combination of all three levels
described above (size, shape, and topology). In this section, these three approaches
are integrated simultaneously in the same procedure. The advantage of this type of
technique is to achieve a design that is simultaneously well-compliant with all three
design aspects.
Historically, the first studies that used combined optimization were performed by
Lee et al. (1975b) and Thomas et al. (1977).
In the first paper, the minimum cost design of a steel portal framed building was
achieved through the determination of the optimum shape and topology of the
structure that is a function of material and fabrication cost only. The material costs
were taken from the “British steel corporation home trade price list” which gives the
unit weight cost and surface preparation cost meanwhile the fabrication costs were
computed for the main construction procedures (welding, cutting and drilling) with
the Standard Minute Value technique (SMV). To accomplish this goal, the design
variables were formulated into primary variables, normally chosen at the beginning
of the design process (building length, building width, number of bays, eaves height,
roof pitch and frame spacing), and secondary variables like the length and size of the
various elements (stanchion, rafter, wind braces, etc. . . ).
On the other hand, Thomas Jr and Brown (1977) proposed an algorithm that allows
a nonlinear optimization technique for the least cost-elastic design of roof systems
composed of rigid steel trusses, web joists and steel roof decks. This procedure is
used for various grades of steel and standard sections. In particular, it considers
changes in the mechanical properties of the members, geometric variation and
topology. The independent design variables are the cross-sectional area of each
member, the plane coordinate of each joint and the number of trusses in the system.
All variables are considered to be continuous due to the nature of the adopted
optimization strategy. The criteria to evaluate the cost function is based on the overall
material and fabrication cost computed by simply multiplying the area/weight of the
element by the unit area/weight material and fabrication cost of the specific element.
In this study, an important limitation was highlighted by the same authors related
to the total absence of constructability constraints which would allow discarding
unfeasible solutions. Lower and upper bound and/or adopted structural constraints
can not guarantee that no realistic element sizing (negligible cross-section areas)
and/or unfeasible connections between elements of the structure appear in the optimal
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solution.
More recently, Kaveh et al. (2010) determined the cost optimization of a composite
floor system, made-up of steel beams and a reinforced concrete slab. The cost
function was determined by the minimum cost of the concrete, steel beams and shear
studs (the connectors between the steel girder and the concrete slab). The design
variables, that were assumed discrete, were the steel beam spacing, the beam size
and the concrete slab thickness.

Since considering all the necessary design variables for each optimization level
in a single objective function result in a heavy computational effort and in a lack of
control of each parameter related to the single optimization strategies, many authors
made use of parametric optimizations to tackle topology and/or shape optimal de-
sign.
In this regard, Kripka et al. (2018) developed a size and shape optimization by
ranging between 7 common different topologies of steel trusses with parallel chords.
The 7 truss typologies were analysed through a simple cost function composed of
the total weight of the structure multiplied by the unit cost of the steel. Because
the same profile was used for a group of pieces, the number of design variables
drastically decreased in comparison to the total number of elements. Results show
high variability in the final weight of the structure as the number of groups of ele-
ments increased. By including truss height in the set of design variables, significant
additional cost savings were obtained. The authors found a significant difference
between the height/span ratio recommendation provided by the technical guide and
the one obtained with the proposed method.
Along this trail, Alhendi et al. (2021) implemented another parametric optimization
regarding parallel chord trusses. The aim of this study was to investigate the per-
formance and the cost-effectiveness of three parallel chord composite floor trusses
(Prat, Howe and Warren) with 4 different composite floor panels and load intensities.
The analysis was made by making 165 models with different spans between the
trusses and different truss depths and panel typologies. In addition to that, a cost
estimation function was implemented as the sum of the material cost, fabrication cost
and painting cost dependent on the span range and span and depth ratio of the com-
posite floor truss system. By observing the results pointed out by the optimization,
the authors provided useful technical specifications for the composite tabular-floor
trusses design.
The combined size, shape and topology approach lead to the resolution of very
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sophisticated problems. In this sense, Cicconi et al. (Cicconi et al. (2020)) elaborated
a special parametric procedure to accomplish a specific task. This paper proposes
a sequential multi-objective procedure for the structural optimization of modular
industrial towers such as the steel structure of the chimney used in oil and gas power
plants. The optimization method is articulated in three stages of optimization: pre-
liminary design, embodiment design and detail design. Objective functions focus
on weight and cost reduction. The first optimization level uses a 1-D model (pole
model), whereas the second uses a 3-D shell model. Finally, the third stage entails
thorough design, which includes simulations and analysis based on 3-D solid models.
Thanks to this approach, all the manufacturing, logistical and assembly cost aspects
were investigated in different stages of optimization aiming to reduce the complexity
of the entire problem into easier step-by-step sub-procedures.

1.10.3 Enviromental impact-based optimization problems

The study revealed that the topology optimization’s literature is still in urgent need
of refinement. Pure topology optimization examples are completely absent from the
current study, but few examples from hybrid optimization categories are provided.

Size and Topology The emphasis recently placed on reducing operating energy
consumption has made it more crucial than ever to take into account building’s
embodied carbon. The research of Ching and Carstensen (2022) offers a two-
material truss topology optimization technique to lower the designed structure’s
Global Warming Potential (GWP). Optimization occurs gradually and step by step.
The first one is a hybrid typology and size optimization, applying only structural
restrictions to timber and steel individually. The result is the ideal outcome of a stiffer
framework made of steel only. The second stage restricts the admissible stresses
of wood only and the structure by the environmental parameter GWP, resulting
in an ideal construction made entirely of wood. The optimization again leads to a
building made entirely of steel in the following phase, which keeps the environmental
constraints in force but this time takes into account realistic values for stresses. The
GWP ultimately limits the issue, and the stresses are changed to make steel and
wood operate in tension and compression, respectively. The latter scenario results in
a mixed optimum structure that enables lower GWP levels. The stress conditions in
the materials must therefore be suitably adjusted in order to see a minimum increase
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in terms of environmental effect. The author recommends conducting the same
analyses while taking into consideration a full LCA that also takes into account the
transportation phases in order to balance the significant difference between structural
(stiffness) and environmental (GWP) constraints.

Size, Shape and Topology In the study of Mensinger and Huang (2017) the
preliminary structural design of a set of rectangular steel composite office buildings
was done using a multi-objective optimization of costs and environmental impact.
The cost is obtained by multiplying the weight of materials by their unit prices;
while the second one is called Environmental Product Declaration (EPD) and it
is computed as a weighted summation of the Global Warming Potential (GWP),
the Ozone Depletion Potential (ODP), the Photochemical Ozone Creation Potential
(POCP), the Acidification Potential (AP), the Eutrophication Potential (EP) and
the Primary Energy, both non-renewable (PEne) and renewable (PEe). The data
relating to these environmental criteria were taken from the Ökobaudat platform,
which is a German standardized database for ecological evaluations of buildings.
The outcomes of the optimization against the EPD value and the costs are the same
or quite comparable.

1.11 tables of synthesis
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1.12 Conclusion and summary vision

The review paper suggests the main trends in the structural optimization field. 446
papers were classified into categories and sub-categories by identifying the contribu-
tions with the same application fields and similar optimization strategies. Mainly,
papers were distinguished in size, shape, topology and all the possible hybridizations
among these three levels of optimization. Moreover, some sections were charac-
terized by a further classification based on the type of application case study (i.e.
buildings, bridges, etc.). Following, the results of the review will be summarized
in order to emphasise eventual trends or significant outcomes pointed out by the
candidate:

• As expected, most of the collected papers focused on size optimization in-
dependent of the type of adopted OFs (i.e. structural performance, cost and
environmental impact). Size optimization, in fact, represents the first and less
complex level of optimization which is already useful for preliminary design
and first assessments of the structural cost savings.

• With specific regard to pure size optimization, classification based on thematic
subjects or application cases was adopted. Specifically, structural optimization
was employed in order to investigate the non-linear behaviour of multi-storeys
multi-bays steel frames, under seismic action, the role of connection flexibility
and the soil-structure interaction. The review revealed that the optimization
process was largely used for the seismic analysis and dynamic identification
of various steel structures (i.e. trusses, frames and bridges).

• The candidate observed little interest by researchers in pure shape optimization
problems. The candidate believes this outcome derives from the common
problems experienced in civil engineering. Normally, the geometrical layout
of buildings or specific members of the structure is previously defined at the
first stage of the design, hence, optimization can play a crucial role in optimal
sizing only. However, a significant percentage of collected papers (5.6%)
adopt algorithms when the size and geometric parameters are considered
simultaneously.

• Topology optimization is the second most common approach chosen by authors.
Mainly, they investigate the optimal position of bracing into the plane and
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spacial frames. For this specific optimization, gradient-based algorithms were
preferred over metaheuristic ones since the latter proved less efficient.

• Among the multi-level optimization approaches, simultaneous size and topol-
ogy of steel structures is the most frequent one. The majority of the applications
in this branch are entirely focused on detecting the minimum weight of the
structure by varying the position of bracings and the cross-section properties.

• Since the computational effort required to perform size, shape and topology
optimization, few papers were identified during the review process. Mainly,
this level of complexity was experienced by adopting metaheuristic algorithms
in order to face large-scale problems.

Once preliminary results of the review process are pointed out, a summary vision
related to a lack of knowledge in specific branches of this subject or future trends
can be found.

• A significant contribution still needs to be made in the area of multi-criteria
or multi-objective problems. Due to the complexity of real civil engineering
challenges, target functions with opposite trends must be simultaneously
optimized. Moreover, a multi-level approach is fundamental for reducing
the computational effort. For instance, structural performance and cost-based
optimization could be treated by adopting a preliminary approach for the sizing
of the structure and, then, by performing a detailed analysis taking into account
design details such as performance and cost of the connections.

• No papers in which experimental campaigns were conducted in order to
validate the results of the optimization have been recognized. This approach
can be useful in order to check the goodness of the optimization process and
realize more efficient prototypes like new connections’ topology, retrofitting
systems, etc.

• Especially for the branch related to the assessment of the optimal design of
steel structures with variable connections’ properties, the real challenge is to
involve specific indexes entirely devoted to the assessment of the structural,
economic and environmental cost since the production stage.

• Minimum weight is commonly confused with minimum cost. As demonstrated
by the topics faced in the following Chapters, these two terms can even exhibit
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opposite trends if practical issues related to constructability or design criteria
at the initial stage of the construction are considered. In the future, more effort
must be provided in order to make the field of structural optimization closer to
real-engineering problems.

• It is worth noting that, among all the analyzed papers, a huge range of different
structure typologies have been adopted by the authors as application case
studies (i.e. buildings and tall buildings, bridges, turbines, etc.). However, few
works have been recognized which investigate the optimal design of external
retrofitting strategies like endo- or exoskeleton. In some countries, this specific
consolidation system is attracting particular interest for its structural efficiency
and versatility to improve the aesthetic aspect of old buildings. Interesting
developments could result from the investigation of new efficient shapes of 2D
(shear walls) and 3D (shell or plate) exoskeletons by varying their geometrical
or topological features and type of connection with the existing structure.

In conclusion, in the last decade, a significant effort was devoted to considering
constructability issues in the structural optimization field. Specifically, in sev-
eral papers, constructability constraints were introduced and refined analyses
were adopted for the seismic analysis or, generally, the static and dynamic as-
sessment of Civil structures. The implementation of accurate LCA analysis for
the economic and environmental assessment of structures should be enriched
through the realization of experimental campaigns in which the performance
of innovative material could be validated through optimized numerical models.
However, the crucial limit of the computational effort still nowadays represents
the main obstacle to the spread of optimization techniques in real-world Civil
Engineering Applications.
Especially in these years, software houses are paying great attention to de-
veloping new power tools or open application programming interfaces into
the Finite Element environment. In the future, principal efforts should be
reserved to make the interoperability between FE software and optimization
tools easier. On the other hand, the formulation of the optimization problem
will always play a major role in the feasibility of the optimal design. The
complexity derived by considering constructability issues at each construction
stage or detailed design of specific components of the structures will only be
faced if a reasonable decomposition in multi-step optimization procedures is
implemented. In this way, the entire optimal design process, at each phase, will
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be controlled and the computational effort reduced according to the industry
needs and consistently with professional tasks.



Chapter 2

A machine learning approach for
non-penalty constraint handling

2.1 Introduction

The majority of optimum design engineering problems can be modeled as continuous
non-linear optimization problems, in which the original search space is reduced due
to the existence of various constraints. In this introductory part of the present paper,
firstly a general overview on evolutionary algorithm is presented with particular
reference to swarm intelligent PSO algorithm. Then, a general constrained single-
objective optimization problem over real domains is formed. Subsequently, existing
methods for handling constraints in evolutionary computation are briefly described,
with emphasis on the applications related to PSO algorithms.

Evolutionary algorithms (EAs) can be considered general and versatile tools for
solving constrained optimization problems. The research interest for this class of
optimizers is continuously increasing, mainly because objective functions (OF) and
constraints are not required to be differentiable, continuous, or even explicit. In
addition, no preliminary assumptions or a priori information are needed for solving
constrained optimization problems by means of EAs. Moreover, EAs have a better
global search ability compared to traditional numerical strategies (i.e., gradient-based
algorithms) and a good starting design is not essential, since they operate on a popu-
lation of individuals (coded candidate solutions of the optimization problem) which
are efficiently handled during the evolutionary search. In contrast, EAs lack of well-
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posed theories about their convergence and a large number of function evaluations
and computational effort may be needed to converge. Within the framework of soft
computing methodologies, a large number of non-conventional paradigms have been
explored in order to create efficient and user-friendly optimizers. Nowadays, a wide
variety of biological, social and physical metaphors has been analyzed and tested. In
this study, the class of optimizers based on swarm intelligence, the so-called Particle
Swarm Optimization (PSO) algorithms are considered, which have been proposed by
Kennedy and Eberhart (1995a). To make some first comparisons with EAs we can re-
fer to Quaranta (2020c). EAs are based on the simulation of natural Darwin’s theory
of evolution process with the survival of the fittest members, whereas swarm intelli-
gence is based on collective behaviour in which each element move independently in
search space. Thanks to somehow interaction among members of the community, the
entire swarm shows intelligent global behaviour moving toward the optimal solution.
This emerging class of optimizers is inspired by social behaviours observable in
certain natural aggregations, such as bird flocking, fish schooling, or swarming of
insects when they search for food, resources or protection. Every member of the
population searches in its neighbourhood for the best outcome, learns from its own
experience as well as from the other members’ findings. Typically, if a member of
the swarm discovers a desirable path to go, then the rest of the swarm will follow
quickly. Thus, similar to other EAs, a PSO is a population-based optimizer and can
solve complex non-convex optimization problems. PSO is based on the principle
that social sharing of information among the individuals of the population can lead
to optimum solutions. In fact, as affirmed in Plevris (2009b), every particle possesses
a memory of the best position it has visited. Hence an appropriate combining of the
self-experience of every particle with the global best position of the entire swarm,
we can find a balance between exploration and exploitation. PSO is not complicated,
resulting in an attractive tool for non-experts in the field of evolutionary computation.
Several studies (e.g., Kennedy and Eberhart 2001) demonstrated that this optimizer
has a good convergence rate. Based on the swarm intelligence theory, two different
categories of PSO optimizers can be formalized:

• PSO algorithms in which it is assumed that a Newtonian dynamics regulates
the movement of the particles.

• Quantum-behaved (Q-PSO) algorithms, in which the Newtonian hypothesis is
rejected. In this case, the usual metaphors for PSO are replaced with physical
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paradigms related to the movement of particles in the atomic or sub-atomic
scale. Thus, the classical mechanic approach adopted for representing the
dynamics in traditional PSO is replaced with the quantum mechanics process
where the term “trajectory” is meaningless.

In this paper the first class of PSO optimizers is considered, in which according
to Newton’s theory, both position and velocity of the swarm can be determined
simultaneously.

The use of evolutionary and swarm intelligence algorithms is constantly gaining
popularity and many complex optimum design problems have been efficiently solved
using nature-inspired memetic and meta-heuristic methods. In recent years, efficient
optimizers based on swarm intelligence, namely, Particle Swarm Optimization (PSO)
algorithms, proposed originally by Kennedy and Eberhart (1995a), have evolved.
Several researchers have applied PSO algorithms to solve various types of structural
optimization applications with continuous or discrete design variables, mainly for
truss problems (Perez and Behdinan 2007; Li et al. 2009; Hasançebi et al. 2009;
among others) and composite structures (Omkar et al. 2008; Bloomfield et al. 2010).
Kaveh and Talatahari (2009) combined PSO with Ant Colony Optimization (ACO)
and Harmony Search (HS) to obtain a hybrid scheme which has been implemented
for the optimization of truss structures. Plevris and Papadrakakis (2011) combined
PSO with an efficient mathematical programming method (Sequential Quadratic
Programming (SQP)) to improve local convergence rate of PSO via gradient-based
SQP and applied this hybrid scheme to optimize typical trusses. Rao and Sivasubra-
manian (2008) presented a computational system for the active vibration control of
seismically excited buildings by combining a multi-objective PSO algorithm with
a fuzzy logic controller. Ge et al. (2007) combined PSO with dynamic recurrent
neural networks to perform speed control for ultrasonic motors. Begambre and Laier
(2009) proposed a hybrid PSO that has been combined with a Simplex algorithm
to deal with structural damage identification problems. Seyedpoor et al. (2009),
implemented PSO for the optimum shape design of arch dams under earthquake
loading using a fuzzy inference system and wavelet neural networks for the re-
duction of enormous computational cost. Under this perspective, Gholizadeh and
Salajegheh (2009) performed optimal design of steel frames subjected to earthquake
loading by swarm intelligence and advanced neural network metamodels. Similarly,
Praveen and Duvigneau (2009) proposed the combination of PSO with radial basis
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function approximations to solve demanding aerodynamic shape design problems.
Furthermore, in order to reduce the computational cost Kalivarapu et al. (2009),
presented the application of PSO in a parallel computing environment, in which
digital pheromones have been used to coordinate swarms within the explored design
spaces.

As one can find in Sengupta et al. (2018), in the last decades many hybrid
algorithms were formulated in order to overcome the drawbacks of a single approach
implementing different optimization strategies to find the optimal trade-off between
exploration and exploitation, reducing computational efforts and avoiding the swarm
to be entrapped into local sub-optimal solution. Both for constrained and uncon-
strained problems, there exist an integration with Genetic Algorithm operators named
GA-PSO. These two approaches are referred to different contexts as one can check
in Plevris (2009b): GA is the oldest approach and is referred to a biological context
implementing genetic operators (selection, crossover, mutation) while PSO is based
on a social context. These two strategies can be used both sequentially, where PSO
allows to speed up global exploration whereas GA is mainly used in the exploitation
phase and also to guarantee the diversity of members in the exploration phase, or
using them in parallel. Other hybrid approaches integrate Differential Evolution
Algorithm, DEA (by Storn and Price, 1997) with PSO. They are also known as SDEA
(Swarm Differential Evolution Algorithm) or DEPSO. In this latter, at the origins,
PSO and DEAs operators sequentially work alternating at odd and even iterations
Das et al. (2010). In order to solve multi-objective problems an integration between
PSO and Simulated Annealing (SA). Some approaches focused on implementing an
adaptive updating of memory of particles’ best solutions. Further hybridization was
performed with Ant Colony Optimization (ACO) in order to find optimal solutions
for highly non-convex problems. There are some other approaches based on Cuckoo
Search (CS) which was inspired by behaviour of cuckoos integrated with Levy flight
nature of birds. In these CSPSO approaches, cuckoos which reached a good solution
communicate it to other members and then local exploitation of PSO is used. Later,
another effort was done integrating CSPSO with DE. Always inspired by nature,
researchers proposed Artificial Bee Colony (ABC) in parallel with PSO allowing
exchanging information between swarm and bees and then many other developments.
There was also an integration between PSO and other social metaheuristic approaches
like Artificial Immune System (AIS), Bat Algorithm (BA), Firefly Algorithm (FA),
Glow Worm Swarm Optimization (GSO). As explained in Sengupta et al. (2019),
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using algorithms in parallel allows to improve each search mechanism thanks to
information exchange between them. Mota et al. (2018) implement an hybrid PSO
with Iterated Local Search (ILS) operator which is based on a deterministic hill
climbing phase to improve local search around current gbest.

In order to solve constrained optimization problems with PSO several numerical
techniques were incorporated for handling various types of constraints (e.g. Lagaros
et al. 2023). It should be stressed that the selection of an appropriate technique
for solving constrained optimization problems is a very important step because
the performance of the optimizers strongly depends on the underlying mechanism
for handling constraints. Motivated by this fact, various methodologies have been
proposed in recent years and in this paper a new one is proposed. These methods have
been classified by different authors into certain categories (see for instance the state-
of-the-art review by Coello (2002), Koziel and Michalewicz (1999b); Michalewicz
and Fogel (2013):

• penalty functions-based methods,

• methods based on special operators and representations,

• methods based on repair algorithms,

• methods based on the separation between OF and constraints,

• hybrid methods.

One of the most critical issues when searching multi-constrained non-convex
design spaces is the preservation of the population diversity. The brutal elimination
of the unfeasible solutions during the evolutionary search jeopardizes a complete
exploration of the feasible domain. Therefore, it is crucial to maintain diversity in
the population in order to keep track of the solutions inside and outside the feasible
region as reported by Mezura and Coello (2002, 2005b). Moreover, it has been
verified that several traditional penalty-based approaches may be not adequate to
deal with highly complex search spaces, especially for problems in which several
constraints are active in the optimum Runarsson et al. (2000). In these circumstances,
unfeasible individuals may have very important information, thus, their role can be
significant when looking for the global optimal solution.
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An example of a very simple constraint handling approach in PSO consists
in exploiting the randomness in velocity expression (2.4) and recalculate it until
the new position of a particle becomes feasible. This simple approach is really
time-consuming in particular for problems with a little feasible region. The penalty
function approach allows to transform constrained problems into unconstrained ones
(2015, 2016). Since its simplicity, the death penalty was the most widespread at
the beginning. It introduced a strong penalty to unfeasible positions in order to
consider only feasible ones. Later some authors proposed an adaptive penalty in
order to evaluate the degree of violation of the unfeasible points. In fact, the optimum
solution is often situated at the boundary between feasible and unfeasible region.
Due to this fact, the degree of violation represents an extremely useful information
in order to conduct the search along the boundary. Thanks to this latter information
it is possible to implement a repairing operator which redirects the unfeasible point
to the feasible region. It is important to set the velocity of redirected particles to zero
in order to improve local boundary search, as illustrated in Plevris (2009b). As one
can check also in Jordehi and Rezaee (2015), there also exist some approaches based
on searching for feasibility operators. In Kohler et al. 2016 Kohler et al. (2016), a
new variant called PSO+ based on preserving of feasibility is presented.

In the following, a review on classical formulation of PSO is illustrated and,
after that, the new proposed approach is reported in detail. The main advantage of
adopting a new non-penalty based constraint handling approach is related to the
generality of the classification machine learning algorithm employed. As a matter
of fact, the SVM depends only on the inner product of the data and it is able to
generate predictive model. This latter represents substantially the boundary between
the feasible positions of the swarm from the unfeasible ones. This predictive model
is more adaptive than a typical penalty function approach because works fine both
with discontinuous and non-linear constraints. In order to verify the convergence of
the new code in terms of objective function, the proposed PSO-SVM algorithm is
adopted in two numerical literature benchmark examples and it is compared with
a PSO with penalty function code and with a genetic algorithm (GA) code. In
the end part, the proposed PSO-SVM is adopted into the structural optimization
field analyzing two examples. The first one is concerning the size optimization
of a simply supported beam with constant rectangular cross section subjected to a
constant load condition. The graphical obtained results highlight the generality of
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the SVM to handle piecewise non-linear constraints with a good approximation in
the neighbourhood of the optimal point and a roughly approximation elsewhere. The
second example is regarding shape and size optimization of a warren truss plane
beam which can be used in the design of a bridge. The PSO-SVM optimal results
are compared in terms of total weight with the result obtained by Fiore et al. (2016b)
where differential evolutionary algorithm (DEA) is adopted. The exact solution
needs to be industrialized choosing a real existing profile dimensions both with a
simple rounding-off of the optimal solution and with a more refined post-processing
approach. Making a comparison between these latter industrial solutions the total
weight of the structure does not change significantly and a simple rounding-off
approach can be easily adopted by the designer without jeopardizing the entire
optimization process.

2.2 Particle Swarm Optimization Algorithm

A typical single-objective optimization problem can be unconstrained or constrained.
The mathematical form for an unconstrained one is

min
x∈Ω

{ f (x)} (2.1)

whereas if the problem is constrained it is written as below

min
x∈Ω

{ f (x)}

s.t. gq(x)≤ 0 ∀q = 1, ...,nq

hr(x) = 0 ∀r = 1, ...,nr

(2.2)

in which x = {x1, ...,x j, ...,xn} is the design variable vector whose components are
real numbers, f (x) is the objective function (OF) to be minimized and Ω is a box-type
search space. For instance, if [xl

j,x
u
j ] is the admissible interval for the jth variable (

xl
j and xu

j are its lower and the upper bounds, respectively), then

Ω = [xl
1,x

u
1]× ...× [xl

j,x
u
j ]× ...× [xl

n,x
u
n] (2.3)

where the symbol × denotes the Cartesian product between intervals. The constraints
of the optimization problem defined by (5.4) can be inequalities gq(x) and/or equali-
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ties hr(x). Without any loss of generality, all equalities can be easily converted into
inequalities: therefore, only inequality constraints are considered in the following,
e.g. gp(x)≤ 0, for p = 1, ...,nq,nq+1, ...,np, being np = nq +2nr.

Evolutionary optimization algorithms were originally developed for solving
unconstrained optimization problems, thus, they lacked mechanisms to handle the
constraints of the problem at hand. Nonetheless, the unavoidable existence of several
restrictions either from a mathematical and/or an engineering point-of-view leads to
a huge contraction of the available design space, thus, reducing the number of the
admissible solutions. It is obvious that the resolution of constrained optimization
problems is much more complicated, especially when a large number of constraints
are involved which can reduce the size and increase the complexity of the feasible
domain dramatically. In these circumstances, both effectiveness and correctness
of the evolutionary-based search can be jeopardized and the final results can be
unsatisfactory. In fact, it is very probable to achieve an infeasible final solution
if the search of the best objective function value does not take efficiently into
account the imposed constraints. In contrast, the optimizer could be entrapped into
a sub-optimal area if the exploration of the search space is conducted by taking
into account feasible solutions only. Therefore, the implementation of effective
constraint-handling mechanisms is considered a crucial issue for all biological
inspired optimizers (Deb (2000b), Coello (2002), Wang et al. (2009), Mezura-Montes
(2009b)). It is too evident that a competitive technique for handling constraints in
evolutionary computation should be able to achieve the best possible compromise
between conflicting requirements.

In the general formulation of PSO, the ith particle (i = 1, ...,N, where N de-
notes the population size) at iteration k has two attributes, that are its velocity
kvi = {kvi1, ...,

kvi j, ...,
kvin} and position kxi = {kxi1, ...,

kxi j, ...,
kxin}. To protect the

cohesion of the swarm, the velocity kvi j is forced to be (in absolute value) less
than a maximum velocity vmax

j with vmax = {vmax
1 , ...,vmax

j , ...,vmax
n }. Typically, it

is assumed that vmax = γ(xu − xl)/τ , in which the time-related parameter τ = 1 is
introduced to assign a physical meaning to the formula and γ defines how far a
particle can move starting from its current position Quaranta (2020c). Nevertheless,
there is not sufficient degree of uniformity about the choice of γ whose numerical
value can vary significantly, usually in the range [0.1,1] and generally it is set to
γ = 0.50. In addition, the initial values 0xi for i = 1, ...,N are derived by generating
pseudo-randomly the collection of N solutions within the assigned search space.
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Moreover, 0vi j is pseudo-randomly generated using a uniform distribution between
−vmax

j and +vmax
j . For this purpose, the Latin Hypercube Sampling (LHS) tech-

nique has been iteratively used to generate the best initial population with minimum
correlation between samples (see also Monti et al. (2010b). According to Plevris
(2009b), making a comparison with EAs, it is possible to interpret the randomness
in the setting of velocity particles as a “directional mutation operator". At iteration
k+1 the velocity (k+1)vi and the position (k+1)xi vectors are evaluated as follows

(k+1)vi =
kvi + c1

(k+1)r1i ∗
[

kxPb
i − kxi

]
+ c2

(k+1)r2i ∗
[

kxGb
i − kxi

]
, (2.4)

(k+1)xi =
kxi + τ

(k+1)vi (τ = 1). (2.5)

where kxPb
i is the best previous position of the ith particle (also known as pbest)

kxPb
i =

kxi, if f (kxi)< f ((k−1)xPb
i ),

(k−1)xi, otherwise.
(2.6)

given that 0xPb
i = 0xi. According to the adopted definition for kxGb, one obtains two

schemes of PSO. If kxGb denotes the best position among all the particles in the
swarm (also known as gbest), then the swarm is designed to be fully informed or fully
connected, thus, this approach is called global PSO. Conversely, if kxGb is evaluated
for a smaller number of adjacent particles, then a “local-strategy" PSO is utilized
by Chen et al. (2010). In (Quaranta 2020c), one can review which PSO originally
has two topologies formulation: “lBest PSO" where multiple best particles influence
only few neighbours and this limited information flow slow down convergence but
increase the local search; “gBest PSO" where all particles influence each other in
a fully connected net which bring to speed up convergence rate toward the global
best particle position. The former approach is here used and all particles share
information with each other about the best performer of the swarm, so that

kxGb = argmin
i
{ f (kxGb

i )}. (2.7)

The acceleration factors c1 and c2 in (2.4) (both positive scalars) are called cognitive
and social parameters, respectively. Moreover, (k+1)r1i and (k+1)r2i are vectors whose
terms are pseudo-random numbers uniformly distributed in the interval [0,1], while
the symbol ∗ denotes the term-by-term vector multiplication (Hadamard product
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2009b). The superscripts on the left and the subscripts on the right denote that a
different couple of pseudo-random vectors is needed for each particle at any iteration.
It should be mentioned at this point that the formulation (2.4) is rather uncommon,
in the sense that the majority of researchers in the field adopt a unique set of pseudo-
random terms for any dimension of the search space. Nonetheless, Liang et al.
(2006) pointed out that Eq. (2.4) yields better performance because of its problem-
invariant property. The check on the maximum admissible velocity for any particle i
is performed at iteration k in the following manner

kvi j =

sign[kvi j]vmax
j , if kvi j >

kvmax
j

kvi j, otherwise
∀ j = 1, ...,n. (2.8)

where sign[·] is the sign operator. Another check is needed to verify that the particle
is within the feasible search space

( kxi j,
kvi j
)
=


( kxi j,

kvi j
)
, if xl

j ≤ kxi j ≤ xu
j( kxi j = xl

j,
kvi j = 0

)
, if kxi j < xl

j( kxi j = xu
j ,

kvi j = 0
)
, otherwise

(2.9)

The infeasible particles’ velocity is fixed to zero in (2.9) for the next iteration to
avoid considering any points outside the search space. Following iteratively this
simple set of instructions, the swarm is expected to “fly” towards the global optimum
of the problem. Since the required number of iterations L is not known a priori and
therefore a stopping criterion is needed. In general, stopping criteria in PSO can
be similar to those typically adopted for several EAs, see for instance Monti et al.
(2010b) and its references. In this study, the search is terminated once a maximum
number of iterations L is achieved. Although this strategy has the disadvantage to
require some information about the problem or some preliminary runs, it appears to
be useful when some parameters of the optimizer have to be iteratively tuned during
the process. The interested reader is referred to the work by Li and Xiao (2007b) for
a useful discussion on the selection of the number of iterations for PSO.

The performance of PSO strongly depends on choosing control parameter values,
see Quaranta (2020c). Firstly, although it might seem better to choose swarm size N
as bigger as possible it would lead to a very slow algorithm. Moreover, its choice
should be based on the number of design variables n, but it has been experimentally
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demonstrated which there is no substantial difference when N varies in the range
[20,100] for a maximum number of design variables nmax = 30 (Quaranta 2020c).
Furthermore version of PSO called micro-PSO (µPSO) which can work also with
very small swarm size was also developed in years. Inertia weight and acceleration
factors are also control parameter values which can affect the performances. The
use of inertia weights in PSO has been proposed by Shi and Eberhart (1998), where
the authors introduced this parameter in an effort to improve the convergence of
the standard PSO. This concept is not new in soft computing community; actually,
it is similar to the momentum term in a gradient descent artificial neural network
training algorithm, or the temperature adjustment schedule for simulated annealing
algorithms. Typical range of values for w was [0.8,1.2]. In a subsequent study by
the same authors, a linearly decreasing inertia weight has been adopted ?

(k+1)vi =
kw kvi + c1

(k+1)r1i ∗
[

kxPb
i − kxi

]
+ c2

(k+1)r2i ∗
[

kxGb
i − kxi

]
, (2.10)

with
kw = (0w− Lw)

L− k
L

+ Lw (2.11)

in which 0w and Lw are the initial and the final values of the inertia weight, respec-
tively. In principle, the inertia weight is a scaling factor of the previous velocity of
the particle and its role is to control the exploration of the swarm: a large inertia
weight will force larger velocity at the next generation and the swarm is expected to
explore a larger region of the search space. In contrast, small inertia values have to be
introduced to improve the local exploration. Some authors proposed also Non-Linear
updating law for inertia weight e.g. in Plevris (2009b) define a three stages reduction
of inertia weight using a cubic polynomial function in order to have fast reduction
at initial stages and slower reduction at last iterations. One can check for further
Non-Linear formulation about inertia weight in Sengupta et al. (2018). Concerning
acceleration factors, some authors proposed varying models but usually they are
assumed statically fixed to c1 = c2 = 2 (Quaranta 2020c). In another version of PSO,
inertia weight is not considered and it is replaced with a constriction factor χ which
multiply the whole second member of the velocity expression (2.4). The constriction
factor expression is the following Quaranta (2020c)

χ =
2

2−ϕ −
√

ϕ2 −4ϕ
, with ϕ = c1 + c2 > 4. (2.12)
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According to Quaranta (2020c), typically ϕ = 4.1 which implies χ = 0.729 by setting
the same value to acceleration factor equal to c1 = c2 = 2.05. Although dynamic
(deterministic and non-deterministic) models exist for social/cognitive factors and
inertia weights, in this study it is assumed which all of them are constant values
equal to c1 = c2 = 2, 0w = 0.90 and Lw = 0.40 (Perez et a. 2007).

Additionally, a predetermined maximum number of iterations for each problem
is not usually known in advance, therefore, one can refer to the suggestions of Li
and Xiao (2007a) or conduct experimental trial and error tuning of the minimum
kmax, which allows one to achieve the optimum, reducing the overall computational
cost. Later on, for the sake of improving the exploration capacity of the swarm,
Shi and Obaiahnahatti (1998) introduced an inertia weight term kw multiplied to
the current kth velocity in the update rule (2.4). This parameter can be a constant
or a variable with respect to the iterations flow, e.g., from an initial value 0w to a
final one Lw with a linearly decreasing law, but there are also many other variants
in Sengupta et al. (2019). The performance of the algorithm is strongly affected by
the choice of the parameters such as the swarm size N, usually set in a range of
[20,100] with n ≤ 30.

One of the most important aspects to enhance the PSO performances is to im-
prove the way in which the information are exchanged among the particles. With
efficient information sharing, the swarm can exhibit a better collective convergent
behaviour. The information exchange is related to the structure of the neighbourhood
of each particle, which is denoted as neighbourhood topology. This kind of imple-
mentation is also called a local PSO model or simply lbest model to differentiate
it from the classical so-called global PSO model or simply gbest model Martí et al.
(2018), Quaranta et al. (2020a), Sengupta et al. (2019). The classical gbest model
approach can also be regarded as a neighbourhood strategy in which the neighbour-
hood is composed of the entire population. In this sense, the swarm is denoted
as fully informed or fully connected. A schematic graphical representation of the
swarm with the information flows is depicted in Figure 2.1a. The main negative
aspect of this latter strategy is the greater inclination to premature convergence. If
the global attractor gbest is entrapped in a local minimum, the entire swarm may
probably fall down in the same local minimum without a sufficient exploration
capability. The enhancement of the PSO was performed by a counter-intuitive ap-
proach which relies on slowing down the rapid convergence attitude of the PSO
through channelling and limiting the information exchange, the neighbourhood con-
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cept indeed Martí et al. (2018), Quaranta et al. (2020a), Sengupta et al. (2019). In
the lbest models, it is necessary to define, firstly, the structure of the neighbourhood
which controls the way in which the particles are interconnected and, secondly, the
size of the neighbourhood which affects the influence of the swarm on each particle
Martí et al. (2018). Considering the most popular time-invariant neighbourhood
topologies, the ring topology is one of the easiest to be implemented, and it has also
been adopted in the present study. As illustrated in Figure 2.1b,c, each particle in this
topology forms a neighbourhood considering the nearest particles (nearest indices
in a vector of positions), resulting in an ideal circular interconnection. The total
number of the particles which belongs to the neighbourhood is denoted as radius R,
as depicted in Figure 2.1b, in which R = 2, and (c), in which R = 4. These methods
can be implemented considering that each particle in the numerical vector has a
unique index, therefore, each particle can unequivocally be selected to enter in a
neighbourhood through its index Medina et al. (2009), as schematically depicted in
Figure 2.2. A very great number of different neighbourhood topologies were devel-
oped in the last decades as showed in Medina et al. (2009), Schmitt (2015). Some
other implementations also involve a dynamic update of the neighbourhood size,
which identifies new types of lbest models which are denoted as multi-populations
or multi-swarm PSO, such as in Liang and Suganthan (2006).

Array of swarm individuals  

Array of lbest   ( x
lb)

x1 x2 ... xN-1

xlb
1

xN

Neighbourhood definitions 

(Ring topology R=2)
x1 x2 ... xN-1 xN

xlb
2

... xlb
m

x
lb

j = min{OF(xi) | ∀ xi in the neighbourhood}

x3

x3

Fig. 2.2 Graphical schematization of the Ring topology implementation (R = 2).

2.3 Constraint Handling in the proposed framework

In this paper, a new non-penalty based constraint handling approach is implemented
using the machine learning method SVM. This machine learning approach is based
on statistical learning theory (Vapnik 1999). During the learning process, the ma-
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(a) Fully-connected

(b) Ring (R = 2) (c) Ring (R = 4)

Fig. 2.1 Some examples of PSO Neighborhood Topologies.

chine learns from examples contained in a known training data set which could
be composed of both input and output data (supervised) or only input data (unsu-
pervised) (Bishop 2006). The SVM is able to map the input data to another space
(feature space) usually with higher dimension (Cristianini et al. 2002) where the data
are linearly separable and it will search the optimal separating hyperplane according
to the principle of the maximal margin Cortes et al. (1995). The transformation is
performed by a Kernel Function which represents the inner product in the feature
space (kernel trick) (Bishop 2006). Then, after the re-mapping the optimal separating
hyperplane in the starting design space, the result of this process is the definition of
a predictive model that could map the output of other new input data. If the output
is a variable from a finite set which represents the class (or category or label) of
the input data, the problem is called classification (or pattern recognition) problem
(Bishop and Murphy 2006, 2012). After a training phase on the current positions
of the swarm, the new trial positions are labeled as feasible or unfeasible using the
trained predictive model. In this case, since the algorithm has to separate feasible
positions from unfeasible ones, it is performing a binary classification problem
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(Bishop 2006). The SVM is based on the inner product in feature space, so it is
possible to avoid explicitly writing the transformation of training data into the feature
space, but it is possible to directly operate defining a proper kernel function, as stated
in Bishop and Nasrabadi (2006). This approach is called in Cristianini et al. 2002
as implicit mapping or implicit embedding. According to Li et al. (2006), typical
widely spread kernel functions are polynomial kernels and Gaussian kernel (Bishop
and Cristianini 2006, 2002) which is the isotropic form of the radial basis kernels,
RBF (Murphy (2012)). In the proposed approach the Gaussian kernel is adopted.
Multilayer perceptron kernels (MLP) or sigmoid kernels, typically used in Neural
Networks, are examples of not Mercer kernel which are not representing the inner
product in feature space, as reported in Murphy (2012). It can occur that training
data are non-separable i.e. data which cannot be linearly divided without committing
a certain error (Cortes et al. 1995). In this case, the SVM operates with a soft margin
defining a hyperplane minimizing the error. This is governed by a penalty coefficient
C > 0 also know as regularization parameter which controls the tolerance on training
classification errors and the margin position related to the complexity of the model
(Bishop and Nasrabadi (2006), Murphy (2012), Li et al. (2006)). For the proposed
algorithm, it was found that a good trade-off between accuracy and computational
effort is obtained using C between 100 and 1000.

2.4 Proposed PSO-SVM approach

In the proposed approach the aim is to integrate the classical PSO algorithm with
SVM classification algorithm in order to separate feasible positions from the unfeasi-
ble ones. The main idea is to reduce the search space as also stated in Kohlet et al.
(2016).

Starting from the initial random population, it is possible to classify feasible
initial points than the unfeasible ones with respect to the constraints. In general,
through the SVM, a hyperplane which linearly divides data is constructed in any
higher-dimensional space (feature space) and it is possible to reconstruct a non-linear
boundary in the starting design space. Indeed, this is a way to reduce the search
space because after the learning phase (train the SVM model) it can predict which
points are in the feasible design region described by the SVM model and which are
in the unfeasible one. Obviously, to have a great result starting from the beginning,
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it should need a massive initial population to construct a very accurate boundary
which follows the theoretical one. In normal PSO, at every generation, the swarm
from last generation move in a new position, hence new points are available to train
a new better SVM model. With this incremental approach during the evolutionary
stage of PSO, a new boundary is calculated at each generation adding the new swarm
position to the previous ones. In general PSO constraint handling techniques do not
work very well with equality constraints but they are more suitable for inequality
constraint only. Therefore, the problem has to be expressed in the form of (5.4)
without equality constraints. For a maximization problem with objective function
f (x), it is sufficient consider − f (x) to transform it into a minimization problem. The
proposed algorithm is implemented in Matlab® code.

In Figure 2.3 (a) the flowchart of the proposed algorithm is shown. At first, the
initialization phase of the swarm adopts the LHS technique to generate the initial
population with a minimum correlation between samples (see also Monti et al. Monti
et al. (2010a)). Then this initial swarm is labelled into the design space regarding
to the inequality constraints. Since these latter are defined as gq ≤ 0, if at least
one of them is greater than zero the entire n-tuple (which is a single individual
candidate solution) is labelled as unfeasible (yi = −1) otherwise it is labelled as
feasible (yi =+1). In any case, for some problems with a very narrow search space,
SVM really struggles to work properly. In fact, preserving only feasible points in
wide unfeasible space and really narrow feasible region leads to instabilities and
the algorithm probably fail to find the optimum. To improve the performance of
the algorithm, a relax constraint function ψi(k) is defined, wherein the subscript i
refers to i-th constraint whereas the k refers to the current generation. This approach
leads to enlarging the real feasible space to a fictitious wider one using relaxation of
the constraints. This means that the real constraints are “moved" from their actual
position to a fictitious one through a proper choice of ψi(k) which is not trivial to
generalize. This procedure acts as substituting the original inequality constraints
with the following relaxed constraints:

gi,k(x)≤ ψi(k) =⇒ gi,k(x)−ψi(k)≤ 0. (2.13)

The ψi(k) factor is tuned on the standard deviation σu,k of the amount of all unfeasi-
ble points detected in all generations until the current one. This approach allows a
better exploration in the first generations and then it could be forced to zero imple-
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menting a decreasing function which directly depends on the current generation k
and the number of maximum generations kmax. Defining a further reduction factor
λ of the standard deviation directly chosen by the user, the following relaxation
functions are implemented:

• Constant Relax:

ψi(k) = λσu,k;

• Piecewise Constant Relax:

ψi(k) =

λσu,k, if k ≤ kmax/2

0, otherwise;

• Linear decreasing Relax:

ψi(k) = λσu,k −
λσu,k

kmax
k;

• Piecewise Linear decreasing Relax:

ψi(k) =

λσu,k −
2λσu,k
kmax

k, if k ≤ kmax/2

0, otherwise;

• Parabolic decreasing Relax:

ψi(k) = λσu,k −
λσu,k

k2
max

k2;

• Piecewise Parabolic decreasing Relax:

ψi(k) =

λσu,k −
4λσu,k
k2

max
k2, if k ≤ kmax/2

0, otherwise;

The proposed algorithm implements SVM with soft margin with regularization
parameter C = 100. Indeed, respect to a hard margin, to speed up the algorithm
it is numerically convenient to adopt a high box-constraint value, e.g. between
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100 and 1000, allowing a certain misclassification rate but assuring all the possible
solutions lie in the feasible space boundary respecting the constraints with a certain
engineering tolerance.

After the training phase, the unfeasible points of the initial population have to
be re-sampled in the feasible region.So, the unfeasible points are randomly sampled
with LHS technique in the entire design space and they are discarded and sampled
again until their label becomes yi =+1.

At this point, the initial velocity of the particles is randomly sampled always
using LHS and then the evolutionary phase of the algorithm can begin. The velocity
for the next generation is calculated as in equation (2.4) but it is necessary to check if
it respect the allowable maximum velocity as in (2.8) (“Max Velocities Correction"
block in Figure 2.3 (a)). The next block "Max Position Correction" is a fundamental
step because it is the check of the feasibility of the position given by (2.5) and for the
sake of clarity it is expanded in Figure 2.3 (b). A temporary position are computed
with equation (2.5). Then, a first possibly corrections of the temporary positions
can be performed in order to maintain the particles inside or at least on the edges
of the hyper-rectangle design space Ω. If the temporary position label is yi = +1
then the new temporary position lies in the feasible region and so it is accepted.
Otherwise, if the label is negative a simply bisection approach is performed. The
velocity vector which leads to the temporary position of a particle is firstly divided
by p = 2 and a new temporary position is obtained. If the label of this new temporary
position becomes positive, so this new position is accepted for the next generation.
Otherwise, if it is still negative, the algorithm will increment p doubling it, getting
a new temporary velocity vector and a new temporary position to label and so on.
When all the elements of temporary velocity vector tend to zero, it is possible to
leave the original position for the next generation. In this way the particle can move
only if the destination position is into the feasible region, otherwise it does not move
anywhere during the current generation.

At the end of the evolutionary stages, new positions are available to take into
account in order to update the SVM boundary increasing the database of training
set for the SVM model. As before, it is necessary to label the new points from the
constraint expressions.After the training phase, a new boundary is defined but some
of the points which were inside the previous boundary now may lie outside of the
new region. In this case, it is necessary to re-sample these point before using LHS
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until their label become positive. Despite this latter naive approach may slow the
algorithm, it is beneficial for the diversity of the population, allowing new starting
search positions. The update of the gbest is performed only on the real feasible points
with respect to the original constraints and not the relaxed ones. This procedure
ensures the algorithm performs good results also using a constant relax constraint
function during the generations. In fact, at each generation, it will update the global
optimum point (gbest) looking to the minimum objective function value only of
those points which lie in the real feasible region. A further strategy to improve
the behaviour of the PSO is reducing the maximum possible velocity range of the
particles, governed by γ , updating this latter during generations. In the proposed
algorithm it is set γ/2 starting from kmax/3 then it is set to a minimum value e.g.
γ = 0.1 in the last generations from 2kmax/3 to kmax, where kmax represent the max
allowable generations. The stopping criterion of the algorithm is the achievement of
a maximum number of iterations. It is possible that there exists an entire front of
optimal solutions so one has always to check the convergent history of best solutions
during the post-processing phase.

The proposed approach is firstly tested on some numerical mathematical literature
problems which statements are reported in the Appendix. After that, two structural
optimization problems are developed. To make some comparison of the results,
in these last examples the objective function value is compared with the genetic
algorithm of Matlab® and the PSO with penalty approach provided from the code
proposed by Alam (2016b).

2.5 Numerical Example 1: Sickle Problem - Simionescu
et al. (2004a)

The first numerical example (Simionescu et al. 2004a) is the benchmark test 1 stated
in the Appendix also known as Sickle function. Since this optimization problem
has two design variables, it can be depicted in a graphical representation in the
bi-dimensional design space of the search process performed by PSO-SVM algo-
rithm. In Figure 2.4 (a), the objective function and the constraints are graphically
represented as a 3D graph and it is possible to notice that the objective function is
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Fig. 2.4 Example 1 (Sickle Problem-Simionescu et al. 2004a), case No relax constraints
function;
(a) 3D graph of Sickle problem design space; (b) Generation 1; (c) Generation 2
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Fig. 2.5 Example 1 (Sickle Problem-Simionescu et al. 2004a), case No relax constraints
function;
(a) Generation 50; (b) Generation 100; (c) Objective function history
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Fig. 2.6 Example 1 (Sickle Problem-Simionescu et al. 2004a), case constant relax constraints
function;
(a) Generation 2; (b) Generation 50; (c) Generation 100
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Fig. 2.7 Example 1 (Sickle Problem-Simionescu et al. 2004a), case constant relax constraints
function, objective function history

substantially planar in the search space. The projection on the design variables plane
of the feasible region is really narrow because it is formed by the space between the
two constraints parabolas. For this problem, a population size of 50 individuals is set
and in Figure 2.4 (b) the first random generation is shown and the support vectors are
emphasized. After that, the unfeasible points are re-sampled until all the population
falls inside the SVM-based boundary. At each generation, new points are added
to the SVM training data and the boundary is improved. Since the search space is
really narrow, running the algorithm with no relax constraint function it results in
poor performance in defining the SVM boundary (black solid line) with respect to
the actual one (dashed lines) as shown in Figure 2.5 (a) and (b). It is possible to
improve the performance in terms of objective function decreasing history using the
relax of constraints, as e.g. constant relax function shown in Figures 2.6 and 2.7. In
this latter example, the reduction factor of standard deviation of the unfeasible point
is chosen as λ = 0.5. The PSO-SVM performances using constant relax function
is compared with other algorithms in Table 2.1. The comparison is done in terms
of objective function value to the optimal solution after 50 runs with kmax = 100
each run and collecting mean value µ , standard deviations σ , best OF and worst OF.
As one can check, the convergence of the new proposed method is satisfied as the
objective function value is getting close to the global optimum with a little standard
deviation as the other existing methods.



2.6 Numerical Example 2: five design variables optimization problem 169

Table 2.1 Numerical Example 1 (Sickle Problem - Simionescu et al. (2004a)), comparison
PSO-SVM, GA and PSO-penalty

PSO-SVM PSO-Penalty GA
µx1 0.8433 0.8721 0.8502
σx1 0.0004 1.121e-15 0.0172
µx2 14.0952 14.1091 14.0986
σx2 0.0002 8.972e-15 0.0087
µOF -6.9614e+03 -6.9291e+03 -6.9537e+03
σOF 0.4609 4.59e-12 19.2968
Best OF -6.9595e+03 -6.93e+03 -6.9618e+03
Worst OF -6.96e+03 -6.93e+03 -6.8547e+03

2.6 Numerical Example 2: five design variables opti-
mization problem

The second numerical example statement reported in the Appendix is a literature
benchmark test optimization problem with five design variables and six constraints.
In this example, a comparison between different histories of the objective function
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Fig. 2.8 Numerical Example 2: Objective value history comparison among different relax
constraint functions for a single run
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Table 2.2 Numerical Example 2, comparison among PSO-SVM with different relax constraint
functions (check the Appendix and Runarsson and Yao (2005))

Comparison among Constraint Relax Functions in PSO-SVM

Design
Var. No relax Const.

relax
Piecewise

const. Lin. relax Piecewise
lin.

Parabolic
relax

Piecewise
Par.

µx1 78.0004 78.0086 78.0026 78.0009 78.0006 78.0027 78.0077
σx1 0.0013 0.0243 0.0120 0.0038 0.0041 0.0100 0.0526

µx2 33.0062 33.0040 33.0056 33.0104 33.0107 33.0740 33.0052
σx2 0.0158 0.0183 0.0143 0.0438 0.0322 0.2274 0.0158

µx3 30.0027 29.9985 30.0037 30.0009 30.0038 30.0366 30.0027
σx3 0.0101 0.0105 0.0125 0.0235 0.0178 0.1217 0.0160

µx4 44.6569 44.2360 44.3643 44.9858 44.8002 44.0814 44.6662
σx4 1.5986 2.9630 2.0027 0.0617 1.0734 3.2862 1.3233

µx5 36.8981 37.0755 37.0136 36.7671 36.8360 37.0446 36.8931
σx5 0.6444 1.1956 0.8036 0.0652 0.4310 1.3843 0.5324

µOF -3.0655e+04 -3.0644e+04 -3.0647e+04 -3.0664e+04 -3.0659e+04 -3.0634e+04 -3.0655e+04
σOF 43.0187 78.9205 53.7773 3.9918 28.9931 87.9967 36.2059

Best OF -3.0666e+04 -3.0666e+04 -3.0666e+04 -3.0666e+04 -3.0666e+04 -3.0666e+04 -3.0666e+04

Worst OF -3.0375e+04 -3.0185e+04 -3.0449e+04 -3.0643e+04 -3.0468e+04 -3.0186e+04 -3.0452e+04

using different relax constraint functions is performed. As shown in Figure 2.8,
all the examples give a good result and tend to converge to the exact solution with
different decreasing rate. In general, one can notice that in piecewise functions, the
algorithm generally boosts the exploration instead of the exploitation that is usually
performed in the second half with a zero relax coefficient. This feature is important
because can affect the performance of the proposed algorithm with different kind
of problems and the user need to try different relax functions in order to find the
most suitable for this kind of problem. In Tables 2.2 and 2.3, a comparison with
the GA and the PSO-Penalty is performed in terms of objective function value and
optimal design points running the codes 50 times with kmax = 100 each run and
collecting mean value µ , standard deviation σ , worst and best. Also with this more
complex optimization problem, the convergence of the new proposed method is
satisfied getting an objective function value close to the global optimum with a little
standard deviation as the other existing methods.

2.7 Structural Example 1: simply supported beam

In Figure 2.9 it is considered an ideal simply supported beam of length L with a
constant cross section A = b ·h loaded with a distributed constant load q which is
supposed to be much grater than the self weight for the sake of simplicity. The
aim is to minimize the weight of this structure respecting the tensional constraints
and maximum deflection constraint due to only the q load. The self weight is
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Table 2.3 Numerical Example 2, results from PSO-SVM without relax constraints, PSO-
Penalty and GA (check the Appendix and Runarsson and Yao (2005))

PSO-SVM PSO-Penalty GA
µx1 78.0004 78 78.0004
σx1 0.0013 0 0.0024
µx2 33.0062 33 34.2398
σx2 0.0158 0 0.7052
µx3 30.0027 29.9967 30.801
σx3 0.0101 2.15E-14 0.378
µx4 44.6569 45 45
σx4 1.5986 0 0
µx5 36.8981 36.7736 34.8023
σx5 0.6444 0.00e+00 0.9057
µOF -3.0655e+04 -3.0665e+04 -3.0531e+04
σOF 43.0187 1.47E-11 65.8031
Best OF -3.0666e+04 -3.0665e+04 -3.0660e+04
Worst OF -3.0375e+04 -3.0665e+04 -3.0378e+04

proportional to the volume V of the material as stated by ?. The objective function is
f (d) = ρV = ρAL, where d is the design vector and ρ is the material density which
is supposed to be constant. In this case, only stress constraints on normal stress
σ , tangential stress τ and on the maximum deflection v(z) are considered. This is
a typical sizing optimization problem. The design vector dT = {d1,d2} contains
the design variables which are changed during the optimization process, i.e. in this
case d1 = b, d2 = h. Since the cross section must be greater than zero as well as
the cross sectional dimensions, it implies the presence of a new constraint to satisfy.
Performing an elastic analysis, the maximum allowable stress is the yielding stress
σy and it is possible to use the Navier Formula and the Jourawsky Formula for the
normal and tangential stress respectively. The maximum moment

MEd(z =
L
2
) =

qL2

8

is in the middle span and the maximum shear force

VEd =
qL
2
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Fig. 2.9 Problem formulation: simply supported beam with constant cross section.

is in correspondence of the supports z = 0, z = L. Recalling the elastic resistance
modulus for a rectangular section

Wel =
bh2

6
=

d1d2
2

6

and using the Navier formula it is possible to write the maximum normal stress in
the middle span as

σ

(
z =

L
2

)
=

MEd

Wel
=

3
4

qL2

d1d2
2
. (2.14)

Using the Jourawsky formula, it is possible to write the maximum tangential stress in
the middle of cross section y= 0 (parabolic tangential stress diagram on a rectangular
section) as

τ(z = 0,z = L) =
VEdS∗x(y = 0)

Ixb
=

3
2

VEd

bh
=

3
4

qL
d1d2

. (2.15)

In order to take into account both normal and tangential stresses it is necessary
to refer to a yield criterion. In this case, the Von Mises yield criterion is adopted:√

σ2(z)+3τ2(z)≤ σid (2.16)

Substituting the (2.14) and the (2.15) into (2.16) respectively it is possible to obtain
the two expression of the stress constraints in middle span z = L/2 (pure moment)
and in z = 0,L (pure shear):

3
4

qL2

d1d2
2
≤ σid, (2.17)

3
4

qL
d1d2

≤ σid√
3
. (2.18)

The maximum deflection v(z = L
2 ) can be calculated using the virtual work principle

obtaining

v
(

z =
L
2

)
=

5
384

qL4

EIx
=

5
32

qL4

Ed1d3
2
. (2.19)
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The complete statement of the optimization problem is the following:

min f (d1,d2) = d1d2,

s.t. d1 > 0, d2 > 0,

3
4

qL2

d1d2
2
−σid ≤ 0,

3
4

qL
d1d2

− σid√
3
≤ 0,

5
32

qL4

Ed1d3
2
− vmax ≤ 0,

(2.20)

where the constant ρL is dropped by the objective function as stated in similar
problems analyzed in ?, σid is the ideal Von Mises normal stress and vmax is
the maximum deflection admissible by reference design codes i.e. in this case
it is fixed to vmax = L/250. It is possible to define the fixed variables vector
bT = {b1,b2,b3,b4,b5} which contains problem data which not change during the op-
timization process, i.e. in this case b1 = q, b2 = L, b3 = σid , b4 =E, b5 = vmax. Since
the amount of fixed parameters, it is more convenient work with a dimensionless
form of the same problem. Posing d̃1 = b/L and d̃2 = h/L, the new dimensionless
objective function become

f̃ (d̃1, d̃2) = f (d1,d2)/L2 = d̃1d̃2,

whilst the normal stress constraint (2.17), the shear constraint (2.18) and the deflec-
tion constraint (2.19) become respectively as

3
4

(
q

Lσid

)
1

d̃1d̃2
2
≤ 1, (2.21)

3
√

3
4

(
q

Lσid

)
1

d̃1d̃2
≤ 1, (2.22)

5 ·125
16

(
q

E L

)
1

d̃1d̃3
2
≤ 1. (2.23)
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It is useful to define two dimensionless non-negative parameters, collected in b̃,
which completely characterize the fixed variables of the problem:

ψσ =
q

Lσid
, (2.24)

ψE =
q

E L
. (2.25)

Finally, the following dimensionless version of the problem is formulated (2.20)

min f̃ (d̃1, d̃2) = d̃1d̃2,

s.t. d̃1 > 0, d̃2 > 0,
3
4

ψσ

1
d̃1d̃2

2
≤ 1,

3
√

3
4

ψσ

1
d̃1d̃2

≤ 1,

5 ·125
16

ψE
1

d̃1d̃3
2
≤ 1.

(2.26)

To solve this problem, the PSO-SVM is adopted with the piecewise linear de-
creasing relax constraint function with a user coefficient λ for standard deviation of
the unfeasible points fixed to λ = 0.05. For academic purposes, in order to graphi-
cally analyze the behaviour of the constraint handling, the dimensionless parameters
are fixed as ψσ = ψE = 0.2, looking for a optimal solution in design domain for
the dimensionless design variables as 0 ≤ d̃1 ≤ 1.5 and 0 ≤ d̃2 ≤ 1. In this way,
with this particular choice of the dimensionless parameters the constraints intersect
each other creating discontinuous non-linear boundary of the feasible region. The
population size is always 50 individuals and the maximum iterations are 100. After
50 runs the results shown a quite great variability of the design variables but always
at the same objective function value. This fact enlightens the presence of a front
of possible optimal solutions. In fact, as showed in the graphical representations in
Figures 2.10-2.11-2.12, for this specific choice of b̃, only two constraints are active
and there exists a region of optimal solutions on the τ constraint boundary line. In
the following, the comparison table with PSO-SVM, PSO-Penalty and GA shows the
mean value and the standard deviation of the best objective function value obtained
after 50 runs.
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Fig. 2.10 Structural example 1: simply supported beam, case piecewise linear decreasing
relax function;
(a) 3D graph of simply supported beam problem design space; (b) Generation 1; (c) Genera-
tion 2
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Fig. 2.11 Structural example 1: simply supported beam, case piecewise linear decreasing
relax function;
(a) Generation 25; (b) Generation 50; (c) Generation 100
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Fig. 2.12 Structural example 1: simply supported beam, case piecewise linear decreasing
relax function; objective function history

Table 2.4 Structural Example 1, results from PSO-SVM piecewise linear decreasing relax
constraints, PSO-Penalty and GA

PSO-SVM PSO-Penalty GA
µOF 0.2598076 0.2598076 0.2610035
σOF 2.04e-09 5.61e-17 2.58e-03
Best OF 0.2598076 0.259808 0.2598076
Worst OF 0.2598076 0.259808 0.2664507

In order to find the entire front of the all optimal possible solutions for this
specific problem, it is necessary to find the all the pairs (d̃1,opt , d̃2,opt) posing the
objective function as f (d̃1, d̃2) = d̃1 · d̃2 ≈ 0.2598. As one can see in Figures 2.10-
2.11-2.12, this optimal front corresponds to a part of the τ constraint (2.22) posed as
an equality. Referring to the d̃1 optimal possible values, the optimum front is upper
bounded from the σ constraint (2.21) posed as an equality and lower bounded from
the box search space limits. Then, to calculate the optimal upper bound d̃1,opt,UB it is
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necessary to calculate the intersection between the two aforementioned constraints

3
4

ψσ

1
d̃1d̃2

2
= 1,

3
√

3
4

ψσ

1
d̃1d̃2

= 1,
=⇒

d̃2 =

√
3
4

ψσ

1
d̃1

,

d̃2 =
3
√

3
4

ψσ

1
d̃1

,

=⇒

√
3
4

ψσ

1
d̃1

=
3
√

3
4

ψσ

1
d̃1

=⇒ d̃1,opt,UB =
9
4

ψσ = 0.45.

(2.27)

As before, to calculate the optimal lower bound d̃1,opt,LB it is necessary to calculate
the intersection between the equality τ constraint and the horizontal line d̃2 = 1,
obtaining

3
√

3
4

ψσ

1
d̃1d̃2

= 1,

d̃2 = 1,
=⇒ d̃1,opt,LB =

3
√

3
4

ψσ = 0.2598. (2.28)

Finally, considering (2.27) and (2.28), it is possible to obtain all the optimal pairs
(d̃1,opt ,

d̃2,opt) using the following equation:

d̃2,opt =
0.2598
d̃1,opt

, with 0.2598 ≤ d̃1,opt ≤ 0.45. (2.29)

Since the algorithm works with dimensionless parameters, in order to find the
physical dimensions of the optimized cross-section it is sufficient to multiply the
obtained values (d̃1,opt , d̃2,opt) by L.

To show a technical possibly application coming from this simple example, a
only concrete beam with span length L = 3 m is now considered. Disregarding for
the moment the self-weight load, the q load set to 15 kN/m represents only a live
load. The concrete modulus is set to E = 25 GPa and the Von Mises ideal stress
is related to the tensile stress of concrete set to σid = 3 MPa. Considering the box
search space as 0 ≤ b ≤ 40 cm and 0 ≤ h ≤ 45 cm, the algorithm found the minimum
weight respecting the constraints with b = 16.67 cm and h = 42 cm. Rounding-off
these values, the self-weight associated to a concrete beam with b = 18 cm and and
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h = 45 cm is equal to:

G = γconcrete ·b ·h = 24 ·0.18 ·0.45 = 1.944 kN/m.

For sake of simplicity, adding G to q a new load equal to 16.944 kN/m which takes
into account also the self-weight is defined. Launching again the algorithm, new
optimal exact dimensions are now obtained: b = 18.83 cm and h = 45 cm. Rounding-
up the exact solution, a new self-weight equal to G = 2.16 kN/m is coming from a
section with b = 20 cm and h = 45 cm. Now the convergence is reached because
the new optimal exact solution is b = 19.07 cm and h = 45 cm. Finally, the optimal
cross-section for this concrete beam which minimize the self-weight is given by
b = 20 cm and h = 45 cm.

2.8 Structural Example 2: Optimization of a Warren
Truss Beam

The second structural example comes from Fiore et al. (2016c). In that work the
weight optimization of an in-plane Warren truss simply supported beam, depicted in
Figure 2.13, is performed with Differential Evolutionary Algorithm (DEA). The steel
profile used for truss members is a square hollow core section, as shown in Figure
2.14. This kind of profile ensures good stability against buckling and it represents a
good solution for this type of structure because of its high strength-to-weight ratio
Fiore et al. (2016c). On the other hand, joint connections are usually welded and so,
in order to reduce the total cost, it is important to reduce the size of sections to be
welded. Regarding to the size optimization problem, as shown in Figure 2.14, this
kind of sections are completely described by only two independent design variables:
the outer dimension of the cross section B and the thickness of the webs s. In this
problem the truss has m members belonging to four different type of cross sections
as reported in Figure 2.13: lower chord (B1,s1), upper chord (B2,s2), internal webs
(B3,s3) and external webs (B4,s4). To perform the shape optimization further two
design variables are considered: vertical height of the external webs Hmin and the

Fig. 2.13 Problem formulation: simply supported truss Warren beam.
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Fig. 2.14 Square hollow core tubular section design variables

maximum height Hmax. The design vector is therefore defined as

x = (B1,B2,B3,B4,s1,s2,s3,s4,Hmin,Hmax), (2.30)

and the box search space domain Ω is defined by:

60 ≤Bi ≤ 360 mm,

4 ≤si ≤ 30 mm,

50 ≤H ≤ L mm,

(2.31)

where i= 1,2,3 and 4 and L is the total span lenght. Considering the maximum value
of thickness smax = 30 mm, the minimum value of dimension B cannot be assumed
less than 2smax due to geometric limits. The objective function is represented by the
total weight of the structure (Marano et al., 2006):

W (x) =
m

∑
i=1

ρiliAi, (2.32)

where ρi = 7.85 t/m3 is the steel density supposed equal for all members, li is the
length and Ai is the cross section of the i-th member. The structural steel used in this
example is a S275 and the modulus of elasticity of the steel is 210 GPa.

Regarding topology optimization, in Fiore et al. (2016b) for fixed length L =

20 m, the optimal number of bays in which divide the lower chord is 20. The external
load is as a uniformly distributed load q = 100 kN/m applied on the lower chord
acting as point loads in the nodes of the truss. The constrains are represented by the
strength verifications about tensile stress (without any holes) (4.15), compression
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stress (4.16) and buckling instability (4.17) according to Eurocode 3 (EN 1993-1
2005 and EN 1993-2 2006). Despite from the Eurocode γM0 = 1 and γM1 = 1.1 for
bridges are recommended, to be more safe the partial safety factors are set both equal
to γM0 = γM1 = 1.1.

NEd

Nt,Rd
≤ 1, where Nt,Rd =

A fy

γM0

, (2.33)

NEd

Nc,Rd
≤ 1, where for classes 1,2,3 Nc,Rd =

A fy

γM0

,

while for class 4 Nc,Rd =
Ae f f fy

γM1

,

(2.34)

NEd

Nb,Rd
≤ 1, where for classes 1,2,3 Nc,Rd = χ

A fy

γM1

,

while for class 4 Nc,Rd = χ
Ae f f fy

γM1

.

(2.35)

Another constraint to satisfy is the maximum deflection which is usually set to
ulim = L/500 for bridges like that. In order to make a comparison with the results
of Fiore et al. (2016c), for academic reasons, there is no distinction of the load
combination for the strength verifications and for the deformability checks. The
verification equations not need to deeper examination because this is beyond the
scope of the present document. Therefore, the optimization problem statement is the
following Fiore et al. (2016c): Find x ∈ Ω such that

min f (x) =W (x),

s.t.
NEd

Nt,Rd
≤ 1,

NEd

Nc,Rd
≤ 1,

NEd

Nb,Rd
≤ 1,

umax ≤ ulim.

(2.36)

In order to solve (2.36), the FEM structural analysis was performed in the
Matlab® CALFEM and PSO-SVM was adopted for the optimization process. In the
PSO-SVM a population size of 100 individuals is set with kmax = 200 iterations and
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a constant relax function with user parameter λ = 3 applied to standard deviation
of unfeasible points. It is performed 50 times runs and the best-obtained solutions
are collected in Figure 2.15. As one can see in Figure 2.15, due to the complexity of
the problem, sometimes the algorithm not reach the optimum and stack in a local
minimum. As shown in the graph, the optimum solution is around 3.1 t, then it is
possible to cut the graph considering only the 21 runs over the total 50 which are
characterized by a best OF solution lower than 3.1 t (dashed line). In this way, the
possible outliers are excluded and now it is possible to perform the post-processing
searching for the real best solution.
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Fig. 2.15 Structural example 2: Warren Truss. Results from 50 times run PSO-SVM.

Considering the above-mentioned solutions, the obtained results showed in Table
2.5 has a quite large standard deviation in terms of design variables but very low in
terms of objective function. This means that it is possible to find many combinations
of design variables which is giving always the almost same objective function. The
best design value of the 50 runs, also reported in table 2.5, is taken into consideration.
It is possible to compare this latter objective function (3.074 t) with the optimal
exact solution given by the original DEA code output (Fiore et al. 2016b). The
DEA optimal solution was characterized by the weight of 2.95 t so this is in the right
order of magnitude. The comparison of the design variables is based only on general
observation in accordance with the literature, as affirmed in Fiore et al. 2016b. In
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Table 2.5 Structural Example 2, Mean values µ and standard deviations σ of best results
from 21 solution over 50 runs of PSO-SVM with OF less than 3.1 t; Last three columns:
Best exact solution, Trivial rounded-up solution and Refined industrial solution.

[mm]
µ

Exact
Sol.

σ

Exact
Sol.

Best
Sol.

Trivial
Industrial

Sol.

Best
Industrial

Sol.
B1 72.5 15.7 94.2 95 95
B2 190.2 70.2 128.1 130 105
B3 128.9 1.4 128.8 130 130
B4 211.7 107.9 132.1 135 110
s1 6.0 1.5 4 4 4
s2 14.7 7.4 18.8 20 26
s3 4.0 0.03 4 4 4
s4 14.0 8.4 14.7 15 19
Hmin 399.4 21.5 410.5 410 410
Hmax 4064.7 113.5 4145.0 4145 4145

OF [t] 3.0898 0.0071 3.074 3.189 3.092

fact, for instance, it is expected that, mainly due to instability problems, upper chord
and external diagonals would be bigger than the lower chord and internal diagonals.
Finally, the best exact solution may be trivially rounded-up to get an industrialized
more realistic design. The new design variables are reported in 2.5 and as one can see
this solution is more conservative and it leads to an increased total weight (3.189 t).

If one want to find a more accurate industrial solution it is necessary to perform
a more accurate analysis of the obtained results. Since the topology optimization
was already taken into account in Fiore et al. 2016b, one have to remember that in
the design variables the algorithm is performing the size optimization and the shape
optimization. This latter is regarding to the definition of the Hmin and Hmax values.
Considering only the above-mentioned 21 solutions and the standard deviations of
Hmin and Hmax, it is possible to assume that the rounded-up values of the best exact
solution can represent a good result for shape optimal parameters values:

Hmin ≈ 410 mm,

Hmax ≈ 4145 mm.
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Table 2.6 Structural Example 2, Best exact solution cross section

[mm,mm2] (B;s)exact
Requested

Area (B;s)best
industrial

Provided
Area

Lower Chord (94.2 ; 4) 1442.46 (95 ; 4) 1456
Upper Chord (128.1 ; 18.8) 8206.18 (105 ; 26) 8216
Internal Webs (128.8 ; 4) 1996.81 (130 ; 4) 2016
External Webs (132.1 ; 14.7) 6907.21 (110 ; 19) 6916

Once solved the shape optimization, regarding to the size optimization firstly the
best exact solution as the optimal one. One have to remember that Bi and si were
chosen as design parameters because of their independence, but in the optimiza-
tion process, they are connected. In fact, in both objective function evaluation and
constraints evaluation, these two parameters are combined into the resisting cross
section value. It is possible to obtain almost the same value of cross section with
different combinations of the design parameters. In particular, one can refer to the
optimal exact solution in terms of resisting cross sections which represent the best
solution in terms of both strength verification and minimization of the weight. As
one can check, for the best exact solution, the section class of all members is 1, but
other optimal solutions within the 21 considered are characterized by class 4 profile.
In this case, to get the strength verification satisfied, it is necessary to refer to the
resisting effective area. Usually in the design when it is possible it is preferred to
avoid class 4 profiles and the best condition is to find an optimal solution with class
1 profile. Therefore, the best industrial solution which respects all the constraint
is given by all the pairs (Bi,si) with i = 1,2,3 and 4 which gives class 1 profiles
and which gives the minimum value of area greater or equal than the effective areas
requested by the best solution in Table 2.6. This procedure allows us to find the best
solution which respects the strength verification only. For the instability verification,
it is necessary to take into account also the second moment of inertia which condition
the Euler’s critical load Ncr and consequently the dimensionless slenderness λ which
influence the reduction factor χ . Fixing the thickness si to discrete values (rounded
with 1 mm of precision), starting from the best-found solution and making an iter-
ative discrete research to find the Bi (rounded with 5 mm of precision) respectful
of our above-mentioned design rule, the best optimal industrial solution is found
and reported in the last column of Table 2.5. As one can check, the minimum cross
area of internal webs could be assured by the pair (B3,s3) = (105 ; 5) mm but, due
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Fig. 2.16 Optimal Warren Truss. Solid Line: undeformed shape; Dashed Line: deformed
shape

to instability problems, it is necessary to take into account the inertia and choose a
profile that ensures both strength and instability verifications.
The best industrial structure is verified to all strength and instability constraints.
Making a comparison between the two last columns of the Table 2.5, also the trivial
rounded-up solution represents a good optimal solution in terms of objective function.
In fact, minimizing the weight is important but the total cost is also affected by other
aspects e.g welding and detailing, labour cost, etc. So, the solution obtained by
trivial rounded-up the exact one it can be considered an acceptable optimal result. In
Figure 2.16 the undeformed and the deformed shape are depicted. It is possible to
appreciate which the node 7 and, due to symmetry, the node 15 are the nodes that
undergo the most deflection umax = 39.8 mm however it is respectfully of the service
limit L/500 = 40 mm.

In order to assess the validity of the results of the optimization process, the
warren truss beam is modelled with FEM professional software MIDAS Gen®. The
assessment is made not only in terms of axial force for each member, but in particular
in terms of performance ratio. This latter represents an efficiency percentage of the
usage of the steel and is given by the strength ratio between the demand and the
capacity. The simply supported warren truss is modelled through truss elements in
order to guarantee pure axial behaviour of each member. The section properties of
the trivial best industrial results from Table 2.5 are assigned to each element. The
adopted steel is always a S275 and the uniformly distributed load q = 100 kN/m
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Fig. 2.17 Model of the warren truss beam on Midas Gen®

acting on the lower chord is reconducted as a hanged load directly applied at lower
chord nodes acting as concentrated forces, as depicted in Figure 2.17. As already
remarked, in order to get results which are directly comparable with the Matlab
code and with DEA code from Fiore et al. (2016c) and for the sake of simplicity,
none load combination is considered. The aim is to demonstrate that the proposed
algorithm provides comparable results with DEA code which is used as a benchmark
and not making a perfect design completely respectful of the current codes. In order
to take into account this latter issue, it is sufficient to consider the correct the load
combination at ULS for the strength verification and SLS for the maximum allowable
displacement.

Fig. 2.18 Planar view of the warren truss beam on Midas Gen® with the axial force values
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Table 2.7 Comparison between Midas model and Matlab axial force elements

Midas
element

Matlab
element NEd NRd

1 1 350.47 364.00

2 2 166.18 364.00

3 3 255.42 364.00

4 4 238.70 364.00

5 5 179.70 364.00

6 6 99.54 364.00

7 7 7.27 364.00

8 8 92.60 364.00

9 9 197.58 364.00

10 10 306.16 364.00

11 11 306.16 364.00

12 12 197.58 364.00

13 13 92.60 364.00

14 14 7.27 364.00

15 15 99.54 364.00

16 16 179.70 364.00

17 17 238.70 364.00

18 18 255.42 364.00

19 19 166.18 364.00

80 20 350.47 364.00

40 21 1692.70 2200.00

41 22 1918.80 2200.00

42 23 1939.50 2200.00

43 24 1892.10 2200.00

44 25 1813.70 2200.00

45 26 1718.60 2200.00

46 27 1613.50 2200.00

47 28 1501.80 2200.00

48 29 1385.70 2200.00

49 30 1228.10 2200.00

78 31 1385.70 2200.00

77 32 1501.80 2200.00

76 33 1613.50 2200.00

75 34 1718.60 2200.00

74 35 1813.70 2200.00

73 36 1892.10 2200.00

72 37 1939.50 2200.00

71 38 1918.80 2200.00

70 39 1692.70 2200.00

21 40 498.81 504.00

Midas
element

Matlab
element NEd NRd

23 41 150.24 504.00

25 42 20.80 504.00

27 43 66.77 504.00

29 44 139.27 504.00

31 45 204.59 504.00

33 46 265.90 504.00

35 47 324.76 504.00

37 48 382.00 504.00

39 49 50.75 504.00

68 50 482.83 504.00

66 51 425.57 504.00

64 52 366.75 504.00

62 53 305.56 504.00

60 54 240.59 504.00

58 55 169.06 504.00

56 56 84.69 504.00

54 57 30.40 504.00

52 58 252.62 504.00

22 59 252.62 504.00

24 60 30.40 504.00

26 61 84.69 504.00

28 62 169.06 504.00

30 63 240.59 504.00

32 64 305.56 504.00

34 65 366.75 504.00

36 66 425.57 504.00

38 67 482.83 504.00

69 68 50.75 504.00

67 69 382.00 504.00

65 70 324.76 504.00

63 71 265.90 504.00

61 72 204.59 504.00

59 73 139.27 504.00

57 74 66.77 504.00

55 75 20.80 504.00

53 76 150.24 504.00

51 77 498.81 504.00

20 78 1523.00 1800.00

50 79 1523.00 1800.00
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As reported in Figure 2.18 and in Table 2.7, the results obtained from the Matlab
code are equal to the FEM software. The overall behaviour shows that the upper
chord is entirely compressed whereas the lower chord is entirely tensed. The internal
webs are alternatively compressed and tensed as usual for truss beam of this typology.
Calculating the strength ratio, it is worth noting that a performance ratio between 75%
to 98% is obtained for the members. These remarkable results show the importance
of the optimization process during the design phase which can strongly support the
decision process of the designer.

2.9 Conclusions

After an introductory part on PSO and the state of the art of constraint handling
techniques, the paper presented a new valid alternative not-penalty method to solve
constrained optimization problems. The main advantage with respect to the most
used nowadays penalty approach is represented by the generality of the machine
learning SVM algorithm. Since it depends intrinsically on the inner product of
the data, it is more adaptive even with discontinuous and non-linear boundaries
of the feasible region in the design space. In order to improve the behaviour of
the proposed algorithm to deal with very sharp and narrow feasible regions, a relax
constraint function was also implemented. Though a general set of parameters, which
govern the PSO and SVM algorithm, did not lead to feasible results independently
of the investigated problem statements, a well-calibrated relax constraint function
contributes positively to the exploration capability of the algorithm. From the
computational point of view, the trade-off was found in adopting a population
size not too large and using an incremental boundary update. Although it is also
possible sampling a huge initial random data and leave the boundary fixed during the
generations, this does not conduct a good result in terms of the objective function.
Finally, the two numerical benchmark examples demonstrated the convergence of the
new method in comparison with another penalty approach and with a GA. The last
two examples highlighted the adaptability of this new method even into the structural
optimization field. In particular, in the warren truss beam problem, the optimization
algorithm provided a numerical exact solution which can be easily industrialized
by the designer with a trivial rounding-off without jeopardizing the optimization
process. Although the warren truss beam example is performed under simplified
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assumption in order to make comparisons with DEA code from Fiore et al. 2016b,
from the technical point of view, the new optimization algorithm becomes a really
useful and powerful support for the designer during the design and the decision
process. It is important to stress that working with metaheuristic algorithm always
involves the definition of the value of many arbitrary parameters. Starting from
literature suggestions for these values, it is always strongly suggested to perform
a fine-tuning of some of these parameters also with a trial-and-error approach for
each specific problem in order to find the best optimal results in terms of objective
function convergence, computational effort and elaboration time.

Appendix: Test Functions Constrained Problems

The following mathematical problems were tested for the proposed PSO-SVM
algorithm.

1. The following problem is taken by Simionescu et al. (2004a) and it is called
the Sickle function.

min f (x) = (x1 −20)3 +(x2 −10)3

s.t. g1(x) = (x1 −5)2 +(x2 −5)2 −100 ≥ 0

g2(x) =−(x1 −5)2 − (x2 −5)2 +82.81 ≥ 0,

where the search space is defined as 0 ≤ x1 ≤ 10 and 14 ≤ x2 ≤ 15.5. The
global optimum is located at x∗= [14.095,0.84296] where f (x)=−6961.8139.

2. The following problem is taken from Runarsson et al. (2000) and it is a
multi-variable problem with five design variables and six constraints.

min f (x) = 5.3578547x2
3 +0.8356891x1x5 +37.293239x1 −40792.141

s.t. g1(x) = 85.334407+0.0056858x2x5 +0.0006262x1x4 −0.0022053x3x5 −92 ≤ 0,

g2(x) =−85.334407−0.0056858x2x5 −0.0006262x1x4 +0.0022053x3x5 ≤ 0,

g3(x) = 80.51249+0.0071317x2x5 +0.0029955x1x2 +0.0021813x2
3 −110 ≤ 0,

g4(x) =−80.51249−0.0071317x2x5 −0.0029955x1x2 −0.0021813x2
3 +90 ≤ 0,

g5(x) = 9.300961+0.0047026x3x5 +0.0012547x1x3 +0.0019085x3x4 −25 ≤ 0,

g6(x) =−9.300961−0.0047026x3x5 −0.0012547x1x3 −0.0019085x3x4 +20 ≤ 0,



190 A machine learning approach for non-penalty constraint handling

where the search space is defined as 78 ≤ x1 ≤ 102 and 33 ≤ x2 ≤ 45 and 27 ≤
x3,x4,x5 ≤ 45. The optimum is located at x∗ = [78,33,29.995256025682,45,
36.775812905788] where f (x) =−30,665.539.



Chapter 3

Enhanced Multi-Strategy Particle
Swarm Optimization

3.1 Introduction

In optimization problems, the aim is optimizing certain mathematical functions,
called Objective Functions (OF) f (x). These problems can be divided into single-
objective or multi-objective problems, depending on the number of OFs, and a further
subdivision for single-objective problems is based on the presence of constraints.
Unconstrained problems are defined as:

min
x∈Ω

{ f (x)} (3.1)

meanwhile, constrained problems are defined as:

min
x∈Ω

{ f (x)}

s.t. gq(x)≤ 0 ∀q = 1, . . . ,nq

hr(x) = 0 ∀r = 1, . . . ,nr

(3.2)

where x = {x1, . . . ,x j, . . . ,xn}T is the design vector whose terms are the parameters
to be optimized. The search domain is a multidimensional space Ω based on the
admissible intervals of values for each j-th variable, which are defined by its lower
and upper bounds [xl

j,x
u
j ]. This detects a box-type hyper-rectangular search space
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Ω, which is typically defined as the Cartesian product (denoted by the × symbol)
among the admissible intervals:

Ω = [xl
1,x

u
1]× . . .× [xl

j,x
u
j ]× . . .× [xl

n,x
u
n] (3.3)

The constraints in (5.4) can belong to two different categories: inequality gq(x)
and/or equality hr(x) constraints. Each equality constraint can be easily converted
into a couple of inequality constraints; therefore, without any loss of generality, it
is possible to consider only inequality constraints in (5.4), i.e., gp(x) ≤ 0, where
p = 1, . . . ,nq,nq+1, . . . ,np, being np = nq +2nr.

The adoption of evolutionary algorithms (EAs) has received much more attention
in recent years because of their successful capability to handle complex optimization
problems. This is addressed mainly to the fact that they do not require any first-
order (gradient) or second-order (Hessian) information coming from the problem
to be solved, which is conversely a prerogative of the traditional gradient-based
mathematical search approaches. Furthermore, the quite simple implementation
of EAs has determined their rapid spread, and they have immediately become an
attractive tool among practitioners. Among the many alternatives available nowadays,
the genetic algorithm (GA) proposed by J. Holland in the 1970s (Martí et al. (2018))
still represents one of the most popular population-based tools, which tries to simulate
the biological evolutionary process of a set of candidates solutions mimicking the
biological Darwinian Theory. This is realized by adopting specific pseudo-random-
based operators such as crossover, mutation, and selection in order to reproduce
the long-term process of evolution in a population with the survival of the fittest
individuals (Lagaros 2002). In the last two decades, the adoption of metaheuristic
algorithms in many engineering applications highlighted their successful capabilities
to deal with real-world constrained problems ( Marano et al. (2007), Pelliciari et al.
(2018), Xue et al. (2018), Greco and Marano (2015), Di Trapani et al. (2022),
Asso et al. (2021)), e.g., dealing with structural design De Domenico et al. (2020),
De Tommasi et al. (2017), Sardone et al. (2021), Cucuzza et al. (2021b) and structural
optimization tasks Cucuzza et al. (2021a), Fiore et al. (2016a), Aloisio et al. (2022),
Marano et al. (2014).

In the framework of EAs, a more recent but already well-known approach is the
particle swarm optimization (PSO) algorithm. It was mentioned by Kennedy and
Eberhart (1995b) for the first time, and then it rapidly became widespread during
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the following years. Contributions from the Scientific Community have not ended
yet, and still nowadays there is active research about this topic to improve the search
operators and the performances. The PSO is also a population-based algorithm
which takes inspiration from the study of the behavioural models of birds flocking or
fish schooling, whose individuals explore the natural environment in order to find
and reach some source of food. Similarly, the algorithm tries to evolve a particle
swarm of candidate solutions in the domain search space in order to find the optimum.
The PSO was originally developed to face unconstrained problems, but it was later
adapted to also solve constrained problems exploiting specific strategies.

The following section presents a brief review of the PSO mechanisms, and the
main adopted strategies to solve constrained problems are mentioned. After that, the
description of the proposed enhanced multi-strategy PSO method is illustrated. Fi-
nally, the authors try to merge several state-of-the-art concepts to obtain an improved
PSO algorithm to successfully handle constrained problems with a non-penalty based
approach. The novel contributions of this article can be summarized as follows:

• PSO implementation with the main state-of-art improvements, adopting a
multi-strategy approach. In this way, the algorithm attempts to avoid wasting
many iterations when the algorithm stalls or is trapped in local minima, etc.;

• A non-penalty approach for constraint handling which instead exploits infor-
mation of swarm positions in terms of the objective function and the actual
degree of constraint violation to guide the swarm evolution;

• A novel unfeasible local search operator is presented to help the PSO when
it stalls in an unfeasible region quite close to the actual feasible one. This
local search operator relies on the meta-heuristic, self-adaptive Evolutionary
Strategy (ES) approach, which does not require any other further arbitrary
parameter.

In a different recent contribution of the authors (Rosso et al. (2021b)), some
further novel approaches to deal with constraints have been presented, considering
a hybridization of the PSO with a machine learning support vector machine. How-
ever, the current paper presents a completely different approach based on handling
constraints directly based on information which can be retrieved from the swarm
positions in terms of objective function and constraints violations. Finally, the en-
hanced multi-strategy PSO is successfully tested on some benchmark constrained
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mathematical problems from the literature compared with other PSO implemen-
tations that adopt more standard penalty-based constraint handling techniques. In
conclusion, the proposed multi-strategy PSO has been validated on real-world case
studies, considering some literature on three-dimensional truss design structural
optimization problems.

3.2 State of the Art of Constraint Handling

In order to adapt EAs to deal with constrained problems, several strategies were
developed by the scientific community. As a matter of fact, constraint handling
is a big challenge because it is related to find the optimal point respecting all
the constraints, and therefore, the algorithms may be able to deal with unfeasible
solutions in an efficient way. Despite several studies (e.g., Kennedy and Eberhart
(2001)) demonstrating that PSO has a good convergence rate, it was originally
proposed to solve unconstrained optimization problems, such as many other Soft
Computing techniques. The implementation of some effective constraint-handling
mechanisms is a crucial issue for all biologically inspired optimizers Deb (2000a),
Coello Coello (2002), Wang et al. (2008), Mezura-Montes (2009a). The several
strategies developed have been classified by different authors into basically five main
categories (see, for instance, the state-of-the-art review by Coello Coello (2002),
Koziel and Michalewicz (1999a), Michalewicz and Fogel (2008)):

• Penalty-functions-based methods;

• Methods based on special operators and representations;

• Methods based on repair algorithms;

• Methods based on the separation between OFs and constraints;

• Hybrid methods.

The most adopted method due to its simplicity is the exterior penalty approach
which allows to convert the problem in an unconstrained version rezaee jordehi
(2015), Kohler et al. (2019). Many different approaches such as the death, static,
dynamic, or adaptive penalty functions have been proposed in time, e.g., one can
refer to rezaee jordehi (2015). A proper choice of the constraint-handling mechanism
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affects the performance of the algorithm, and one of the critical issues to take into
account is the preservation of the diversity of the population. The brutal elimination
of the unfeasible particles, such as in the death penalty rule, can jeopardize the
exploration performances due to a loss of information Coello Coello (2002), Mezura-
Montes and Coello (2005a). In general, the penalty approach rely on the evaluation
of a factor that applies a certain penalty to the OF, depending on the degree of
violation and the number of violated constraints. Therefore, the constrained OF f (x)
is transformed into an analogous unconstrained OF φ(x):

min
x∈Ω

{φ(x))}= min
x∈Ω

{ f (x)+H(x)} (3.4)

where H(x) is the penalty function, whose specific definition depends on the strategy
adopted. If the penalty is constant during the iterations, it is a static penalty function,
while if it is changing at each iteration, it is addressed as a dynamic penalty function.
These two techniques are the most popular tools in structural optimization, see, for
instance, the papers by Hasançebi et al. Hasançebi et al. (2009) and Dimopoulos
Dimopoulos (2007).

In the case of static-penalty-based techniques, the equivalent unconstrained
problem is formulated with a static penalty factor Hs(x) that is generally expressed
as follows (see Parsopoulos and Vrahatis (2005), Coello (1999)):

Hs(x) = w1HNVC(x)+w2HSVC(x) (3.5)

where HNVC is the number of constraints that are violated by the particle x, HSVC is
the sum of all violated constraints, and w1 and w2 are static control parameters of
the penalty scheme:

HSVC(x) =
np

∑
p=1

max{0,gp(x)} (3.6)

The numerical values adopted by Parsopoulos and Vrahatis (2005) are w1 =w2 = 100.
In the present research, some standard penalty PSO approaches are adopted for
making comparisons with the enhanced PSO version, which is presented in the
following section. For these PSOs with penalty approaches, w1 = 0 and 1000 <

w2 < 10000 have been assumed, depending on the analysed problem. Depending on
the values of w1 and w2, it is possible to set the level of severity of the constraint
violations: In case of extremely high control parameters, the penalty is called the
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death penalty, and it tries to completely avoid any kind of research inside the
unfeasible region, even if the number of violated constraints is rather limited.

The popularity of the penalty function technique is due to its simple implementa-
tion, and it strongly enhances the performance of an algorithm that is trying to solve
constrained optimization problems. To improve the effectiveness of the penalty fac-
tor, a penalty function which changes the weight of the penalty during the iterations
is also adopted in the current study. Indeed, it is possible to better control the search
space of the particles with this latter dynamic approach, allowing a more relaxed
constraint handling at the beginning and an increasing penalty value approaching the
end of the available iterations. Firstly proposed by Parsopoulos and Vrahatis (2002),
it has recently been adopted by Barakat and Altoubat (2009) for the optimum design
of RC water tanks. To this end, the (5.6) is readily modified as follows:

min
x∈Ω

{ f (x)+ khHd(x)} (3.7)

in which kh is a dynamic penalty whose numerical value was evaluated as (Parsopou-
los and Vrahatis (2002), Barakat and Altoubat (2009)):

kh =
√

k (3.8)

and Hd(x) is the dynamic penalty factor:

Hd(x) =
np

∑
p=1

θp(x)[max{0,gp(x)}]γp(x) (3.9)

Typical assignments for the penalty parameters are (see, for instance, Parsopoulos
and Vrahatis (2002), Barakat and Altoubat (2009)):

θp(x) =


10 if max{0,gp(x)} ≤ 0.001

20 if 0.001 < max{0,gp(x)} ≤ 0.100

100 if 0.100 < max{0,gp(x)} ≤ 1.000

300 otherwise.

(3.10)

γp(x) =

1 if max{0,gp(x)} ≤ 1

2 otherwise.
(3.11)
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It is evident that dynamic penalty methods require a larger number of control
parameters in comparison to the static one. Considering kh as defined in (3.8), in the
present paper, the dynamic penalty factor is assumed to have:

10 < Hd(x)< 1000 (3.12)

The evaluation of a proper penalty is a fundamental passage to achieve a good
solution of an optimization problem: Ideally, it should be set as low as possible to
avoid high computational efforts and problems arising when the global optimum is
close to the constraint. Indeed, if the optimum is at the boundary and the penalty
is too high, the element which is attracted by that area is immediately pushed back
when the boarder is crossed. This mechanism is avoided by adopting a low penalty
that is not too severe in case of small violations and also allows a good investigation
in such critical areas. However, if the penalty is too low and it does not contrast the
constraint violation properly, a lot of effort will be spent in the unfeasible region,
providing no useful information for the minimization purpose.

3.3 Enhanced PSO with a Multi-Strategy Implemen-
tation and Hybridisation with an ES-Based Oper-
ator

In the present section, starting from the standard Newtonian-dynamics-based PSO
approach proposed by Kennedy and Eberhart (1995b), an enhanced PSO is imple-
mented by adopting some of the most well-known available strategies in literature
and adding a special operator in order to increase the search performance of the
standard version. The various strategies are merged together, and the flowchart of
the implemented algorithm is illustrated in Figure 3.1.

At first, the initial population is generated randomly in the hyper-rectangle
search space, adopting the Latin Hypercube Sampling (LHS) to generate an initial
population with the minimum correlation between samples Monti et al. (2010a).
Thereafter, for each particle, the OF and the constraints are evaluated defining
the level of violation of each constraint. Each particle is addressed to a specific
aim according to their violation value. If none of the constraints are violated, this
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particle is labelled as feasible, and it will be addressed to minimize the objective
function. Otherwise, if it violates at least one constraint, it is labelled as unfeasible,
and it will try to find the right path to minimize the constraint violation. If more
than one constraint is violated, only the maximum violation is considered at that
point. Therefore, it is possible to assume that each particle is able to see only
the envelope of the maximum violations for all points in the solution space. For
this reason, the current approach has been named as a multi-strategy PSO. In this
way, it is not necessary to define some arbitrary violation penalty factor because
the code directly relies on the envelope of the violation of the constraints in a
particle position at a certain iteration number. After the first population is randomly
sampled and evaluated, the role and the aim of each particle have been defined, and
the swarm evolution cycle can start, as illustrated in Figure 3.1. The evolutionary
phase of the PSO involves the Velocity update according to the before mentioned
formulation (2.4) and the Position update according to Equation (2.5). After that, the
cognitive memory (pbest) of each particle is updated if a better feasible position is
reached with respect to the previous iterations, and the local best attractor (lbest) and
the best position for the current generation (gbest) are also updated. The termination
criterion is encountered when a predefined maximum number (kmax) of iterations is
reached.
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Fig. 3.1 Enhanced PSO multi-strategy flowchart.

It may happen that the feasible region is quite little and narrow with respect to
the entire search space; therefore, after some iterations, the swarm also may not have
found the feasible region yet. Since the swarm has so far minimized the constraint
violation, the swam has probably converged to an unfeasible point with the minimum
value of constraint violation, and the feasible region may be located relatively close
to that point. This fact suggests that by enhancing the local exploration around
the so far unfeasible gbest founded point, the algorithm could be able to identify
the feasible search space. Therefore, if the swarm has stalled to an unfeasible
point for a number k = kES operator of iterations, a local search operator based on
the Evolutionary Strategy approach is thus performed. The Evolutionary Strategy
(ES) algorithm is another famous paradigm of the classical EAs based on Darwinian
Selection and it was developed by Ingo Rechenberg and Hans-Paul Schwefel at
the Technical University of Berlin around the 1960s Martí et al. (2018), Beyer and
Schwefel (2002). Without entering deeper into the details of this algorithm, it is
necessary to recall that this is a population-based method which relies on the survival
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of the fittest members. Starting from a parent population, the best individuals have
a greater chance to be selected and evolve, forming a certain number of offspring
which are generated throughout a slight mutation in the genome of the selected
parents. The degree of mutation is governed by a mutation step, which is usually
drawn by a Gaussian normal distribution N(0,σ), in which σ is also known as
the mutation step size Beyer and Schwefel (2002), Eiben and Smith (2003). In
formulae, it is possible to express that each gene of a selected parent xi undergoes
a mutation procedure which produces a new offspring’s gene equal to xi +N(0,σ).
Then, the parents and the offspring will compete for survival, and only the best
individuals will survive to the next generation. The main advantage of ES is that it
is based on a single parameter to be tuned, the mutation step σ . Many variants of
ES were developed in recent decades as mentioned in Beyer and Schwefel (2002),
but the self-adaptation strategy (also denoted as σSA-ES or simply SA-ES Beyer
(1995), Fister jr and Fister (2015), Hansen (2006)) is taken into account in the
current study. To perform an SA-ES, it is necessary to consider a new representation
for the individuals. From a practical point of view, when the parent genome is
slightly mutated, if the generated offspring is better in terms of OF evaluation,
this offspring will probably survive to the next generation, and it will probably
spread its improved genome in the next iterations. Based on this observation, the
mutation step can also be added to the original genome of the parent chromosome,
giving a new individual representation such as (x1, . . . ,xn,σ). In this way, not only
the genes but also the mutation step undergoes the mutation operator. Thus, if a
better offspring is obtained, it will survive and spread its chromosome information,
which now implicitly takes into account a new adaptive mutation step. Therefore,
in an indirect manner, good individuals will also generate good mutation steps
which will be adaptively tuned during the next generations. The above-mentioned
approach is known in the literature as SA-ES with uncorrelated mutation with
one step size Eiben and Smith (2003), Fister jr and Fister (2015). When a number of
different mutation steps are considered, one for each gene in the chromosome ,such
as (x1, . . . ,xn,σ1, . . . ,σn), the adaptive ES strategy is called SA-ES with uncorrelated
mutation with n step size Eiben and Smith (2003), Fister jr and Fister (2015). It is now
clear that the main advantage to introduce the ES local search operator to the current
enhanced PSO implementation is due to the fact that it can be implemented without
manually tuning other parameters because they are self-tuned by the algorithm itself.
For example, in Miranda and Fonseca (2002), a hybridization of the PSO with ES



3.3 Enhanced PSO with a Multi-Strategy Implementation and Hybridisation with an
ES-Based Operator 201

was performed to enhance the classical velocity update with an adaptive update of
the inertia weight and the acceleration factors. For the sake of completeness, there
are more sophisticated self-adaptive approaches which take into account also the
correlations among the various step sizes associated with the various genes, which are
named as SA-ES with correlated mutation Eiben and Smith (2003), Fister jr and Fister
(2015) or covariance matrix adaptation CMA-ES Beyer (1995), Fister jr and Fister
(2015), Kramer (2010). In the current study, the SA-ES with uncorrelated mutation
with n step size operator is integrated with the PSO inside a local search operator
in order to try to locate the feasible region if the swarm stalls to an unfeasible point
for kES operator = 10 iterations. From the unfeasible gbest starting point xGb,unfea, a
population of Np = 50 parent points is sampled from a multivariate Gaussian mixture
model in which each component has mean equal to the gbest’s i-th component,
xGb,unfea

i , and covariance equal to a first attempt mutation step σi. Each i-th mutation
step is defined by:

σi = τ ·N(0,1) (3.13)

i.e., the absolute value of the product of a random number sampled from a normal
standard distribution N(0,1) multiplied to a learning rate parameter τ , which is
suggested in Beyer (1995) to be assumed as 1/

√
Np. Then, a first population of

No = 100 mutated offspring is generated by randomly selected parents adopting a
mutation scheme in which the i-th new mutation step size component is updated as:

σi,off = max(0,σi +N(0,1)) . (3.14)

Thereafter, a new offspring point is obtained by adding to the parent position the
mutated vector sampled by the multivariate Gaussian mixture model with a mean
equal to a zero array and covariance equal to the mutation step size vector updated
as above. Subsequently, the mutated offspring are added to the parent population,
and the best Np individuals are selected to survive to the next iteration in terms
of constraints violations (or in case of feasible points in term of OF). In the ES
jargon, this approach is called the µ +λ−ES strategy because the µ (Np) parents
will compete with both each other and also new λ (No) offspring, but finally, only µ

individuals will survive, whereas the others will be discarded Beyer (1995). This
mechanism resembles the steady-state approach of other EAs likewise in the genetic
algorithm GA Martí et al. (2018). The ES operator could theoretically perform a
maximum number of local iterations equal to kmax,Local = 50, but in the case that a
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feasible point is found, the ES evolutionary cycle is interrupted. This new feasible
point is thus set up as the gbest of the previous PSO swarm, which remained in a
sort of standby state while the local ES operator was in action. In summary, the
PSO cycle, which has entered in the ES operator due to the fact that it stalled for
kES operator = 10 iterations on an unfeasible gbest point, can now restart again as
usual with an improved knowledge provided by a new feasible posed gbest point
found by the local search ES operator. The numerical example Problem g06, whose
statement is in the Appendix 5.7 (Sickle Problem Simionescu et al. (2004b)), has
been depicted in Figures 3.2 and 3.3 to graphically show the enhanced multi-strategy
PSO procedure. Each swarm particle is able to see only the sub-figures (a), (c),
and (e) of Figure 3.2 when its position is inside the feasible region (with the role to
minimize the OF); otherwise, it is able to see only the landscape produced by the
constraint envelope, subfigures (b), (d), and (f) of Figure 3.2. After 10 stagnations on
the unfeasible gbest point (black cross in sub-figures (a), (b), (c), and (d) of Figure
3.2), the ES operator was performed. It generated a local population of points near
the unfeasible gbest point, which are colored as purple if they are unfeasible or
green if they are feasible. Then, this population evolves with the before explained
SA-ES approach until at least one point falls inside the feasible region (which is the
space between the two blue parabolas) or the maximum number of local iterations is
reached. In that specific case, at the first local iteration, some feasible points were
already found. Therefore, the best individuals in term of OFs was selected among
the green points of Figure 3.2c,d, and then the PSO could continue its evolutionary
cycles until the maximum number of iterations were reached (kmax = 500). The
history of the optimal solution found during the PSO iterations is depicted in Figure
3.3.

For some very hard problems, it may also happen that after the action of the ES
local search operator, the feasible region is not found. In that case, the PSO starts the
evolution cycle again with the same unfeasible gbest point for some other iterations
until the feasible region is found. Otherwise, when the iterations reach a total number
of unfeasible stagnations kmax Unfeas Stagn = 15, the complete reset of the population
is performed. In practise, the algorithm completely restarts again from the first point
of the flowchart, as shown in Figure 3.1. Therefore, the hope is that a completely
new random sampling of the initial swarm will generate a new initial configuration
which may find this time the right path to the optimal solution of the optimization
problem.
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On the contrary, when the PSO normally finds the feasible region and it optimizes
the solution until it reaches a gbest which stagnates for a certain number of iterations
kmax Feas Stagn = 50, the population is restarted as well. This is due to the fact that the
so far found optimal solution could be a local minimum. If there is a certain number
of iterations left before reaching the maximum PSO available iterations, k < kmax,
the swarm is thus restarted again from the first step of the PSO flowchart. In that
case, all the memories of the population are reset (pbests and lbests), but the so far
found optimal solution (gbest) remains unchanged, unless a better solution in terms
of OF is found from the new restarted-swarm exploration phase.

In the following section, the enhanced multi-strategy PSO has been tested on
some constrained numerical benchmark literature problems, and the results are
compared with two PSO implementations, which adopt a typical penalty approach.
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(d) Constraints—ES operator Generation 1
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Fig. 3.2 Example Problem g06, see the Appendix 5.7 (Sickle Problem Simionescu et al.
(2004b)); (a,b) the OF and constraints envelope contour representations, respectively at
generation 12. The black cross marker is the unfeasible gbest, the red dots are the swarm
points. (c,d) After 10 unfeasible stagnations, the ES local search operator generate a local
search population (purple dots) to find the feasible region (green dots). (e,f) the OF and
constraints envelope contour representations, respectively, at the final generation 500. The
black cross marker is the feasible gbest point, the red ones are the particles in a unfeasible
region, and the green ones are the particle inside the feasible region.
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Fig. 3.3 Example Problem g06, see Appendix 5.7 (Sickle Problem Simionescu et al. (2004b));
Objective function history of the gbest (optimal solution).

3.4 Numerical Test and Comparisons

The new enhanced multi-strategy PSO illustrated in the previous section was imple-
mented in a Matlab environment and some numerical constrained benchmark tests
from the literature were analysed. In particular, the statements of the mathemati-
cal constrained problems were taken from Long et al. (2013), in which a total of
13 constrained problems are illustrated. In the current study, only some problems
were considered, in particular, the problems with inequalities constraints only were
analysed. As stated before, the PSO does not perform very well with equality con-
straints despite some strategies being proposed in literature to convert each equality
constraint into a couple of equivalent inequality constraints. For the sake of com-
pleteness, the selected problem statements are also reported in the Appendix 5.7 of
the present paper. In order to make some comparisons with the other more classical
constraint handling approaches, the current enhanced multi-strategy PSO is com-
pared with a more classic penalty approach. For this purpose, the PSO code proposed
by Alam (2016a) was adopted and modified in order to take into consideration both
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a static penalty approach as previously mentioned in (5.5) and also with a dynamic
penalty as in (3.7). The penalty factors were properly tuned problem by problem
in order to obtain the optimal results. The swarm size was set to N = 100, and the
maximum allowable iterations were fixed to kmax = 500 for all the PSOs considered.
The comparisons shown in Table 3.1 are developed from the results obtained by 50
independent runs and making comparisons among best and worst results and the
mean and standard deviation of the OF from the dataset of the 50 final results for the
3 different PSOs. The results in Table 3.1 produced by the enhanced multi-strategy
PSO are satisfactory for the selected numerical problems, and they are generally
consistent if compared with the theoretical results and with the other penalty-based
PSO implementations. This proves the effectiveness of the current enhanced PSO
implementation to deal with constrained optimization problems without the tedious
calibration of too many arbitrary parameters. Because of these initial promising
results, future works should therefore include some other numerical applications and
some engineering practical optimization problems.



3.4 Numerical Test and Comparisons 207

Table 3.1 Selected numerical benchmark examples taken from Long et al. (2013) and com-
parisons of the final results for 50 runs among the enhanced multi-strategy PSO (PSO_MS),
the PSO with static penalty (PSO_ST), and the PSO with dynamic penalty (PSO_DYN).

Problem g01 PSO_MS PSO_ST PSO_DYN

optimum −15.000

best OF −15.000 −15.000 −15.0
worst OF −12.002 −12.000 −12.000

mean −14.443 −13.938 −13.920
std 0.89478 1.4333 1.4546

Problem g02 PSO_MS PSO_ST PSO_DYN

optimum 0.803619

best OF 0.80357 0.80146 0.79358
worst OF 0.60963 0.52013 0.38285

mean 0.75896 0.70105 0.66597
std 0.063604 0.07356 0.087006

Problem g04 PSO_MS PSO_ST PSO_DYN

optimum −30,665.539

best OF −30,666.0 −30,666.0 −31,207.0
worst OF −30,666.0 −30,665.0 −30,137.0

mean −30,666.0 −30,665.0 −31,138.2
std 2.20e-05 0.86587 252.2036

Problem g06 PSO_MS PSO_ST PSO_DYN

optimum −6961.81388

best OF −6961.8 −6973.0 −6963.0
worst OF −6958.4 −6973.0 −6963.0

mean −6960.7 −6973.0 −6963.0
std 0.97521 0.0000 0.0000

Problem g07 PSO_MS PSO_ST PSO_DYN

optimum 24.3062091

best OF 24.426 25.034 24.477
worst OF 27.636 30.203 30.112

mean 25.4129 28.508 27.043
std 1.1209 1.4351 1.8821
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Table 3.1 Cont.

Problem g08 PSO_MS PSO_ST PSO_DYN

optimum 0.095825

best OF 0.095825 0.095825 0.095825
worst OF 0.095825 0.095825 0.095825

mean 0.095825 0.095825 0.095825
std 6.96e-17 6.77e-17 7.10e-17

Problem g09 PSO_MS PSO_ST PSO_DYN

optimum 680.6300573

best OF 680.64 680.63 680.63
worst OF 680.98 680.72 680.73

mean 680.73 680.66 680.66
std 0.079365 0.017526 0.018915

Problem g12 PSO_MS PSO_ST PSO_DYN

optimum 1.0

best OF 1.0 1.0 1.0
worst OF 1.0 1.0 1.0

mean 1.0 1.0 1.0
std 0.0000 2.12e-15 0.0000

3.5 Structural Optimization on Literature Benchmarks

In this final part, some well-acknowledged structural engineering optimization prob-
lems from the literature have been adopted for evaluating the performances of the
proposed multi-strategy PSO algorithm with the unfeasible local search operator.
In the analysed benchmarks, the multi-strategy PSO has been compared with other
optimization strategies, i.e., the PSO with static and dynamic penalty inspired by
the code of Alam (2016a) and with the GA from Matlab’s built-in code functions.
Structural optimization problems can be mainly grouped into three main categories
Christensen and Klarbring (2008a): the size optimization, where the aim is to find
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the optimal size of the structural elements; the shape optimization, in which the
design variables govern the structural shape; the topology optimization, which is
the more complex because it involves the modification of the structural typology
and morphology. These problems could be tackled separately or even combined.
Mainly focusing on the contribution of Camp and Farshchin (2014a), in the current
study, three different truss design constrained size optimization problems have been
analysed. The main goal of truss design problems is to minimize the total weight w
of the structure, which is indirectly connected to the material consumption volume
amount and thus to the cost of the structure Christensen and Klarbring (2008a). In-
deed, adopting a certain material with unit weight ρi, the main goal results in seeking
for the optimal cross-sectional areas Ai to be devoted to every structural element in
the design domain. A first constraint is represented by the box-constraint related
to the admissible range of cross section area values to be adopted Ai ∈ [ALB

i ,AUB
i ].

Thereafter, at least two other inequality constraints have to be considered. The
first one is related to the respectfulness of the maximum allowable stress σadm in
each truss member (resistance-side constraint) and the second one is referred to
the respectfulness of a maximum displacement threshold δadm (deformation-side
constraint). The general formulation of the truss design problem can be stated as
follows:

min
x∈Ω

f (x) =
Nel

∑
i=1

ρiLiAi

s.t. ALB
i ≤ Ai ≤ AUB

i

σi ≤ σadm

δ ≤ δadm

(3.15)

where Nel is the total number of elements in the truss design domain and Li is the
actual length of each member. The material adopted in the current study is structural
steel with unit weight of ρi = ρ = 0.1 lb/in3 (1 lb/in3 is equal to 0.0276799 kg/cm3)
and Young’s modulus of 107 psi (1 psi is equal to 0.00689476 MPa).

3.5.1 Ten-Bar Truss Design Optimization

The first problem analysed is referred to as a 10 bar truss cantilever structure, as
depicted in Figure 3.4. In the cantilever structure, each member has been labelled
with a number from 1 to 10. The cantilever span is in total 720 inches (1 inch
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is equal to 25.4 mm), and the depth is 360 in. The truss structure is loaded by
2 downward forces of 100 kips each (1 kips is equal to 4.4482 kN). The design
vector considers cross-section areas as continuous variables belonging to the a close
interval [0.1,35] in2. The maximum allowable deflection both in horizontal and
vertical direction for every node has been set to δadm =±2 in, whereas the maximum
allowable stress is equal to σadm = ±25 ksi. In total, 100 independent executions
have been performed, and the mean and standard deviation of the OFs have been
calculated. A population size of 50 particles and a maximum iterations number of
500 have been set both for the multi-strategy PSO and the GA. For the PSO with
penalty approaches, 500 particles have been set as the swarm size because of their
very poor results when only 50 particles have been considered. The optimization
results obtained are reported in Table 3.2, which compares the multi-strategy PSO
with the PSO with static penalty (PSO-Static), with dynamic penalty (PSO-Dynamic),
and with GA. It is worth noting that the penalty approaches fail dreadfully, in this
case, to deal with real-life structural design problems, whereas the proposed multi-
strategy PSO algorithm produces good results which are comparable with the GA
and quite close to the actual unknown optimum solution.

21
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Fig. 3.4 Graphical representation of the 10 bar truss design optimization problem.
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Table 3.2 Ten-bar truss design example: results comparisons for 100 runs among the enhanced
multi-strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static), and the PSO with
dynamic penalty (PSO-Dynamic) and GA.

Cross-Section [in2]

Element Sol. from 2014a PSO-Static PSO-Dynamic GA PSO-MS

1 28.920 29.6888 30.3092 30.145 30.372
2 0.100 18.3211 14.7464 0.100 0.110
3 24.070 19.9891 16.5717 22.466 23.644
4 13.960 18.2381 25.1945 15.112 15.391
5 0.100 2.3404 4.5489 0.101 0.101
6 0.560 20.8674 26.1207 0.543 0.496
7 21.950 21.1805 32.2698 21.667 20.984
8 7.690 16.0851 0.2168 7.577 7.410
9 0.100 6.0845 7.5871 0.100 0.103
10 22.090 25.5632 23.524 21.695 21.378

best OF [lb] 5076.310 6141.986 6333.035 5063.250 5063.328

worse OF [lb] - 8415.134 8675.750 5144.148 5229.108

mean [lb] - 7294.455 7501.395 5079.744 5076.473

std. dev. [lb] - 516.7823 475.389 14.1194 24.867

3.5.2 Twenty-Five-Bar Truss Design Optimization with Multi-
Load Cases Conditions

The second structural optimization problem analysed is referred to as the 25 bar three-
dimensional truss tower structure, as depicted in Figure 3.5. In plan view, the tower
footprint is a square of side 200 in, which tapers to 75 in at an elevation of 100 in,
and finally reaches the maximum elevation at 200 in from the ground. The structural
nodes have been labelled with a number from 1 to 10. The design vector considers
the cross section areas of each member as continuous variables belonging to the
close interval [0.01,3.40] in2. The cross-sectional areas have been gathered into eight
groups, as depicted in Figure 3.6, in order to reduce the dimensionality of the design
vector. The maximum allowable displacement has been set to δadm =±0.35 in in
every direction, whereas the maximum allowable stress of each member has been
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to σadm =±40 ksi. Furthermore, the current structural problem takes into account
two different load cases during the optimization process, as shown in Figure 3.5. In
total, 100 independent executions have been performed, and the mean and standard
deviation of the OFs have been calculated. A population size of 50 particles and a
maximum iterations number of 500 have been set both for the multi-strategy PSO
and the GA. For the PSO with penalty approaches, 500 particles have been set
as the swarm size because of their very poor results when only 50 particles have
been considered. The optimization results obtained are reported in Table 3.3, which
compares the multi-strategy PSO with the PSO with the static penalty (PSO-Static),
with the dynamic penalty (PSO-Dynamic), and with the GA. It is worth noting
that, even in this case, the penalty approaches dreadfully fail to deal with real-life
structural design problems, whereas the proposed multi-strategy PSO algorithm
produces good results which are comparable with the GA and quite close to the
actual optimum solution.
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Fig. 3.5 Graphical representation of the 25 bar truss design optimization problem.
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Fig. 3.6 Graphical representation of the 8 bar groups in which are collected all the members
of the 25 bar truss design optimization problem.
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Table 3.3 Twenty-five bar truss design example: results comparisons for 100 runs among the
enhanced multi-strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static), and the
PSO with dynamic penalty (PSO-Dynamic) and GA.

Cross-Section [in2]

Bar Group Sol. from 2014a PSO-Static PSO-Dynamic GA PSO-MS

1 0.100 2.054 1.116 0.010 0.011
2 1.800 2.675 2.670 2.023 1.976
3 2.300 1.402 1.942 2.941 2.989
4 0.200 3.388 0.166 0.010 0.010
5 0.100 0.204 0.342 0.010 0.011
6 0.800 0.453 1.985 0.671 0.690
7 1.800 1.274 1.976 1.673 1.689
8 3.000 0.048 2.345 2.694 2.654

best OF [lb] 546.010 568.186 596.058 545.236 545.249

worse OF [lb] - 100,583.118 22,954.297 557.755 552.378

mean [lb] - 1673.393 1122.518 547.828 546.003

std. dev. [lb] - 9991.0201 3129.3192 2.0743 0.7879

3.5.3 Seventy-Two-Bar Truss Design Optimization with Multi-
Load Cases Conditions

The last structural optimization problem analysed in the current study is referred to
as a 72 bar three-dimensional truss tower structure, as depicted in Figure 3.7. In plan
view, the tower footprint is a square of side 120 in, with 4 modular floors, each of
them with a height of 60 in. The structural nodes have been labelled with a number
from 1 to 20. The design vector considers the cross-sectional areas of each member as
continuous variables belonging to the close interval [0.1,3.0] in2. There are 18 bars
inside each modular floor which can be grouped in 4 groups, as depicted in Figure 3.8.
Therefore, since there are 4 floors, the cross-sectional areas have been parametrized
into 16 groups in total in order to reduce the dimensionality of the design vector.
The maximum allowable displacement has been set to δadm = ±0.25 in in every
direction, whereas the maximum allowable stress of each member has been set to
σadm =±25 ksi. Furthermore, the current structural problem takes into account two
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different load cases during the optimization process, as shown in Figure 3.7. In
total, 100 independent executions have been performed, and the mean and standard
deviation of the OFs have been calculated. A population size of 50 particles and
a maximum iterations number of 500 have been set both for the multi-strategy
PSO and the GA. For the PSO with penalty approaches, 500 particles have been
set as the swarm size because of their very poor results when only 50 particles
have been considered. The optimization results obtained are reported in Table 3.4,
which compares the multi-strategy PSO with the PSO with the static penalty (PSO-
Static), with the dynamic penalty (PSO-Dynamic), and with the GA. Similarly to the
previous cases, it is worth noting that the penalty approaches dreadfully fail to deal
with real-life truss design structural optimization problems, whereas the proposed
multi-strategy PSO algorithm produces good results which are comparable with the
GA and quite close to the actual optimum solution. It is worth noting that the mean
value and the best one are very close to the reference optimal solution from Camp
and Farshchin (2014a). The final solution is even characterized by a low standard
deviation among the 100 algorithm runs, demonstrating that the multi-strategy PSO
is able to reach the optimal results in a more reliable way, reducing the uncertainties
and scattering of the final results.
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Fig. 3.7 Graphical representation of the seventy-two bars truss design optimization problem.
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Fig. 3.8 Graphical representation of the four bar groups in which are collected the members
inside one module of the seventy-two bars truss design optimization problem.
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Table 3.4 Seventy-two bars truss design example: results comparisons for 100 runs among
the enhanced multi-strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static) and
the PSO with dynamic penalty (PSO-Dynamic) and GA.

Cross-Section [in2]

Bar Group Sol. from 2014a PSO-Static PSO-Dynamic GA PSO-MS

1 2.026 2.176 0.746 1.801 1.856
2 0.533 0.661 0.539 0.545 0.523
3 0.100 2.686 0.523 0.100 0.100
4 0.100 1.771 2.660 0.100 0.100
5 1.157 1.662 2.316 1.311 1.301
6 0.569 0.276 1.051 0.511 0.519
7 0.100 0.158 0.642 0.100 0.100
8 0.100 0.986 2.370 0.100 0.100
9 0.514 0.271 0.757 0.531 0.539
10 0.479 1.240 0.793 0.520 0.507
11 0.100 0.517 0.453 0.100 0.100
12 0.100 0.378 1.754 0.107 0.101
13 0.158 0.119 2.236 0.157 0.157
14 0.550 0.794 1.677 0.534 0.540
15 0.345 1.363 0.824 0.386 0.403
16 0.498 1.190 0.830 0.561 0.564

best OF [lb] 379.310 629.108 662.148 380.150 379.753

worse OF [lb] - 1054.764 1110.795 400.147 381.541

mean [lb] - 874.024 854.233 383.377 380.150

std. dev. [lb] - 88.8254 82.1187 3.7299 0.2766

3.6 Discussion

In the previous sections, it has been demonstrated that the proposed multi-strategy
PSO algorithm provided quite interesting results. Foremost, focusing on numerical
benchmark problems, the multi-strategy PSO technique has been compared with two
other traditional PSO implementations which adopt the penalty function approaches
to deal with constraints. The three algorithms have been executed 50 independent
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times for each numerical problem stated in the Appendix 5.7, and the final results
have been collected in Table 3.1. The optimization results have been presented in
terms of the best solution, the worst solution, the mean of the OF values, and the
standard deviation of the final results. These parameters evidence the scattering in
the found solutions by the various algorithms. Specifically, the standard deviation
parameter gives a direct insight into the degree of failure of the meta-heuristic al-
gorithm to find the known benchmark solutions among the independent executions.
In particular, the multi-strategy PSO presents in general lower values of a standard
deviation compared with PSO-penalty methods, or at least the same order of magni-
tude. Furthermore, the multi-strategy PSO appears to be a more reliable algorithm
because, focusing, e.g., on the problem g06, despite the standard deviation of the
PSO-penalty being zero, they fail to reach the optimum solution. This fact highlights
that, notwithstanding that the penalty functions method is very simple and easy to
implemented, in general, it does not always represent the best approach to success-
fully deal with every kind of problem. Indeed, e.g., in problem g06, the nil value of
the standard deviation actually points out how the penalty method provides a quite
deterministic PSO algorithm which is trivially entrapped in the same local optimum
among the independent runs, jeopardizing the potentialities of the stochastic search.

On the other hand, focusing on real-world engineering structural optimization
problems, the multi-strategy PSO algorithm has revealed its powerful capabilities to
deal with complex, combinatorially demanding, and highly non-linear optimization
problems. For the sake of completeness, in these problems, a further comparison
has been provided by the GA algorithm from the Matlab environment. This latter
comparison is extremely relevant because it allows for performing a more objective
evaluation which relies on a completely different implementation with respect to
the PSO framework only. The optimization results of the 10 bar truss, 25 bar truss,
and 72 bar truss problems have been reported in Tables 3.2–3.4, respectively. In all
the analysed cases, the multi-strategy PSO provided very interesting results, which
are really close or even better to the reference solution obtained from Camp and
Farshchin (2014a). The penalty method revealed their weakness when dealing with
these kinds of highly non-linear problems because they provided mean solutions
quite far from the reference one and even more scattered when considering the
standard deviation values. In conclusion, the proposed multi-strategy PSO algorithm
provides an enhanced and more reliable implementation because it results in lower
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standard deviation values than the GA ones, at least in the last two problems hereby
analysed, which are the most complex and computationally demanding.

3.7 Conclusions

The research and developments in the EAs field to solve optimization problems
are continuously increasing because of their lack of mathematical proofs and also
because the perfect algorithm to solve any kind of problem does not exist. Therefore,
in the present study, a new variant of the PSO has been implemented for the purpose
of studying a different way to deal with constrained optimization problems. In fact,
the standard version of the PSO Kennedy and Eberhart (1995b) lacked a proper
mechanism to deal with constrained problems, and in literature Coello Coello (2002),
Koziel and Michalewicz (1999a), Michalewicz and Fogel (2008), there are at least
five main kinds of constraint-handling approaches. The so far most extensively used
method in many different practical applications is the penalty function method. The
main disadvantage of this technique is that it requires the user to tediously tune some
arbitrary penalty factors, which is not always an easy task. In the current study, for
the purpose of enhancing the performance of the standard version of the algorithm,
the most important state-of-the-art improvements are also implemented, such as the
inertia weight Shi and Obaiahnahatti (1998) and the neighbourhood topology Medina
et al. (2009). Furthermore, in order to avoid a penalty-based approach, the violation
degree of the constraints is directly exploited to define the aim of a particle which has
to minimize this violation if it lies in the unfeasible region. Otherwise, if a particle
lies in the feasible region, this particle is dedicated to minimize the OF. Another
improvement is given by a local search self-adaptive ES operator, which takes action
if the feasible region is not found by the PSO for a certain number of iterations.
This allows the algorithm to spread the exploration around the so far unfeasible best
solution found, which may be very close to the feasible region, if it is located in near
this point. If the ES operator successfully finds the feasible region, this allows it to
boost the PSO, giving it an important hint on where the feasible region is located,
as demonstrated in Figure 3.2. If the local operator fails to identify the feasible
region, the swarm has probably been entrapped in a local unfeasible minimum quite
far from the feasible region. Consequently, only a new randomly resampled swarm
may probably find the right path to the feasible region and thus to the real optimum.
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This new enhanced PSO appears to be noticeably effective compared to other PSO
algorithms which adopt a more traditional penalty-function-based method, as shown
in Table 3.1. Outstanding results have been pointed out in the structural optimization
benchmark analysed in the current study, which involves three truss design problems
from the literature. The proposed PSO effectively dealt with real-life optimization
problems, much better than traditional penalty approaches, and reached results
comparable and competitive with other state-of-the-art implementations such as the
GA.

Although the PSO algorithm already possesses two kinds of memories (cognitive
and social), most of the information about the swarm visited positions is discarded,
and a better exploitation of the past particles positions remains to be fully determined.
In another recent work Rosso et al. (2021b), a first promising step in that direction
has been already made. In Rosso et al. (2021b), the PSO has been hybridized with a
machine learning algorithm, the support vector machine (SVM). The SVM has been
trained on the dataset composed by all the visited swarm positions in order to build a
predictive model which is able to learn where the feasible and the unfeasible regions
are located in the search domain. The improvement in the managing information
provided by the swarm positions during all the iterations allowed the algorithm to
reduce the search space extension and considerably improve the PSO’s performance.

Appendix: Test Functions Constrained Problems

In the following, the statements of the selected benchmark numerical problems, taken
by Long et al. (2013), which were tested in the present work are exposed.

1. Problem g01
Minimize:

f (x) = 5
4

∑
i=1

xi −5
4

∑
i=1

x2
i −

13

∑
i=5

xi

Subject to:
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g1(x) = 2x1 +2x2 + x10 + x11 −10 ≤ 0

g2(x) = 2x1 +2x3 + x10 + x12 −10 ≤ 0

g3(x) = 2x2 +2x3 + x11 + x12 −10 ≤ 0

g4(x) =−8x1 + x10 ≤ 0

g5(x) =−8x2 + x11 ≤ 0

g6(x) =−8x3 + x12 ≤ 0

g7(x) =−2x4 − x5 + x10 ≤ 0

g8(x) =−2x6 − x7 + x11 ≤ 0

g9(x) =−2x8 − x9 + x12 ≤ 0

where the search space is defined as 0 ≤ xi ≤ 1 (i = 1, . . . ,9), 0 ≤ xi ≤ 100
(i= 10,11,12), 0≤ x13 ≤ 1. The optimum is located at x∗=[1;1;1;1;1;1;1;1;1;3;3;3;1],
where f (x) =−15.

2. Problem g02
Maximize:

f (x) =
∑

n
i=4 cos4(xi)−2∏

n
i=1 cos2(xi)√

∑
n
i=1 ix2

i

Subject to:

g1(x) = 0.75−
n

∏
i=1

xi ≤ 0

g2(x) =
n

∑
i=1

xi −7.5n ≤ 0

where n = 20 and the search space is defined as 0 ≤ xi ≤ 10 (i = 1, . . . ,n). The
optimum OF is f (x) = 0.803619.

3. Problem g04
Minimize:

f (x) =5.3578547x2
3 +0.8356891x1x5 +37.293239x1 −40792.141
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Subject to:

g1(x) =85.334407+0.0056858x2x5 +0.0006262x1x4 +0.0022053x3x6 ≤ 92,

g2(x) =−85.334407−0.0056858x2x5 −0.0006262x1x4 +0.0022053x3x6 ≤ 0,

g3(x) =80.51249+0.0071317x2x5 +0.0029955x1x2 +0.0021813x2
3 −110 ≤ 0,

g4(x) =−80.51249−0.0071317x2x5 −0.0029955x1x2 −0.0021813x2
3 +90 ≤ 0,

g5(x) =9.300961+0.0047026x3x5 +0.0012547x1x3 +0.0019085x3x4 −25 ≤ 0,

g6(x) =−9.300961−0.0047026x3x5 −0.0012547x1x3 −0.0019085x3x4 +20 ≤ 0,

where the search space is defined as 78 ≤ x1 ≤ 102 and 33 ≤ x2 ≤ 45 and
27≤ x3,x4,x5 ≤ 45. The optimum is located at x∗= [78,33,29.995256025682,45,
36.775812905788], where f (x) =−30,665.539.

4. Problem g06
Minimize:

f (x) = (x1 −10)3 +(x2 −20)3

Subject to:

g1(x) =−(x1 −5)2 − (x2 −5)2 +100 ≤ 0

g2(x) = (x1 −6)2 − (x2 −5)2 −82.81 ≤ 0

where the search space is defined as 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The
optimum is located at x∗ = [14.095;0.84296], where f (x∗) =−6961.81388.

5. Problem g07
Minimize:

f (x) =x2
1 + x2

2 + x1x2 −14x1 −16x2 +(x3 −10)2 +4(x4 −5)2 +(x5 −3)2

+2(x6 −1)2 +5x2
7 +7(x8 −11)2 +2(x9 −10)2 +(x10 −7)2 +45

Subject to:
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g1(x) =−105+4x1 +5x2 −3x7 +9x8 ≤ 0

g2(x) =10x1 −8x2 −17x7 +2x8 ≤ 0

g3(x) =−8x1 +2x2 +5x9 −2x10 −12 ≤ 0

g4(x) =3(x1 −2)2 +4(x2 −3)2 +2x2
3 −7x4 −120 ≤ 0

g5(x) =5x2
1 +8x2 +(x3 −6)2 −2x4 −40 ≤ 0

g6(x) =x2
1 +2(x2 −2)2 −2x1x2 +14x5 −6x6 ≤ 0

g7(x) =0.5(x1 −8)2 +2(x2 −4)2 +3x2
5 − x6 −30 ≤ 0

g8(x) =−3x1 +6x2 +12(x9 −8)2 −7x10 ≤ 0

where the search space is defined as −10 ≤ xi ≤ 10 (i = 1, . . . ,10). The
optimum OF is f (x∗) = 24.3062091.

6. Problem g08
Maximize:

f (x) =
sin3(2πx1)sin2πx2

x3
1(x1 + x2)

Subject to:

g1(x) = x2
1 − x2 +1 ≤ 0

g2(x) = 1− x1 +(x2 −4)2 ≤ 0

where the search space is defined as 0 ≤ x1,x2 ≤ 10. The optimum is located
at x∗ = [1.2279713;4.2453733], where f (x∗) =−0.0958250414.

7. Problem g09
Minimize:

f (x) =(x1 −10)2 +5(x2 −12)2 + x4
3 +3(x4 −11)2

+10x6
5 +7x2

6 + x4
7 −4x6x7 −10x6 −8x7

Subject to:

g1(x) =−127+2x2
1 +3x4

2 ++x3 +4x2
4 +5x5 ≤ 0

g2(x) =−282+7x1 +3x2 +10x2
3 + x4 − x5 ≤ 0

g3(x) =−196+23x1 + x2
2 +6x2

6 −8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 −3x1x2 +2x2
3 +5x6 −11x7 ≤ 0
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where the search space is defined as −10≤ xi ≤ 10 (i= 1, . . . ,7). The optimum
OF is f (x∗) = 680.6300573.

8. Problem g12
Maximize:

f (x) =
100− (x1 −5)2 − (x2 −5)2 − (x3 −5)2

100

Subject to:

g(x) =(x1 − p)2 +(x2 −q)2 +(x3 − r)2 −0.0625 ≤ 0

where the search space is defined as 0 ≤ xi ≤ 10 (i = 1,2,3) and p,q,r =
1,2, . . . ,7. The optimum OF is f (x∗) =−1.



Chapter 4

Optimal strengthening by steel truss
arches in prestressed girder bridges

4.1 Introduction

Bridges can be considered the most important components of any road infrastruc-
ture. A state of complete or partial functionality loss of such structures generates
significant issues on the whole transportation network Kashani et al. (2019). In this
light, careful monitoring is of paramount importance with ordinary and extraordinary
maintenance interventions in order to ensure an adequate level of functionality and
safety over time. In Europe, as in the whole Western world, a considerable number
of bridge structures were built between the ’50s and ’70s during the period of maxi-
mum development of road networks using the technology of pre-stressed reinforced
concrete Di Ludovico et al. (2010). This technique, which has been established since
the ’50s, was relatively young, with the consequence that the technologies, materials,
and construction process could not rely on consolidated experience. In addition, the
structural design process was still mainly focused on the concept of strength, giving
little importance to the durability requirement (Petrangeli et al. 2019, 1996). As
a result, today, some decades after their construction and often at the end of their
service life, many of these bridges show significant evidence of degradation with
serious consequences on the safety levels and functionality. Direct evidence of such
effects is provided by the different collapses that occurred in recent years in Italy,
e.g. the collapse of the Fossano Viaduct in 2017 ?, the Polcevera Viaduct in 2018
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Domaneschi et al. (2020) and the Albiano Magra Bridge in 2020 ?. Among the
main reasons that can be identified, the loss of prestressing due to cable corrosion
plays the major role Bazzucchi et al. (2018) Domaneschi et al. (2020) Morgese et al.
(2020). In post-tensioned structures, one of the reasons that can facilitate this process
is represented by the inadequacy of the ducts injection process during construction.
Following several post-tensioned bridge collapses, the UK went so far as to prohibit
the use of this technique between the years 1992 and 1996 Petrangeli et al. (2019).
At the same time, traffic volumes and the number of heavy vehicles passing through
reached levels that were not foreseen in the reference standards at the time of design,
further contributing to the structural deterioration Morgese et al. (2020). A solution
could be the complete replacement of the structure, but often it turns out to be the
most expensive and impactful choice, not only for direct construction costs but
also indirect ones such as traffic interruption, overloading of the alternative road
system, etc. Park et al. (2005). The alternative choice consists, when possible, of
reinforcement interventions that can extend the service life, restoring adequate levels
of functionality and safety. The definition of the reinforcement system depends on
the evaluations of the designer that is related to own experience and knowledge,
identifying the critical conditions, and selecting the most effective solution from
the technical, constructional and economic aspects. Each consolidation intervention
has advantages and disadvantages: a relatively simple intervention from the point of
view of implementation (commonly used materials, common labor, easy installation,
etc.) may not be sufficiently efficient in restoring the required performance levels.
On the contrary, an extremely efficient intervention from the structural point of view,
but which foresees the use of advanced technologies (innovative solutions, highly
specialized manpower and companies for the installation, etc.), could raise the costs
and make the intervention uneconomic. Based on all of the above considerations,
the introduction of new consolidation techniques for existing bridge structures is a
topic of crucial interest.
The present work introduces an innovative solution for the reinforcement of a pre-
stressed concrete (PRC) beam, which often constitutes a component of most existing
bridge decks. With the proposed method the uncertainty related to the damage state
of bridges and, consequently, the consolidation interventions were overcome. The
new strengthening system leads to restore the safety level of the structure without
any knowledge about the loss of prestressing due to cable corrosion. Moreover,
the proposed retrofitting system represents a competitive alternative in terms of
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installation complexity and even from an economical point of view. The objective
is to propose a solution suitable for bridges with grid decks, i.e. composed of sev-
eral longitudinal girder beams placed side by side and connected by stringers. The
proposed solution consists of using two arch-shaped trusses coupled and connected
to the existing beam to be consolidated, creating a parallel strengthening system
to support part of the loads to which the existing deck is subjected. This kind of
solution is analysed on PRC girder bridge which is the most widespread typology
of existing heritage in Italy, but this strengthening system may virtually be applied
even on composite girder bridges or concrete box girder bridges. Therefore, future
works will address the applicability of the proposed retrofitting system to the above-
mentioned bridge typologies and the relative case studies. The remaining parts of
this paper are organized as follows: Section 2 deals with existing and the proposed
consolidation solutions, Section 3 presents the case study with the performed finite
element analysis, a parametric sensitivity analysis is the developed (Section 4) with
an optimization procedure (Section 5) for the proposed consolidation technique. The
remaining sections of the paper (Sections 6 and 7) are devoted to the presentation of
the results with a preliminary cost comparison between the proposed solution and
the traditional approach.

4.2 Prestressed bridge decks and consolidation solu-
tions

Currently, most of the bridges that are built all over the world adopt pre-stressed
reinforced concrete. The complete exploitation of concrete sections and of harmonic
steel characteristics, the extensive use of prefabrication, the adoption of automated
launching systems have made them very competitive for medium and large spans
Arici et al. (2019). While very large spans are covered by cable-stayed and suspen-
sion solutions, smaller spans are overcome with truss, frame or arch solutions. In
truss bridges, the main elements are beams, i.e. elements stressed mainly by bending
and shear. The most commonly used solutions include grid or box girder decks.
Focusing on the use of pre-stressed reinforced concrete as the constituent material of
the beams or segments, the covered spans range from 30 to 50 m for the first type
and up to about 150 m for the second. Grid decks are realized with side-by-side
longitudinal beams connected by transversal elements and the slab, this latter usually
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cast on-site. The longitudinal beams are generally prefabricated with I or V sections
(box girder) pre-tensioned during the production process, post-tensioned on-site or
adopting a mixed solution. The most frequent static scheme is the simply supported
solution due to the rapidity of assembly. For this reason, such deck type was widely
used in the post-second-world-war reconstruction period with the development of
highway networks, from the ’60s onwards. Due to their age, design and construction
faults (inaccurate injection of sheaths, lack of or deterioration in the waterproofing
of the deck), and poor maintenance, such bridge types have been increasingly found
in critical situations Bazzucchi et al. (2018) Domaneschi et al. (2020) Morgese
et al. (2020). Their origins can be divided into three categories: design defects,
construction defects, maintenance deficiencies Godart (2015), while reinforcement
corrosion is one of the central problems for prestressed concrete structures Recupero
et al. (2018).
Given the age of many of the existing bridges, deterioration is certainly one of
the factors for which reinforcement interventions are required. Corrosion of the
reinforcements or of the prestressing systems, and deterioration of the concrete due
to chemical attack, lead to a progressive reduction of the load-bearing capacity and
therefore of the safety margins, which must be restored in some way. However, dete-
rioration is not the only factor that makes reinforcement interventions of paramount
importance. An increase in the traffic volume and of the axle loads, prestressed
losses due to slow phenomena (concrete shrinkage and viscosity), design or executive
errors require the infrastructure manager to adopt traffic restrictions or implement
reinforcement interventions Daly and Witarnawan (1997).
The selection of the suitable reinforcement system needs to consider several factors
(e.g. type of structure, capacity increase needed, cost of the intervention). The
economic evaluation must also take into account future maintenance costs of the
reinforced structure. It is important to evaluate the condition of the elements to be
reinforced and other structural components, including the substructure (foundations,
piers, abutments, etc.) Daly and Witarnawan (1997) agency. (1999). The inspection,
knowledge and diagnosis phase of the structural condition and its components is fun-
damental. The reasons and origins that generated the functionality losses and safety
levels reduction have to be identified (e.g. corrosion of reinforcement). Moreover,
such performance reductions have to be quantified (e.g. decrease in load-bearing
capacity) agency. (1999). Considerations of the interventions in terms of interference
with traffic flow and also aesthetic evaluations are relevant in the choice of the
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appropriate technology.
The following subsection presents a consolidation method widely used to remedy
performance losses of existing bridges with prestressed grid decks, mainly related to
corrosion degradation. Subsequently, the proposed solution, which is the subject of
this paper, will be introduced.

4.2.1 Traditional consolidation systems for bridge decks: exter-
nal prestressing cables

Adopting the external prestressing solution, the cables are external to the section and
not adherent to the concrete bulk. As for traditional prestressing solutions, also in
this case an axial load is applied in order to obtain a favorable pre-load, increasing
the flexural capacity and improving the performance under service loads Daly and
Witarnawan (1997). In general, the external prestressing solution can be considered
as the coupling of two subsystems: the concrete beam and the external cables Pisani
(1999). The prestressing force is not transmitted by adhesion but through a system
of anchors and deflectors. Therefore, the profile of the external cables consists of
straight paths.
The external cables transmit to the concrete beam, at the anchorages and the deviation
points (deviators), concentrated forces whose intensity depends on the tensile forces
in the cables and the shape of their path.
One of the main disadvantages has been identified in the increase of tensile forces
in the reinforcement as the load increase depends on the overall elongation of the
cable, which in turn is a function of the deformability of the entire structure and not
just the section under consideration. The tensile increase is considerably lower than
that which would occur in a structure with adherent cables and the calculation is not
immediate. A further disadvantage is given by the reduction of the eccentricity of
the cable as a result of deformation of the structure, especially if there are few points
of deflection Alqam and Alkhairi (2019).
The addition of external prestressing as a technique for reinforcing existing bridges
has seen significant adoption in recent years owing to several advantages Daly and
Witarnawan (1997) Khudeira (2010). For example: (i) there is an increase in flexural
capacity without significant increases in self-weight; (ii) the components are easy
to inspect and any damage is easily detected; (iii) the process of installing the rein-
forcement system can be conducted without interrupting traffic; (iv) the in-service
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behaviour can be corrected. However, the installation of the reinforcement system
must be performed by expert labor in using this technique. Furthermore, the concrete
material must be in good conditions to withstand the stresses deriving from additional
prestressing.

4.2.2 Proposed consolidation system for bridge decks: steel arch
trusses

In this work, a new consolidation system for bridge decks is proposed, which
consists of two arch-shaped steel trusses linked to the beam to be consolidated. A
FEM analysis was conducted in order to evaluate the load distribution between the
arches and the beam and calculate the beneficial effects of the strengthening with
suitable performance ratios. Although the external prestressing cables technique
aims to restore the capacity and the structural efficiency of the damaged beam, the
proposed consolidation technique is intended to reduce the external load carried by
the existing PRC beam. The static behaviour of the arch offers several advantages
respect to the straight barycentric axis beam one ?. Referring to Figure 4.1, by
comparing the static behaviour of a three hinged arch with the a straight beam with
the same span, geometrical section and load pattern one obtains:

σa =
Pa
A f

; σb = 6
(

Pa
bh2

)
σb = σa

(
6 f
h

)
.

(4.1)

where σa and σb indicate the stress at the midspan of the arch and the beam
respectively. Hence, being that f >> h, the straight beam results significantly more
stressed with respect the three hinged arch due to the fact, as depicted in Figure
4.1, for the first case, the external moment Pa is balanced by the internal moment
R f , while, in the second case, a higher balanced moment is guaranteed by H f . For
example, in the case of two hinged arch, the thrust H at external restraints generates
internal actions of bending moment and shear that are opposite to the same load-
induced by the external force. In the case study of interest, the effective stresses
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Fig. 4.1 Comparison between a three hinged arch beam and (a) a simply supported beam (b)
under a symmetric load configuration.

Fig. 4.2 Static scheme of a two hinged arch under symmetrical load configuration. The
constraints avoid horizontal displacement at the level of the fixed hinges.

acting at the level of the arch have been calculated as follow:

M = M0 −Hy; V =V0 −H sinθ ;

N = N0 −H cosθ
(4.2)

where y indicates the vertical distance between the fiber of the investigated section
and the fixed hinges; θ is the angle between the tangent at the barycentric fiber of
the considered arch section and the horizontal axis; M0,V0,N0 indicate the bending
moment, shear and tension stress respectively due to vertical external load or vertical
reaction without taking into account any horizontal component (H).

Moreover, several advantages in terms of deformability are offered by an arch
beam with respect to the straight beam simply supported. Comparing the vertical
displacement due to a concentrated vertical force applied at the middle span of
the straight beam (δt) with the, previously cited, parabolic arch static scheme (δa)
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neglecting shear and axial deformability, one obtains:

δb =
Fl3

48EbIb
; (4.3)

δa =
Fl3

2048EaIa
(4.4)

where l indicates the beam span, Eb and Ea represents the elastic modulus of the
beam and arch materials respectively, Ib and Ia are the beam and arch moments of
inertia respectively.

Combining Equation 4.3 and 4.4 the following relation can be found:

δa =
3

128
δb (4.5)

which demonstrates the higher stiffness of the arch solution despite to the straight
beam one. Although the main differences in terms of structural behaviour between
arches and straight beams are evident, the interaction between these two different
structural elements and how they work together has not yet been fully investigated.
With a preliminary study, the interaction between two hinged arches placed alongside
the main simply supported beam, having the same span and under a symmetrical load
condition, is herein investigated. The PRC beam and the lateral arches are bound
together along their longitudinal length as a consequence that they are constrained
to work together and thus sharing the external load according to their stiffness. The
load distribution is carried by a structural system composed by two sub-systems that
work in parallel. Therefore, the splitting percentage of the force F is a function of the
stiffness elements and/or their different displacements. Simplifying the Equations
4.3 and 4.4, one obtains:

δa =
Fa

Ka
; (4.6)

δb =
Fb

Kb
(4.7)

where Ka and Kb represent respectively the arch and beam’s stiffness while Fa and
Fb indicate the percentage of the force F carried respectively by the arches and the
beam. Due to the hypothesis of rigid connection, guaranteed by an anchoring system
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Double T section
Et [Mpa] 3,2836∗104

It [mm4] 1,806∗1011
Kt [N/mm] 6,102∗103

Table 4.1 Geometrical features of the concrete beam.

of the arch to the PRC beam, the following conditions must be satisfied:

δa = δb = δ (4.8)

Moreover, in order to respect the vertical translational equilibrium, the load distribu-
tion between arches and beam is defined as following:

F = Fb +2Fa = (Kb +2Ka)δ = Kδ (4.9)

where K represents the equivalent stiffness of the beam-arches assemblage and
δ the global displacement system. In this way, it is possible calculate the load
distribution between arches and beam as a function of their independent stiffness
and also determine the equivalent one of the whole structural system.

Fa = Kaδ = Ka
F

(Kt +2KA)
; (4.10)

Fb = Kbδ = Kb
F

(Kb +2KA)
(4.11)

In order to achieve a major awareness about the efficiency of the proposed
strengthening system, a numerical example has been conducted considering a simply
supported beam of 36 m span consolidated with two double-hinged arches placed
one on the left and on the right the main beam. The material and the geometrical
features of the main beam and arches respectively are reported in Tables 4.1, 4.2 and
depicted in Figure 4.3. With the aim to evaluate the distribution load between arches

Tubolar section 193x16 mm
Ea[Mpa] 2,100∗105

Ia [mm4] 3,554∗107

Ka [N/mm] 3,276∗102

Table 4.2 Geometrical features of the steel arches.
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Fig. 4.3 Double-T-shaped section of the concrete beam (on the left). Dimensions are
expressed in [cm]. Circular hollow section (CHS) of the steel arch beam (on the right).
Dimensions are expressed in [mm].

and beam, in Table 4.3, the ratios Ka/K and Kb/K have been calculated considering
the connection system previously described.

Load distribution of F
2Ka/K 0,10
Kt/K 0,90

Table 4.3 Distribution load between beam and arches.

It is worth noting that, nevertheless the arch and beam’s stiffness showed a gap
of about one order of magnitude, the arches are able to carry a reasonable percentage
of the external load F (evaluated almost the 10 % of the total force). In other words,
the consolidated concrete beam has been relieved approximately of the 10 % with
respect to the unconsolidated configuration.

Finally, the numerical example shows how, in order to retrofit a simply supported
beam, the stiffness of the consolidation system plays a fundamental role in achieving
the best structural performance and/or efficiency. Therefore, the strengthening
system proposed in this work should perform according both to functionality and
rigidity. This system results quite suitable to girder bridges composed of several
spans sustained by different prestressed concrete beams with a maximum length of
approximately 35−40 m. The static scheme appears mostly as a simply supported
beam for each span with variable height values between 1,2− 2,5 m. For these
reasons the arches have the same height as the main beam and are stiffened by
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Fig. 4.4 Prospective view of the main beam with the strengthening system proposed

inclined trusses in order to reduce the deformability of the whole beam-arches
assemblage as depicted in Figure 4.4. The consolidation system is suitably linked to
both sides of the main beam with rigid anchoring beams with the aim to guarantee
the transfer of stresses from the main element (PRC beam) to the secondary ones
(trussed arches). Both beam and arches result equipped with different bearing devices
placed at the top of the pillars (or abutments).

Although the two hinged arches provide the most stiffened static scheme, remark-
able horizontal forces due to the thrust of the arch are absorbed by the restraints.
To avoid this critical phenomenon, a tension tie lower chord was placed achieving
a static scheme with arched thrust eliminated. In this way, a very stiffened tension
chord tie rod provides a structural solution that performs similarly to the two-hinged
arch beam instead of the more deformable solution with a lower structural efficiency.

4.3 Case study and modelling using MIDAS and OpenSees

In this section, the case study and FEM modelling are described. With the goal of
providing a realistic scenario, a beam belonging to an existing girder bridge located
in Piedmont in Turin province (Italy) has been investigated. The deck consists of
4 statically determined simply supported spans with variable lengths of 38 m, two
consecutive spans of 31 m and the final one of 30 m respectively. Each beam is
a post-tensioned PRC beam connected each other by transversal beams located at
three points: two at the extremity of the main beam in correspondence of pillars or
abutments and one intermediate at midspan of the main beam. Due to the critical
length of the first span, this latter has been selected to focus the analysis. The
deck consists of 8 longitudinal beams with a double-T-shaped section whereas
the transversal ones exhibit a rectangular section. In particular, considering an
hypothetical transversal section of the deck, in order to check the performances of
the proposed strengthening system, the external main beam of first chosen span is
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Fig. 4.5 Double T section of the investigated concrete beam.

Fig. 4.6 Longitudinal section of the investigated concrete beam and tendon profile.

Fig. 4.7 (a) Geometrical section 4.5 after semplifications, (b) Geometrical section modeled
taking into account the effective width of the concrete slab.

Concrete C30/37 and steel S355
fck [Mpa] fyk [Mpa] Ecm [Gpa] Es [Gpa]
30,0 355 32,8 210

Table 4.4 Concrete material characteristics of the main beam.

considered in the current work. Several technical drawings related to the selected
concrete beam, reinforcement and prestressing internal reinforcement tendons have
been consulted achieving a suited knowledge level of the existing structure. The
main geometrical and material features of each structural element are reported in
Figures 4.5, 4.6 and in Tables 4.4, 4.5.
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Strand Y1860S7
d [mm] A [mm2] fpk [Mpa] fp0,1k [Mpa] Ecm [Gpa]
15,2 139 1860 1640 196

Table 4.5 Steel material characteristics of strands.

4.3.1 Not consolidated beam model

FEM structural analyses, according to Italian Code and Eurocodes, have been con-
ducted with the MidasGen© software, a "general purpose" numerical code. At first,
a tapered beam was modeled adopting a simplified section as depicted in Figure 4.7.
Later, tendon property and profile were assigned to the tapered beam with respect
to the real coordinates provided by the technical drawings. All the geometrical and
material features related to the concrete beam and prestressing cables, described
previously, have been assigned to the element. All the long-short term prestressing
losses were considered in the modelling. Each cable lied on the same vertical plane
without any type of transversal offset.

The load pattern considered is composed by self-weight (SW) and uniformly
distributed load Q equal to 10kN/m simulating live loads. In this preliminary phase,
the value of live loads was chosen in an arbitrary manner in order to perform the
efficiency of the proposed system. The effects of the internal forces due to the
prestressing system were added to the external load configuration.

4.3.2 Strengthened system by steel trussed arches model

The proposed consolidation system consists of a steel structure with an arched with
thrust eliminated static scheme. The compression and tension chords were stiffened
by steel trusses as in the Nielsen truss structure (see Franciosi 1971). As described
before, steel arches and the concrete beam work in parallel, hence the maximum
height at the midspan coincides with the total height of the main beam without taking
into account the thickness of the deck. Moreover, as the compression chord exhibits a
parabolic shape profile with the arch axis, depicted with the red dashed line in Figure
4.8, it passes the midspan at the intermediate point of the upper flange thickness
whereas the tension chord develops along the intermediate point of the lower flange
thickness. The lower tie chord presents the same length span of the beam to be
consolidated. The deck represents a natural obstacle that limits the height of the
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Fig. 4.8 Longitudinal view of half strenthening system with the concrete beam in the
background

Fig. 4.9 Transversal section at midspan of both PRC beam and strengthening system. Dimen-
sions are expressed in [cm].

Fig. 4.10 Plan view scheme of the external boundary assigned to each structural element.

crown. As shown in Figure 4.9, it appears clear how the slenderness of the arch
strongly depends on the deck thickness: the ratio f/l, between the raise and the length
span of the arch, plays a fundamental role in increasing the percentage of external
load carried by the consolidation system. Higher slenderness ratio values allow
taking advantage of benefits due to the arch shape behaviour. As a result that only
vertical concentrated or distributed load are taken into account in the modelling, both
main beam and arches were constrained with external boundary realized with fixed
and sliding longitudinal supports (Figure 4.10). Due to the absence of transversal
loads (as wind or earthquake) any boundaries that limit transversal displacements
were modeled. Although the final properties of the proposed strengthening system
are discussed in the next sections as a result of an Optimization process in order
to maximize the efficiency of the system, in this preliminary design phase, a first
attempt was conducted choosing several suited industrial solutions that respect the
geometrical limits imposed by the problem. In Table 4.6, the material and geometrical
features of the steel arches have been summarized.
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Fig. 4.11 Longitudinal view of the Strengthening system MidasGen© model.

Tubolar section type 193x16 mm
A [mm2] I [mm4]
8,932x104 3,554x107

Truss section type φ 22
A [mm2]
3,801∗102

Table 4.6 Geometrical properties steel arch and truss section type.

With the aim to take into account the real behaviour of the compression and
tension chords a general beam/tapered beam FEM element is used. Truss elements
were used in order to carry normal stress and improve the flexural stiffness of the
whole structure. Reducing the deformability of the whole system allows increasing
the efficiency of the strengthening system due to a significant decrease of the concrete
beam stress level.

4.3.3 Concrete beam connected to the strengthening system

After defining the modelling and assigned the preliminary properties to the model,
the first analyses are performed. As described before, the PRC beam and steel arches
work in parallel: the purpose of the consolidation system is to cooperate with the
concrete beam when it is subjected to damaging phenomena or when unexpected
live loads acting on the bridge. In order to achieve this goal, rigid link were provided
allowing the load transfer thanks to the relative vertical displacement constraints
between concrete beam and arches. In practice, these constraints could consist of
transversal beam with the purpose to connect the two lower flanges of the double-
T-shaped section with the arches. When a beam capacity reduction occurs due to
a possible damage, the beam will exhibit an increasing vertical displacement that
could be virtually limited by the connection of these supporting elements to the
strengthening arches. Moreover, the stress transfer process between the main beam
and the strengthening arches is further improved by including some other connections
also at the level of the PRC beam web as depicted in Figure 4.12 where only the
barycentric axis of each element are shown. The modelling and the position of these
internal constraints have been investigated in the present work. It is worth noting that,
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Fig. 4.12 Prospectical view of the Global MidasGen© model. In the Figure, the fixed and
sliding boundaries are depicted with green-filled circles; red lines are used to indicate the
rigid links as connections between beam and arches.

Fig. 4.13 MidasGen© plot of the vertical displacement of the Retrofitted beam under a
preliminary uniform live load of 10 kN/m. Values are reported in [mm].

in a detailed design phase, a specific description and calculation of these connections
is requested: the stress configuration under traffic loads, effects related to the load
repartition and distribution among the different structural elements certainly could
provide concentrations of actions and/or local instability issues. In this investigation
phase, the focus of the study was mainly conducted on the global behavior of the
PRC beam-arches without a detail model of the connections.

The application of a preliminary external load as uniform live load equal , with
intensity equivalent to 10kN/m, must be considered acting to the beam after the
installation of the strengthening system. In this preliminary study, the effect of
prestressing and self-weight has been neglected in order to evaluate the beneficial
effect of the consolidation system under vertical load only, e.g. traffic loads, snow
load, etc. Subsequently to the loading Assignment phase, stress and deformability
effects induced by the variable loads are evaluated. As it could be expected, the
beneficial effects of the strengthening system are verified (in particular, a decrease in
the vertical displacement and bending moment at the midspan have been highlighted).
In this way, the arches captured a quite significant percentage of the applied variable
load. As shown in Table 4.7, a comparison between the two investigated configura-
tions is conducted and the magnitude of the reduction of the vertical displacement
and the bending moment in the critical section (midspan) is about 16% .

As shown in Figure 4.13, and summarized in Table 4.7, after the installation of
the strengthening system, a partial reduction in terms of displacements and stresses
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Comparison between Not consolidated and retrofitted beam configuration
Not consolidated beam Retroffitted beam

δ(z,var)(l/2) [mm] -18 -15
M(y,var)(l/2) [kNm] +1620 +1356
R(z,1 var) [kN] +180 +163
R(z,2 var) [kN] +180 +163

Table 4.7 Comparison between the unconsolidated and Retrofitted beam configurations.

of the main beam is recognised. Specifically, the compression and tension chords
exhibit low symmetric values of bending moment despite the slenderness value
imposed is not the optimal one whereas, on the contrary, important normal stresses
are generated. Moreover, truss elements provided a more stiff behaviour to the
whole system, respecting the theoretical previsions. It is worth noting that the
performance ratio of each structural element resulted unsatisfactory due to the fact
that the industrial solution implemented is not the optimal one. For this reason, A
further optimization process will be necessary.

This preliminary results have shown that the idea of coupling the arch shape
to the damaged beam could provide interesting developments. Unfortunately, the
simplified hypothesis of external load acting simultaneously after the installation
of the strengthening system does not comply with the real construction stage of the
structure. The aim of the present work consists to propose a new type of consolidation
technique as an alternative of the traditional external prestressing one. Therefore,
the actual installation of a retrofitting system occurs only after an important loss
of the capacity and/or serviceability. For this reason, a new construction stage is
realized with the purpose to evaluate the efficiency of the strengthening system for
an increasing value of the external loads by simulating a damage state that evolves
over time.

In the software MidasGen© the construction stage procedure allows to define
several Elements, boundary and load groups with the aim to take into account a
certain effect due to a static scheme change, to the activation of additional load
configuration or boundaries which act at a certain time or to material properties that
are strongly time-dependent such as the prestressing cables. Generally, taking into
consideration all these effects, it enables to consider and investigate the real stresses
evolution which occurs in the structure during the damage evolution and after the
strengthening system installation. For this reason, two main construction phase were
defined:
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Construction stage 1: at this phase, the main concrete beam was modeled without
any strengthening system. Specifically all the external boundaries and load pattern,
which consists into self-weight and prestressing cables, were activated at the same
time as the starter point for further investigations.

Construction stage 2a: at this phase, the installation of the strengthening system
was modeled. Both arches are supported by fixed and sliding supports, independent
to the concrete beam external boundaries, which were assigned at the previous phase.
During the installation stage, the concrete beam is loaded with the same load pattern
already previously defined. On the contrary, arches were subjected to self-weight and
still does not present any type of connection with the main structural beam element.
At this stage the arches and the PRC beam are still non-connected and, therefore, act
independently.

Construction stage 2b: the connection between the main PRC beam and the
strengthening system was modeled. In this construction stage, rigid links were
activated when the main structural element achieved a first stress and strain state.
From this moment forwards, any load distribution changes is recognised: each load
increment detected or any activation of new different load patterns will allow to
evaluate the beneficial effect of the strengthening system. It is worth noting that,
compared with the previous models in which concrete beam and arches were modeled
simultaneously but act separately, in this phase the consolidation system acts when
the main beam exhibit a certain stress and strain state and any future damage effect,
e.g. the cables relaxing, will be detected.

Construction stage 2c: in this final step, the cooperation between the consoli-
dation system and the main beam is investigated. Applying an uniform distributed
load, the beneficial effect of the retrofitting system can be investigated. Moreover,
potential prestressing losses, resulting in an unbounded configuration of one or more
cables, can be studied by deactivating the cables and providing a comparison between
the different previous configurations. In this way, deactivating some strands of a
certain cable means that it will result in an unbounded situation for the the whole
considered tendon profile.

A prestressing loss of cables 1 and 4, as reported in Figure 4.6, equivalent to
the 43% of the normal stress at the midspan of the concrete beam for both the Not
consolidated configuration and the retrofitted one is considered. The comparisons
are summarized in Table 4.8 where beneficial effects of the consolidation system
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Comparison between Not consolidated and retrofitted beam configuration
Not consolidated beam Retroffitted beam

FZ,1,SW+Prest [kN] +394,2 +369,9(−6%)
FZ,2,SW+Prest [kN] +394,2 +374,0(−5%)
My,SW+Prest(l/2) [kNm] +78,0 −263,0

Table 4.8 Deactivating effect of cables 1 and 4 (−43%)

are described. In conclusion, the vertical reactions, obtained considering only self-
weight and prestressing effect acting on the PRC beam, calculated at the edge of
the main beam, receive a decrease of about the 6%, which is consistent with the
conducted preliminary analysis.

4.4 Parametric and sensitivity analysis using OpenSees©

and Matlab©

In the previous section, it was shown the beneficial effects of the proposed strengthen-
ing system without any specific considerations about the geometry, section properties
and material assigned to each structural element. A sensitivity analysis is herein
conducted with the purpose to investigate which are the variables that mainly af-
fect the analysis. In this way, in the present section, the applicability field of the
proposed system is discussed and, in particular, it is investigated what are the best
industrial solution for a preliminary design. Since the proposed consolidation system
appears to be suitable for girder bridges, the slenderness ratio plays a main role in
the preliminary design. For this reason, a preliminary survey inherent the most usual
slenderness ratios adopted for this kind of bridge was useful in order to define the
lower and upper limit of this variable range. Summarily, the input variables that were
taken into account in the sensitivity analysis are:

Beam length span (L): the investigation includes all the girder bridges with a
value of beam span between the upper value of 42 m and the lower one of 28 m with
successive increases of 1 meter step. In this way, the best representative range of
Beam span was achieved. As discussed before, fixing the concrete beam span length,
it consequently also set the length of the tie rod of the trussed arches.

Steel arch rise-length span ratio f/L: once defined the span length and the height
of the concrete beam, automatically the arch slenderness ratio results well defined. In
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order to conduct the study with the most representative values, the following values
for the ratios are chosen: 0,04;0,05;0,06;0,07.

Geometry and section of each element composing the strengthening system:
compression and tension chord are chosen as input parameter of the problem due
to the fact that, differently from trusses, they have the most influence on the global
stiffness of the steel arches. Specifically, the external diameter of the tubular steel
arch section varies between 150 mm up to 300 mm with successive increases of 50
mm each step.

External boundary of the trussed steel arches: Several static schemes are
investigated providing also a double-pinned supports at the edges of the strengthening
system simulating a two-hinged arch behaviour.

All the input parameters are summarized in Table 4.9:

Input parameter of the sensitivity analysis
f (h)/l Area [mm2]
0,04 φ150t.16 = 6732
0,05 φ200t.16 = 9249
0,06 φ250t.16 = 11762
0,07 φ300t.16 = 14275

Table 4.9 Summary of input parameter of the sensitivity analysis.

4.4.1 Parametrization of the strengthening system

The parametrization of the geometrical model is conducted considering the span
length (L) and the height (H) of the main beam as dominant parameters. When L
is assigned, in fact, the coordinates of the external supports are defined, whereas
setting the beam height automatically defines the position of the arch rise. Once
the coordinates of these three points are identified, the parabolic profile of the steel
arches can be drawn. Finally, a reference system is defined with the origin of axis
placed at the intrados midspan of the main beam, with the X axis directed along the
longitudinal direction of the beam whereas Y axis is vertical and perpendicular to
the X direction. In Figure 4.14, the defined parametrization and the coordinates of
each node of the structure have been illustrated.

In order to develop a suitable parametric model, it was adopted the object-oriented
software framework open source OpenSees© developed by Berkeley University. The
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Fig. 4.14 Parametrization of the model adopted in OpenSees©.

connection realized between Matlab© and this FEM numerical code was extremely
useful to post-process the .tcl output files, which stores the linear static analysis
results. Furthermore, Matlab© allows to automatically manage and iterate many
analysis characterized by different FEM models because they are function of the
variable input parameters above-mentioned. Each constant value (geometrical sec-
tion, material, etc...) and parametric variable defining the geometry of the structure
have been implemented into the software. The loading pattern is associated to a time
series in order to solve the structure at each step of the increasing of the uniform
distributed load value.

In this paragraph, the results obtained by the conducted static analysis of the
parametric model are discussed. The sensitivity analysis allows to understand which
are the variables that mainly affect the solution and, in particular, which are the
relationships among them. The efficiency of the system is evaluated considering a
new index, which considers the percentage of the external load carried by arches. In
this way, evaluating the efficiency index (E.I.) for each input parameter, it is possible
to determine which variable will be dominant or negligible. This efficiency index is
calculated as:

E.I. =
∑Ry,arches

qL
, (4.12)

where ∑Ry,arches are the sum of the steel arches vertical reactions developed by the
external supports, q is the intensity of the distributed load equivalent to 10 kN/m in
these preliminary evaluations and L is the beam span length.
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This performance parameter allows to evaluate two extreme scenarios: when
its value is equal to zero, any external load is transferred from the main beam to
the strengthening system, thus the consolidation system is completely inadequate to
fulfill its role. On the contrary, when the value of the efficiency index is equal to 1
the whole external load is carried by the arches with a concrete beam that results in
a zero stress and strain configuration. The trend of this performance parameter is
investigated within the sensitivity analysis:

Dominance of the slenderness ratio f/l and the boundary condition: the trend of
the efficiency index by varying length beam span and f/L are depicted in Figure 4.15.
As said before, the slenderness ratio f/L of the arches respects the variable range of
the slenderness ratio H/L of concrete beam which represents the widespread case
studies in the field of the girder bridge. The diameter adopted to the compression
and tension chords is 200 mm and it must be considered as a constant value for
each iteration. A comparison between the static scheme including a sliding and
a pinned support and the both double-pinned static scheme one is provided. As
expected, results show that the double-pinned supports static scheme is the stiffest:
the E.I. achieves the highest values rather than the static scheme with sliding and a
pinned support. In the first configuration, the strengthening system is able to capture
32% of the entire external load acting to the concrete beam instead of only 20%
detected in the second case. The E.I. shows a moderate dependence by the variable
beam length and the slenderness ratio f/L. Specifically, with the increase of L, the
efficiency index decreases about 6 or 4% respectively in the first and in the second
investigated static scheme. Considering the reference case study of the present work,
it is characterized by a ratio f/L equal to 0,04 and the obtained efficiency index
varies between 32% at 28 m up to 29% at 42 m of the beam span length. Since the
strengthened structure works as a parallel system, this moderate variability depends
on the stiffness ratio between beam and arches. Setting a constant value of the
slenderness ratio f/L, when concrete beam span length L increases, it provides a
higher stiffness and the arches will carry a bigger percentage of the external load
compared to the situation when the arches results unloaded. In Figure 4.15, the
steel arches slenderness ratio f/L can be studied. The efficiency index shows a low
decreasing trend: when the f/L ratio is higher, the height of the beam increases in a
non-proportional manner. Consequently, for a little increase of the arch stiffness, a
bigger increase of the moment of Inertia of the concrete beam section occurs which
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Fig. 4.15 Trend of the efficiency index with variable slenderness ratio (f/L) and beam length
(L), constant value of the compression and tension chords equal to 200 mm and external load
equal to 10 kN/m in the pin-roller static scheme (on the left) and double-pinned one (on the
right).

explains the decreasing trend of the investigated parameter. A lower fraction of the
entire external load is captured by the strengthening system.

Dominance of the geometrical arch section (A): the trend of the efficiency
index by varying the sectional features of the compression and tension chord of the
strengthening system has been investigated. Fixing the f/L ratio equal to 0,05, the
external diameter of the tubular section has been varied between a lower value of
150 mm to the upper one of 300 mm. Similarly to the previous case, the dependence
of the solution by the restrained static scheme is analysed. As depicted in Figure
4.16, it is shown that with increasing value of the external diameter, the fraction of
the entire external load captured by the arches increases. The increase of the external
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Fig. 4.16 Trend of the efficiency index with variable geometrical area and beam length (L),
constant value of the slenderness ratio (f/l) equal to 0,05 and external load equal to 10 kN/m
in the pin-roller static scheme (on the left) and double-pinned one (on the right).

diameter brings to more stiff arches due to an increment of the Moment of Inertia
which justifies higher values of the efficiency index. As in the previous case, the
double-pinned supports static scheme results the stiffest solution although the thrusts
at the fixed support are higher. In the case of a beam span length of 28 m and a
tubular section of arches equal to 300 mm, the fraction of the external load carried by
the strengthening system is equal to 37% for a double-pinned supports static scheme
than the second one in which is equal to 25%.

In conclusion, it is worth noting that the sectional features of the compression and
tension chords represent the dominant parameters which mostly afflict the solution.
A higher value of A means a higher value of the efficiency index, whereas a moderate
influence on the efficiency index is performed by the slenderness ratio f/L or by
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Simulated degradation levels

Degradation level
Resisting steel

area reduction [%]
1 5%
2 10%
3 15%
4 20%

Table 4.10 Four simulated degradation levels.

external boundary. Obviously, the choice of the sectional features of each structural
element composing arches must be defined as a function of the level of stresses
recognised by the whole structure. In the further section, the preliminary design
of the strengthening system will take into account not only the distribution load
between concrete beam and arches but also the stress and strain check imposed by
the Civil Codes and possible damaging conditions which affect the existing bridge
heritage.

4.5 Degradation simulation and retrofitting with tra-
ditional intervention

Since the analyzed case study is referred to an existing structure, it is highly probable
that this structure is affected to a certain ordinary level of degradation with respect
to the original construction conditions. In order to take into account this fact in a
simplified way, it is convenient to simulate the current damaged conditions referring
to a reduction of the ultimate resisting moment MRd . Similarly to other studies
about rebar losses due to corrosion, (e.g. Zhao et al. 2018), the resisting moment
reduction is directly taken into account by a reduction of the actual resisting steel
reinforcement area with respect to the original one. In this study, four different levels
of degradation have been identified as reported in Table 4.10. Since the structural
scheme is a simply supported PRC beam under a unique load condition for sake of
simplicity (self weight and uniformly distributed load equal to 52 kN/m), the midspan
section is the most stressed one. Therefore, the structural performance evaluation is
reconducted to the analysis of the ratio MSd/MRd between the acting moment MSd

and the resisting moment MRd in the midspan cross section. Due to the progressive
increase of the deterioration level, when the performance ratio becomes greater than
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Performance ratio for the unconsolidated situation
Degradation

level
MSd

[kNm]
MRd

[kNm]
MSd
MRd

Undamaged 11’995 12’621 0,95
1 11’995 12’145 0,99
2 11’995 11’632 1,03
3 11’995 11’094 1,08
4 11’995 10’541 1,14

Table 4.11 Performance ratio for the unconsolidated situation for different degradation levels.

Fig. 4.17 External prestressed cables layout profile (red solid line) adopted as a traditional
intervention proposal .

one, safety levels are no more satisfied a retrofitting intervention becomes strictly
necessary in order to bring back the performance ratio below one. Referring to
the original conditions (undamaged) and the simulated damaged induced situations,
Table 4.11 illustrates the performance ratios for the unconsolidated PRC beam. As
shown in the Table, the safety level is respected only for the undamaged condition
and for the degradation level 1. Considering the damage level 3 as a reasonable
ordinary damage level, it is possible to analyze an initial retrofitting intervention
with the traditional technique of external prestressed cables in order to bring back
the performance ratio of 1.08 to the initial undamaged value (0.95). The intervention
proposal is depicted in Figure 4.17, where the symmetrical piecewise linear tendon
layout profile is composed by two external tendons with 7 strands each of 0,6 inches.
The prestressing force Pext of each tendon at the anchorages is 550 kN. The deviators
are placed at L/4 from the extremity of the beam. The effects of external cables
intervention has been considered with the equivalent load method, thus as further
external actions of axial force Next and bending moment Mext. This latter is given by
three contributions: Mext,1 is related to the eccentricity of the cable (eext =Mext/Next),
Mext,2 is given by the shear force induced at the anchorages whereas Mext,3 is given
by the shear force produced in correspondence of the deviators. The traditional
intervention with the above-mentioned characteristics, summarized in Table 4.12,
has been identified to be able to bring back the performance ratio to its undamaged
level as shown in Table 4.13. Considering always the same degradation level 3,
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Summary of the traditional intervention
Pext 2 ·550 = 1100 kN

Anchorages Deviators
Next Vext Next Vext
1097 77 3 77
Barycenter elevation [m] Eccentricity (Midspan sec.) [m]

yG,midspan yG,cables,anchorages eext
1.129 0.55 1.131
Mext,1
[kNm]

Mext,2
[kNm]

Mext,3
[kNm]

Mext
[kNm]

635 1299 -693 1241
Table 4.12 Summary of the mechanical and geometrical properties of the external prestressed
cable intervention.

Performance ratio for the post-intervention with external prestressed cables
MSd

[kNm]
M′

Sd = MSd −Mext
[kNm]

MRd
[kNm]

M′
Sd

MRd

11’995 10’754 12’145 0,95
Table 4.13 Performance ratio evaluation for the post-intervention with external prestressed
cables.

this traditional intervention is compared from a structural point of view with the
strengthening method of steel trussed arches proposed in the current study. The
characteristics of this latter intervention proposal is determined by an optimization
procedure in order to define the most suitable solution for this kind of intervention.
From the technical point of view, whereas the external prestressed cables intervention
acts as externally induced actions and plays a role directly on increasing the resisting
moment, the proposed steel trussed arches solution generates a reduction of the
acting moment MSd . Since the arches work in parallel with the PRC beam, the acting
loads on the whole strengthened system undergo a repartition process governed by
the relative stiffness of the arches and the beam. With respect to the unconsolidated
situation, this phenomenon leads to a decrease in the beam carried load without
affecting in any way the beam midspan cross section ultimate resisting moment.

4.6 Selection of the Optimization strategy

In order to solve the problem stated in the previous section, a real-coded GA is
adopted. This is a population-based stochastic optimization technique appropriate for
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global optimization, which does not require direct evaluation of gradients. Introduced
by John Holland (1992), it is inspired by Charles Darwin’s theory of natural evolution.
This algorithm reflects the process of natural selection where the fittest individuals,
also called parents, are selected for reproduction in order to produce offspring of
the next generation. At the end of the process, the best survival among all the
fittest candidates found at each generation is selected as the best globally optimized
solution. Although the native GA worked with binary values representing genes,
encoded in string structures called chromosomes, in this paper the authors overcome
the limits related to the decoding process by using a real-code GA in which genes
and chromosomes represent directly the design variables and the solutions of the
problem.

Since its pseudo-random roots, unfortunately, mathematical proofs of its con-
vergence do not exist. However, numerical studies demonstrated that they are able
to succeed also dealing with highly non-linear, non-convex and discontinuous do-
mains. Conversely, to mathematical programming hard computing techniques which
usually required information about the gradient, GA is considered a soft computing
technique because it requires only the OF evaluation with a lower computational
effort Plevris (2009a). For this reason, this paradigm can be ideally transposed to
a numerical procedure which leads a population of trial solutions to evolve toward
the global optimum of the optimization problem (OF) adapting to the environment
which is represented by the feasible region reduced by the presence of the constraints.
Substantially, these agents are competing for the resource and only the survival of
the fittest to the environment will pass to the next generation Quaranta et al. (2020b).
For further readings about the GA and in general meta-heuristic algorithms, one can
refer to e.g. Martí et al. (2018). Actually, many applications of this optimization
strategy can be found in the structural engineering field for steel, RC and masonry
structures (e.g. Spiller et al. ?). The versatility of Genetic programming for discrete
or mixed-discrete optimization problems has been largely proved since the beginning
Wu and Chow (1994), Qian et al. (1993), Stolpe (2016). Nevertheless, one crucial
issue in applying GA has been premature convergence which causes trapping into
local optima. Premature convergence is due to the loss of population diversity before
optimal solutions have been found. The way for combating premature convergence is
to maintain population diversity and prevent repeated selection of highly fit individu-
als. The more diverse the population, the more global the search. As with several
metaheuristic algorithms, many researchers have noted, since GAs are character-
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ized by their parameterized space which usually includes population size, crossover
probability, mutation probability, etc. the choice of these parameters may result in
different optimum solutions. It thus requires a lot of computational experiments to
modify these adjustable parameters if we want to obtain acceptable solutions.

At each iteration, real-coded GA phases were adopted during the optimization as
follows:

• Initial population: in this phase, individuals with a set of random genes
(xi) composing chromosomes (x) are created by observing lower and upper
bounds defined as the first and last raw of the discrete standard section list.
Gene represents, at each generation, the candidate value of a specific design
variable involved in the identification procedure. A set of genes (vector form)
represent a solution of the problem for the current generation. In this way, the
best solution is selected and the optimal set of parameters which govern that
specific law is detected.

• Fitness function: in this phase, the fitness of the candidate solutions is evalu-
ated by calculating the OF introduced in the next setion.

• Selection: During this phase, a Roulette Wheel Selection was implemented
in order to guarantee that the two fittest parents are selected for the next
steps. Adopting this technique, a probability to each parent is assigned and the
parents with higher fitness are more likely to be chosen for the next steps.

• Crossover: in this phase, a uniform random crossover was performed in which
recombination of gene pool between parents is performed in a random way.
Lower and upper bounds are imposed at this stage such that if only a gene of
the new offspring is not ranged within the imposed interval (higher than the
maximum value or lower than the minimum value of that specific parameter),
it is forced to assume maximum or minimum value, respectively.

• Mutation: aiming to improve the exploration and exploitation ability of the
algorithm, a mutation rate of 1% is assigned. In this way, new genes are
introduced into the population by modifying the gene pools of parents in a
random way.
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• Sort Function: Aiming to maintain a certain level of diversity among the
individuals, a dynamic amount of the best unfeasible solutions survive to the
next iteration by substituting repeated selection of highly fit individuals.

4.7 Optimization process of the proposed consolida-
tion system

The proposed steel arch strengthening system involves several issues and, in order
to propose a reasonable solution from a practical point of view, an optimization
process has been performed. Since the arch geometry is fixed because of the chosen
typology of PRC beam, it is possible to perform only a size optimization process
related to the steel members which compose the trussed arch structure. The main
achievement is to optimize the intervention mainly in economic terms in comparison
with other more traditional strengthening interventions, e.g. with external prestressed
tendons as mentioned in Section 2. Structural optimization can be decomposed in
three sub-problems: size optimization, shape optimization and topology optimization
Christensen and Klarbring (2008c). In the size optimization process of steel truss
structures, the reduction of the steel self-weight, and thus the adopted quantity of
steel material, is usually indirectly connected to the reduction of the global cost of
the steel structure Fiore et al. (2016c)Rosso et al. (2021a). The objective function
(OF) in this case is equal to

f1(x) =W (x) =
Nel

∑
i=1

ρiVi(x), (4.13)

in which x is the design vector which defines the parameters referred to the tubular
cross section (e.g. external diameter Φi and thickness ti), ρi is the steel density
(7,86 t/m3), Vi(x) is the volume of each steel member and Nel is the total number of
elements. However, as mentioned in previous Sections, the strengthening system
strongly affects the structural behaviour since it is working in parallel with the main
structural beam element. Consequently, an effective optimization of the strengthening
intervention has to take into account also an OF f2(x) related to the global stiffness
K which is directly related to the level of the PRC beam load decrease and the global
deformation of the structure δ . As a matter of fact, a trussed arch which satisfies



4.7 Optimization process of the proposed consolidation system 255

Fig. 4.18 Geometry view of the truss model and adopted node numbering (dimensions in
meters).

completely f1(x) will result in an excessively slender solution which is useless in
terms of structural performances, otherwise, an option which satisfies completely
f2(x) will result in an excessive stiff solution which could be an extremely expensive
solution.

These two stated aims point towards opposite directions and the best trade-off
between the reduction of the steel weight and the increase of the trussed arch stiffness
have to be found. Substantially, the optimization problem has to be formally stated
as a multi-objective optimization problem. In reality, in Rao (2019b), the simplest
approach to solve multi-objective optimization problems is to rewrite the OF to be
minimize such as a single-objective optimization problem with a new OF given by a
linear combination of the various OFs. In the present case, the single-objective OF
becomes as

f (x) = α · f1,adim +(1−α) · f2,adim

= α · W (x)
WPRC beam

+(1−α) · u22

ubeam SW+Q

(4.14)

in which the two OFs have to be non-dimensionalized in order to be able to perform
the combination. In particular, the f1 is divided by the self weight of the PRC beam,
WPRC beam, whereas the f2 is considered as the maximum deformation of the strength-
ened system monitored at the node 22, as depicted in Figure 4.18 which is normalized
with respect to the mid-span deflection ubeam SW+Q of the non-strengthened PRC
beam under the self-weight (SW) and a uniformly distributed live load equal (Q) of
52 kN/m. The α coefficient is a user-defined parameter which allows controlling the
relative weight of each OF in the optimization process in a simple and smart way.
Since each OF is carrying information related to two opposite objectives, if α is set
to 1, the classical single objective size optimization problem is performed but the
final solution will be too much slender being useless as a strengthening system. Oth-
erwise, on the other hand, when α = 0 the OF will produce the most rigid solutions,
very efficient but impracticable and incredibly expensive as a strengthening system.
Moreover, in this latter case, the steel truss weight will be too much large also leading
to an increase of reactions on piles and abutments. The trussed arch structure is
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ti �i

Fig. 4.19 Circular hollow cross section (CHS) profiles: a possible parametrization with two
design parameters.

subjected to self-weight and nodal loads due to the connection with the PRC beam
which are obtained by the OpenSees model. The OF is constrained because each
steel member have to satisfy EN-1993-1-1 safety assessment at Ultimate Limit State
in terms of Tensile Force, Compressive Force and Instability verifications as below:

NEd

Nt,Rd
≤ 1, where Nt,Rd =

Ai fy

γM0

, (4.15)

NEd

Nc,Rd
≤ 1, where Nc,Rd =

Ai fy

γM0

, (4.16)

NEd

Nb,Rd
≤ 1, where Nc,Rd = χ

Ai fy

γM1

. (4.17)

in which, for the sake of simplicity, class 4 section profiles were excluded. The
adopted steel is S355 ( fy = 355 MPa). As depicted in Figure 4.18, the truss members
are grouped in three categories of tubular section respectively, belonging to the upper
arch (green members), diagonal elements (blue members) and lower tie elements (red
members). A standard section list taken according to the European Normative EN
10219-2 has been adopted and 158 different profiles (excluding the class 4 section
profiles) of steel tubes for circular hollow sections (CHS) have been considered. The
design vector is thus completely defined by a vector of three integer numbers x =
[x1,x2,x3]

T , one for the type of truss steel member. Each integer number is referred
to a specific row of the profile list which identifies all the specifications related to
a certain CHS profile located at that corresponding row. This strategy produced a
less computational cost with respect to optimising the two design variables (Φi, ti) as
depicted in Figure 4.19 for each element type as continuous variables. For the current
study, a population size of 100 individuals was chosen with a stopping criterion
referred to the achievement of a maximum number of prescribed iterations set to
100. The flowchart in Figure 4.20 describes, from a conceptual point of view, how
the optimization was performed in Matlab environment and how the constrains have
been managed.
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Fig. 4.20 Flowchart of the optimization process using Genetic Algorithm.

4.8 Results and Discussion

Solving the optimization problem presented in the previous Section, during each
iteration of GA, a population of solutions’ attempts is considered and, for each
individual, Matlab will compile a OpenSees file to build the model with the charac-
teristics defined by each individual. Thereafter, Matlab launches OpenSees analysis
and finally it retrieves the FEM results in order to perform the final constraints
verification and evaluate the fitness of each individual. Firstly, the two limit cases
were analyzed with α = 1 and α = 0. As reported in Table 4.14, it is evident that
none of the two limit case can be considered as an optimal trade-off between the two
opposite OFs aims. As a matter of fact, with α = 1 the trussed arch structure seems
to be useless in terms of load reduction of the PRC beam; instead, on the opposite,
with α = 0 the self weight of the steel trussed arch is too much heavy. In the present
study, it was found that values of α comprised between 0,6 and 0,7 allow solutions
technically practicable, respectful of all the constraints verifications, with an optimal
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Fig. 4.21 Geometric lateral view of the optimal trussed arch system with annotations regard-
ing to the performance ratio of each steel member.

Fig. 4.22 Performance ratios of steel diagonals members obtained with MidasGen© software.

Fig. 4.23 Three-dimensional view of MidasGen© model of the optimal found solution.

balance between material consumption and the global stiffness of the strengthened
beam. A value of α > 0,5 means that a greater weight is associated to the size
optimization OF, but always taking into account also a not negligible influence of
the OF related to the global stiffness of the system. In Table 4.15, solutions obtained
for α = 0,6 and α = 0,7 are illustrated where the structural efficiency is reported in
terms of performance coefficient given by the ratio between the acting moment and
resisting moment MSd/MRd after the strengthening intervention, always referred to
the four degradation levels considered in the current study.

Results in Table 4.15 show promising strengthening solutions effectively able to
deal with degradation levels 1, 2 and 3. Furthermore, the obtained CHS profiles are
reasonable to perform this kind of intervention. Since with α = 0.6 the OF is greater
weighted towards maximization of global stiffness with respect to the minimization
of the steel SW, it is reflected by the consistent increase of the total steel SW which
almost redoubled with respect to the case α = 0.7. Through the adoption of the tool
design in MidasGen© software, the final results were assessed to be respectful of the
stress and buckling constraints and the performance ratio of each element has been
depicted in Figures 4.21 and 4.22. A three-dimensional view of MidasGen© model
of the optimal found solution is illustrated in Figure 4.23. As shown in these figures,
there is apparently a non-optimal distribution of the performance ratios. In reality, it
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Effects of α coefficient
α 1−α PRC beam load decrease [%] SW steel trussed arch [t]
0 1 0,1% 0,3
1 0 78% 58

Table 4.14 Effects of α coefficient

Results of optimal strengthened PRC beams.

α

CHS
Arch
[mm]

CHS
Lower tie

[mm]

CHS
Diagonals

[mm]

Steel
SW [t]

Degradation
level

MSd
MRd

0.7 φ323,9
t.6

φ323,9
t.6

φ60,3
t.2,5 3,54

1 0,89
2 0,93
3 0,98
4 1,03

0.6 φ323,9
t.12

φ323.9
t.12

φ114,3
t.3 6,95

1 0,82
2 0,86
3 0,90
4 0,95

Table 4.15 Results of optimal strengthened PRC beams for α = 0,6 and α = 0,7.

is necessary to recall that calibrating the α coefficient, it allows to optimize not only
the minimization of the steel SW but also considering to reach a reasonable global
stiffness to produce an actual effective strengthening system. In order to further
push the optimization process in terms of performance ratio for each steel member,
it would be virtually possible to also parametrize the diagonal elements with two
different CHS profiles when they are in prevalent compression or tension under the
current load configuration without compromise the overall global stiffness.

4.9 Preliminary cost comparison with traditional strength-
ening interventions

the proposed strengthening system evaluate also from an economic point of view , a
preliminary comparison with the traditional external prestressing cables technique
is performed. It is necessary to underline the preliminary level of this kind of
evaluation, since some other technological aspects have to be fully investigated
in the future, e.g. the connections design of the trussed arch element to the PRC
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Preliminary economic comparison among consolidation interventions.
Unitary

cost Quantity Cost

Trussed arch
α = 0.6 2,59 C/kg 2 ·6.95 = 13,9 t 36’000 C

Trussed arch
α = 0.7 2,59 C/kg 2 ·3.54 = 7,08 t 18’337 C

Ext. prestr.
with 2 cables 526 C/m 36 m 18’936 C

Ext. prestr.
with 4 cables 878 C/m 36 m 31’608 C

Table 4.16 Preliminary economic comparison among traditional consolidation interventions
with two or four external prestressed cables with the proposed optimal trussed arch strength-
ening system with α = 0,6 and α = 0,7.

beam. Furthermore, labour cost, technological aspects, etc. are considered in a very
simplified manner taking into account unitary cost coming from some quoted works
and Italian documents related to external tendons strengthening intervention and
steel unitary cost. In a more refined economic analysis all of the previous aspects
have to be deeper analysed.

In S.p.A. (2021), the steel unitary cost for truss beams with span length range
25-45 m can be considered as 2,59 C/kg which comprises materials cost and also
launching operations. Instead, in Devitofranceschi (2018), in a simplified manner,
four external prestressing cables can be considered an all-encompassing unitary cost
(launching, anchorages, pretensioning operations) as 526 C/m for the intervention
with two cables with 7 strands each, or 878 C/m for a solution with four external
cables. In this case, two different solutions are considered in order to obtain a range
of variability for the cost of external cable interventions in comparison with the two
optimal trussed arch solutions obtained with α = 0,6 or 0,7. Based on the previous
data, the overall global preliminary costs are reported in Table 4.16. Based on that
preliminary estimations, it is possible to state that the steel trussed arch with α = 0,7
is the most economic intervention because it is slightly lower than the external tendon
solution with two cables. It is worth noting that, even considering different levels of
degradation, the unitary cost for external prestressed cables solution does not change
because, for different degradation levels, only the prestressing forces of the tendons
vary and its unitary cost is mainly related to technological issues such as the design
of anchorages, positioning hydraulic jacks, etc. On the other hand, the proposed
trussed arch strengthening solution could virtually require cheaper truss structures,
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more optimized, lighter and slender for lower levels of degradation. Instead, as
shown in the previous Section, for higher levels of degradation, it is not reasonable to
overcome α = 0,7 because it may result in a structure excessively light and slender
thus the percentage of PRC beam load decrease could be virtually almost negligible.
Eventually, comparing the costs in Table 4.16 for α = 0,7 and for a four tendons
solution, these values appear to be higher than the two other solutions but they are
always comparable at this preliminary stage, underlining once again the engineering
relevance of the optimal found solution.

4.10 Conclusions

In this work, a new strengthening system, as an alternative to the traditional external
prestressing cables method, has been proposed along with an efficiency index. This
last includes both the economic impact and the structural performance.

A parametric modeling has been performed in order to investigate the variables
that mainly affect the industrial solution considered as the target of this work. The
double-pinned supports static scheme appears to be the stiffest solution despite
several configurations investigated. The geometric and material features of the
circular hollow sections (CHS) for each structural element, composing the proposed
strengthening system, exhibit the greatest gyroscopic inertia in comparison with
other cross section typologies with the same area. In this way, a maximum centrifugal
mass effect is achieved in order to increase the efficiency of the strengthening system.
Moreover, the sensitivity analysis shows how the proposed solution is strongly
dependent on the dimensional characteristics of the compression and tension chords
rather than truss diagonal elements: increasing the size of the arch and tie elements,
a significant improvement in the efficiency of the system is recognized due to
their main contribution to the centrifugal mass effect. For these reasons, structural
optimization was performed in order to prefer this kind of structural characteristics.
The optimization process allows to detect the best solution as the best trade-off in
terms of stiffness and self-weight of the proposed solution. The multi-objective
optimization problem has been reconducted to a single objective problem through
an OF weight parameter α and its complementary (1−α) for the two counterposed
OFs. The parameter α has been evaluated with the aim to identify the equilibrium
solution which guarantees the lighter strengthening system with the highest stiffness.
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In conclusion, the optimization model allows capturing, when 20% of the area
loss occurs (degrade level 3), until to 40% of the total external distributed load.
Finally, an economic estimation of the consolidation system installation has been
presented comparing the total cost of the proposed retrofitting technique with the
traditional external prestressing one. Although a significant cost saving is not
found, it is worth noting that the proposed procedure allows the production of
the beam-arch assemblage entirely on site without the need of skilled workers or
specialist companies. Moreover, the proposed retrofitting technique does not need an
estimation of the residual prestressing level, which could increase the compression
stress configuration of the concrete beam without any beneficial effects.



Chapter 5

Size and Shape Optimization of a
Guyed Mast Structure

5.1 Introduction

Guyed masts are extensively used in the telecommunications industry, and the size,
shape, and topology optimization can significantly benefit their transportation and
installation. The main loads acting on guyed mast structures arise from wind Law
et al. (2006), Sparling and Wegner (2007), earthquakes Hensley and Plaut (2007),
Amiri (2002), Liu et al. (2021), Sun et al. (2013), sudden rupture of guys Buchholdt
et al. (1986), galloping of guys Ballaben et al. (2017), and sudden ice shedding from
ice-laden guy wires Gerstoft and Davenport (1986).

Their optimization must fulfil several requirements under ultimate and service
limit states de Souza et al. (2016). Specifically, service limit states are crucial
for guyed mast structures due to high-amplitude oscillations caused by their high
deformability. In some cases, these vibrations have led to a signal loss caused by
excessive displacement and rotation of the antennas and, in other cases, have resulted
in permanent deformation or failure. Therefore, size optimization of the guyed mast
structure represents a challenging task since the increment of the performance ratio
of the materials should be counterbalanced by an adequate lateral stiffness to reduce
high-vibration drawbacks Saudi (2014).
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Saxena Saxena et al. (1989) reported several happenings where heavy icing com-
bined with moderate wind resulted in severe misalignment of towers and complete
failure. Novak et al. Novak et al. (1978) showed that ice accumulation on some parts
of the guy wires and moderate winds could lead to the guy galloping, resulting in
unacceptable stress levels throughout the structure. The main topics investigated in
the field of guyed structures can be summarized as follows:

• Structural design. Several researchers investigated the dynamic response of
guyed mast structures through experimental tests and numerical modeling to
derive design approaches and recommendations Wahba et al. (1997), Madugula
et al. (1998), Luzardo et al. (2012). In particular, there are studies dealing with
the dynamic identification and accurate estimate of the wind loads Davenport
and Sparling (1992), Harikrishna et al. (2003), Gioffrè et al. (2004), Clobes
and Peil (2011), Pezo and Bakić (2014).

• Nonlinear dynamics. The proneness to global and local instabilities challenged
several scholars to estimate and predict the nonlinear behaviour of guyed masts
Sparling (1995), Wahba et al. (1998), Madugula (2001), Orlando et al. (2013),
Ballaben and Rosales (2018).

• Structural optimization. The need for guyed structures that are easy to install
and transport challenged several scholars to optimize their shape in order to
reduce the structural mass without reducing the lateral stiffness and prevent
instability phenomena Belevičius et al. (2013).

• Structural control. There are some attempts of control methods to reduce
vibrations in mast-like structures Gawronski et al. (1994), Fujino et al. (1993),
Lacarbonara and Ballerini (2009). Among others, Blachowski Błachowski
(2007) proposed the use of a hydraulic actuator to control cable forces in guyed
masts using Kalman filtering.

This paper tackles the size and shape optimization of guyed mast structures.
Since the first attempts by Bell and Brown Bell and Brown (1976), many engineers
attempted to optimize guyed masts under wind loads using deterministic global
optimization algorithms. However, as pointed out by Belevičius et al. (2013), this
approach leads to local optimum points, since each design variable was considered
separately. Thornton et al. Thornton et al. (1990) and Uys et al. Uys et al. (2007)
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proposed general procedures for optimizing steel towers under dynamic loads. To
the author’s knowledge, Venanzi and Materazzi Venanzi and Materazzi (2007)
were the first to implement a multi-objective optimization method for guyed mast
structures under wind loads using the stochastic simulated annealing algorithm for
size optimization. The objective function implemented by Venanzi and Materazzi
(2007) included the sum of the squares of the nodal displacements and the in-plan
width of the structure. Zhang and Li Zhang and Li (2011) attempted to achieve both
shape and size optimization in a two-step procedure using the ant colony algorithm
(ACA). Cucuzza et al. Cucuzza et al. (2021a) proposed an alternative approach
in which the multi-objective optimization problem has been reduced to a single-
objective problem through suitable parameters. Luh and Lin Luh and Lin (2011)
were challenged in achieving the topology, size, and shape optimization of guyed
masts using a modification of the binary particle swarm optimization (PSO) and the
attractive and repulsive particle swarm optimization.

This paper discusses the size optimization of guyed masts using a genetic algo-
rithm (GA) by considering different design scenarios (e.g., Cucuzza et al. ? and
Manuello et al. Bertetto and Marano (2022)). Kaveh and Talatahari Kaveh and Talata-
hari (2009) noticed that the particle swarm optimization (PSO) is more effective
than ACA and the harmony search scheme for optimizing truss structures. However,
Deng et al. Deng et al. (2012) and Guo and Li Guo and Li (2011) were successful
in optimizing tapered masts and transmission towers using modifications of genetic
algorithms (GA). Moreover, Belevivcius et al. Belevičius et al. (2013) attempted
the topology-sizing optimization problem of the guyed mast as a single-level single-
objective global optimization problem using GAs.

Therefore, given the numerous successful solutions of guyed masts using GAs,
the authors chose to investigate the size optimization of a guyed mast structure
using GAs. Following Venanzi and Materazzi (2007), this paper focuses on the size
optimization by considering eight possible design scenarios. The purpose of the
present paper is two-fold. Firstly, this work aims at achieving a size optimization
on a real application case adopting structural verification according to Eurocode 3.
During the load evaluation phase, detailed analyses have been conducted, including
wind, ice, and seismic actions and the verifications against instabilities. Secondly,
the computational intelligence procedure adopted by the authors allowed the investi-
gation of several scenarios simultaneously. As a result, the parameters that mainly
affected the design process have been detected to provide preliminary indications to
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engineers in the practical design of similar structural typologies. Furthermore, the
considered case study may represent a benchmark case for validating the reliability
and accuracy of alternative numerical approaches. Therefore, the paper is organized
as follows. After the case study description and the FE model, the authors introduce
the first numerical results and the outcomes of the size and shape optimization.

5.2 Case Study

The considered structure is a guyed radio mast. It is a thin, slender, vertical structure
sustained by tension cables fixed to the ground and typically arranged at 120° between
each other.

The main body is a single central column made of tube profiles or truss systems
when a high elevation must be reached, see Figure 5.1. More than one set of cables
is placed at different elevations to prevent instability phenomena. Guyed towers are
usually built for meteorological purposes or to support radio antennas, such as the
one considered in this research. In particular, this structure can be used for a limited
time during an event or maintenance of primary transmission towers. Therefore, it is
also called a temporary base transceiver station (BTS), typically adopted to supply
the immediate service. Sporting events, concerts, motor racing, military camps, and
emergency events are typical examples of temporary BTS applications. The BTS is
usually mounted on a moveable platform called the shelter.

The considered structure is located in Bassano Del Grappa, in the north of Italy,
at a 129 m elevation from the sea level. The surrounding area is low-urbanized, with
no relevant obstacles to the wind loads. The total height of the mast is 30.00 m. It is
sustained by a central pole where 21 cables are fixed, see Figure 5.2. Other structural
elements with rectangular cross-sections are used to create truss systems connecting
cables and the central pole.
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Fig. 5.1 (a) Render model realized using Tekla Structures. (b). Technical drawing of the
structure investigated with dimensions in mm.

The central pole consists of five circular hollow steel profiles with flanged joints
and 6 m in length. All connections are bolted, as well as those connecting the cables
to the pole.
The shelter is a steel box devoted to partially sustaining the structure and hosting
electronic equipment. It is usually mounted on a moveable platform.
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Fig. 5.2 Pictures and details of the considered structure.
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5.3 Load Analysis

This section details the loads acting on the structures, from the dead to the variable
loads. According to the Italian Standard Regulation NTC2018, the load combinations
of the actions have been evaluated at the ultimate limit state (ULS) and, for seismic
conditions, at the life safety (LS) limit state. In Appendix 5.7, Table ?? illustrates
the most critical combinations for both static and dynamic configurations. Partial
safety factors γ and combination coefficients ψ were adopted in order to consider
maximization (positive sign) or minimization (negative sign) of effects both for
vertical and horizontal actions.

5.3.1 Dead Loads

The structure is made of steel S355, whose mechanical stress-strain behaviour is
depicted in Figure 5.3, and the characteristics are listed here: fus = 510 MPa, fys =

355 MPa, Es = 210,000 MPa, which are the ultimate and yielding stresses and
Young’s modulus, respectively.

Fig. 5.3 Mechanical stress–strain behaviour of steel S355 implemented in SAP2000.

The cables are made of galvanized steel consisting of 6 strands (216 wires) with
an independent metal core (49 wires). The main characteristics are illustrated in
Table 5.1.
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Table 5.1 Technical specifications of the steel ropes.

Steel Ropes (Cables)

Model 6 × 36WS + IWRC/265 wires

Construction pattern 6 × (14 + (7 + 7) + 7 + 1) + (7 × 7)

Winding direction right cross
Material galvanized steel

Resistance 1170 N/mm2–180 kg/mm2

Cable di-
ameter

Weight Area Wire
diameter

Load to failure

[mm] [kg/m] [mm2] [mm] [kN]

16 1.36 173.25 0.91 161
18 1.67 212.74 1.03 204
20 2.02 257.32 1.14 252
22 2.41 307.01 1.26 305

The structure investigated consists of a few types of elements, as indicated in
Table 5.2. Dead loads are calculated from the weight per unit length of each member.
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Table 5.2 Computation of the dead loads.

Computation of Dead Loads

Profile [mm] w [kg/m] Length [m] n° Wtot [kg]

Circular
D168.3 × 12.5 48 6 5 1440
D168.3 × 12.5 48 5.65 2 543

Rectangular

60 × 40 × 3 4.35 3.16 9 124
60 × 40 × 3 4.35 1.8 9 71
100 × 40 × 3 6.13 0.45 6 17

Rope

D16 1.3667 12.45 3 51
D16 1.3667 15.44 3 63
D16 1.3667 24.43 9 300
D16 1.3667 5.76 3 24
D16 1.3667 8.46 3 35

2651 Kg

The non-structural dead loads originate from the wiring weight and the steel
ladder for inspection and maintenance. This load results in 0.3 kN/m. Antennas and
parabolas represent the weight of the equipment. Two groups of three antennas are
located at 26.00 and 29.25 m in height, with a 120° in mutual spacing. The first one
is the model AOC4518R7v06 produced by Huawei®. The second one is the model
6888670N manufactured by Amphenol®. Finally, there are three parabolas located
at 23.15 m height, spaced 120° apart from each other, 30 cm in diameter. Tables 5.3
and 5.4 detail the weight of the equipment and the non-structural dead loads.

Table 5.3 Weight of equipment, H, W, and D stand for height, width, and depth.

Typology Model No Elevation [m] H×W×D [mm] Self-Weight [kg]

Antenna AOC4518R7v06 3 29.25 1509 × 469 × 206 39.3
Antenna 6888670N 3 26 1997 × 305 × 163 32
Parabola n.d 3 23.15 D = 300 15
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Table 5.4 Non-structural dead loads.

Item qk [kN/m] Qk [kN]

Steel ladder,
other

0.3 -

Antenna - 1.53
Antenna - 1.19
Parabolas - 0.52

5.3.2 Variable Loads

In this section, the detailed load modeling phase, for each variable load considered,
is described. With specific reference to the wind action evaluation, the drag and
lift forces are calculated according to the CNR-DT 207 R1/2018 del (2009). The
relationship between inertia and viscous forces, i.e., how wind load impacts to the
surface, is taken into account with the Reynold’s number Re with the following
expression:

Re(z) =
l · vm(z)

ν
(5.1)

where z is the elevation, l is the characteristic length, vm is the averaged wind speed,
while ν is the kinematic viscosity of air (ν = 15×10−6 m2/s).

Maintenance and Repairing Loads

Following the Italian national recommendations Mordà and Mancini (2018), it is
supposed that a typical situation of inspection or maintenance is performed by an
operator working on the steel ladder. A concentrated load of 120 kg is applied at the
top of the tower. Despite that, it is reasonable to believe that the operator could work
by using a basket elevator, without loading the structure.
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Wind Loads

The wind action was evaluated according to the Italian recommendations in del
(2009). Firstly, the peak kinetic pressure (qp) was evaluated as follows:

qp =
1
2
·ρ · v2

r · ce(z) (5.2)

where p is the kinetic pressure, while:

• ρ is the air density;

• v2
r is the reference wind velocity;

• ce is the exposure coefficient, varying with the elevation z of the structure.

For this purpose, the equivalent longitudinal or drag forces, fD, and transverse or
lift force, fL, are evaluated as follows:

fdrag = qp(z) · l · cdrag; fli f t = qp(z) ·b · cli f t (5.3)

where

• qp(z) is the peak kinetic pressure evaluated at height z;

• l is the characteristic element size;

• b is the reference transverse dimension of the section;

• cdrag and cli f t are the longitudinal and transverse dynamic coefficients.

Drag D and Lift L forces are reported in Tables ?? and ??.

Ice Load

Ice and snow attached to the structural surface can significantly increase the variable
loads in flexible and light structures. In particular, the radio mast is very sensitive
to changes in the wind-exposed surface. In addition, the ice covering can increase
the volume and the surface of the structural elements more than twice due to the
low thickness of the central pole. The recommendations in del (2009) provide
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several scenarios for ice coverings. In the absence of more detailed evaluations, it
is customary to consider an ice sleeve formation that is 12.5 mm thick. After the
estimate of the wind loads, the influence of the ice sleeve formation on the structure
is considered by assuming an additional exposed surface equal to 15% of the original
one.

Seismic Action

Seismic action is evaluated according to the Italian seismic hazard map Mordà and
Mancini (2018). A linear dynamic analysis with seismic elastic response spectrum
corresponding to the service limit state was carried out. Specifically, seismic actions
are considered as acting independently in the X and Y plane directions.

The elastic response spectrum considered in the analysis was calculated by
considering the topographic category of the site and geometry of the building (Figure
5.4). The first 33 vibration modes of the structure are included in the analysis, to
reach 85% of the total participating mass according to the national regulations in
Mordà and Mancini (2018). The mass participating ratios are listed in Appendix 5.7.

Fig. 5.4 Elastic response spectrum corresponding to the service limit state (SLV), where Sa
is the spectral acceleration.
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5.4 Finite Element Modeling

The structural model was developed using two different element types: beams and
cables. Beam elements model the main pole and all structural elements except
for the cables. They possess the geometric and material properties of structural
elements. The beam elements are used to model the main pole and secondary
elements. Moreover, except for the main pole, rotation releases are applied at the
ends in order to consider no flexural rigidity, as occurring for trussed structures.

Cable elements are used to simulate the steel ropes. Cable elements undergo large
displacements that give rise to geometric nonlinearities. Therefore, the equilibrium
of the cables is considered in the deformed configuration using SAP2000. As a result,
the structural behaviour of guyed towers can be highly nonlinear, especially for low
pre-tension cables, which are prone to large displacements. On the contrary, the
nonlinear behaviour becomes less pronounced by increasing the pre-tension, resulting
in high compression levels and minor instability effects. This paper considers
the envelope of the maximum and minimum responses associated with each load
condition.

Figure 5.5 plots the three modes with a higher mass participation ratio. These
are the 10th, 11th, and 12th modes obtained from the dynamic analysis of the mast
structure with the dead loads. On the contrary, the first modes arising from the
dynamic analysis have lower mass participation factors and are characterized by
local deformation of the structural elements. The 10th, 11th, and 12th modes are the
first modes exhibiting the global deformation of the mast structure.

X and Y identify the in-plane orthogonal directions. The 10th and 11th modes
have an approximate 26% mass participation factor in the Y and X directions,
respectively. The natural period is very low and at approximately 0.4 s. The 13th
mode is mainly torsional with nearly a 7 and 4% mass participation factor in the X
and Y directions.

Figure 5.6 shows the positive (in dark green and purple) and negative (in red
and light green) maximum and minimum envelopes of the axial, shear forces, and
bending moments acting on the structural elements. Figure 5.7 plots the performance
ratios of all structural elements except for the cables. The performance ratio is the
ratio between the maximum stress in the structural element and the yielding stress.
The performance ratios are defined by the colour map next to Figure 5.7. The plots



276 Size and Shape Optimization of a Guyed Mast Structure

highlight the presence of a structural element in the first half of the central pole with
a high-performance ratio, depicted in yellow. The first section of the central pole
has a low performance ratio, lower than 0.25. After the section with a performance
ratio in the range 0.4–0.65, the following sections fall in the range 0.25–0.4 and are
coloured in green. The top sections of the central pole are not significantly stressed,
with a performance ratio of 0–0.25. The bracings have low stress, plotted in cyan,
with performance ratios of 0–0.25.

(a) (b) (c)

Fig. 5.5 (a) Mode 10th—Ts = 0.437 s—mass participation ratio X = 9.6%, Y = 26.2%; (b)
Mode 11th—Ts = 0.434 s—mass participation ratio X = 26.4% Y = 9.2%; (c) Mode 12—Ts
= 0.206 s—mass participation ratio X = 7.2% Y = 4.4%.



5.4 Finite Element Modeling 277

Figure 5.8 shows the maximum displacements in the X (u1), Y (u2) directions
and their combination (ut) at the service limit state. The maximum displacement is
located at the top of the tower, in particular at joint 6 (z = 30.00 m), with a maximum
displacement equal to ut = 18.7 mm.

(a) (b) (c) (d) (e)

Fig. 5.6 (a) Axial force, (b) shear force (V2), (c) bending moment (M2), (d) shear force (V3),
(e) bending moment (M3).

Fig. 5.7 Performance ratios of the pole before optimization. Cables are depicted with magenta
colour because their performance ratios are not included in the current representation.
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Fig. 5.8 Displacements vs. elevation at the service limit state in two in-plane orthogonal
directions (u1,u2) and their combination (tot).
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5.5 Structural Optimization

In optimization problems, the main goal is to find the best conditions in terms of the
optimal set of design parameters collected in the design vector x, which minimizes
an objective function (OF) f (x) Melchiorre et al. (2021), Rosso et al. (2022, 2021c).
These problems can be categorized into single-objective or multi-objective based on
the number of OFs involved, and a further classification is based on the presence (or
not) of constraints Rao (2019a), Aloisio et al. (2022), ?. In the structural optimization
field, it is common to deal with constrained optimization, whose general statement is
Christensen and Klarbring (2008b):

min
x∈Ω

{ f (x)}

s.t. gq(x)≤ 0 ∀q = 1, . . . ,nq

hr(x) = 0 ∀r = 1, . . . ,nr

(5.4)

where x = {x1, . . . ,x j, . . . ,xn}T is the design vector to be optimized, whose terms are
limited into a hyper-rectangular multidimensional box-type search space domain of
interest denoted as Ω, given by the Cartesian product of the range of interest of each
j-th of each design variable bounded in [xl

j,x
u
j ], Ω = [xl

1,x
u
1]× . . .× [xl

j,x
u
j ]× . . .×

[xl
n,x

u
n]. The term gq(x) in (5.4) denotes inequality constraints whereas hr(x) are

equality ones, which further reduce the feasible search space inside Ω. In structural
optimization, it is typical to deal with inequality constraints, and a common goal
is to minimize the global cost of the structure. Since this involves many terms, the
main attempt is minimizing the self-weight of the structure, indirectly connected to
material cost, i.e., material usage and natural resources consumption Christensen and
Klarbring (2008b). Several strategies have been developed over the years to handle
constraints Coello Coello (2002), Koziel and Michalewicz (1999a), Michalewicz
and Fogel (2008). In the present work, the penalty function-based approach was
implemented due to its simplicity, allowing converting the problem with OF f (x)
into a new unconstrained version φ(x):

min
x∈Ω

{φ(x))}= min
x∈Ω

{ f (x)+H(x)} (5.5)



280 Size and Shape Optimization of a Guyed Mast Structure

where H(x) is the penalty function. Adopting a static-penalty strategy, H(x), assume
this form Parsopoulos and Vrahatis (2005), Coello (1999)

Hs(x) = w1HNVC(x)+w2HSVC(x) (5.6)

where HNVC is the number of violated constraints and HSVC is the sum of all viola-
tions:

HSVC(x) =
np

∑
p=1

max{0,gp(x)} (5.7)

w1 and w2 are the violation control parameters, whose numerical values are assumed
equal to w1 = w2 = 100 following Parsopoulos and Vrahatis (2005).

In the current study, the authors carried out a parametric study on the design
variables of the guyed mast. This fact has led to eight different scenarios, summarized
in Table 5.5. In addition, the starting initial values of the design parameter are listed
in Table 5.6, while the general optimization workflow is illustrated in Figure 5.9. To
compare the results, the focus is related only to the performance ratios PR of the
central pole of the guyed radio mast, being the pole the most stressed element. It
consists of five segments 6.00 m long with the same cross-section. Thus, starting
from the ground level:

1. Pole1 (0.00 to 6.00 m);

2. Pole2 (6.00 to 12.00 m);

3. Pole3 (12.00 to 18.00 m);

4. Pole4 (18.00 to 24.00 m);

5. Pole5 (24.00 to 30.00 m).

Starting with a constant diameter of the cross-section for the pole, at the end
of the optimization, it is advisable to find a tapered solution following a linear
relationship with the height, as represented in Figure 5.10f. Accordingly, it is
possible to shape the pole cross-section with two design variables described by the
bottom Φi and top Φ f diameters. In the following, the different scenarios obtained
from the parametric study based on the design variables involved in the optimization
problem are described:
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• Scenario A: this scenario involves the diameter Φ, as a sole variable, in the
attempt to reduce the material consumption with a constant pole cross-section
diameter with the height, as illustrated in Figure 5.10a.

• Scenario B: this scenario attempts to refine the previous case by adopting a
tapered solution for the pole, by using the bottom Φi and the top Φ f diameters,
as represented in Figure 5.10b.

• Scenario C: further improvements are considered concerning scenario B by
adding the cable pre-stressing force F as a variable of the optimization, as
represented in Figure 5.10c.

• Scenario D: further improvements are considered to scenario B by using a
unique value for the pole thickness t of the tapered elements of the pole, as
represented in Figure 5.10c.

• Scenario E: further improvements are considered with respect to scenario B by
optimizing both cable pre-stressing force F with a unique value of thickness t
for the tapered elements of the pole, as represented in Figure 5.10e.

• Scenario F: from the structural analysis of scenario E, it is possible to point
out how the linear law for the tapering forces to use a larger section where it
is not necessary. Elements 2 and 3 are the most stressed ones. Therefore it
is possible to further refine scenario E by considering a thickness value for
the intermediate pole elements tinter and a different thickness for the other
extremal pole elements tends.

• Scenario G: in this scenario, the five different thickness values only have
been governed for every pole element {t1, t2, t3, t4, t5} for a constant diameter
solution with height, as depicted in Figure 5.10f.

• Scenario H: in this last scenario, a complete approach involves both the tapered
solution by governing the initial bottom Φi and the final top Φ f diameters, the
five values of thickness for every pole element {t1, t2, t3, t4, t5}, and even the
cable pre-stressing force.



282 Size and Shape Optimization of a Guyed Mast Structure

Fig. 5.9 Workflow of the optimization problem.

Table 5.5 Parametric study on the design variables involved and summary of the different
scenarios.

Scenario No. Parameters

A(Φ) 1
B(Φi,Φ f ) 2
C(Φi,Φ f ,F) 3
D(Φi,Φ f , t) 3
E(Φi,Φ f , t,F) 4
F(Φi,Φ f , tends, tinter,F) 5
G(t1, t2, t3, t4, t5) 5
H(Φi,Φ f , t1, t2, t3, t4, t5) 8

Table 5.6 Total mass of the main pole.

Parameter Measure Value

Φ0 [mm] 168.3
t0 [mm] 12.5
L [mm] 6000

Mass [kg] 288
no elements [-] 5
Total Mass [kg] 1440
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(a) Scenario A (b) Scenario B (c) Scenario C

(d) Scenario D (e) Scenario E

(f) Scenario F (g) Scenario G

Fig. 5.10 Parametric study on the design variables involved and representation of the different
scenarios described in Tab.5.5.

Constraints Involved in the Structural Optimization Problem

The optimization problem statement is reported in (5.4) and the constraints were
treated with the penalty-based approach illustrated in (5.5), by converting the con-
strained problem into an equivalent unconstrained one. The resolution of the opti-
mization task considers the structural design assessment required by national and
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international codes to ensure the safety of constructions. In particular, the structural
verifications derive from Eurocode 3 (EN 1993-1-1: 2005) and are referred to the
ultimate limit state (ULS). The design verifications include tensile, compression, and
buckling verification, and a combined assessment, such as the interaction capacity
according to Annex B of the Eurocode 3:

D
C

=
NEd

χyA fyk
γM1

+ kyy
My,Ed

χLTWpl,y fyk
γM1

+ kyz
Mz,Ed
Wpl,z fyk

γM1

≤ 1 (5.8)

D
C

=
NEd

χzA fyk
γM1

+ kzy
My,Ed

χLTWpl,y fyk
γM1

+ kzz
Mz,Ed
Wpl,z fyk

γM1

≤ 1 (5.9)

where D stands for the demand and C stands for the capacity of the structure.
Specifically, NEd is the acting axial force, whereas My,Ed and Mz,Ed represent the
acting bending moments in the two principal directions of a planar local reference
system centered on the cross section center of gravity. A is the cross section area
of the pole, Wpl,y and Wpl,z are the plastic section modulus in the two principal
directions, fyk is the yielding strength of the steel, whereas γM1 is the partial safety
factor for instability conditions, equal to 1.05 from the Italian National Annex. χLT is
the reduction factor for lateral–torsional buckling, whereas kyy, kyz, kzy, and kzz are
interaction factors whose values are derived according to two alternative approaches
based on Annex A (method 1)and Annex B (method 2). The global structural
deformation referred to the service limit state (SLS) has also been considered by
verifying the top displacement of the mast. Specific recommendations for guyed
mast structures are missing in national and international codes. Therefore, the
authors adopted the suggestions defined in the Italian Technical Code NTC2018
(D.M.17/01/2018) reported in Chapter 4.2.4.2.2 Table 4.2.XIII related to limitations
of lateral displacements of steel multi-storey frame structures. These limitations
express a threshold condition in terms of the total height of the structure H:

δSLS,top ≤ δSLS,top,lim =
H

500
=

30000 mm
500

= 60 mm (5.10)

Since this condition is specific for steel multi-storey frame structures, the authors
will assume this value as a reasonable choice to ensure service life assessment and
preservation of working conditions of the telecommunication guyed mast tower. In
the next section, a discussion on the results is carried out.
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5.6 Results and Discussion

The paper compares the outcomes of the size and shape optimization in eight different
scenarios, distinguished by different design variables. Scenario A is associated with
the worst improvement of the structural performance since a single diameter is used
for the central pole. Additionally, industrial steel profiles do not cover all possible
ranges of the diameter. Improvements in the structural performance and weight
reduction are achieved in the following scenarios when the search space becomes
larger by increasing the number of design variables.

Scenario B introduces the tapering of the central pole with a linear variation from
the bottom to the top. In this case, the optimal solution is affected by intermediate
sections, which are more stressed. Consequently, the end cross-sections are over-
estimated. In response to that, Scenario F introduces the linear tapering of the tube
thickness tends,tinter to enhance the performance of the optimal solution. Parallelly,
in Scenario G, five different thicknesses are adopted (t1, t2, t3, t4, t5), and the results
are analogue to case F. Therefore, the thickness of the steel members is a suitable
optimization parameter. At the same time, the diameter alone is not capable of
returning attractive solutions because a linear interpolation trend is used. In addition,
lower and upper limits were imposed for d and t. In particular, for this kind of
structure, a minimum diameter dmin ≥ 100 mm and a minimum thickness tmin ≥ 3
mm was imposed.

The cross-section area depends on the square of the thickness. Therefore, small
changes in t significantly affect the resulting area. Conversely, if the diameter is
the sole search space, despite being tapered linearly with height, even significant
modifications may not produce notable improvements. Still, the increment of design
variables involved in the structural optimization typically increases the computational
efforts. However, the scenario with the highest number of variables was characterized
by an average time iteration close to 18s, using a computer with average performance.
The computational effort cost of the optimization procedure strongly depends on
the machine performance, no convergence issues occur. Table 5.7 lists the average
values of performance ratio obtained from the eight optimization scenarios. All
scenarios were collected in terms of number of parameters involved during the
analysis. Table 5.7 proves that the increment in the number of design variables is
associated with higher performance ratios. The target of the optimization achieves the
best weight reduction, fully exploiting the structural material, without exceeding the
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ultimate and service limit states. Table 5.7 lists three sets of performance ratios: the
initial one before optimization, the optimized, and the one obtained using commercial
steel profiles, called the design performance ratio. The averaged performance ratio is
equal to 28% before optimization. It significantly increases from scenario A, nearly
45%, to scenario G with 68%.

Table 5.7 Averaged performance ratios obtained in each optimization scenario.

No Parameters PR Initial PR Optimized PR Design

[%] [%] [%]

1

28.0

45.7 40.5
2 39.5 43.1
3 50.5 50.6
4 54.4 58
5 65.8 60.2
8 68 66

Essentially related to PR, mass reduction gives an idea about how much lighter (or
heavier) the structure becomes due to the optimization process. It directly provides
an estimate of cost savings.

Therefore, the results in Table 5.8 are consistent with the ones in terms of
performance ratios, shown in Table 5.7.

Table 5.8 Mass values before/after optimization and after proper approximation (design)
using commercial steel profiles.

No Parameters Initial Mass [kg] Optimized Mass [kg] Design Mass [kg]

1

1440

1003 1176
2 1051 1111
3 803 818
4 574 588
5 403 453
8 385 408

Figure 5.11 shows the optimization results for the Scenario G, in term of the
performance ratio obtained by averaging the performance ratios for each structural
element. The results for all scenarios are reported in Appendix 5.7. Scenario
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G, depicted below, exhibits higher values of the performance ratios. This fact
becomes become more evident for poles 2, 3, and 4. In these cases, the performance
ratios, associated with the design solutions, achieved values equal or greater than
the optimized one due to the approximation of the design section adopted. In
the post-processing phase, in fact, the optimized section chosen by the list of the
FE software was manually edited since the structural constraint violation or the
maximum performance ratio was not reached during to the optimization process.
Moreover, in Table 5.9, the optimized design section for different independent
iterations and the proposed industrial solutions according to product list, provided
by the software, are listed. As expected, the mass reduction achieved during the
optimization process results higher than the design solution due to the approximation
issue. For the proposed scenario, the iteration (Ntrial) that guarantees the best
objective function is the second. In Appendix 5.7, the graphical (through histogram
charts) and numerical representation (through tables) of the optimization result for
each scenario are provided. In order to provide an overview of the objective function
trend, the performance ratios and mass reduction for each scenario were collected
into Figures 5.12 and 5.13. The mentioned values were obtained for each scenario,
making an average of the results, before and after optimization, independently, for
each steel profile composing the central pole.
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Fig. 5.11 Scenario G.—PRs trend. In blue—the performance ratios of each pole before
optimization are illustrated, otherwise orange for the optimized solution. In green—PRs at a
design configuration according to the product list.

Figure 5.12 highlights an almost monotone increment of the performance ratios
to the number of design variables. Interestingly, for a number of variables n ≥ 5,
no significant improvements are achieved. Figure 5.13 emphasizes an important
reduction of structural mass as the design variables increase. Once again, n = 5
represents trade-off. If the number of variables exceed 5, no significant improvements
are observed.

Figures 5.12 and 5.13 show a comparison between each scenario in terms of the
average performance ratio and mass reduction, respectively. Figure 5.12 highlights
the difference with the initial state, which has an average performance ratio PR0 =
25.6%. An evident improvement is achieved for scenarios that include the thickness
t as the design variable.
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Fig. 5.12 In blue, orange, and green, the average PRs at the initial condition, after optimiza-
tion, and design solution, respectively.

Fig. 5.13 Increasing the number of design variables, the final mass becomes gradually smaller,
until 385 kg (scenario H).
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Table 5.9 Scenario G results: optimized solutions for the different independent executions
(Ntrial) and proposed industrial one, according to the product list.

SCENARIO G—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 3 6000 73
Pole 2 (6–12 m) 168.3 4 6000 97
Pole 3 (12–18 m) 168.3 3 6000 73
Pole 4 (18–24 m) 168.3 3 6000 73
Pole 5 (24–30 m) 168.3 3 6000 73

Total Mass [kg] Σ 391

Mass variation [kg] −1050 Mass variation [%] −72.88

SCENARIO G—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 4 6000 97
Pole 2 (6–12 m) 168.3 4 6000 97
Pole 3 (12–18 m) 168.3 3 6000 73
Pole 4 (18–24 m) 168.3 3 6000 73
Pole 5 (24–30 m) 168.3 3 6000 73

Total Mass [kg] Σ 414

Mass variation [kg] −1026 Mass variation [%] −71.22

Ntrial = 3

t1 t2 t3 t4 t5 OF
[mm] [mm] [mm] [mm] [mm] [kN]

3 4 4 3 3 34.985

3 4 3 3 3 34.751

3 4 3 4 3 34.985

In particular, from Scenarios D, E, F, G, H, the average performance ratios ex-
ceed 50%, resulting in a more than 40% difference compared to the initial state.
Figure 5.12 shows that the commercial profiles are sufficient to accommodate the
optimized solution. An exception is noticeable in Scenario A because the optimiza-
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tion is performed using just one diameter Φ, which is optimal for a few parts of the
structure, while others are “over-fitted”, resulting in a decrease of the performance
ratios −28.4% and an increase of structural mass (+173 kg), as shown in Figure 5.13.

Similarly, a monotonic increment of the structural mass at the end of the opti-
mization process is evident from Figure 5.13. In this case, the tonnage decreases
with the increasing of the parameter’s number. There is an overall mass reduction
of about −67.5% (−972 kg) from scenario D to H. In scenarios A, B, and C, the
thickness t of structural members is not considered. Therefore, the mass loss is not
satisfactory, at about −28.4% (−409 kg). The choice of the best scenario should
depend on one of the five situations described above (from D to H) related to the
better PRs gain and mass loss.

5.7 Conclusions

In this paper, a guyed radio mast’s size and shape optimization process was carried
out to identify the equilibrium solution that guarantees the lighter optimized model,
verifying strength, instability, and deformation requirements. The paper considers
a detailed evaluation of the variable loads according to the Eurocodes recommen-
dations. Furthermore, the OAPI was used to perform a structural analysis with the
finite element software SAP2000 by considering the non-linearity of the cables. The
optimization was carried out using a genetic optimization algorithm. Eight scenarios
(labeled from A to H) were investigated, considering different arrangements of the
geometric characteristics of the central pole and cables. The input parameters were
increased from Scenario A to H to achieve the best fitness value of the self-weight.
From Scenario A to H, the mass reduction index generally increased with the com-
putational effort except in scenarios B and E, in which the input parameter did not
represent the best vector design for the structural optimization. At this stage, the best
design solution was evaluated from the database of cross-sections inside the finite
element software. Though Scenario A provides the worst structural solution in terms
of objective function, it represents the most convenient optimization strategy due
to its low computational effort; on the contrary, Scenario H exhibits the best fitness
value with the lowest self-weight, but it represents the most time-consuming solution.
The best solution is achieved when the thickness values of each member, which, com-
posed of the central pole, are included in the optimization process. An improvement
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of the structural behaviour against instability is observed with increasing thickness.
This verification is critical for this structure, mainly subjected to normal stresses
resulting from self-weight and pre-stressing cable force. The entire optimization
process seems to not be sensible to the pole diameter, chosen as the input parameter
of the design vector. Although the final results of the FEM analyses are based on the
Italian standards, other codes (e.g., Eurocodes, American code, etc.) can be selected
from the SAP2000 settings. However, since no detailed analysis was carried out and
many standards are based on the semi-probabilistic approach, the final results should
be similar, even with different code formulations. Nevertheless, the partial safety
factors involved in load combinations remain quite the same from the numerical
point of view, regardless of the followed code.

In future developments, the authors will attempt to replace circular hollow
sections with built-up steel solutions to achieve the best structural performance
and assemblage procedures. Especially for higher structures, guyed radio masts
generally consist of a truss skeleton. Another possible development could be a
structural optimization for a cable-stayed radio antenna adopting other optimization
strategies, such as particle swarm optimization, PSO, and the evolution differential
algorithm (EDA), which could be less time-consuming. Finally, it could perform a
typological optimization by managing the position of the cable connection, trying to
find the best attachment points.
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Appendix A

Fig. 5.14 Scenarios A, B.In blue, orange, and green, the average PRs, respectively, at the
initial condition, after optimization, and the design solution.

Fig. 5.15 Scenarios C, D.In blue, orange, and green, the average PRs, respectively, at the
initial condition, after optimization, and the design solution.
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Fig. 5.16 Scenarios E, F, H.In blue, orange and green, the average PRs, respectively, at the
initial condition, after optimization, and the design solution.
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Table 5.10 Scenario A results: optimized solutions for the different independent executions
(Ntrial) and the proposed industrial one, according to the product list.

SCENARIO A—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 121 12.5 6000 201
Pole 2 (6–12 m) 121 12.5 6000 201
Pole 3 (12–18 m) 121 12.5 6000 201
Pole 4 (18–24 m) 121 12.5 6000 201
Pole 5 (24–30 m) 121 12.5 6000 201

Total Mass [kg] Σ 1003

Mass variation [kg] −437 Mass variation [%] −30.36

SCENARIO A—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 139.7 12.5 6000 235
Pole 2 (6–12 m) 139.7 12.5 6000 235
Pole 3 (12–18 m) 139.7 12.5 6000 235
Pole 4 (18–24 m) 139.7 12.5 6000 235
Pole 5 (24–30 m) 139.7 12.5 6000 235

Total Mass [kg] Σ 1176

Mass variation [kg] −264 Mass variation [%] −18.36

Ntrial = 5

Φopt [mm] OF [kN]

121 40.758

121 40.758

121 40.758

121 40.758

122 40.849
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Table 5.11 Scenario B results: optimized solutions for the different independent executions
(Ntrial) and the proposed industrial one according to the product list.

SCENARIO B—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 149 12.5 6000 252
Pole 2 (6–12 m) 138 12.5 6000 231
Pole 3 (12–18 m) 126 12.5 6000 210
Pole 4 (18–24 m) 115 12.5 6000 189
Pole 5 (24–30 m) 103 12.5 6000 168

Total Mass [kg] Σ 1051

Mass variation [kg] −389 Mass variation [%] −27.02

SCENARIO B—Design proposed according to product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 12.5 6000 288
Pole 2 (6–12 m) 139.7 12.5 6000 235
Pole 3 (12–18 m) 139.7 12.5 6000 235
Pole 4 (18–24 m) 114.3 12.5 6000 188
Pole 5 (24–30 m) 101.6 12.5 6000 165

Total Mass [kg] Σ 1111

Mass variation [kg] −329 Mass variation [%] −22.84

Ntrial = 5; best solutions

Φi [mm] Φ f [mm] OF [kN]

148 94 41.248

146 103 41.466

148 94 41.248

146 103 41.466

149 92 41.230
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Table 5.12 Scenario C results: optimized solutions for the different independent executions
(Ntrial) and the proposed industrial one according to the product list.

SCENARIO C—Optimized solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 147 12.5 6000 249
Pole 2 (6–12 m) 136 12.5 6000 228
Pole 3 (12–18 m) 125 12.5 6000 208
Pole 4 (18–24 m) 114 12.5 6000 188
Pole 5 (24–30 m) 103 12.5 6000 167

Total Mass [kg] Σ 1040

Mass variation [kg] −400 Mass variation [%] −27.79

SCENARIO C—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 12.5 6000 288
Pole 2 (6–12 m) 139.7 12.5 6000 235
Pole 3 (12–18 m) 139.7 12.5 6000 235
Pole 4 (18–24 m) 114.3 10 6000 154
Pole 5 (24–30 m) 101.6 10 6000 135

Total Mass [kg] Σ 1048

Mass variation [kg] −392 Mass variation [%] −27.22

Ntrial = 5

Φi [mm] Φ f [mm] F [kN] OF [kN]

152 92 1.8 41.393

151 92 1.4 41.339

149 92 1 41.230

156 92 2.4 41.610

147 92 0.8 41.121
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Table 5.13 Scenario D results: optimized solutions for the different independent executions
(Ntrial) and the proposed industrial one according to the product list.

SCENARIO D—Optimized solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 161 6 6000 138
Pole 2 (6–12 m) 147 6 6000 125
Pole 3 (12–18 m) 133 6 6000 113
Pole 4 (18–24 m) 120 6 6000 101
Pole 5 (24–30 m) 106 6 6000 89

Total Mass [kg] Σ 565

Mass variation [kg] −875 Mass variation [%] −60.75

SCENARIO D—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 6 6000 144
Pole 2 (6–12 m) 168.3 6 6000 144
Pole 3 (12–18 m) 139.7 6 6000 119
Pole 4 (18–24 m) 114.3 6 6000 96
Pole 5 (24–30 m) 101.6 6 6000 85

Total Mass [kg] Σ 588

Mass variation [kg] −853 Mass variation [%] −59.20

Ntrial = 5

Φi [mm] Φ f [mm] t [mm] OF [kN]

161 92 6 36.465

146 117 7 37.389

162 92 6 36.491

162 92 6 36.491

163 92 6 36.517
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Table 5.14 Scenario E results: optimized solutions for the different independent executions
(Ntrial) and the proposed industrial one according to the product list.

SCENARIO E—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 165 6 6000 141
Pole 2 (6–12 m) 150 6 6000 128
Pole 3 (12–18 m) 135 6 6000 115
Pole 4 (18–24 m) 121 6 6000 102
Pole 5 (24–30 m) 106 6 6000 89

Total Mass [kg] Σ 574

Mass variation [kg] −866 Mass variation [%] −60.13

SCENARIO E—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 6 6000 144
Pole 2 (6–12 m) 168.3 6 6000 144
Pole 3 (12–18 m) 139.7 6 6000 119
Pole 4 (18–24 m) 114.3 6 6000 96
Pole 5 (24–30 m) 101.6 6 6000 85

Total Mass [kg] Σ 588

Mass variation [kg] −853 Mass variation [%] −59.20

Ntrial = 5; best solutions

Φi Φ f t F OF
[mm] [mm] [mm] [kN] [kN]

150 97 7.8 1.3 37.766

153 112 6.4 1.6 36.964

165 91 6 2.3 36.552

160 91 7 1.3 37.287

139 104 8.8 1.3 38.337
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Table 5.15 Scenario F results: optimized solutions for the different independent executions
(Ntrial) and the proposed industrial one according to the product list.

SCENARIO F—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 157 4 6000 91
Pole 2 (6–12 m) 144 6 6000 122
Pole 3 (12–18 m) 131 4 6000 75
Pole 4 (18–24 m) 118 4 6000 67
Pole 5 (24–30 m) 105 4 6000 60

Total Mass [kg] Σ 415

Mass variation [kg] −1025 Mass variation [%] −71.16

SCENARIO F—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 4 6000 97
Pole 2 (6–12 m) 168.3 5 6000 121
Pole 3 (12–18 m) 139.7 4 6000 80
Pole 4 (18–24 m) 114.3 4 6000 65
Pole 5 (24–30 m) 101.6 4 6000 58

Total Mass [kg] Σ 421

Mass variation [kg] −1019 Mass variation [%] −70.75

Ntrial = 3; best solutions

Φi Φ f tends tinter F OF
[mm] [mm] [mm] [mm] [kN] [kN]

155 92 4 7 3.2 35.141

157 92 4 6 0.9 34.993

151 92 4 7 1.3 35.058
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Table 5.16 Scenario H results: optimized solutions for the different independent executions
(Ntrial) and the proposed industrial one according to the product list.

SCENARIO H—Optimized Solution

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 158 3 6000 69
Pole 2 (6–12 m) 146 6 6000 124

Pole 3 (12–18 m) 133 4 6000 76
Pole 4 (18–24 m) 121 4 6000 69
Pole 5 (24–30 m) 108 3 6000 47

Total Mass [kg] Σ 385

Mass variation [kg] −1055 Mass variation [%] −73.27

SCENARIO H—Design proposed according to the product list

Element d [mm] t [mm] L [mm] Mass [Kg]

Pole 1 (0–6 m) 168.3 5 6000 121
Pole 2 (6–12 m) 168.3 4 6000 97

Pole 3 (12–18 m) 139.7 4 6000 80
Pole 4 (18–24 m) 139.7 3 6000 61
Pole 5 (24–30 m) 114.3 3 6000 49

Table 5.16 Cont.

Total Mass [kg] Σ 408

Mass variation [kg] −1032 Mass variation [%] −71.65

Ntrial = 3

Φi Φi t1 t2 t3 t4 t5 F OF
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN]

164 109 4 5 4 3 3 0.9 34.789

167 111 3 6 4 3 3 2 34.839

158 96 3 6 4 4 3 2 34.695



Chapter 6

Constructability in structural
optimization

6.1 Introduction

In order to introduce properly this Chapter it should start with the definition of
the term "constructability", which generally speaking is a crucial consideration in
civil engineering that can greatly impact the success of a construction project. The
Constructability Task Force of the Construction Industry Institute (CII), based at The
University of Texas, in 1986, has defined constructability as "the optimum use of
construction knowledge and experience in planning, design, procurement and field
operations to achieve overall project objectives". In the United Kingdom, the term
"buildability" has been used to define "the extent to which the design of the building
facilitates ease of construction, subject to overall requirements for the completed
building". Constructability has been defined also by Anderson et al. (1995) as "the
capability of being constructed". However, this section, it is mainly addressed the
meaning of "integration of construction knowledge, resources, technology and expe-
rience into the engineering and design of a project”. Therefore, the key aspect one
should have in mind is that information and experience gained throughout the con-
struction phase must be accounted for and shared in the design in order to improve
project objectives. Aimed at accomplishing this task, several considerations can be
made, ranging from general management organization recommendations to more
particular techniques.
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O’Connor et al. (1987) started from the CII definition and explored seven con-
cepts for improving constructability, stressing the importance of construction-driven
schedules, simplified designs, standardization, preassembly work scoped in advance,
easy accessibility, adverse weather facilitation and a careful review of specifications
by owner, designer, and constructor personnel. Pulaski et al. (2005) proposed a
model to organize constructability information for design, according to timing and
levels of detail, with the intent to link constructability rules to different stages of
building design in a step-by-step format. They concluded that “the key to accessing
constructability is introducing the right information at the right time and in the right
level of detail”. Furthermore, also encouragement for innovations, learned lessons
from past projects, availability of resources, as well as waste management may all
enhance constructability as highlighted by Khan (2018).
Constructability considerations provide several important advantages, many of which
are sometimes challenging to understand and evaluate. Russellet al. (1994) distin-
guished such benefits between qualitative and quantitative ones, as reported in 6.1,
proposing a way for their estimation. The quantitative advantages are the ones that

Fig. 6.1 Framework for determining constructability benefits Russell et al. (1994)

directly reduce cost and schedule duration; their effect can be measured by determin-
ing the impact of the change from that of standard practice. The utilization of fewer
materials, fewer workers (i.e., reduced labour effort hours) and fewer fixed pieces
of equipment during construction can all help to quantify cost abatement. Also the
reduced schedule, in comparison with standard practice, can be translated into cost
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savings. Instead, substantial qualitative advantages include the prevention of issues
through improved collaboration, cooperation, and respect among participants. They
also involved more site accessibility and safety, less rework, decreased maintenance
costs, intensified focus on common goals, increased construction flexibility, etc.
Since any construction project must be carried out by the planned completion date,
to reduce issues like scheduling conflicts, delays and disagreements that may arise,
Arditi et al. (2002) conducted a questionnaire survey of design companies about the
adoption of constructability. The benefits, reported in 6.2, are in terms of creating
better client and constructors relationships, being involved in fewer lawsuits, a better
reputation, professional satisfaction and efficient design. In particular, they have
been ranked from 0 to 3, with 0 being the least influential and 3 the most relevant.

Fig. 6.2 Benefits of constructability highlighted by the survey in Arditi et al. (2002)

Another important aspect, emphasized in Ruby and David (2008) is the fact that
constructability is a design philosophy that originates from the conceptual design
stage, continues through design, and links project planning with design and construc-
tion. Therefore, constructability issues have to be identified and analysized during
the design phase, not at the end once the construction phase starts. Integrating such
considerations at the beginning will improve the overall project, and the efficiency
of construction, as it allows for a more streamlined and cost-effective process. As
stated in Khan et al. (2018), making use of construction knowledge from the earli-
est stages of a project, where the ability to influence cost is at its greatest, makes
sense from both practical and financial viewpoints. Paulson (1976) described the
interrelationships between engineering design, construction and operation costs for
a facility, showing how the level of control on those costs decreases as the project
evolves. In the reported figure 6.3, the idea of the author is exemplified. In the
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lower portion, the life of a project, as a function of time, is distinguished into three
phases, namely (1) Engineering and design, (2) Procurement and construction, (3)
Utilization or operation; in the upper portion, instead, two curves are plotted, always
as a function of project time, where the ascending one tracks the cumulative project
expenditures, while the descending one shows the decreasing level of influence. In
the early phases of design, when the expenditures are relatively small, the project
team has the most opportunity to impact the overall cost of the facility. The decisions
and commitments made during this period have an enormously greater impact on
future costs; later on, when the cumulative cost of the project increases, the level
of influence on such expense will go towards zero. Thus, the initial design phase is
crucial and cooperation, together with a high level of detail, is required to incorporate
basic constructability aspects.

Fig. 6.3 Level of influence on project costs by Paulson in Paulson Jr (1976)

Therefore, constructability in structural optimization can be interpreted as the process
of incorporating construction expertise and knowledge into the design and optimiza-
tion phase. The difficulty of such a process is that there are many factors involved.
Many of these influencing factors regard the management procedure, thus a good
collaboration between all the team members, as well as the importance of having
professional and qualified personnel, early involvement of the contractor in the
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design and so on. However, in the present Thesis, we are more interested in looking
at the constructability factors that can be integrated into the structural design choices,
and more specifically in the optimization set-up. There are construction techniques
that are just intended to simplify the overall production of necessary pieces for the
given structure, to reduce the number of elements as well as connections typologies,
to standardize sections, to encourage the employment of less diversity, to facilitate
the assembly, but also the erection phase and so on. Always from the survey of
Arditi et al. (2002), as reported in 6.4, eight factors impacting constructability have
been listed and ranked, such as project complexity, design practices, project delivery,
project size, project type, client type, project location, and design standards. In the
same article, the authors also addressed the factors constraining constructability,
as reported in 6.5. Faulty, ambiguous, or defective working drawings, incomplete
specifications, and adversarial relationships were found to be the three major factors
that cause constructability problems.

Fig. 6.4 Factors affecting constructability
Arditi et al. (2002)

Fig. 6.5 Constraints on constructability
Arditi et al. (2002)

Among them, non-standardization of design, which would have a detrimental impact,
also plays a significant role. In general, using standardized components and systems
can help improve constructability by reducing the need for custom fabrication and
assembly. The idea of standardization has been defined, by Pasquire et al. (1999), as
"the extensive use of components, methods or processes with regularity, repetition
and a successful history". In Wong et al. (2006), also explained how standardization
can be translated as the repetition of grids, sizes of components and connection
details, stressing the benefits in terms of faster construction, reduced number of
mould changes and enhanced productivity. In Khan et al. Khan (2018) it has been
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emphasized the fact that it can be applied to various scenarios from building systems,
materials types, construction details and so on, depending also on the economic
analysis scale. The reduction in variety can lead to many benefits such as discounts
on more pieces of the same material, simplified procedures and so on. Summarizing,
standardization is a term that can include different meanings, from the employment of
standard elements in the design of a structure, avoiding particular and unique shapes
or sections, but also the repetition of members, connections, as well as procedures in
the overall project. Furthermore, from a more general point of view, standardization
is also paired with modularization and pre-assembly techniques. By looking at the
design of a simple truss structure, the structural choices that can be made with a
standardization-driven orientation regard the employment of the least amount of
different cross-sections, but also the reduction in variation of the connections. In
any case, we should always remember the verification of structural and geometric
requirements. In Chapter 2 we have seen many examples of side constraints, mainly
concerning the joints between beams and columns in frame structures.
An interesting research has been conducted by Abbigayle Horn (2015), where con-
structability has been defined as the standardization of primary structural elements
to balance multi-objective design goals. In particular, the author has introduced
non-subjective, quantifiable metrics to measure the standardization of structural
components. The study focused on two-dimensional steel truss façade structures,
subjected to lateral loading with a pinned base.

Shape optimization has been pursued by allowing node translations in the hori-
zontal and vertical directions, while topology optimization has been completed via
Boolean operators that turned diagonal elements on or off. Moreover, the number of
vertical bays was also a variable in the study, exploring the possibility of having five
or six vertical bays. Then, in the structural verification phase, member sizing has been
determined based on the minimum area required to satisfy both stress and buckling
criteria. The metrics that have been considered to quantify structural performance,
which was later compared with constructability performance metrics, regarded the
lateral deflection of the façade system at the top of the structure, strain energy and
structural weight. The newly introduced constructability metrics, formulated to
measure design characteristics from a constructability perspective, were:
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1. Standardized Member Length (SL), using which, once calculated the average
member length for each design iteration, each member has been penalized
based on its difference from the mean;

2. Truck requirements (TR), accounting for length and weight restrictions that
would lead to the acquisition of special permits for the shipping phase;

3. Field Connections, both bolted and welded, have been minimized to reduce
the number of man-hours expended on site for labourers and crane operators;

4. Node Member Connectivity (NMC), aimed at minimizing the number of
members framing into a single node;

5. Node Angle Connectivity (NAC), which imposed that each member framing
into the node must have a minimum separation;

6. Cross Section Variation (CSV), aimed at reducing the number of sections used.

Regarding the first metric, it has been proposed a practical application of standardiz-
ing member length, in which members are grouped into sets of standard lengths in
order to improve effective fabrication and erection procedures. Then, TR involved
the application, at first, of length restrictions to the elements needed, leading to
the cut of oversized members, and then of weight constraints, in order to count the
number of trucks filled and eventually to obtain the minimum one. In this way,
enhancing standard shipping, the timing of transportation could be better coordinated
with on-site work, yielding construction cost savings and reducing site logistics
associated with trucking and oversized load permitting. Depending on the number of
splices required to satisfy shipping constraints and the total number of members in
the structure, field connections have been evaluated, with the intent of reducing their
number. Both NMC and NAC have been used to maximize the accessibility of the
labourers to the cast node pads and minimize the number of infeasible connections.
The final goal was to improve the speed of construction by reducing connection
time in the fabrication and erection phases. Particularly interesting is the last metric
developed, which discouraged high variation in member sizing, which would lead
to more complex fabrication and erection processes, especially in the case of non-
standard shapes. In an attempt to obtain the least amount of different cross-sectional
areas, the author has assigned a value to each cross-section to determine the num-
ber of unique cross-sections. This has been obtained by multiplying the required
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diameter, in inches, by ten and adding the member thickness in decimal inches. The
final minimized metric was determined based on the percentage of all members
that have unique cross sections, so the ratio between the number of unique cross
sections divided by the total number of elements. From the output of the analysis,
it has been found that the general trends observed implied that there are significant
tradeoffs between constructability and structural performance. However, the impact
of standardization on weight has to be carefully analysized. As the number of cross-
sections in a given structure decreased, the overall weight of the structure increased,
as expected, but this increase is relatively minor in comparison to the significant
improvement in constructability. In the reported figure 6.6 it has been shown the
case in which the number of different cross-sections in a structure was reduced by a
factor of 10, while the structural weight increased by a factor of 2. This implies that
remarkable labour and cost savings can be achieved by consolidating cross-sections,
while the increase in the cost of material is marginal in comparison.

Fig. 6.6 Impact of standardization on structural weight Horn (2015)

From the experience of the previous studies we can understand how constructabil-
ity considerations integrated in the design phase will behave as competitive goals
concerning the typical weight minimization one. We can think for example of the
complex topic affecting truss structures, which involves the reduction of the number
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of nodes and thus leads to longer members. In turn, these elements would have
bigger sections to satisfy structural requirements, perhaps implying heavier designs.
The same implication would follow the standardization technique, which encourages
less diversity in the sections used. However, repetition of members’ sizes at the cost
of some added member weight can simplify detailing, fabrication and erection costs.
Thus, using a simpler and standardized design, we can abate the overall cost, which
is generally the most appealing target objective.

The entire chapter is entirely dedicated to the simultaneous size, shape and
topology optimization of truss beams for industrial buildings at different levels. An
objective function which takes into account constructability issues during the produc-
tion and assembly phase has been adopted by considering the number of different
cross-sections and the total number of employed pieces. Moreover, structural safety
has been guaranteed and the feasible solution results verified with respect to com-
pression, tension and buckling verifications. Then, the optimization conducted at the
level of the trussed beam only has coupled with the size and layout optimization of a
real industrial building. The optimal cross-section of all steel members composing
the structure, span lengths and the number of horizontal or vertical bracings has been
evaluated.

6.2 Case study 1: Truss beam only

After having discussed the basic structural optimization methodologies and con-
structability difficulties, the current section is going to describe the application case
study of competence. Specifically, the simultaneous size, shape and topology opti-
mization of steel truss structures has been performed by developing a novel objective
function which takes into account constructability criteria. At first, the mechanical
behaviour of different types of truss beams will be introduced and practical design
recommendations will be discussed, as well as how they can be modelled following
a parametric design; following, the problem definition and the design variables
involved in the optimization will be introduced, along with the grouping strategy
developed to improve the schematization of the problem. Subsequently, the model
set-up and the definition of the Objective Function will be discussed, starting from the
original hypothesis considered to the final formulation. Finally, by the comparison
of the proposed method and the more common minimum-weight approach, it will be
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highlighted the influence of the additional constructability criteria in the definition
of the best individuals.

6.2.1 Problem overview

As stated before, the intent is to perform a simultaneous size, shape and topology
optimization of a steel truss structure. Considering a total span length of 20 meters,
the parametric model of the truss is realized, at first, by creating half of the geometry
and then exploiting the symmetry with respect to the vertical axis in the middle.

Fig. 6.7 Schematic representation of the truss

The shape optimization variables have been identified as the number of subdivisions
of half the chords (n), along with the heights of the edges (H1) and middle point
(H2) of the upper chord. Always considering half geometry, the range in which n
can be varied is in between 3 and 10. The upper bound has been set considering a
minimum distance between consecutive nodes of 1 meter, while the lower bound
accounting for the grouping strategy, explained in the next paragraph 6.2.2. From a
pre-dimensioning of the structure, we have set a range for the height at the edges H1

in between a value of L/15 and L/10, while the central height H2 ranges between
the current value of H1 and a maximum of L/8.
Anyways, each variable is dependent on the other because of geometrical considera-
tions. In fact, the inclination of diagonal members is suggested to be in between 30°
and 60° degrees (Marano et al. 2016b). Therefore, the relationship of H1 and H2 as
a function of n, is recommended as following:

• Pre-dimensioning rules
L
15 < H1 < L

10
H1 < H2 < L

8
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• Diagonals inclination in between 30° and 60°
D · tan30° < Hi <D · tan60°, with D equal to the distance between consecutive
nodes, computed as L/2

n

Depending whether the first of second condition is more stringent than the other, we
would obtain a domain for H1 and H2 ranging from minimum and maximum values,
according to the following relationships:

Domain of H1 Domain of H2

H1,min=max( L
15 ,D · tan30°) H2,min = max(H1,D · tan30°)

H1,max=min( L
10 ,D · tan60°) H2,max=min(L

8 ,D · tan60°)
Table 6.1 Domains definition for H1 and H2 as Hi,min < Hi < Hi,max

Fig. 6.8 Scheme for relationship between n and H1,H2, where α and β is assumed equal to
at least 30°and maximum 60°, respectively.

Regarding the topology optimization, we have created in Grasshopper five dif-
ferent truss types, namely Vierendeel, Brown, Pratt, Howe and Warren ones. Here
below, we have explained their main characteristics and real-life applications:

• Vierendeel truss
This layout of structure was named after the Belgian engineer Arthur Vieren-
deel, who developed the design in 1896. It is characterized by the absence
of diagonal members, without any triangular mesh inside. For this reason,
to avoid the instability of the structure, the nodes have to be designed not as
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pinned connections but fixed ones, in order to guarantee any relative rotation
of the members. This is its primary characteristic that sets the Vierendeel apart
from other truss layouts. Thus, its cross-sections would be thicker if compared
to other typologies with the same span, resulting in heavier designs. Any-
how, it is widely employed in civil engineering structures, resulting in a more
aesthetically pleasing harmonic configuration. For example, it is preferred in
presence of windows or open doors, because the exterior envelope remains
unobstructed.

Fig. 6.9 Vierendeel truss scheme and application example: AMERON Hotel Speicherstadt
footbridge

• Pratt truss
Pratt truss, first proposed by Thomas Pratt and his son Caleb in 1844, nowadays
is one of the most used, allowing long spans to be achieved, ranging from 20
to 100 meters. Also called N-shape, it is made up of vertical and diagonal
members that form the ’N’ pattern until the central point, where they are
inverted. This type of truss is most appropriate for horizontal spans, where
the force is predominantly in the vertical direction. Under gravity loads, the
vertical members result to be in compression while the diagonals in tension.
In this way, a more cost-effective design might be encouraged by giving the
diagonal components smaller cross-sections. Besides, since they are in tension,
they won’t be affected by buckling problems.

• Howe truss
The Howe truss was proposed by William Howe in 1840, four years before
the Pratt one. Their configuration is similar, actually specular, because of the
orientation of the diagonals. Therefore, under gravitational loads, they are in
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Fig. 6.10 Pratt truss scheme and application example (industrial building from "LA META
costruzioni Vincenzo Cavallo")

compression, so buckling verification becomes an issue. Thus, Howe truss
is better employed when uplift actions are predominant, which may be the
case of open buildings such as aircraft hangers, so that the diagonals can be in
tension.

Fig. 6.11 Howe truss scheme and application example: Queen Elizabeth II Metro Bridge

• Brown truss
The Brown truss has X-shaped diagonals. It is characterized by the fact that
one leg of each X is always in tension. More in details, the double diagonals
configuration is an hyperstatic truss scheme. This kind of truss is generally
employed when we may have an inversion in sign of the actions, like in the
case of wind loads or seismic excitations. Of course, this configuration will
result in heavier designs even though the single diagonals can have smaller
sections.

• Warren truss
It is named after the British engineer James Warren, who patented it in 1848,
together with Willoughby Theobald Monzani. Its original scheme had a con-
figuration in which the truss members formed a series of equilateral triangles.
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Fig. 6.12 Brown truss scheme and application example: Hungerford railway bridge

However, in our analysis, because we have an inclined upper chord, the tri-
angles are not equilateral. There are different versions of the Warren truss
type, with or without vertical elements, as well as with alternate verticals, with
parallel chords or inclined upper chords, with equilateral or isosceles triangles.
Looking at the scheme chosen for our investigation, reported in figure 6.13 we
can observe that the upper chord is always in compression, while the lower
chord is in tension. Then, the diagonals have to be distinguished into the
descending ones, which are in tension, and ascending ones, which on the
contrary are in compression; then once the middle is reached their solicitations
are switched. Instead, the additional vertical elements present alternate stresses
the even ones are in compression, while the odd ones are not stressed. The
function of the even vertical elements is to help the distribution of compression
actions when long spans are reached. This type of truss is largely employed in
civil engineering applications thanks to its versatility. In particular, it is often
used for steel railway bridges, thus the loads (dead and traffic load) are applied
on the deck which distributes the load to the bottom chord.

Fig. 6.13 Warren truss scheme and application example: BNSF Railroad over Verdigris River

In particular, to switch from one configuration to the other in our optimization, we
have created a slider ranging from 0 to 4, in which each number represents a truss
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type. For example, 0 stands for the Vierendeel one, thus if the topology design
variable for the current individual is at 0 value, the configuration analyzed is the
Vierendeel one.

Fig. 6.14 Topology optimization design variable

Finally, the size optimization has been carried out by varying the cross-sections of
the truss’s members. Specifically, we have assigned CHS (circular hollow sections)
profiles. In Karamba3D there is a pre-defined catalogue, which has been limited
to the first 100 values to reduce the computational effort of the optimizer. This
reduction has been computed by following the Eurocode 3 specification, in which
the general formulation regarding the stability of the truss’s members can be written
as: NRd =

A· fy
γm

. It should be distinguished for tension or compression members, as
well as for the different classes of cross-sections, but this was just a preliminary,
rough and simplified evaluation.

6.2.2 Grouping strategy

In real-life, structures designed by employing a huge number of different sections
lead to difficulties during the assembly and erection phases. Hence, if grouping
strategies are adopted, the overall structural complexity is reduced and all the con-
structability issues can be simplified. The benefit derived from this approach is
largely demonstrated by several authors such as Gholizadeh et al. (2017),Dehghani
et al. (2019) and Hasançebi and Azad (2019). During the grouping strategy, the
vertical symmetry of the investigated structures will be considered. First of all, we
have distinguished five components of the truss (e.g. Marano et al. 2016b), namely:

1. Lower Chord
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2. Upper Chord + External Vertical Structs

3. Internal Vertical Structs

4. Upward-Downward Diagonals

5. Downward-Upward Diagonals

Fig. 6.15 Truss’s components division

Each component has been in turn divided into three main regions, wherein each one
of the solicitations can be assumed similar. Thus, the grouping strategy consisted of
the creation of 3 groups for each component, to which a cross-section is assigned.
In more detail, if we look at the lower chord’s solicitation distribution, it can be
highlighted that there are three main points at which the stress difference is more
evident.

Fig. 6.16 Lower chord’s solicitation distribution

Exploiting this observation, we have assigned three different cross-sections, one for
each group. If we think to assign a single cross-section to the entire lower chord, it
would require the largest one to sustain the highest stresses in the middle, increasing
the overall weight of the structure. On the contrary, if we allow the optimizer to
choose a different cross-section for each member, the overall structure would result
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in the lowest weight possible, but with the highest complexity for its construction.
Having a high number of different cross-sections increases the complexity of fabri-
cation, assembly and erection phases, as well as the overall cost, thus it should not
be encouraged. To make a first move towards a balance between the minimization
of the cost and the number of different cross-sections used, we have developed the
grouping strategy.

Fig. 6.17 Relationship between N°groups and corresponding weight [kN]

Furthermore, the grouping technique has been carried out dynamically. Specifically,
the optimizer can manage the group division by changing the point at which we
have the passage from one group to the other. To explain the developed approach,
we can consider for the sake of simplicity only the lower chord. In particular, let’s
focus on the case of a truss with several subdivisions of the first half equal to 6. If
we wanted, for example, to divide the lower chord into 2 groups we would have to
identify n1, which is the index of the node at which the lower chord will be divided.
Then, in order to divide it into 2 groups, not having one of them with zero members,
n1 should be a number from 1 to n−1 = 5. From the reported figure 6.18 we have
graphically illustrated the meaning of n1.
Then, moving towards our case, if we want to divide the lower chord into 3 groups,
we should identify two indexes, n1 and n2. In this case, n1 would be a value in
between 1 and n−2 = 4, while n2 in between n1 +1 and n−1 = 5.
Looking at the figure 6.19, we can see that n2 is establishing the ending node of the
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Fig. 6.18 Graphical representation of the meaning of n1 variable

Fig. 6.19 Graphical representation of the dynamic grouping strategy with 3 groups

first group, while n1 is the ending node of the second group.
Following this scheme, all the possible numbers of groups, N°groups, will be ob-
tained by multiplying the N°subdivisions for n. However, because of the considera-
tions previously made regarding the actual solicitation distributions and the reduction
of the computation effort required for the optimization procedure, we have chosen to
subdivide each component into three groups.

6.2.3 Problem formulation

In this section, the statement of the optimization problem is pointed out. Design
variables, Objective function and constraints are clearly defined. The adopted formu-
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lation allows performing an optimization not simply aimed at weight minimization,
but both structural safety and constructability issues are accounted.

As stated before, we are going to perform an optimization not simply aimed
at weight minimization, but we are accounting for both structural verifications and
constructability issues. To properly formulate our problem, we should define the
three main ingredients of the optimization, namely the objective function, the design
variables and the constraints applied.
The formulation of our optimization can be expressed as:

min F(x) = ρ

N

∑
i=1

(Ai · li) ·φ1(nun) ·φ2(Na) ·φ3(n) (6.1)

subjected to
NEd

NRd
≤ 1 (6.2)

xi,min < xi < xi,max (6.3)

Where:
N is the total number of elements in the truss and x is the vector of design variables
while NEd and NRd represent the maximum solicitation selected between the tension,
compression and buckling load at each member of the structure and the corresponding
structural strength. Finally, xi,min and xi,max represent the maximum lower and upper
value of the i− th design variables.
In the previous sections, all the design variables, xi, involved in the optimization
have been introduced and they have been summarized in table 6.2 below. The
four macro-categories of the design variables, i.e. Topology, Layout or Shape
definition, Grouping division and Cross-sections assignment, have been distinguished
by making use of different colours. Moreover, in the last column of table 6.2 have
reported the lower and upper bound of each design variable, xi. Their graphical
representation has been reported in figure 6.20, where the Brown truss type has been
chosen for clearness purposes.
In equation 6.1, the penalties are respectively:

φ1 = (1+K1 ·nun) (6.4)

φ2 = (1+∆)− e−β ·(Na− ln∆

β
) (6.5)
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Fig. 6.20 Schematic representation of all the design variables

φ3 = (1+ γ)− e−α·(n− lnγ

α
) (6.6)

All the parameters related to the penalty functions have been calibrated using the
analysis. For clearness and simplicity reason, all the optimal value for each curve’s
parameter is reported in table 6.3.
The first penalty 6.4, is assumed equal to the maximum violation, nun, between
compression, tension and buckling verification, and amplified by a coefficient K1.
Instead, φ2 and φ3, respectively 6.5 and 6.6, are representative of constructability
criteria that, once more, encourage the optimization towards heavier designs. In
particular, φ2 is limiting the number of distinct cross-sections used to construct the
entire truss (Na). On the other hand, φ3 tries to reduce the design complexity by
lowering the number of subdivisions of the truss, thus the overall number of pieces
to be assembled. Both φ2 and φ3 have an exponential form, as we can see in the
graphical representations below, 6.21.

It should be highlighted the fact that, during the objective function evaluation,
first, sizing of the structure was performed. Thus, the optimizer is allowed to vary
only from x7 to x21 design variables of table 6.2. Then, shape design variables are
considered, i.e. x2, x3 and x4, as well as the ones regarding the grouping strategy,
which are x5 and x6. Once, all the penalties have been tested for the simultaneous
size and shape optimization, finally, we included also the topology optimization, thus
x1 of 6.2. The reason behind this kind of step analysis is related to investigating the
actual influence of the different design variables on the distinct penalty functions. For
example, penalty Φ1 about the structural verification is highly dependent on the size
variables, while shape and topology ones are indirectly affecting such requirements.
Analogously, Results showed that the optimal solution obtained by considering
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Design
variable Description Domain

x1

Topology: (0) Vierendeel,
(1) Brown, (2) Pratt,
(3) Howe, (4) Warren

0÷4

x2 = n
Number of subdivisions

of half geometry 3÷10

x3 = H1
Heights of upper

chord’s edges
H1,min = max( L

15 ,D · tan30)
H1,max = min( L

10 ,D · tan60)

x4 = H2
Heights of upper
chord’s midpoint

H2,min = max(H1,D · tan30)
H2,max = min(L

8 ,D · tan60)

x5 = n1
Index at which the
third group ends 1÷n−2

x6 = n2
Index at which the
second group ends n1 +1÷n−1

x7
x8
x9

3 sections for the lower
chord elements

0÷100 CHS profiles’
index from catalogue

x10
x11
x12

3 sections for the upper
chord + external vertical structs

0÷100 CHS profiles’
index from catalogue

x13
x14
x15

3 sections for the vertical
internal structs

0÷100 CHS profiles’
index from catalogue

x16
x17
x18

3 sections for the upward-
downward diagonals

0÷100 CHS profiles’
index from catalogue

x19
x20
x21

3 sections for the downward-
upward diagonals

0÷100 CHS profiles’
index from catalogue

Table 6.2 Design variables where the colours of the cells represent the different categories:
blue - Topology; red - Layout definition; green - Grouping division; yellow - Cross-sections
assignation.

constructability-based penalties seems to be not affected by topology variability. In
Fig. 6.22, the procedure for the assessment is schematically shown.
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Parameter Value
K1 10
∆ 2.70
β 0.1
γ 1.157
α 0.1

Table 6.3 Penalties parameters

Fig. 6.21 φ2 and φ3, respectively 6.5 and 6.6

Fig. 6.22 Procedure for the assessment of each penalty

6.2.4 Modelling strategy and Software adopted

To fulfil the goal of the research, Rhinoceros 3D ©has been used to exploit the
parametric design principles, which include Grasshopper 3D with Karamba 3D and
Octopus plug-ins.
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Fig. 6.23 Software and plug-ins adopted

• Rhinoceros 3D
It is a 3D modelling tool, commonly used by architects and designers in the
early design phase. The software have been developed by McNeel&Associates
in 2008. It has been categorized in the CADs software, but it allows it to repre-
sent very complex forms and structures, making it more powerful concerning
AutoCAD software, for example. Rhino uses non-uniform rational b-spline
(NURBS), which are mathematical representations of a 3D geometry. NURBS
allow us to accurately reproduce very complex geometries, from a simple
2D curve to the most challenging 3D shape. Rhino works in parallel with
Grasshopper it allows us to visualize what we are designing in the Grasshopper
environment.

• Grasshopper 3D
Grasshopper3D is a visual modelling program, which can construct an iterative
and interactive design process by modelling objects parametrically. The utility
and efficiency of the program are enhanced by the plug-ins contained inside.
Specifically, in this Thesis, Karamba3D and Octopus are the main ones used.
Focusing on our case study, this software was very useful to run size, shape and
topology optimizations. In fact, by changing the value of the slider component
connected to the specific design variable, the software allows to re-create
immediately and in a continuous way, several geometries by changing for
example cross-sections, number of subdivisions, coordinates of the points,
typology of the truss etc.

• Karamba3D
Karamba 3D is a parametric structural analysis tool which is fully embedded
into the visual programming environment Grasshopper. It can perform detailed
Structural Finite Element Analysis (FEA) for spatial trusses, frames and
shell structures. Specifically, in the present Thesis, this Rhino plug-in was
used for the structural verification of the truss structure and in the following
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one also for the industrial building. Although it could be less robust than
commercial software, due to its fast interactivity with Grasshopper, it results
more suitable than other FE programs, highly reducing the total amount
of computational time. Data are instantly sent from the parametric model
created in Grasshopper to the Karamba solver, which subsequently passes the
analysis’s outputs to the optimization. In particular, the elements created as
simple geometry in Grasshopper are then converted into FEM components
and assembled, by indicating the assigned cross-sections, material, joints,
supports and loads applied. Using the "Utilization of elements" component,
the structural verification towards buckling requirements can be implemented,
according to EN 1993-1-1 included in Eurocode 3 (Design of steel structures -
General rules and rules for buildings).

• Octopus
In our Thesis we have not used the more common optimization Galapagos, but
instead, we have employed Octopus, developed by Robert Vierlinger and his
team, at the University of Applied Arts Vienna. It is a Grasshopper plug-in
that enables the solving of a wide range of Multi-Objective Optimization
(MOO) issues. To find Pareto-optimal solutions, Octopus offers two global
metaheuristics methods:
⇒ SPEA2, which stands for “Strength Pareto Evolutionary Algorithm 2”
⇒ Hype Reduction, i.e. "Hypervolume Reduction Algorithm"
Different parameters related to how the algorithm will search for the optimal
solutions need to be set:

– Elitism gives the percentage of new solutions that are bred out of the Elite
instead of the entire pool; if high, more local optimization is performed.

– Mut. Probability is the probability of each parameter /gene becoming
mutated with the ‘Mutation Rate’. A low Mutation Rate means little
changes to the parameters’ values, and a high rate means big changes.

– Crossover Rate is the probability of two subsequently generated solutions
to exchange parameter values.

– Population Size is the number of solutions per generation. The Elite size
is set accordingly, so a total of 2 x Population Size number of solutions
are in each generation’s pool. This size should be set according to the
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Fig. 6.24 Octopus interface

complexity of the problem since a lot of solutions at the same time can
maintain a lot of different alternatives.

– Max. Generations are set to zero by default, meaning there is no end to
the search. Otherwise, Octopus will stop after this number of generations.

– Record Interval is the interval of generations in which a history record is
stored.

– Save Interval gives the interval of generations after which the Grasshop-
per file is saved to prevent data loss when Rhino crashes during the search
for whatever reason.

More in detail, it is important to appropriately define the population size and
maximum number of generations. Both of them are based on the complexity
of the problem, in particular, a lot of solutions at the same time can maintain
several alternatives leading to a more refined optimal solution. To start the
optimization the algorithm needs to be connected to the different design
variables previously defined and to the Objective Function that needs to be
minimized.
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Fig. 6.25 Octopus component connected to all the design variables and the OF

Therefore, the geometry of our structure has been parametrically modelled in
Grasshopper. Then, it has been traduced in the FEM elements using the Karamba3D
components, assigning the cross-sections, loads and supports. Finally, the design
variables and the objective function have been connected to the Octopus optimization.

6.2.5 Size, shape and topology optimization

In this section, we have directly performed the optimization comprehensive of all
the design variables types (i.e. size, shape and topology). Among all the investigated
case studies, it represents the most complex and the most representative of the good-
ness of the optimization procedure. However, results derived by the optimization
procedure for each scenario will be shown in order to identify the level of influence
of each design variable on the optimal solution.

Size, Shape & Topology: Φ1(nun)+Φ2(Na)+Φ3(n) The Objective Function is the
same as the previous case, i.e

ρ

N

∑
i=1

(Ai · li) ·φ1 ·φ2 ·φ3

The resulting best individual found by Octopus is the following one:

From table 6.4 we can see the CHS cross-sections assigned to each element. Also in
this case a balance between the complexity and weight of the truss structure has been
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Fig. 6.26 Size, Shape & Topology: Configuration of the optimized truss

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 101.6x2 60.3x2 21.3x2

Upper Chord +
Ext. Vert. Structs 168.3x3 139.7x3 139.7x3

Int. Vert. Structs 60.3x2 101.6x2 101.6x2
Downward-Upward

Diagonals 21.3x2 60.3x2 101.6x2

Table 6.4 Size, Shape & Topology: Cross-sections of the optimized truss

Best OF Weight [kN] Na n H1 H2 n1 n2 n3
12.4295 4.3627 5 4 1.7 2.38 1 1 2

Table 6.5 Size, Shape & Topology: Main features of the optimized truss

Fig. 6.27 Size, Shape & Topology: Best in-
dividual vs Iteration

Fig. 6.28 Size, Shape & Topology: Weight
of best individual vs iteration

found, as can be observed from table 6.5. However, the most important consideration
that can be drawn from the results refers to the topology selected by the optimizer,
which is Pratt one. As a matter of fact, it should be expected because we have
considered only gravitational loadings. In Pratt trusses, as explained in the previous
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Fig. 6.29 Size, Shape & Topology: Na of
best individual vs iteration

Fig. 6.30 Size, Shape & Topology: n of best
individual vs iteration

Fig. 6.31 Size, Shape & Topology: Topology
of best individual vs iteration

Fig. 6.32 Size, Shape & Topology: Unfeasi-
bility proportion

chapter, the diagonal members, which are the longest ones, are in tension and not in
compression, thus they won’t require additional buckling instability verifications.

6.2.6 Discussion and final considerations

In the cases in which the Objective Function included all the penalties, i.e. φ1, φ2
and φ3, we have tested the robustness of the algorithm by performing the same
analysis twenty times. At the end of this section, all the results obtained by each
investigated scenario will be discussed. The author identified 4 scenarios (A, B, C,
D) with different levels of penalties and different design variables involved in the
process.
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Results for ’Size, Shape & Topology: Φ1+Φ2+Φ3’ In table 6.6 the results of
every optimization have been summarized and sorted from the smallest to the largest
in terms of Best OF; while in table 6.7, Best (min), Worst (max), Mean and Standard
Deviation have been reported.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Topology
12.429 4.362 5 4 1.7 2.38 1 1 2 PRATT
12.435 4.143 5 5 1.53 1.96 1 1 3 PRATT
12.598 4.379 4 6 1.33 1.79 1 1 4 PRATT
12.604 4.424 5 4 1.97 2.39 1 1 2 PRATT
12.728 4.467 5 4 1.33 1.92 1 1 2 PRATT
12.776 4.644 4 5 1.55 1.85 1 1 3 HOWE
12.853 4.282 5 5 1.38 2.17 1 1 3 PRATT
12.876 4.202 6 4 1.57 2.24 1 1 2 PRATT
12.881 4.683 4 5 1.59 1.85 1 1 3 HOWE
13.069 4.587 5 4 1.33 1.86 1 1 2 PRATT
13.081 4.358 5 5 1.42 1.94 1 1 3 PRATT
13.144 4.613 5 4 1.34 2.06 1 1 2 WARREN
13.173 4.623 5 4 1.38 1.95 1 1 2 PRATT
13.182 4.392 5 5 1.37 1.85 1 1 3 PRATT
13.317 4.125 6 5 1.56 2.05 2 1 3 PRATT
13.389 4.699 5 4 1.46 1.68 1 1 2 PRATT
13.480 4.731 5 4 1.76 2.48 1 1 2 PRATT
13.777 4.590 5 5 1.33 1.84 1 1 3 HOWE
14.565 4.512 6 5 1.35 2.15 1 1 3 HOWE

Table 6.6 Results of the best individual of each optimization for ’Size, Shape & Topology:
Φ1+Φ2+Φ3’

Best Worst Mean Standard Deviation
12.429 14.565 13.072 0.509

Table 6.7 Best, Worst, Mean and Standard deviation of the OF values’-’Size, Shape &
Topology: Φ1+Φ2+Φ3’

Analyzing the results of both cases there is a slight variability among the optimized
individuals. To obtain more refined results, the same analysis should be performed
at least 50 times.
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Results of best individual for each case Following, the results obtained by each
scenario with an increasing level of computational effort and complexity have been
reported in table 6.8.

Best OF W[kN] Na n H1 H2 n1 n2 n3
Size - case A:

Φ1
4.162 4.162 12 6 1.33 2.5 2 2 2

Size - case B:
Φ1+Φ2

9.748 5.156 4 6 1.33 2.5 2 2 2

Size & Shape - Case A:
Φ1

4.399 4.399 10 7 1.33 1.59 1 1 5

Size & Shape - Case B:
Φ1+Φ2

10.082 4.889 5 7 1.33 1.72 1 1 5

Size & Shape - Case C:
Φ1+Φ3

6.148 4.224 11 5 1.33 1.81 1 1 3

Size & Shape - Case D:
Φ1+Φ2+Φ3

12.886 4.293 5 5 1.39 2.28 1 1 3

Size, Shape &
Topology: Φ1+Φ2+Φ3

12.429 4.363 5 4 1.7 2.38 1 1 2

Table 6.8 Results of the cases tested; in red the parameters fixed in the size analyses.

Because the objective function is not comparable with one another, except in the last
two rows, we can analyze the resulting weights. The minimum value is obtained
in the optimization denoted as ’Size - Case A: Φ1’. It is interesting the fact that
it is associated with the highest number of different cross-sections used. On the
contrary, the heavier design has been found for the analysis denoted as ’Size - Case
B: Φ1+Φ2’, where the second penalty function has been integrated. Once again, we
should underline the fact that it is the case in which the lowest number of sections
used has been employed. Therefore, we can observe that the complexity in terms of
Na is the one that mainly influences the weight of the optimized structure. On the
other hand, we can also state that the third penalty function, thus the complexity in
terms of the number of subdivisions, is working fine when combined with the first
two. In fact, from ’Size & Shape - Case C: Φ1+Φ3’ and ’Size & Shape - Case D:
Φ1+Φ2+Φ3’, n is stable at 5.
Another important observation is that, for the specific analysis considered with
gravitational loads only, the optimized configuration is always characterized by
n1 = n2 = 1. This means that the outer elements of each component have different
sections, while the internal part is unified with the same cross-section.
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For future development in this field, it would be interesting to employ a different
grouping division, thus using two different indexes, for each component. For sure
this would increase the computational effort because the design variables associated
with the indexes are going to pass from 2 to Noo f component ·2. However, it could
be useful to discriminate among the different components and to refine the analysis,
in order to see how the solicitation distribution would be optimized.

6.3 Case study 2: Industrial building

The analysis illustrated so far was limited to the level of the truss element, however,
the scope of the research is to fit such theoretical procedure to a large-scale structure.
Due to the great employment of truss structures in industrial buildings, it has decided
to explore this type of construction. Thus, in the present Chapter, it is going to
parametrically model and optimize the building under investigation, following the
scheme adopted for the previous case study. The main differences and analogies
between the analysis at the truss level and the current one will be discussed and the
goodness of the procedures will be tested for a hard-computational problem.

6.3.1 Parametric modelling

Also for this instance, the power of parametric design to create the geometry of
our structure using Grasshopper has been exploited. The design is composed of a
repetition of specific modules at a distance s, which stands for spacing, which will
be an indirect variable of the problem. Specifically, the number of modules has been
optimized, which can be seen as the ratio of half the length and the spacing. Looking
at the schematic representation of the overall geometry in figure 6.33, we can see
that the modules consist of the truss system with two columns at the outer sides. In
particular, the truss system is the same as the previous case study, while the height of
the columns has been set equal to 5 meters. Actually, the external vertical structs
of the truss are now removed and replaced by the column which rises to the upper
chord nodes.
Therefore, once the structure footprint is fixed with a total span equal to 60 meters,
modules can be denser or more widely spaced. Going into the details of the geometric
modelling, it is started from the definition of the origin point in the middle of the



6.3 Case study 2: Industrial building 333

Fig. 6.33 Industrial building general scheme with modules

structure, in order to take advantage of the symmetry concerning the xz plane.
Actually, yz plane symmetry is imposed, however, it cannot be exploited due to the
presence of lateral load too. Hence, the geometry has been created in the first half,
considering a half portion of the entire horizontal development of 60 meters on the
y-axis. Then, it has been mirrored with respect to the xz plane. For this reason, the
design variable related to the number of modules Nm is referred to as half geometry.
Let’s now focus on the actual model creation in Grasshopper. First of all, the main
components of the industrial building must be defined:

• Truss system, distinguished in the five components seen in 6.2.2, i.e. Lower
Chord, Upper Chord, Internal Vertical Structs, Upward-Downward Diagonals,
Downward-Upward Diagonals;

• Columns;

• Purlins or Secondary beams;

• Roof bracings;

• Vertical bracings type 1, which are the upper ones;

• Vertical bracings type 2, the lower ones.

In the reported figure 6.34, each component group was identified by a different
colour. Another important feature of the overall geometry is the presence of the
symmetric scheme of the roof bracing systems, which are present at the edges of
the structure and in the middle, regardless of the spacing used. Hence, the geometry
definition was initialized by creating the first module, located at a distance of s/2 in
the y-direction from the origin. Then, for obtaining a symmetric configuration of the
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Fig. 6.34 Industrial building’s components

roof bracings, it is imposed that in its half there will be at least two more modules. In
this way, the lower bound of Nm equal to 3 was fixed, that in turn leads to a spacing
value of 12 meters, according to the equations 6.7, 6.8 and 6.9. It has been found
considering the following geometric relationships, represented graphically in figure
6.35.

Fig. 6.35 Geometrical relationships for Nm domain definition

L
2
− s

2
= (Nm −1) · s (6.7)

which leads to

Nm =
L+s

2
s

(6.8)

and

s =
L
2

Nm − 1
2

(6.9)
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Instead, the upper limit of Nm has been set by imposing a minimum spacing of 4
meters, thus obtaining Nm,max = 8. In the reported figure 6.36, it is evident how these
extreme Nm values influence the overall configuration.

Fig. 6.36 Nm limiting configurations

The vertical bracings, both type 1 and 2, are covering the entire length in the y-
direction. The roof bracing, instead, as said, is distributed symmetrically along
the plan of the structure. However, it should be mentioned that looking at their
distribution with respect to the upper chord nodes, they will cover a span length of
one-quarter of the entire truss of 20 meters, no matter the value of n. It has been
done to avoid the integration of the industrial building complexity, so their number
will be fixed during the optimization. Then, for what regard the secondary beams,
they are created by connecting the nodes of the upper chord from one module to the
other. In this way, geometric modelling has been created.

6.3.2 Elements cross-section

The grouping and cross-section assignment of the truss system has been performed
exactly as before. Instead, the other components have been simply assigned specific
cross-section profiles, namely:

• Columns → HEA section, which stands for European wide flange beam
section;
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• Purlins → IPE section, i.e. European I-section beam with parallel flanges;

• Bracings → ROPE sections

Fig. 6.37 Industrial building’s elements sections

6.3.3 Loads

In this section the loads applied to the large span building are evaluated and properly
described. As said in chapter ??, Karamba 3D can consider only one combination of
loads, therefore, also in this case, the Ultimate Limit State (ULS) analysis has been
considered. In contrast to the case study at the truss level, where only gravity loads
were applied to the structure, here both gravitational and horizontal loads were taken
into consideration. Therefore, the following combination have been employed:

γG1 ·G1 + γG2 ·G2 + γP ·P+ γQ1 ·Qk1 + γQ2 ·ψ02 ·Qk2 + γQ3 ·ψ03 ·Qk3 + ... (6.10)

• Gravity loads
Regarding the gravitational loadings, the following ones have been evaluated:

1. Permanent Structural, or Dead, Load (G1)
The Dead Load is simply the self-weight of all the components of the
structure. In Karamba3D it is computed automatically, the coefficient of
the load combination was simply applied.

2. Permanent Non-Structural Load (G2)
The Permanent Non-Structural Load, i.e. G2, is referred to the corrugated
sheet, which is the material used to cover the roof of the building. In
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Fig. 6.38 Corrugated sheet

particular, it is useful to distribute loads on bottom purlins.
The standard load considered for the corrugated sheet is 0.05kN/m2,
which has to be multiplied by the length of influence. The evaluation of
the area of influence will be depicted at the end of this section.

3. Maintenance Load (qk)
In order to define the value of qk, we should refer to the indications
provided by the Eurocode. In particular, the roof of our building, where
the loads is going to be applied, belongs to the category H. Specifically,
this category is referred to the covers accessible only for maintenance,
which match with our case study. The value recommended by the Eu-
rocode is qk = 0.4KN

m2 , however, the Code specifies that it can be changed,
according to the National Annex. Due to the fact that we are assuming
the location of our building in Turin (Italy), the National Code we need
to refer to is "Norme tecniche per le costruzioni" (NTC2018). Looking at
the chapter 3.1 "Opere civili e industriali" and specifically the sub-section
3.1.4 "Sovraccarichi" from table 3.1.II in figure 6.39, the correct value is
qk = 0.5KN

m2 .

4. Snow Load (qs)
Based on the building’s position, the snow load is assessed and, as it
was previously said, Turin’s location has been taken into account. The
general formulation for the snow pressure, according to the Eurocode, is:

qs = qsk ·µi ·CE ·CT (6.11)
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Fig. 6.39 Table 3.1.II of NTC2018 to define the load qk

Where:

– qsk is the characteristic value of the snow load on the ground. In
order to determine its value, we should refer to the Italian Standard
code NTC2018. It depends on climate conditions and local exposure
of the zone considered and it is correlated with the altitude. It can be
computed according to the equation qsk = 1.39 · (1+( as

728)
2), where

as is the elevation above sea level. Specifically, Turin is at 239
meters above sea level, thus we obtain a value of qsk = 1.539KN

m2 .

– µi is a shape coefficient related to the inclination of the roof. It
varies according to the reported table 6.9:

Shape coefficient 0◦ ≤ α ≤ 30◦ 30◦ ≤ α ≤ 60◦ α ≥ 60◦

µ1 0.8 0.8 · (60−α)
30 0.0

Table 6.9 Values of shape coefficient µi based on the inclination of the roof

In our building the inclination of the roof is lower than 30◦, therefore
µi = 0.8.



6.3 Case study 2: Industrial building 339

– CE is the exposure coefficient and it is always related to the zone
where the building is located. For our case, a value equal to 1 is
assigned, due to the fact that there is not a significant removal of
snow on buildings produced by the wind.

– CT is the thermal coefficient and it is usually assumed equal to 1.

The final value of the snow load is: qs = 1.23KN
m2

Before going into the details of the other class of actions considered, i.e.
the lateral ones, we would like to explain how the mentioned-above vertical
actions have been applied. With the exception of the Dead Load G1, which
is automatically considered by the software, for the other ones, the area of
influence of such loads has to be identified. G2, qk, as well as qs are applied
on the purlins and their area of influence is a function of their relative distance.
In the following figure 6.40, a schematic representation is reported.

Fig. 6.40 Lenght of influence for internal and external purlins

As we can see, there is a difference between the length of influence for internal
and external purlins, which are both functions of the distance between the
upper chord’s node. Specifically, the values considered in our analysis are a
function of the design variable n. Finally, the unitary length loads to be applied
on the purlins are computed as the just explained pressure values, multiplied
by the length of influence, resulting in kN/m.

• Lateral loads

1. Wind Load (p)
The wind is the movement of air masses characterised by a velocity field
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that fluctuates randomly in time and space. It exerts aerodynamic actions
on whole structures or on individual structural components. Wind load
act as a lateral pressure on the external surface of the large-span building.
As said for the other loads, Eurocode suggests referring to the National
Annex to determine wind pressure.
Referring to Chapter 3.3 of NTC2018, the pressure exerted by the wind
is:

p = qb · ce · cp · cd (6.12)

Where:

– qb is the reference kinethic pressure evaluated as:

qb =
1
2
·ρ · v2

b (6.13)

Specifically, ρ is the air density equal to 1.25 kg
m3 , while vb is the wind

velocity and it depends on the location of the building. NTC2018 in
the section 3.3.1 provides the table illustrated in figure 6.41 with the
values of vb:

Fig. 6.41 Table 3.3.I of NTC2018 to define the vb, a0 and ka

Turin is in zone 1 so the final value of qb is 0.391KN
m2 according to

equation 6.13.

– Ce is the exposure coefficient, which has the following expression:

ce(z) = k2
r · ct · ln(

z
z0
) · [7+ ct · ln(

z
z0
)] f or z ≥ zmin (6.14)

ce(z) = ce(zmin) f or z < zmin (6.15)
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In particular, kr is the class of roughness and we need to refer to
Table 3.3.III of NTC2018 reported in figure 6.42.

Fig. 6.42 Table 3.3.III of NTC2018 to define the class of roughness

Due to the fact that our structure is an industrial building, a class of
roughness ’B’ is assigned.
The next step concerns the definition of the exposure category, refer-
ring to the table shown in figure 6.43 provided by the National code.

Fig. 6.43 Table 3.3.III of NTC2018 to define the exposure coefficient

For our case study the exposure coefficient is IV.
Finally, from table 3.3.II of NTC2018 6.44, based on the site expo-
sure coefficient (IV) previosuly evaluated, all the terms contained in
equation 6.14 can be determined.
The final value of ce is 1.55 .

– cp is the shape coefficient, which is related to the inclination of the
roof α . The image below 6.45 illustrates how the coefficient should
be considered in the evaluation of the wind pressure acting on the
different structural elements, according to the Code.
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Fig. 6.44 Table 3.3.II of NTC2018 to define kr, z0 and zmin

Fig. 6.45 Values of shape coefficient cp

– cd is the dynamic coefficient, which is generally set equal to 1 in
buildings with an height lower than 80 meters.

Once vb, ct , cp and ce have been properly defined, the final wind pressure acting on
the large span building is given. The following table 6.10 contains the values of the
wind pressures p, evaluated according to the equation 6.12:

cp p[KN
m2 ]

Upwind
wall 0.8 0.48

Downwind
wall -0.4 -0.24

Upwind
roof pitch -0.4 -0.24

Downwind
roof pitch -0.4 -0.24

Table 6.10 Wind pressure p values for the different cpe
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It’s important to clarify that we have taken into account only the external pres-
sure caused by the wind. This is due to the assumption that the building has no
openings and it can be considered as an airtight construction, ’costruzione stagnant,
according to NTC2018. Nevertheless, if we would like to consider any openings, it
would be necessary to consider the coefficient cpi referred to as internal pressure.
Specifically, the value of cpi will vary based on the area covered by the openings; for
example if less than 1\3 of the total area, a value of cpi =±0.2 should be considered.
As illustrated in figure 6.45, the internal pressure is represented by the red arrows
and is going to act oppositely with respect to the external one.
Regarding the application of the wind load, as already discussed for the vertical
actions, a correct area of influence should be properly defined. Particularly, wind
pressure has been applied only to purlins, normal to their development considering
the same scheme shown in figure 6.40, while for columns, along the x-direction, as
illustrated in the following figure 6.46:

Fig. 6.46 Lenght of influence for internal and external columns

Once all the loads, both vertical and horizontal, are properly evaluated, the next step
is to assign the coefficients of the load combination to each of them.
Unfortunately, there is only one load combination that can be defined in Karamba 3D,
therefore we have considered the heaviest one. In particular, we have chosen as the
dominant variable load the Maintenance Load qk in order to be able to maximize the
bending moment. In turn, the Snow load and the Wind action have been accounted
as secondary variable loads with the proper ψ0 j coefficient. Referring to the ULS
equation 6.10 and tables 2.5.I, 2.6. I of NTC2018 in figure 6.47 provided by the
national annexe NTC2018, the following coefficients have been applied, as reported
in table 6.11:
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Fig. 6.47 Table 2.6.I and 2.5.I of NTC2018 to define the load’s coefficient

Load Type Load Name Load Value [KN
m2 ] γ ψ

Dead Load G1 Structure weight 1.3 -
Perm. Non-struct. Load G2 0.05 1.5 -

Maintenance Load qk 0.5 1.5 -
Snow Load qs 1.23 1.5 0.5
Wind Load p Depends on cp 1.5 0.6

Table 6.11 Summary of loads applied to the building and their relative value and coefficient

6.3.4 Supports

Both internal and external constraints have been utilized for the large-span construc-
tion. Specifically, the base points of the columns were fixed to the ground, preventing
any translational and rotational motions. Regarding the internal ones, Karamba 3D
automatically applies rigid links between all the structural elements.

6.3.5 Objective Function Formulation

The optimization carried out for the industrial building application derives from
the formulation of the simple truss, which has been slightly modified to better fit
with this case study. First of all, we should start with the definition of the design
variables involved. In fact, concerning the previous ones, reported in table 6.2, six
additional design variables have been introduced. Specifically, the cross-sections
of the structural members added, i.e. columns, purlins and bracings, distinguished
into 1 roof bracing and 2 types of vertical ones, have been integrated with the former
size variables of the truss. Moreover, a shape design variable related to the spatial
configuration of the structure has been added, namely the number of modules of one
half (Nm). The final number of design variables considered is 27 and the additional
ones are summarized in table 6.12.
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Design
variable Description Domain

x22
Numbers of modules

in one half 3÷8

x23
Column HEA
cross-section

0÷23 profiles’ index
from catalogue

x24
Purlin IPE

cross-section
0÷17 profiles’ index

from catalogue

x25
Roof bracing ROPE PV

cross-section
0÷24 profiles’ index

from catalogue

x26
Vertical bracing type 1
ROPE PV cross-section

0÷24 profiles’ index
from catalogue

x27
Vertical bracing type 1
ROPE PV cross-section

0÷24 profiles’ index
from catalogue

Table 6.12 Design variables where the colours of the cells represent the different categories:
purple - Global layout definition; orange - Additional size design variables

Once clarified all the parameters involved in the optimization, it can be easier to
understand the aim of this analysis. The simultaneous size, shape and topology
optimization of the truss, composing the modules of the industrial building, will be
carried out, in parallel with the size and shape optimization at the larger scale. The
cross-sections of the additional elements are going to be minimized, still satisfying
the structural verification, while the spacing between the modules is going to be
adjusted at each iteration. To be more clear, shape optimization at the industrial
building level is going to be performed only by varying the number of modules
present.
Focusing on the Objective Function formulation, it is the same as the one used for
the analysis of the truss structure, explained in section 6.2.3 with the equation 6.1:

min F(x) = ρ

N

∑
i=1

(Ai · li) ·φ1(nun) ·φ2(Na) ·φ3(n)

While the first penalty related to buckling instability verification is now enlarged to
all the elements, the other two penalties regarding the design simplification are not
working in the general framework. The constructability criteria embedded in φ2 and
φ3 are going to act only on the truss components and, in particular, on the number
of sections used (Na) and the number of subdivisions of the chords (n), respectively.
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In this way the complexity is going to be studied only at the truss level, making it
possible to analyse the validity of the previous considerations. As a result, we can
effectively appreciate the discoveries of the truss level optimization of Chapter ??,
in a more challenging scenario. In particular, this is the reason why we have fixed
the number of roof bracings regardless of n, in order to avoid a higher complexity.

6.3.6 Results - Industrial building level

In this section, the results of the industrial building optimizations have been sum-
marized. The analysis has been performed 15 times in order to obtain more refined
results and to test how the algorithm works in this second case study. In the following
table 6.13, the results are sorted from the smallest to the largest in terms of the best
objective function.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm Topology
775,427 330,228 3 4 2 2,17 1 1 2 7 HOWE
790,020 336,442 3 4 2 2 1 1 2 7 HOWE
885,230 339,024 4 4 2 2 2 1 1 7 HOWE
888,228 340,172 4 4 1,99 2,07 1 1 1 7 HOWE
894,320 342,505 4 4 1,99 2,01 1 1 1 7 HOWE
940,256 350,687 4 4 1,67 1,75 1 2 1 6 HOWE
932,095 396,947 3 4 1,94 2,01 2 1 1 6 WARREN
937,174 399,110 3 4 2 2,43 1 1 1 6 HOWE
940,256 350,687 4 4 1,67 1,75 1 2 1 6 HOWE
941,401 400,910 3 4 1,46 1,57 1 2 1 6 HOWE
964,094 369,228 4 4 1,54 1,64 1 1 1 7 HOWE
967,429 370,505 4 4 1,67 1,67 2 1 1 6 HOWE
971,380 372,018 4 4 1,75 1,78 2 1 1 8 WARREN
974,337 341,988 5 4 2 2,1 2 1 1 7 HOWE
983,096 376,505 4 4 1,87 1,95 1 1 1 8 PRATT
991,875 378,404 4 4 1,87 1,95 1 1 1 8 HOWE
1014,911 356,229 5 4 1,68 1,87 1 2 1 8 HOWE
1023,262 391,888 4 4 2 2,31 1 2 1 7 WARREN
1036,499 396,957 4 4 2 2 1 2 1 7 PRATT
1042,326 399,189 4 4 1,96 2,16 1 1 1 6 PRATT
Table 6.13 Results of the best individual of each optimization for the Industrial building

Analyzing the results, several considerations can be drawn. First of all, focusing on



6.3 Case study 2: Industrial building 347

the last column ’Topology’, the variability in the optimal solution can be highlighted.
The Howe truss is the most chosen one, however, sometimes the optimizer prefers
also Pratt and Warren. Due to that, we have distinguished the results for the different
typologies, i.e. Howe 6.14, Warren 6.16 and Pratt 6.18. We should recall the fact
that, because of the limit to only one load combination imposed by Karamba3D, we
have been able to apply the wind action only from left to right. Therefore, this has
influenced the final configuration of the truss systems.
Here below the results of the optimizations with the Howe truss as an optimal solu-
tion are reported in table 6.14.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm Topology
775,427 330,228 3 4 2 2,17 1 1 2 7 HOWE
790,02 336,442 3 4 2 2 1 1 2 7 HOWE
885,23 339,024 4 4 2 2 2 1 1 7 HOWE

888,228 340,172 4 4 1,99 2,07 1 1 2 7 HOWE
894,32 342,505 4 4 1,99 2,01 1 1 2 7 HOWE

937,174 399,11 3 4 2 2,43 1 1 2 6 HOWE
964,094 369,228 4 4 1,54 1,64 1 1 2 7 HOWE
967,429 370,505 4 4 1,67 1,67 2 1 1 6 HOWE
974,337 341,988 5 4 2 2,1 2 1 1 7 HOWE
1014,911 356,229 5 4 1,68 1,87 1 2 1 8 HOWE

Table 6.14 Results of the best individual for Industrial building with Howe truss

In the table below 6.15 also the Best, Worst and Mean values, as well as Standard
Deviation of the OF are reported. Specifically, the best value is related to the mini-
mum OF value, while the worst is to the maximum one.

Best Worst Mean Standard Deviation
775.427 1014.911 942.425 77.05

Table 6.15 Best, Worst, Mean and Standard deviation related to the OF values of the optimized
Industrial building with Howe truss

Focusing on the best-optimized individuals with Howe truss and referring to table
6.14, there is still some variability in the results and this is mainly due to the high
number of design variables that the optimizer has to manage.
More in detail starting from the OF values the minimum one is obtained reducing
the complexity at the truss level, as expected. Lowering the values of Na and n the
best individual is found. However, regarding Na, looking at all the results, there
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isn’t a clear trend it varies from 3 to 5. On the contrary, the number of subdivisions
n is stable at 4. About weight values of the optimized individuals, a narrow range
of results can be observed it fluctuates between 330KN and 356KN. With respect
to case study 1, in which the weight increased when Na and n decreased, here the
total weight of the structure cannot be directly related to the complexity of the truss
structure. Now many other structural elements contribute to the weight’s final value.
Moving to the column of the table referring to the values of Nm, the number of
modules, and keeping in mind that it ranges between 3 and 8, we can state that the
optimizer mainly prefers to work with more modules, from 6 to 8. This choice is
justified by the fact that if the spacing is widened, resulting in a lower Nm value,
heavier sections are necessary. Furthermore, the algorithm is not directly guided in
the selection of Nm.
Regarding the geometric layout, i.e. H1 and H2 values, there is almost a clear
trend. Specifically, fixing n = 4, the allowable ranges for the two parameters are
1.44 < H1 < 2 and H1 < H2 < 2.5. Looking at the results, we can see that the
values assigned to the optimized structures vary in these limits: 1.54 < H1 < 2 and
1.64 < H2 < 2.43.
A final consideration can be made about the values assigned to the index ni in the
definition of the grouping. Index n2 is almost fixed at 1, except for the last best
individual which is also the worst in our set. Instead, n1 and n3 vary between 1 and
2. Perhaps if we could perform a higher number of analyses it would be possible to
establish a more stable trend.
Here below are the tables summarizing the results of the remaining typologies, i.e.
Warren and Pratt ones, which have been reported.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm Topology
932,095 396,947 3 4 1,94 2,01 2 1 1 6 WARREN
1023,262 391,888 4 4 2 2,31 1 2 1 7 WARREN

Table 6.16 Results of the best individual for Industrial building with Warren truss

Best Worst Mean Standard Deviation
932,095 1023,262 932,095 63,008

Table 6.17 Best, Worst, Mean and Standard deviation related to the OF values of Industrial
building with Warren truss

The Warren truss has been chosen only twice out of the 15 optimizations, therefore
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we cannot make an analysis as detailed as the one referred to the Howe truss. How-
ever, looking at tables 6.16 and 6.17, first of all, we can say that the best objective
function value is much higher than the best of the Howe configuration. It is interest-
ing the fact that also in this case n is always stable at 4, proving that the penalty Φ3

is guiding effectively the algorithm. All the other parameters are different in the two
individuals, but recall a little bit the values of the Howe case.

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm Topology
983,096 376,505 4 4 1,97 1,99 1 1 2 8 PRATT
1036,499 396,957 4 4 2 2 1 2 1 7 PRATT
1042,326 399,189 4 4 1,96 2,16 1 1 2 6 PRATT

Table 6.18 Results of the best individual for Industrial building with Pratt truss

Best Worst Mean Standard Deviation
983,096 1042,326 1020,640 32,644

Table 6.19 Best, Worst, Mean and Standard deviation related to the OF values of Industrial
building with Pratt truss

Looking at the Pratt optimized trusses, we have now three individuals out of the total
15 ones. The best OF is in between the two previously analyzed cases, however the
difference with the Howe case is significant. In this case, both Na and n are fixed
at the same value in all the three optimized structures, while a variability in all the
other parameter is visible.
Once all the outcomes have been introduced and examined, let’s now focus on the
best individual among the 15 analysis summarized in table 6.13.
The resulting best industrial building is characterized by truss systems belonging to
the Howe category and the overall configuration is the following one:

Best OF Weight [kN] Na n H1 H2 n1 n2 n3 Nm
775.427 330.228065 3 4 2 2.17 1 1 2 7

Table 6.20 Best Individual of the optimized Industrial Building

The figure below 6.49 is showing the optimized truss and the groups subdivision of
the different components:
In the tables 6.21 and 6.22 the cross-sections assigned to all the structural members
are reported:
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Fig. 6.48 Configuration of the optimized Industrial building

Fig. 6.49 Configuration of the Howe truss in the optimized Industrial building

CHS 1°group CHS 2°group CHS 3°group
Lower Chord 88.9x2.5 88.9x2.5 88.9x2.5
Upper Chord 219.1x6 88.9x2.5 21.3x2

Int. Vert. Structs 21.3x2 88.9x2.5 21.3x2
Upward-Downward

Diagonals 88.9x2.5 88.9x2.5 88.9x2.5

Table 6.21 Cross-sections of the optimized truss in the Industrial building

Now the charts about the main parameters of the best individual at each iteration
have been reported.

From chart of 6.52 and 6.53 we can appreciate how the penalty φ2 and φ3 are
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Structural
Elements

Cross Section
Type

Columns HEA 100
Purlins IPE 120

Roof Bracings Rope PV 300
Vertical Bracings 1 Rope PV 40
Vertical Bracings 2 Rope PV 360

Table 6.22 Cross-sections of the structural elements in the Industrial building

Fig. 6.50 Best individual vs iteration
Fig. 6.51 Weight of best individual vs itera-
tion

Fig. 6.52 Na of best individual vs iteration Fig. 6.53 n of best individual vs iteration

still working in the correct manner. Specifically, the complexity related to Na has
been further reduced the final value of different cross-sections used is 3. We can
highlight the fact that with φ2 we are guiding the algorithm to refine the analysis
and choose lower Na values, as visible in 6.52. Instead, for the topology 6.54 as well
as for Nm 6.56, with our objective function we have not led the optimization toward
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Fig. 6.54 Topology of the best individual vs
iteration

Fig. 6.55 Unfeasability proportion

Fig. 6.56 Nm of the best individual vs itera-
tion

a specific condition. The optimizer after a few iterations begins to stagnate in the
same solution. This is due to the fact that is free to choose any solution because no
penalty is influencing the optimal final value.
Let’s see in detail the structural features of the optimized structure. In particular, in
figure 6.57 it has been reported the axial force diagram of all structures. It is clearly
visible that the Axial Stress is pronounced for the truss components and columns. In
particular, in the Howe truss, Lower Chord and Vertical elements work in tension,
while the beams of the Upper Chord and Diagonal are compressed, as well as the
columns of the industrial building. Instead, in figure 6.58 it is visible that the bending
moment diagrams affect the purlin elements.
In addition, in 6.59 the displacements of the different structural elements have been
reported. We should highlight the fact that the analysis has been performed consider-
ing the Ultimate Limit States, therefore no restriction on the vertical displacements
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has been imposed. In particular, the highest displacement affecting the central part
of the structure is lower than 8 cm.

Fig. 6.57 Axial force diagram. In orange the compressed elements, in blue the tension one

Fig. 6.58 Bending moment diagram. In orange the negative values, in green the positive ones

6.4 Conclusions

In this chapter, the applicability of the proposed objective function for simpler and
more challenging truss structures was demonstrated. The importance of constructabil-
ity issues with respect to a simple minimum weight approach was highlighted aiming
to simplify the design and guarantee standardized procedures at the production phase
of steel members. Ranging from a simple size optimization to a simultaneous size,
shape and topology one, we have studied the single penalty functions introduced,
how they work and how they can be calibrated according to specific needs. Starting



354 Constructability in structural optimization

Fig. 6.59 Displacements and related legend of the Industrial building

from the truss level analysis (case study 1), the author originally expected to obtain
higher weights for lower design complexity, in fact, the opposite trend was recog-
nized for each scenario. Moreover, with specific regard to the scenario in which
topology was investigated in addition to size and geometry, the Pratt configuration
has been usually selected by the optimizer as the optimal solution. This was, once
again, expected because, for gravitational loads only, in this type of truss the longer
diagonal elements work in tension, thus avoiding critical verifications related to
compression and buckling structural check. On the contrary, in the Howe truss, for
example, the diagonals are in compression thus it was always excluded. The most
challenging task was to understand the calibration of the parameters employed in
each single penalty. Specific trends have been identified and recommendations on
possible changes have been provided.

Regarding with the industrial building case study (case study 2), the most im-
portant modifications have been highlighted. In particular, the additional design
variables were mainly related to the cross-sections employed for the new structural
elements and the one linked to the spacing of the different modules. For this second
case study, the objective function has been applied with a simple alteration regarding
the buckling structural verification, which is now testing all the elements. Con-
structability considerations, instead, have not been enlarged to the global level, but
remain at the truss one. This is evident, for example, in the variability of Nm in the
optimized structures, visible in table 6.13. In fact, the algorithm is not encouraged
towards a reduction of Nm, which in turn could lead to a decrease in the overall
number of pieces and connections.



Chapter 7

Cutting Stock Problem in structural
optimization

7.1 Introduction

In section 1, all the papers focused on cost-based optimal procedure were discussed
and, specifically, the influence of material, fabrication and maintenance costs on
the Objective function were analyzed. Specifically, materials cost minimization
considers only those elements involved in the construction process.
As will be seen in the current chapter, a significant part of the expenses is also the
waste of material from the cutting process. In other words, minimising the amount
of material involved in the construction process without a carefully cutting design,
which diminishes the waste, leads to inefficient cost optimization.
Construction and demolition wastes were expected to account for around 23% of
the overall solid waste stream. This waste ratio equates to more than 100 million
tonnes every year. Other nations’ percentages corroborate the estimates from the
United States. A percentage of the waste created by stock reduction is preventable,
which means it is generated as a result of improper material utilisation. The quantity
of superfluous acquired materials, needless workmanship, wastes and trucking and
tipping fees required to discharge the garbage would be reduced if the supplies were
used more efficiently (Khalifa et al. 2006).
Indeed, efficient resource use is not just in the interests of the industrialist, but also
of the world at large. The disposal of trash from a stock-cutting operation may cause
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pollution, and excessive wasting may deplete our planet’s precious supplies (see
Cheng et al. 1994).
Cutting losses is possibly the most major source of steel waste. Cutting losses arise
when normal steel lengths are shortened to fit the project’s required lengths. A
significant amount of the created steel waste according to Adham et al. (2004) is
related to cutting losses, which are mostly caused by:

• Dividing an order into separate, smaller orders typically results in more waste
due to fewer cutting alternatives

• using inefficient cutting patterns in the cutting schedule results in the gener-
ation of avoidable waste that could be avoided through better stock-cutting
planning

• using the optimum cutting patterns may result in unavoidable waste that is the
minimum waste generated if the optimum cutting patterns are used

In order to minimise the waste the cutting stock problem (CSP) is a significant
source of one-dimensional stock waste in the construction industry.
The following part of this chapter is organized into three subsections. The first
section shows the state of art about cutting stock problems. Afterwards, the following
section treats the cutting stock problem applied in the structural optimization of
trusses. Lastly, a mathematical formulation of the cutting stock problem applied in
the following chapters was developed.

7.2 State of art

Cutting and packing (C&P) problems of concrete and abstract objects appeared in
the literature under various specifications (i.e. cutting problems, knapsack problems,
container and vehicle loading problems, pallet loading, bin packing, assembly line
balancing, capital budgeting, changing coins, etc.) within disciplines such as Man-
agement Science, Information and Computer Science, Engineering, Mathematics,
and Operations Research. All of these problems have essentially the same logical
structure (Belov (2003)).
The most famous of these problems is the bin packing problem (BPP) which deter-
mines how to pack as many items as possible into a container or, in other words,
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minimize the number of containers (bins) used for the same stock of goods. Infor-
mally, the BPP can be stated as follows. There are given n items, each with an integer
weight w j( j = 1...,n) and an infinite number of identical bins with integer capacity
c. The goal is to load all the products into as few bins as possible so that the total
weight packed in each bin does not exceed the limit. (Delorme et al. (2016))
Almost all the other C&P problems are variants (e.g. pallet loading problem) or
generalizations (e.g. cutting stock problem) of the BPP.
In particular, in civil engineering, the most common problem of diminishing waste
due to the steel element cutting process can be solved with the cutting stock problem.
In summary, the cutting stock problem (CSP) tackles the practical question of cutting
off needed pieces from stock material with the least trim loss. In more technical
terms, the CSP can be defined starting from the BPP definition as follows. There are
m item kinds, each with an integer weight w j and an integer demand d j( j = 1, ...,m),
as well as a huge number of identical integer capacity c bins. In the CSP literature,
the bins are typically referred to as rolls, a word derived from early implementations
in the paper industry, and "cutting" is commonly used rather than "packing". The
goal is to manufacture d j copies of each item type j (i.e., cut/pack them) using the
fewest number of bins possible while ensuring that the total weight in every bin does
not exceed the capacity (Delorme et al. (2016)).
Moreover, the cutting stock problem can be classified as a one-dimensional and two-
dimensional problem. A specified set of order lengths must be extracted from stock
rods of a defined length in order to solve the one-dimensional cutting stock problem
(1D-CSP). Usually, the goal is to use the fewest amount of rods possible (material
input). The two-dimensional two-stage constrained cutting problem (2D-2CP) aims
to select the most valuable group of rectangular objects from a single rectangular
plate. Furthermore, the two-dimensional CSP can involve regular or irregular shapes,
in the second case, the problem is called nesting and have a more difficult solution
(Belov (2003))
These kinds of problems are complex combinatorial optimization, which in mathemat-
ical terms is a strongly NP-hard problem. For this reason, many linear programming,
heuristic and metaheuristic approaches were proposed over the years.
The first approach to the C&P problems dates back to the ’30s with Kantorovich
(1960). Although his approach is poor and only handles small-scale cases, it aids in
understanding the problem structure.
Numerous heuristic approaches (such as first solving the linear programming LP
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problem and then converting the LP result to an integer solution) take advantage of
this problem’s linear programming (LP) relaxation.

This problem is often formulated as an integer programming (IP) problem, and
its linear programming (LP) relaxation is exploited in many heuristic algorithms.
In mathematics, the relaxation of a (mixed) integer linear program is the problem
that arises by removing the integrality constraint of each variable and allows solving
the integer programming (IP) problem as a linear programming one. This relaxing
technique converts an NP-hard optimization issue (integer programming) into a
similar problem that can be solved in polynomial time.
However, this method makes it impractical to take into account all cutting patterns
that are practical and correspond to the columns in the LP formulation, especially
when the length of a single item is much smaller than the roll length. By resolving
the related knapsack issue, Gilmore and Gomory provided an inventive method to
identify the cutting patterns required to enhance the LP solution.
Gilmore and Gomory (1961) proposed a column generation approach inspired by
Dantzig and Wolfe (1960) for decreasing stock and bin packing concerns (BBP).
Because enumerating all possible cutting patterns would take an inordinate amount
of time, it reduces valid patterns repeatedly and adds them to the issue based on
their contribution to the objective function. The column generation approach made
large-scale cutting stock issues solvable in a reasonable amount of time.
In the following years, many algorithms were developed to solve the problem. While
the most precise but computational and time consuming are the more rigorous
procedure based on the integer linear programming, in more recent times several
metaheuristic procedures have been implemented (e.g. Genetic Algorithm, Simulated
annealing and Tabu search).

7.3 Use of cutting stock problem in truss solutions

In the previous section, it was seen the general formulation of the Cutting Stock
problem. In recent years, the civil engineering sector has become increasingly
interested in implementing the reuse of construction materials. The researcher
notices that the cost and environmental optimization, by themselves, in not sufficient
for reaching the best outcome. The building sector is a major contributor to material
consumption, energy use, greenhouse gas emission, and waste production (Agency
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(2011), Allwood et al. (2012)).
This problem can be solved basically in two ways: by minimizing the waste in the
fabrication phase or by reusing stock materials from other structures. The first way
wasn’t so predicated and this was one of the aims of this thesis and the entire research.
The second path was deeply explored by Brütting et al. in various publications that
treated the reuse of the construction stock elements. In this section, it is possible to
see the highlights of this specific topic.
The idea introduced by Brütting et al. (2019b) is to use the principle of circular
economy in order to reduce the cost and the environmental impact of structures. In a
circular economy, manufactured goods are kept in use as long as possible through
closed loops, which consist of repair, reuse, and recycling. In particular, they were
concerned about reuse because less energy is spent on reprocessing with respect to
recycling.
A first way to approach the reuse optimization problem it can be seen in Brütting et
al. (2019b). In this study, structural optimization with stock constraints was shown.
For clarity, the term member is used for a position or bar in a reticulated structure
and member length is the distance between nodes at this position. The term element
is used for the individual component of a stock. The stock was reused materials
which have different dimensions. In Figure 7.1 it is possible to see the two ways for
approaching the problem: the 1-to-1 assignment of elements to positions in the truss
(as in Stock A), and a cutting stock approach, where multiple members can be cut
from individual elements(as in Stock B).

Fig. 7.1 (a) Cantilever truss, (b) stock A and assignment, (c) stock B and cutting stock
configuration (image taken from Brütting et al. (2019b)

In the first case, which is the assignment problem, the objective of the optimiza-
tion is to avoid waste by minimizing the long distance between members and stock
elements. The second one is to find a cutting pattern which minimizes global waste.
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Both cases were solved through a MILP (mixed-integer programming) procedure.
Another problem addressed in the paper is that the lengths of the chosen elements
may not correspond exactly to the lengths of the structure’s members once both
problems have been solved. For this reason, shape optimization is then used to
reduce cut-off waste for the globally optimal assignment or bin-packing solutions by
changing the placements of the structure nodes (coordinates).
Finally, Brütting et al. exposed also a procedure to optimize the configuration of a
stock or kit-of-parts such that its elements can be reused in various structures. This
last consideration allowed to spread of the stock of reusing items in many structures
and the outcome is an ulterior minimization of the waste.
Ulterior amendments, only for the assignment problem, were done to this basic
formulation in Brutting et al. (2019a) where the assignment was coupled with a
topological optimization. After that, the truss was subjected to shape optimization.
Is also noticeable the introduction of an absolute buffer that allows the allocation of
also the very short items.
Moreover, the same authors (Brutting et al. 2020a) reported an entire structural
optimization based on the principles set out above. In this work it is possible to see
the simultaneous analysis and design approach, structural analysis is part of the opti-
mization formulation by treating member end forces as well as nodal displacements
and rotations as continuous state variables. Furthermore, designing a custom kit of
parts (which is a group of discrete building parts that have been pre-engineered and
are created to be put together in many ways to define a finished building) whose
components are prepared to be combined in various structural configurations, serving
diverse purposes, is an alternate approach to component reuse.
In one of the more recent papers, Brütting et al. (2021) use the assignment and CSP
for creating a kit of parts used for three different construction types. The kit-of-parts
bars are tubular components joined with bolts at spherical joints. The structures’
original topology and geometry are provided as input. The process consists of two
steps. To allow for the reuse of similar bars in different structures, the structural
geometries and kit-of-parts bars’ length and cross-section dimensions are optimised
in the initial stage. The second stage optimises the hole pattern for the spherical
joints’ connection details, allowing each joint to be reused in many constructions.
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7.4 Mathematical formulation of the problem

Now the following section analyzes the mathematical formulation of the cutting
stock problem by using the column generation technique to reduce the problem’s
computational cost.

7.4.1 Bin Packing formulation

In order to understand how the cutting stock problem works it is necessary to exhibit
the mathematical formulation of the one-dimensional bin packing problem. This
problem aims to allocate a set of items into the minimum number of bins.
For initializing the problem are necessary the following parameters:

• I: set of items, indexed by i

• B: set of bins, indexed by b

• Li: length of item i

• L: length of each bin

• xi,b ∈ {0,1}: unitary if item i is allocated to bin k, 0 otherwise

• yb ∈ {0,1}: unitary if bin b is used, 0 otherwise

The mathematical formulation of the problem is:

min ∑
b∈B

yb (7.1)

Subjected to the following constraints:

∑
b∈B

xi,b = 1 ∀i ∈ I (7.2)

∑
i∈I

Lixi,b ≤ Lyb ∀b ∈ B (7.3)
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xi,b ≤ yb ∀i ∈ I, b ∈ B (7.4)

xi,b ∈ {0,1} ∀i ∈ I, b ∈ B (7.5)

yb ∈ {0,1} ∀b ∈ B (7.6)

The principal equation of the bin packing problem (7.1) simply minimizes the num-
ber of bins used to obtain the requested items. The mathematical equation was
subjected to some constraints. In particular, the (7.2) equation means that each item
must be assigned to a bin (i.e. each item should be cut from one of the paper rolls
available). Additionally, the second condition (7.3) assures that the length of all
items associated with a bin should not exceed the length of the bin and the third (7.4)
entails that an item can be assigned to a bin if and only if that bin is used. Finally,
the following two equation ((7.5), (7.6)) express the domains of the two decision
variable xi,b and yb.

7.4.2 Column generation

The bin packing problem is a very complex combinatorial problem. For simplifying
this problem the Column Generation formulation is used in this thesis. In this
formulation, the main element is no longer the bin, but the feasible cutting pattern,
that is, the possible arrangement of items in a bin. Since enumerating all feasible
cutting patterns is prohibitively time-consuming, it generates valid patterns iteratively
and adds them to the problem according to their contribution to the objective function.
The first step is to set up the restrained master problem (RMP).
The parameters involved into the column generation model are:

• I: set of unique items (subset of items with unique distinct lengths), indexed
by i

• P: set of paths, indexed by p
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• Li: length of item i

• Qi: quantity needed for item i

• L: length of each bin

• Mi,p: matrix whose element (i, p) defines the number of times item i is included
in path p

• xp ∈ Z: number of times path p is chosen

The mathematical formulation is:

min ∑
p∈P

xp (7.7)

Subjected to:

∑
p∈P

Mi,pxp ≥ Qi ∀i ∈ I (7.8)

xp ∈ Z (7.9)

The objective function of the RMP (7.7) is the minimization of the number of
paths used which is strictly correlated with the minimization of the number of bins.
The objective function is subjected to two constraints. First, it needs to select the
number of paths in a way such that every unique item appears at least as many times
as needed and this is what is done in (7.8). The second constraint defines the xp

domain.
The next step is to write the dual problem. The dual problem is a formulation
correlated with the principal problem exposed above which is the primal. The dual
problem is write in such a way that:

- A mostly horizontal constraint matrix becomes a mostly vertical constraint
matrix

- A minimization problem (7.7) becomes a maximization problem (7.10)

- The objective value coefficients of the primal become constraint right hand
side values of the dual
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- The objective value coefficients of the dual are the dual values of the primal

In particular, the dual problem is:

max∑
i∈I

Qiλi (7.10)

Subjected to the following constraints:

∑Mp,iλi ≤ 1 ∀p ∈ P (7.11)

λi ∈ Z (7.12)

The λi is the dual value referred to a specific item constraint. Each dual value
gives an indication of how profitable is to add the associate item to a new path.
Moreover, to determine the best path to add it is necessary to set up the pricing
problem where a new decision variable yi ∀i ∈ I which represents how many times
a certain item i appears in the new path. More in detail:

max∑
i∈I

λiyi (7.13)

Subjected to the following constraints:

∑
i∈I

Liyi ≤ L (7.14)

yi ∈ Z (7.15)

Where the (7.14) ensures that the newly added path is feasible and the (7.15)
imposes the yi domain.
Forehead, to decide if a certain path should be added to the RMP it needs to verify
the gain obtained by the addition of the new path with the following formula:

c− z ≤ 0 (7.16)
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Where c is the original cost from the primal problem and z is the reduced cost
computed in the pricing problem.
From the primal, it is possible to get c = 1 while from the pricing problem z =

∑i∈I λiyi. Finally by substituting:

1−∑
i∈I

λiyi ≤ 0 (7.17)

Which lastly becomes:

∑
i∈I

λiyi ≥ 1 (7.18)

Until the previous condition is satisfied by the new generate path this one was
added to the primal RMP and the procedure was iterated. To make more clear the
overall process the algorithm is shown in the following:

Fig. 7.2 Column Generation algorithm for the solution of Cutting Stock Problem
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7.4.3 Numerical example

To a deeper understanding of the CSP functioning, in this section, a practical case
study will be shown.
The input parameters are provided by the customer which gives the length and the
number of items. In this case study it was assumed elements set which contained
the items shown in the figure 7.3 (the lengths were assumed as adimensional for
simplicity).

Fig. 7.3 Items requested by the customer

This data should be represented in two vectors:

I = {2,3,4,5,6,7,8} (7.19)

Q = {4,2,6,6,2,2,2} (7.20)

Where in the vector (7.19) are collected all the items’ lengths and in (7.20) are
collected the quantities for each item type.
Meanwhile, the producer provides the length of the bars available in the factory
which becomes the bins of the CSP. In this example, the bin length was 9 Lbin = 9.
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First, the matrix of the cutting pattern was initialized as an identity matrix:

M =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(7.21)

The matrix (7.21) simply contains all the pattern which contains only one item as
shown in figure 7.4 for clarity: At this point, the initialization phase was over. After-

Fig. 7.4 Initial pattern at the iteration 0

wards, all the computation step exhibited in the previous subsection was performed.
The entire process is iterated until the pricing problem returns a positive reduced
cost. At each iteration, a new cutting pattern is added. In the following images, it is
possible to see the pattern added for each cycle and the associated reduced cost.

Fig. 7.5 Iteration 1 where the reduced cost is -3.0000

Fig. 7.6 Iteration 2 where the reduced cost is -1.2500
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Fig. 7.7 Iteration 3 where the reduced cost is -1.0000

Fig. 7.8 Iteration 4 where the reduced cost is -0.5000

Fig. 7.9 Iteration 5 where the reduced cost is -0.5000

Fig. 7.10 Iteration 6 where the reduced cost is -0.5000

Fig. 7.11 Iteration 7 where the reduced cost is -0.5000

Fig. 7.12 Iteration 8 where the reduced cost is -0.2500

Fig. 7.13 Iteration 9 where the reduced cost is -0.1250

At the end of the algorithm iterations the RMP is recomputed with all the new
paths and it is possible to have the final results which are the number of bins
(Nbins = 13) and the final cutting patterns related to each bin (shown in figure 7.14).

7.5 Cutting Stock Problem in truss beam optimization

In the last decades, the Scientific Community challenged on minimizing the struc-
tures’ price by manipulating material, fabrication and maintenance costs. Specifically,
in the structural optimization field, great attention was dedicated to materials cost
minimization aiming to achieve a slender structure with optimal resource utilization.
In this sense, the traditional approach adopted by researchers and practitioners is to
optimize the design cost of structures while simultaneously satisfying safety recom-
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Fig. 7.14 Results from the CSP algorithm: bins and relative cutting patterns

mendations provided by specific standard regulations. Undoubtedly, this approach
reduces the overall cost of the structure but does not take into account the effective
quantity of steel involved in the process which is not only related to the material
used in the structure but also to the factory waste resulting from the cutting process
(an example of cutting machine in figure 7.15).
As demonstrated in the previous chapter, a significant part of the expenses is also the
waste of material from the cutting process. In other words, minimizing the amount
of material involved in the construction process without a carefully cutting design,
for the minimization of waste, leads to inefficient cost optimization.
Hence, this thesis aims to create a structural optimization which not reduces the
structural mass of the structure but the mass of the entire stock of rough bars involved
in the construction. This ambitious goal was reached through the implementation of
the Cutting Stock Problem (CSP) in the objective function of structural optimization.

In the initial chapters, it is possible to see the overall steps of structural opti-
mization and how these steps work. Moreover, the previous chapters discuss how
works the CSP and how this complex combinatorial problem was embedded in some
reusing problems.
In the following, by combining the concepts exhibited in the first half of the thesis a
new stock mass structural optimization was developed by the author and the respec-
tive supervisors of this dissertation.
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Fig. 7.15 Beam cutting machine (image from www.asiacnc.com.tw)

When considering the cutting stock problem in the context of structural optimization,
the goal is to design a structure that minimizes material usage while still meeting
the required strength and stiffness criteria. This can be achieved by determining the
optimal arrangement in the stock of items that make up the structure.
To solve this problem, mathematical models can be developed that represent the
structural design and the material properties, as well as the constraints and objectives
of the problem. These models can then be solved using optimization techniques such
as linear programming, mixed-integer programming, or metaheuristic algorithms.
In addition to minimizing material waste, the cutting stock problem can also help
reduce the overall cost and environmental impact of a structure. By optimizing
the use of materials, the structure can be made lighter and more efficient, leading
to savings in both production and operation costs, as well as reducing the carbon
footprint of the project.
In a nutshell, the method exposed in the following is a weight minimization of the
entire stock of factory bars where the truss members were cut. The problem was
subjected to the serviceability and strength constraints and solved by a Genetic
Algorithm with guided crossover.
The chapter is organized in order to have initially the mathematical formulation of
the optimization than the overall algorithm with a detailed explanation of the CSP
frow-chart implemented into the process. Afterwards, there is a section dedicated to
the metaheuristic algorithm involved in the code and then the case studies and the
relative setting parameters.
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7.6 Mathematical formulation of the structural opti-
mization

With respect to traditional optimization approaches (i.e Chan et al. (1995b), Van Mel-
laert et al. (2016), Kaveh and Bakhshpoori (2013), Hayalioglu and Saka (1992b))
in which the objective function represents the total weight of the structure as a sum
of the mass of each element (structural mass), in this study the target function has
been evaluated by computing the amount of steel requested during the production
phase (stock mass). To achieve this goal, a real-coded guided-Genetic Algorithm
(GA) has been developed by the author and the supervisors of the thesis. The design
variables are the only discrete cross-sectional areas (taken from the cross-sectional
commercial catalogue) of each element in case of a size optimization where is added
the members’ length in case of a combined size-shape optimization. CSP has been
implemented within the optimization process and it has been independently solved
for all groups of elements with the same cross-sectional properties. Finally, the
solution obtained by the CSP for each group has been adopted for the evaluation of
the objective function W (x) expressed as follows:

W (x) = φ1ρ

g=k

∑
g=1

ngAgLg (7.22)

W (x) is the optimization objective function and represents the total mass, more
precisely the sum of the purchased bars’ weight for each group g. Specifically, k
represents the total number of groups of elements with the same cross-sectional
areas. ng, Ag and Lg are the cardinality, the cross-sectional area and the length of
bins belonging to the same group g of elements with the same cross-sectional area
Ag, respectively. ρ is material the mass density assumed to be equal for all members
composing the structure (in this case the steel density).
The problem is constrained in order to guarantee structural conformity to the technical
standards and these constraints are incorporated in the OF as a penalty coefficient φ1.
In figure 7.16 it is possible to see the general flowchart of the entire optimization.

STEP 1 Set the input assumption of the optimization problem. First, the model as-
sumption as the features correlated with the geometry of the structure (number
of elements and truss topology and eventual symmetry), the loading pattern
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(position, values and eventual symmetry) and the material properties (Young
modulus E and density ρ). Afterwards, set the algorithm’s parameters (number
of iterations, number of individuals N per population, mutation probability
and probability for roulette wheel parents selection)

STEP 2 Generate a random initial population with N individuals (N different trusses
having the same topology but different design variables). The design variables
are size and eventually shape parameters. The algorithm works with discrete
design variables taken from commercial standards.

STEP 3 Perform the structural analysis for the given load condition in order to find the
structural behaviour and verify the structural conformity to the Eurocode 3
(EN 1993-12005 and EN 1993-2 2006). The structural analysis is performed
by a FEM code which uses the Direct Stiffness Method (DSM).

STEP 4 Computation of the overall penalty φ1 related to the violation of the optimiza-
tion constraints. The penalties are coefficients that increment the objective
function of the individuals which not satisfy the problem constraint in order to
penalize the unfeasible solutions. Specifically, the penalties are computed for
each violation by penalty functions. The results of the penalty functions are
coefficients φi for each i violation (e.g. strength, deflection, etc...). The final
penalty φ1 is the sum of the single penalty φi.

STEP 5 Verify if at least 1% of the entire population is feasible. If this condition is not
satisfied reinitialize the entire population (return to STEP 2) with a discrete
design variable domain reduce by a certain number of cross-sections. These
excluded cross-sections are the smaller ones in order to increase, in the next
iteration, the probability to have a population which fits the feasibility request
of this decision point.

STEP 6 To obtain the number of standard commercial bars purchased and the relative
cutting patterns for each cross-sectional group g. The grouping on the elements
is necessary because the items with the same cross-sectional area should be
allocated in the same bar typology. The CSP allocates the various structural
members into the standard factory bars in an optimal way in order to minimize
waste. For more details see figure 7.17 and the relative explanation.

STEP 7 Evaluation of the objective function W (x) which return the total mass of the
purchased bars.The OF is simply the sum of the purchased bars’ mass resulting



7.6 Mathematical formulation of the structural optimization 373

from the CSP for each cross-sectional group g multiplied for the overall penalty
φ1. The goal of the optimization is to reach the minimum W (x).

STEP 8 Check of the stagnation condition. This step avoids the algorithm stuck in
a local optimum while trying to search for a global optimum. Specifically,
this condition verifies if the best solution is the same for a predetermined
consecutive number of iterations. Whether the response is affirmative the
optimization process re-initializes the population (return to STEP 2) in order to
explore other solution spaces. Otherwise, the optimization process continues
with the following steps.

STEP 9 This condition simply check if the imposed number of iteration is reached.
Whether the number of the current iteration is lower the process comes to
STEP 3 otherwise continue with the plotting of the output results.

STEP 10 The outputs of the entire optimization process are final member properties, the
overall mass of purchased steel, the number of bars for each cross-sectional
class and the relative cutting pattern relative to the optimal individual.
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Fig. 7.16 Structural Optimization via CSP problem algorithm
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Fig. 7.17 Detailed CSP algorithm embedded in the structural optimization
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7.7 GA with guided crossover

In order to solve the problem stated in previous section, a real-coded GA is adopted.
This is a population-based stochastic optimization technique appropriate for global
optimization, which does not require direct evaluation of gradients. Introduced by
John Holland Holland (1992), it is inspired by Charles Darwin’s theory of natural
evolution. This algorithm reflects the process of natural selection where the fittest
individuals, also called parents, are selected for reproduction in order to produce
offspring of the next generation. At the end of the process, the best survival among
all the fittest candidates found at each generation is selected as the best globally
optimized solution. Although the native GA worked with binary values representing
genes, encoded in string structures called chromosomes, in this paper the authors
overcome the limits related to the decoding process by using a real-code GA in which
genes and chromosomes represent directly the design variables and the solutions of
the problem.

At each iteration, traditional GA phases were adopted during the optimization as
following:

• Initial population: in this phase, individuals with a set of random genes (xi)
composing chromosomes (x) are created by observing lower and upper bounds
reported in table. Gene represents, at each generation, the candidate value of a
specific design variable involved in the identification procedure. A set of genes
(vector form) represent a solution of the problem for the current generation. In
this way, the best solution is selected and the optimal set of parameters which
govern that specific law is detected.

• Fitness function: in this phase, the fitness of the candidate solutions is evalu-
ated by calculating the OF introduced in the previous section.

• Selection: During this phase, a Roulette Wheel Selection was implemented
in order to guarantee that the two fittest parents are selected for the next
steps. Adopting this technique, a probability to each parent is assigned and the
parents with higher fitness are more likely to be chosen for the next steps.

• Crossover: in this phase, a single point crossover was performed in which
recombination of gene pool between parents occurs after a position selected in
a random way fro each parent. Lower and upper bounds are imposed at this
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stage such that if only a gene of the new offspring is not ranged within the
imposed interval (higher than the maximum value or lower than the minimum
value of that specific parameter), it is forced to assume maximum or minimum
value, respectively.

• Mutation: aiming to improve the exploration and exploitation ability of the
algorithm, a mutation rate of 1% is assigned. In this way, new genes are
introduced into the population by modifying gene pools of parents in a random
way.

At the end of these stages, a sorted function was implemented aiming to store
survivors with the best fitness among the generated offspring, at each generation.
The identification procedure can be considered ended when the stopping criteria of
the algorithm are satisfied and the optimal set of parameters for each law is found.
The entire procedure was run n times in order to check the reliability and robustness
of the algorithm. Specifically, the authors observed that stagnation usually occurred
for the algebraic models while no differential ones needed to use all the available
200 generations.

7.8 Case study 1: 10-bar truss

Within this section, it will be exhibited a simple application of CSP embedded in
structural optimization. The structure under analysis in this section is a ten-bar
truss benchmark coming from ?. The case study is simple and the optimization
assumptions are minimal just to check the results.
The section is divided into two subsections, the first show the model definition and
the set of algorithm parameters and, afterwards, another subsection exposes and
discusses the results.

7.8.1 Model definition and parameters’ setting

As reported in Figure 7.18, the structure is a trussed isostatic cantilever composed of
10 steel bars and constrained by two pinned supports at nodes 5 and 6, respectively.
A single-loading condition P1 has been assumed and, specifically, two equal forces
P1 are applied at nodes 2 and 4.
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Fig. 7.18 Configuration of the in-plane 10-bar truss, measures are expressed in inches (in.)

For having a resume of numerical model assumption on the material and geometry
of the truss the table 7.1 was created.

Parameter Value
Modulus of elasticity of steel E 10000 ksi
Steel density ρ 0.10 lb/in3

Loading P1 100 kips
Length of purchased bars (bins) Lbin 1020 in
Number of design variables 10
Bounds of design variables (Amin,Amax) [1.62, 33.5] in2

Table 7.1 Model assumption relative to the 10 bar truss.

The design variables of the problem are simply the 10 cross-sectional areas of
the truss components. The problem was solved by a GA algorithm which works
with discrete values. This procedure allows taking into account only solutions with
elements which have cross-sectional areas available in the commercial standards
list. Therefore, a set of 42 discrete values (shown in table 7.2) have been used for
the possible cross-sectional areas for each member. In this simplified optimization
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it was not taken into account the elemental buckling and, for this reason, only the
cross-sectional areas of the elements are sufficient as sectional properties.

Discrete cross-sectional areas A [in2]

1.62 1.8 1.99 2.13 2.38 2.62 2.63
2.88 2.93 3.09 3.13 3.38 3.47 3.55
3.63 3.84 3.87 3.88 4.18 4.22 4.49
4.59 4.8 4.97 5.12 5.74 7.22 7.97
11.5 13.5 13.9 14.2 15.5 16 16.9
18.8 19.9 22 22.9 26.5 30 33.5

Table 7.2 Discrete cross-sectional standard area within the design variables are chosen.

Now the assumptions related to the model are imposed. It is possible to proceed
with the optimization statement.
The statement of the entire optimization process is the following:

min f (x) =W (x) (7.23)

Subject to
NED

Nt,RD
≤ 1 (7.24)

NED

Nc,RD
≤ 1 (7.25)

umax,x ≤ ulim,x (7.26)

umax,y ≤ ulim,y (7.27)

The goal of structural optimization is the minimization of the objective function
W (x) (see (7.22)) correlated to the stock mass.
Equations from (7.24) to (7.27) represent the structural constraints of the problem.
In detail, strength verifications about tensile stress (without any holes) and com-
pression stress according to Eurocode 3 (EN 1993-12005 and EN 1993-2 2006) are
introduced by Equations (7.24) and (7.25) respectively. Other constraints to satisfy
is the maximum deflection along x and y directions (represented by Equations (7.26)



380 Cutting Stock Problem in structural optimization

and (7.27), respectively).
To apply the previously seen constraints to the optimization process a penalty coef-
ficient φ1 is multiplied by the stock mass. In this way, the unfeasible solutions are
penalized with respect to the feasible ones.
The penalty applied to the SO is the sum of the single penalty related to the single
violation:

φ1 = φNc +φNt +φux +φuy (7.28)

In particular, the violation functions are simply equal to the sum of the verification
ratios

φQ =
i=v

∑
i

Qi
Ed

Qlim
(7.29)

Where Q is the constraint parameter (stress or deflections) for an element of the
truss i which does not satisfy the constraint condition. The overall penalty related to
a constraint φQ is the sum of the violation of all the violated items v. Particularly,
the effective solicitation or deflection is at the numerator and the limit value is at the
denominator. The displacements of the free nodes in both directions had to be less
than ±2 in. and the allowable stress was set to ±25 ksi.
In this specific case study, two attempts were done with the implementation of an
additional penalty φR related to the ripetitivity of the cross-section among the design
variables.

φR = kNsingleA (7.30)

Where k is a proportional coefficient which set the impact of the ripetitivity
penalty on the objective function. Conversely, NsingleA is the number of different
areas present within the design variable. This penalty is added to the (7.22) but as it
will exposes more in detail in the next paragraph the results are worse compared the
original formulation.

The algorithm setting parameters are collected in table 7.3.
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Parameter Value
Maximum number of iterations 200
Number of individuals per population 200
Areas excluded if unfeasibility condition isn’t satisfied 5 smaller DV
Mutations’ probability 1%
Proportional children 1 child for each parent
Stagnation condition 10 iterations

Table 7.3 Optimization algorithm parameters set by the operator.

7.8.2 Results and discussion

In this section, the results of the structural optimization (SO) process with specific
regard to the ten-bar case study are pointed out. Specifically, two optimization
scenarios have been performed:

• Scenario (a): optimization by considering CSP (minimization of purchased
steel bars).

• Scenario (b): optimization via traditional approach by minimizing the total
weight of the structure without considering the CSP procedure.

In order to have a comparison between the two mentioned-above approaches, the
CSP procedure has been performed at the end of (b) such that the total number of
bins requested for the assemblage of the optimal weight structure has been evaluated.
Afterwards, a case of the SO via CSP with the implementation of the ripetitivity
penalty is exhibited.
Scenario (a) In scenario (a) 10 runs are performed through SO via CSP and the
results are summarised in table 7.6 at the end of the section. Afterwards, from the
data collected the best result and the mean value and standard deviation are collected
in the following table 7.4.

The first observations concern the operation of the CSP in the SO. It can be seen
that the results tend to have each bar with a different cross-section, containing 2
elements per bar (corresponding to the maximum number of elements that can be
allocated in a bar). These two features allow for obtaining the best results because
exploit at the maximum capacity the bars and simultaneously have a good degree of



382 Cutting Stock Problem in structural optimization

Stock Mass (OF) [lb] Structural Mass [lb] Waste Mass [lb]

Best 6825.84 5791.97 1033.87
µ 7320.13 6158.41 1161.73
σ 308.64 257.05 98.37

Table 7.4 Result of the optimization via CSP related to Scenario (a)

freedom in the size optimization of the elements.
In other words, the OS works on two levels: the correct choice of cutting pattern to
maximise the utilisation of the bars and the selection of the minimum cross-sectional
area for each bar.
Figure 7.19 gives a more clear view of the bars’ exploitation in scenario (a).

Fig. 7.19 Optimal cutting pattern derived by optimization scenario (a)

To show how the algorithm works in more detail, the plots of the best solution
(Figure 7.20), the violation (Figure 7.21) and the unfeasibility (Figure 7.22) for each
iteration are presented on following.
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Fig. 7.20 OF best solution for each iteration related to Scenario (a)

Fig. 7.21 OF violation for each iteration related to Scenario (a)

Scenario (b) Scenario (b) consists again of 10 runs performed with a traditional
structural optimization which minimizes the total structural mass only. The mass



384 Cutting Stock Problem in structural optimization

Fig. 7.22 OF unfeasibility for each iteration related to Scenario (a)

of the stock was obtained successively by applying the CSP to the cross sections
obtained. The results of the 10 runs are summarised at the end of the section in table
7.7. The best solution, the average solution and the standard deviation are collected
in the following table.

Stock Mass (OF) [lb] Structural Mass [lb] Mass Waste [lb]

Best 10323.42 5580.42 4743.00
µ 12133.92 5632.88 6501.04
σ 1343.16 64.15 1348.10

Table 7.5 Result of the optimization via traditional approach (b)

On following the stock representation (Figure 7.23) and the plots of the best
solution (Figure 7.24), the violation (Figure 7.25) and the unfeasibility (Figure 7.26)
for each iteration.
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Fig. 7.23 Optimal cutting pattern derived by optimization scenario (b)

Fig. 7.24 OF best solution for each iteration related to Scenario (b)

Now it is possible to compare the results of the two optimizations (Scenario (a)
and Scenario (b)). The first important result is that the stock mass is much lower in
Scenario (a) versus a small increment of the structural mass which is very similar
between the two scenarios. From these considerations, it is possible to deduce
that the algorithm with embedded the CSP perform well because requests fewer
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Fig. 7.25 OF violation for each iteration related to Scenario (b)

Fig. 7.26 OF unfeasibility for each iteration related to Scenario (b)

purchased bars with a small increment of the structural weight.
Another consideration is about the variability of the problem which presents better
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results in terms of a stock mass standard deviation in scenario (a) and regarding
the structural mass the standard deviation is lower in scenario (b). Moreover, the
standard deviations’ values of the relative OF (stock mass for (a) and structural mass
for (b)) penalize scenario (a) because the variability of the cutting pattern does not
allow to have a strong convergence of the results.
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Ripetitivity penalty With the idea of helping the algorithm find better results in
terms of stock mass, a ripetitivity penalty was introduced that increases the OF value
based on the number of different cross-sectional areas between the design variables.
Therefore, greater is the number of cross-sectional different areas greater is the
penalty.

φR = kNsingleA (7.31)

Where k and NsingleA are a coefficient which set the impact of the penalty on the
OF and the number of different areas present within the design variable respectively.
In the following pages in the tables 7.10 and 7.11 are presented the results of 10
runs (for k=0.1 and k=0.2 respectively). Meanwhile, in the following table the best
solution, the average one and the standard deviation are collected (table 7.8 and 7.9)

Stock Mass (OF) [lb] Structural Mass [lb] Mass Waste [lb]

Best 7127.76 6043.71 1084.05
µ 8128.38 6751.39 1376.99
σ 664.19 467.16 248.40

Table 7.8 Result of the optimization via CSP considering ripetitivity (k = 0.1)

Stock Mass (OF) [lb] Structural Mass [lb] Mass Waste [lb]

Best 8051.88 6816.97 1234.91
µ 8768.23 7367.95 1400.28
σ 611.95 549.00 209.11

Table 7.9 Result of the optimization via CSP considering ripetitivity (k = 0.2)

The algorithms despite the low values of k do not work properly. The OF values
are worse and the standard deviation too. These results show that considering the
ripetitivity in this specific problem makes the algorithm more rigid because forces
purchased bars to have the same cross-sectional areas. Therefore, a reduction of the
degree of freedom in the problem has as a consequence less difference in item areas.
Moreover, the reduction of the available area produces items with an overestimated
cross-sectional area which increase both the structural and stock mass.



7.8 Case study 1: 10-bar truss 391

A
tte

m
pt

C
ro

ss
-s

ec
tio

na
la

re
as

[i
n2 ]

N
um

be
ro

fb
in

s
St

ru
ct

ur
al

M
as

s
[l

b]
St

oc
k

M
as

s
[l

b]
W

as
te

M
as

s
[l

b]

1
[2

2.
9

13
.9

22
.9

14
.2

7.
97

7.
97

22
.2

2.
14

.2
13

.9
]

[1
,1

,1
,1

,1
]

69
04

.9
7

82
58

.9
4

13
53

.9
7

2
[2

6.
5

4.
97

26
.5

13
.9

4.
97

13
.9

13
.9

26
.5

13
.9

26
.5

]
[2

,1
,2

]
73

80
.3

0
87

48
.5

4
13

68
.2

4
3

[3
0.

4.
49

22
.9

22
.9

1.
99

1.
99

30
.1

6.
16

.4
.4

9]
[1

,1
,1

,1
,1

]
64

18
.8

4
76

88
.7

6
12

69
.9

2
4

[3
0.

1.
99

22
.1

3.
9

1.
99

1.
99

13
.9

30
.2

2.
1.

99
]

[1
,2

,1
,1

]
60

43
.7

1
71

27
.7

6
10

84
.0

5
5

[2
6.

5
14

.2
26

.5
14

.2
16

.9
3.

47
16

.9
26

.5
26

.5
3.

47
]

[2
,1

,1
,1

]
73

99
.1

1
89

32
.1

4
15

33
.0

3
6

[3
0.

13
.9

30
.1

3.
5

13
.5

13
.5

13
.5

13
.9

16
.1

6.
]

[1
,1

,2
,1

]
71

42
.5

5
88

63
.8

0
17

21
.2

5
7

[2
2.

9
4.

8
22

.9
15

.5
4.

8
7.

97
15

.5
30

.3
0.

4.
8

]
[1

,2
,1

,1
,1

]
69

27
.5

3
87

68
.9

4
18

41
.4

1
8

[3
0.

4.
18

30
.7

.2
2

4.
18

7.
22

16
.1

8.
8

16
.1

8.
8

]
[1

,1
,1

,1
,1

]
65

24
.2

5
77

72
.4

0
12

48
.1

5
9

[2
6.

5
3.

87
22

.2
2.

2.
38

2.
38

26
.5

18
.8

18
.8

3.
87

]
[1

,1
,1

,1
,1

]
63

09
.1

5
75

02
.1

0
11

92
.9

5
10

[2
2.

1.
99

30
.1

3.
5

7.
22

1.
99

30
.1

3.
5

22
.7

.2
2]

[1
,1

,1
,1

,1
]

64
63

.5
0

76
20

.4
2

11
56

.9
2

Ta
bl

e
7.

10
St

ru
ct

ur
al

O
pt

im
iz

at
io

n
vi

a
C

SP
in

cl
ud

in
g

ri
pe

tit
iv

ity
(k

=0
.1

)r
es

ul
ts

of
10

ru
ns



392 Cutting Stock Problem in structural optimization

A
tte

m
pt

C
ro

ss
-s

ec
tio

na
la

re
as

[i
n2 ]

N
um

be
ro

fb
in

s
St

ru
ct

ur
al

M
as

s
[l

b]
St

oc
k

M
as

s
[l

b]
W

as
te

M
as

s
[l

b]

1
[2

6.
5

7.
22

26
.5

7.
22

7.
22

7.
22

26
.5

26
.5

11
.5

11
.5

]
[2

,2
,1

]
68

16
.9

7
80

51
.8

8
12

34
.9

1
2

[3
0.

4.
49

30
.4

.5
9

4.
49

4.
59

30
.1

5.
5

30
.1

5.
5

]
[2

,1
,1

,1
]

74
46

.7
2

86
27

.1
6

11
80

.4
4

3
[2

6.
5

22
.2

6.
5

16
.9

4.
59

4.
59

22
.1

1.
5

16
.9

11
.5

]
[1

,1
,1

,1
,1

]
67

90
.3

1
83

11
.9

8
15

21
.6

7
4

[3
0.

4.
8

16
.1

6.
9

4.
8

16
.9

18
.8

16
.3

0.
18

.8
]

[1
,1

,1
,1

,1
]

74
74

.6
2

88
23

.0
0

13
48

.3
8

5
[2

6.
5

4.
49

26
.5

16
.1

.9
9

16
.1

6.
16

.1
6.

16
.]

[1
,1

,3
,1

]
65

51
.6

3
82

59
.9

6
17

08
.3

3
6

[3
0.

7.
22

30
.7

.2
2

2.
38

2.
38

30
.3

0.
13

.9
13

.9
]

[2
,1

,1
,1

]
73

21
.2

5
85

17
.0

0
11

95
.7

5
7

[2
2.

9
26

.5
26

.5
16

.1
6.

7.
97

26
.5

7.
97

26
.5

22
.9

]
[1

,2
,1

,1
]

84
41

.2
8

10
18

6.
74

17
45

.4
6

8
[2

2.
9

26
.5

26
.5

7.
97

7.
22

7.
22

26
.5

22
.9

26
.5

7.
97

]
[1

,2
,1

,1
]

78
09

.1
2

92
91

.1
8

14
82

.0
6

9
[3

0.
1.

99
30

.7
.9

7
7.

97
1.

99
30

.1
5.

5
30

.1
5.

5
]

[2
,1

,1
,1

]
75

10
.0

8
87

16
.9

2
12

06
.8

4
10

[3
0.

11
.5

30
.1

1.
5

4.
22

4.
22

30
.1

1.
5

30
.1

1.
5

]
[2

,2
,1

]
75

17
.5

1
88

96
.4

4
13

78
.9

3

Ta
bl

e
7.

11
St

ru
ct

ur
al

O
pt

im
iz

at
io

n
vi

a
C

SP
in

cl
ud

in
g

ri
pe

tit
iv

ity
(k

=0
.2

)r
es

ul
ts

of
10

ru
ns



7.9 Case study 2: Symmetric Warren truss 393

7.9 Case study 2: Symmetric Warren truss

Within this section, a more complex application example is exhibited. The structure
under analysis is a Warren truss with 23 members. The structure is subjected
to symmetric loading and a symmetric geometry is assumed. This assumption
approximately halves the design variables which becomes 12 cross-sectional areas.
The section is divided into two subsections, the first show the model definition and
the set of algorithm parameters and, afterwards, another subsection exposes and
discusses the results.

7.9.1 Model definition and parameters’ setting

This case study examines a single-support Warren truss with 23 elements that is
being loaded uniformly in-plane on the lower chord. This decision was made in order
to minimize production costs due to the Warren-type truss’s reduced joint count as
compared to other types (like the Pratt or Vierendeel types). The complete length L
of the truss is likewise displayed in Figure 7.27, divided into 6 spans with a spacing
of L/6.

Fig. 7.27 Configuration of the Warren truss under analysis, the numbers indicate the design
variables which are 12 because the symmetry is considered, measures are expressed in
millimetres (mm)

The truss to be optimized is characterized by hollow members in particular in
this truss typology Circular Hollow Sections (CHS) are used in particular a standard
cross-sectional list from the standard code is used (EN 10210). In fact, hollow
sections are particularly effective in compression as previously mentioned because
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the material is far from the section axis, increasing the resistance to buckling. In
some situations, hollow sections can also be more affordable than other profiles, such
as when there are lower loads, cheaper steel prices, and higher hourly labour costs ?.
For reducing the computational effort and aiding the algorithm to search for the
optimum symmetry of the truss is taken into account. This assumption almost halves
the design variables which becomes 12 instead to 23 (the design variables of the
problem are indicated in Figure 7.27.
The truss is loading symmetrically by considering a load due to the permanent
non-structural load equal to 4 kN/m2 a snow loading equal to 1.5 kN/m2 and a
maintenance loading of 0.5 kN/m2. To obtain the in-plane loading of the truss, an
influence area of 10 m is considered, which is the distance between two Warren
trusses in a roof system. Afterwards, the uniform distributed load along the lower
chord of the Warren truss is divided into 5 concentrated forces P1 concentrated
into the lower chord internal nodes. The self-weight of the structure is considered
separately in the FEM code used for the structural analysis.
All the specifications regarding the material and the features of the model are reported
in table 7.12.

Parameter Value
Modulus of elasticity of steel E 210000 MPa
Steel density ρ 7.85 t/m3

Loading lower chord nodes P1 240 kN
Length of purchased bars (bins) Lbin 15 m
Number of design variables 12
Bounds of design variables (Amin,Amax) [182, 24700] mm2

Table 7.12 Model assumption relative to the symmetric Warren truss.

The statement of the entire optimization process is similar to Case Study 1 and is
resumed in the following:

min f (x) =W (x) (7.32)

Subject to
NED

Nt,RD
≤ 1 (7.33)
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NED

Nc,RD
≤ 1 (7.34)

NED

Nb,RD
≤ 1 (7.35)

umax,x ≤ ulim,x (7.36)

umax,y ≤ ulim,y (7.37)

An explanation of the constraints is available in the previous case study. The only
noticeable difference is the equation (7.35) which assesses the buckling instability
requirement according to Eurocode 3 (EN 1993-12005 and EN 1993-2 2006).
The violation comes from the constraint is computed as in the previous case study,
the only difference is that the φ1 used into the W (x) is no more the sum between the
various singular violations but the greater of them.

φ1 = max(φNc,φNt ,φNb,φux,φuy) (7.38)

The settings of the algorithm are shown in the following table 7.13. Considering

Parameter Value
Maximum number of iterations 200
Number of individuals per population 300
Areas excluded if unfeasibility condition isn’t satisfied 5 smaller DV
Mutations’ probability 5%
Proportional children 1 child for each parent
Stagnation condition 20 iterations

Table 7.13 Optimization algorithm parameters set by the operator.

that the complexity of the problem is grown with respect to the 10-bar-truss case
study the number of individuals is increased to 300 and the stagnation is raised to 20
as well. A modification of the stagnation reinitialization is performed. The algorithm
does not reinitialize all the individuals but stores the 10 best individuals in order to
not lose the genetic pool.
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7.9.2 Results and discussion

As in the previous case study, two optimization scenarios are investigated by per-
forming 10 runs per scenario:

• Scenario (a): optimization by considering CSP (minimization of purchased
steel bars).

• Scenario (b): optimization via traditional approach by minimizing the total
weight of the structure without considering the CSP procedure.

Scenario (a) Regarding the first scenario (a) the results of the optimization are
synthesised in the following table and figures referred to the best solution. For more
detail about the ten runs see the table 7.16.

Stock Mass (OF) [kg] Structural Mass [kg] Mass Waste [kg]

Best 4341.44 3006.42 1335.03
µ 5249.65 2952.80 2296.85
σ 391.43 292.55 391.10

Table 7.14 Result of the symmetric Warren optimization via CSP approach (a)

Fig. 7.28 Optimal cutting pattern derived by optimization via CSP scenario (a) - Symmetric
Warren
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Fig. 7.29 OF best solution for each iteration related to Scenario (a) - Symmetric Warren

Fig. 7.30 OF violation for each iteration related to Scenario (a) - Symmetric Warren
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Fig. 7.31 OF stagnation for each iteration related to Scenario (a) - Symmetric Warren

Fig. 7.32 OF unfeasibility for each iteration related to Scenario (a) - Symmetric Warren
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The results of scenario (a) as it is possible to see in the stock representation
(figure 7.28) are not optimal because the grouping of the areas does not reach the
minimum in terms of the number of bars. For instance, it is possible to notice that the
waste in the bars A2, A6, A8 is greater than the length of each item. As it is possible
to see in the best solution evolution through the 200 iterations plot (figure 7.29)
achieving the best solution is more difficult and there are long stagnation points. The
standard deviation of the stock mass is similar to the 10-bar truss case study and is
related to the innate variability of the CSP problem.

Scenario (b) Now on following are exhibited the results and the plots related to
scenario (b). More in detail the 10 runs results are shown in table 7.17.

Stock Mass [kg] Structural Mass (OF) [kg] Mass Waste [kg]

Best 4610.62 2395.22 2215.40
µ 5832.42 2717.97 3114.45
σ 531.14 167.85 392.44

Table 7.15 Result of the symmetric Warren optimization via traditional approach (b)

Fig. 7.33 Optimal cutting pattern derived by traditional optimization scenario (b) - Symmetric
Warren
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Fig. 7.34 OF best solution for each iteration related to Scenario (b) - Symmetric Warren

Fig. 7.35 OF violation for each iteration related to Scenario (b) - Symmetric Warren

The results derived from scenario (b) are much worse than the ones obtained
from scenario (a). The assignation of the items to the beams in scenario (b) is only
dependent on the optimum size for reducing the structural mass. Therefore, taking
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Fig. 7.36 OF stagnation for each iteration related to Scenario (b) - Symmetric Warren

Fig. 7.37 OF unfeasibility for each iteration related to Scenario (b) - Symmetric Warren

into account only the structural mass optimization leads to great variability in terms
of cross-sectional areas which means a raise in the number of bars. Moreover, a great
number of bars results in a low exploitation rate which means a lot of waste material.
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By comparing the two scenarios in (a) we have the use of 8 bars in the best results
meanwhile in (b) the quantity raises to 11 bars. The scenario (a) best solution trend
is more rigid (with more numerous and longer stagnation points) but is probably due
to the higher complexity of the problem.
In terms of structural mass, the average value of scenario (a) is 234 kg much greater
than scenario (b) which is an acceptable compromise because the gain in terms of
average stock mass in scenario (a) is about 583 kg. The standard deviations of the
results are a little high in both scenarios (less in terms of stock mass in scenario (a)
and lower in structural mass in (b)) due to the high variability of the problem.
Unfortunately, the difference between the two scenarios is not high as in the previous
case study and, for this reason, an ulterior simplification of the model is performed
in the next case study.
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7.10 Case study 3: 4 member types Warren truss

Within this section, a further reduction of the design variables regarding the previous
model was implemented. The structure is the same as in case study 2 but all the
members are grouped into 4 groups which have 4 different cross-sections. In this
way, the design variables are only 4 and the computational effort is reduced.
The section is divided into two subsections, the first show the model definition and
the set of algorithm parameters and, afterwards, another subsection exposes and
discusses the results.

7.10.1 Model definition and parameters’ setting

This case study is a simplification of the previous one. As it is possible to see in
Figure 7.38 all the members are previously grouped into 4 cross-sectional classes
based on the structural behaviour. The four classes are the lower chord, the upper
chord the internal web and the external web. The only modification is this radical
reduction of the design variable meanwhile the problem statement of the other model
and optimization characteristics are equal to the one exposed in case study 2. The
final aim of this assumption is to reduce the design variable and to force the grouping
of the bars in order to exploit better the stock material.

Fig. 7.38 Configuration of the Warren truss under analysis, the members are divided into 4
cross-sectional areas which are the 4 design variables, measures are expressed in millimetres
(mm)

In the following tables (7.18, 7.19) are summarized the characteristics regarding
the model properties in the first one and the setting parameters in the second table.
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Parameter Value
Modulus of elasticity of steel E 210000 MPa
Steel density ρ 7.85 t/m3

Loading lower chord nodes P1 240 kN
Length of purchased bars (bins) Lbin 15 m
Number of design variables 4
Bounds of design variables (Amin,Amax) [182, 24700] mm2

Table 7.18 Model assumption relative to the symmetric Warren truss.

Parameter Value
Maximum number of iterations 200
Number of individuals per population 300
Areas excluded if unfeasibility condition isn’t satisfied 5 smaller DV
Mutations’ probability 5%
Proportional children 1 child for each parent
Stagnation condition 20 iterations

Table 7.19 Optimization algorithm parameters set by the operator.

7.10.2 Results and discussion

As in the previous case study, two optimization scenarios are investigated by per-
forming 10 runs per scenario (for more detail see case study one):

• Scenario (a): optimization by considering CSP (minimization of the stock).

• Scenario (b): optimization via traditional approach (minimization of the struc-
tural mass).

Scenario (a) On following the results of scenario (a) with 4 design variables
are exposed. For more detail about the 10 runs see table 7.22.

Stock Mass (OF) [kg] Structural Mass [kg] Mass Waste [kg]

Best 2656.44 2189.96 466.48
µ 2770.02 2265.11 504.91
σ 98.30 73.80 37.38

Table 7.20 Result of the 4 DV Warren optimization via CSP approach (a)
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Fig. 7.39 Optimal cutting pattern derived by optimization via CSP scenario (a) - 4 DV Warren

Fig. 7.40 OF best solution for each iteration related to Scenario (a) - 4 DV Warren
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Fig. 7.41 OF violation for each iteration related to Scenario (a) - 4 DV Warren

Fig. 7.42 OF stagnation for each iteration related to Scenario (a) - 4DV Warren
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Fig. 7.43 OF unfeasibility for each iteration related to Scenario (a) - 4 DV Warren

In this case, the stock representation (Figure 7.39) shows that the rate of ex-
ploitation of the bars is the maximum that it is possible to attain. It is interesting
to notice that all the 10 runs give as a result the grouping in three classes of areas
because the two external webs are simply allocated in one of the other three existing
bars. Another indicator of the algorithm’s goodness is the decrease of the standard
deviations both in stock and structural mass which means that the results tend to
converge to similar results. Also, the waste mass is much lower than in the previous
case study.
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Scenario (b) On following the results of scenario (b) with 4 design variables are
exposed. For more detail about the 10 runs see table 7.23.

Stock Mass [kg] Structural Mass (OF) [kg] Mass Waste [kg]

Best 3109.78 2130.44 979.33
µ 3282.09 2146.42 1135.67
σ 222.82 26.38 215.64

Table 7.21 Result of the 4 DV Warren optimization via traditional approach (b)

Fig. 7.44 Optimal cutting pattern derived by traditional optimization scenario (b) - 4 DV
Warren



7.10 Case study 3: 4 member types Warren truss 411

Fig. 7.45 OF best solution for each iteration related to Scenario (b) - 4 DV Warren

Fig. 7.46 OF violation for each iteration related to Scenario (b) - 4 DV Warren
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Fig. 7.47 OF stagnation for each iteration related to Scenario (b) - 4DV Warren

Fig. 7.48 OF unfeasibility for each iteration related to Scenario (b) - 4 DV Warren



7.10 Case study 3: 4 member types Warren truss 413

In scenario (b) the results are a little bit worse than in (a). The increment is
almost in all the runs of only one bar. These results are due to the fact that algorithm
(b) uses the groups imposed from the operator without the merging of the external
webs cross-sectional areal class with another of the three other classes.
The principal thought that comes from this outcome is that the traditional structural
optimization itself works well and the impact of the CSP optimization, in this case,
is minimum.
Therefore, the CSP algorithm in this case has more of a function of finding the best
set of cutting patterns instead to group the items’ areas which are similar to the one
chosen by the traditional structural optimization (in fact the structural mass is very
similar between the two scenarios). A noticeable value is the standard deviation
which increases in scenario (b).



414 Cutting Stock Problem in structural optimization

A
tte

m
pt

C
ro

ss
-s

ec
tio

na
la

re
as

[m
m

2 ]
N

um
be

ro
fb

in
s

St
ru

ct
ur

al
M

as
s

[k
g]

St
oc

k
M

as
s

[k
g]

W
as

te
M

as
s

[k
g]

1
[4

21
0,

53
10

,1
37

0,
53

10
]

[2
,2

,3
]

22
36

.8
0

27
25

.9
1

48
9.

11
2

[4
97

0,
52

80
,9

06
,4

97
0]

[2
,2

,3
]

22
34

.9
9

27
33

.9
2

49
8.

93
3

[4
21

0,
59

40
,1

12
0,

59
40

]
[2

,2
,3

]
22

94
.2

0
27

85
.9

6
49

1.
77

4
[4

50
0,

47
10

,2
06

0,
47

10
]

[2
,2

,3
]

23
61

.5
3

28
96

.6
5

53
5.

12
5

[4
03

0,
61

20
,9

06
,4

03
0]

[2
,2

,3
]

21
63

.9
5

27
10

.3
7

54
6.

42
6

[3
71

0,
58

90
,1

12
0,

58
90

]
[2

,2
,3

]
21

89
.9

6
26

56
.4

4
46

6.
48

7
[4

21
0,

61
20

,6
80

,6
12

0]
[2

,2
,3

]
22

08
.8

5
26

72
.9

3
46

4.
08

8
[4

50
0,

59
90

,1
39

0,
45

00
]

[2
,2

,3
]

23
81

.0
9

29
61

.4
1

58
0.

32
9

[4
02

0,
58

90
,1

12
0,

58
90

]
[2

,2
,3

]
22

48
.3

7
27

29
.4

4
48

1.
08

10
[5

28
0,

46
70

,1
37

0,
52

80
]

[2
,2

,3
]

23
31

.3
9

28
27

.1
8

49
5.

79

Ta
bl

e
7.

22
St

ru
ct

ur
al

O
pt

im
iz

at
io

n
vi

a
C

SP
re

su
lts

of
10

ru
ns

fo
r4

cr
os

s-
se

ct
io

na
lt

yp
e

W
ar

re
n.

Sc
en

ar
io

(a
)



7.10 Case study 3: 4 member types Warren truss 415

A
tte

m
pt

C
ro

ss
-s

ec
tio

na
la

re
as

[m
m

2 ]
N

um
be

ro
fb

in
s

St
ru

ct
ur

al
M

as
s

[k
g]

St
oc

k
M

as
s

[k
g]

W
as

te
M

as
s

[k
g]

1
[4

03
0,

59
90

,8
62

,4
21

0]
[2

2
3

1]
21

36
.6

0
31

59
.9

4
10

23
.3

4
2

[5
03

0,
47

10
,9

65
,4

07
0]

[2
2

3
1]

21
36

.6
3

31
13

.9
0

97
7.

27
3

[5
03

0,
52

80
,8

69
,3

36
0]

[2
2

3
1]

21
79

.5
6

31
30

.6
2

95
1.

06
4

[4
67

0,
52

80
,6

41
,5

89
0]

[2
2

3
1]

21
37

.6
1

32
63

.2
1

11
25

.5
9

5
[4

50
0,

50
30

,8
69

,5
89

0]
[2

2
3

1]
21

27
.1

4
32

44
.8

4
11

17
.6

9
6

[4
71

0,
46

70
,8

10
,9

11
0]

[2
2

3
1]

22
03

.8
7

35
67

.8
3

13
63

.9
6

7
[4

21
0,

49
70

,1
05

0,
59

90
]

[2
2

3
1]

21
16

.0
5

32
38

.1
3

11
22

.0
7

8
[4

97
0,

50
10

,8
10

,4
02

0]
[2

2
3

1]
21

30
.4

4
31

09
.7

8
97

9.
33

9
[5

28
0,

47
10

,7
33

,5
01

0]
[2

2
3

1]
21

52
.6

8
32

01
.5

0
10

48
.8

2
10

[5
03

0,
50

30
,6

79
,5

01
0]

[5
3

1]
21

43
.6

5
37

91
.2

0
16

47
.5

5

Ta
bl

e
7.

23
Tr

ad
iti

on
al

St
ru

ct
ur

al
O

pt
im

iz
at

io
n

re
su

lts
of

10
ru

ns
fo

r4
cr

os
s-

se
ct

io
na

lt
yp

e
W

ar
re

n.
Sc

en
ar

io
(b

)



416 Cutting Stock Problem in structural optimization

7.11 Conclusion and future developments

In this chapter, a novel procedure for the optimization of steel truss structures has
been introduced to evaluate the minimum number of bins (total mass of purchased
steel bars) and the optimal cutting pattern of a stock of elements by solving the
Cutting Stock Problem (CSP).
After an introductory part which gives an overview of the scientific literature con-
cerned with Structural Optimization techniques which investigate the minimization
of the cost related to the structure, the mathematical formulation of the Cutting Stock
Problem in particular the Column Generation methodologies was explored in detail.
Given the necessary prerequisites, the Structural Optimization via CSP developed
by the author and supervisors of this thesis is exhibited. The new Structural Opti-
mization aims to minimize the total mass of purchased steel bars by a GA-based size
optimization algorithm. The number of bars requested by the objective function is
obtained through a CSP column generation code which allocates all the items of the
truss under analysis in an optimal way.
Thereafter, some application case studies are investigated for testing the goodness
of the algorithm. To have effective feedback the Stock obtained by the Structural
Optimization via CSP is compared with the stock obtained by a traditional Structural
mass minimization.
In the first case study, which is a simple 10-bar truss used as a benchmark, the algo-
rithm gives satisfactory results. The 10-bar truss under analysis is very simple and the
bars have a capacity of a maximum of 2 items per bar. Nevertheless, the exploration
of the domain of solution is very simple due to the standard cross-sectional list which
has a small number of cross-sections, a small number of unfeasible solutions and a
constant interval between two consecutive areas.
The two next case studies are a 23-bar Warren truss which is modelled in two dif-
ferent ways: as a symmetric truss that almost halves to 12 design variables and
as a 4 cross-sectional areas truss (reduce the design variables to the upper chord,
lower chord, external and internal web cross-sections). The problem, in this case,
is more interesting because of the complexity of the problem that arises (i.e. the
number of items per bar, more different items’ lengths and a bigger solution domain)
and hence the usefulness of the optimization. Due to the innate complexity of the
question, the exploration capability of the algorithm is incremented. With respect to
the 10-bar truss the solution of the symmetric Warren gives worse results. Probably
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the principal cause is the solution domain correlated whit the standard cross-sectional
list used for the Warren which has a greater number of areas with also a greater
percentage of unfeasible solutions and a variable interval between two consecutive
solutions. To reduce the variability of the algorithm the 4 cross-sectional areas truss
model was created. As expected, forcing the grouping of the area more allows the
collection of more items bars and has good results.
The limit of this work is a high variability of the solution due to the innate complexity
of the problem, the request for a preventive grouping for more complex structures and
the rigidity of the algorithm which have lots of stagnation point across the iterations.

Since the CSP is a problem strictly related to the length of the items and the
bins it would be interesting in the future to add the lengths of the elements to the
optimization design variables in order to obtain a size and shape optimization.
Another interesting aspect is to differentiate the length of the purchased bars in order
to buy the bar typology which guarantees the minimum waste of material.
Moreover, this thesis treats only the weight as the objective function of the structural
optimization, it would be useful to explore more the CSP utilization in cost mini-
mization problem which takes into account more economic factors (i.e. fabrication
cost, connection cost and maintenance).
A further development is to consider the environmental impact of the minimization of
the stock bars by a life cycle assessment and/or an objective function which minimize
the emission by implementing the optimization of the various environmental indexes.



Chapter 8

Conclusions and future developments

8.1 Original contribution of the thesis

The object of the present thesis is to develop algorithms with efficient clustering
operators for the simultaneous optimal size, shape, and topology of steel trusses and
show how constructability issues at different construction phases affect the optimal
design. This is compared with other approaches used till now by the scientific com-
munity in which structural performance only has been optimized without considering
those aspects. If in the former, the computational performance of new algorithms
developed in this thesis and that one existed in literature were compared by testing on
literature benchmarks and structural tests, the latter emphasized the role of structural
optimization for real-engineering case studies.

Since the evident different nature of the problems coped in each Chapter, the
original contribution of the thesis will be summarized with specific regard to two
fundamental aspects: improvement in computational effort and reliability guaranteed
by the proposed optimization strategies and level of complexity involved in the more
realistic case studies investigated by the candidate.

Algorithm’s improvement As covered extensively in chapters 2 and 3, PSO
represents one of the most adopted metaheuristic algorithms for facing continuous
design variables. Specifically, two approaches were developed in order to integrate
new search strategies into the classical PSO:
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• A novel no-penalty-based constraint handling approach using the machine
learning method SVM was implemented (see Chapter 2) as a classification
strategy aimed to separate efficiently feasible individuals from the unfeasible
ones. The most common approaches that appeared in literature are entirely
based on penalty functions or reduction of the original search space due to the
existence of various constraints. Especially when evolutionary or swarm intel-
ligence strategies are adopted, several efforts have been made by researchers
for handling various types of constraints. However, none of the previous works
focused on improving the clustering ability of the algorithm with a predictive
method was recognized in the literature. In this sense, the new PSO-SVM pro-
poses a viable alternative to improve the exploration capacity of the algorithm
with respect to traditional approaches.

• An enhanced version of the standard Newtonian-dynamics-based PSO was
proposed by the candidate in Chapter 3 when a multi-strategy approach was
presented in order to avoid the definition of arbitrary violation penalty factor.
An intelligent strategy for the identification of the most critical violation of
constraints at each iteration was coupled with an enhancement of the local
exploration capacity based on the Evolutionary Strategy. In this way, a new
hybrid algorithm was introduced and computational performance was tested
on numerical and structural problems.

Complexity in real applications In the previous Chapters, the concept of com-
plexity was widely introduced and several aspects related to this topic were discussed.
To achieve this goal, an original contribution was given by the candidate since real
issues in design procedures were solved through optimization strategies.
With specific regard to the subject of competence of each Chapter, the original
contribution relies on the following reasons:

• A new retrofitting system for prestressed bridges was proposed (see Chapter
4) as a viable alternative to traditional consolidation systems. Optimization
has played a crucial role in the optimal design of the steel arch-trussed system
and a multi-approach strategy was implemented. The challenge lies in the
statement’s formulation of the no-dimensional OF in which stiffness and the
total weight of the system follow opposite trends. The advantages of adopting
the proposed method were proved also from the economic point of view.
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• Respect to traditional approaches in which minimum weight and structural
cost, as well as maximization of structural performance, still represented the
main goal of the research, in Chapter 6 and 7 the role of the optimization
strategy was fundamental. Minimum weight does not always mean minimum
cost. The real cost is a complex element to be evaluated, as it depends not
only on material volume or weight. Other important aspects that deeply affect
the cost are elements production, transport, assembly of elements as well
as maintenance and durability. In many cases, the total material weight is
only one term (maybe also not the more impactful) with respect to others.
In this thesis, the aim has been to consider some determinant aspects in
steel structures such as the number of elements and the production analysis.
Reducing the number of steel pieces led to simple assembly procedures during
the construction phase and an overall reduction of the structural complexity
of the overall structures. Moreover, the identification of the optimal cutting
pattern allows for the reduction of waste during the production phase and
fulfilling the sustainability goals imposed by the guidelines.

The present thesis contributed to each one of the four points mentioned above, as will
be demonstrated by the overall conclusion illustrated in detail in the next sections.

8.2 Overall conclusions

Apart from the conclusions discussed in detail in each Chapters of the thesis, the re-
search work done for the thesis led to the following fundamental overall conclusions:

• A feasible strategy to improve PSO algorithms relies on adopting machine
learning approaches aiming to improve the global performance of the algorithm
at the level of both convergency rate during the exploration search and accuracy
while the exploitation phase. Thanks to the capability of this machine learning
approach to learn from examples contained in previous knowledge derived
by training data set, it is able to reduce the search space because, after the
learning phase, it can predict the feasible region in which new individuals are
more likely to be close to the global optimum optimal.

• Algorithms’ hybridization was confirmed to be useless as an effective strategy
for improving the robustness of the algorithm. Specifically, Evolutionary
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Strategies were successfully integrated into classic PSO for the local search to
avoid being trapped in local minima.

• Considering design complexity as a parameter of the optimization leads to
unexpected results if compared with the outcomes of the past. Reducing the
number of different cross-sections employed in the structure or the number of
pieces affects the optimal solution at each optimization level. This fact is quite
evident by the results obtained by the size, shape and topology optimization
conducted on industrial buildings. At each level of the optimization, the
influence of constructability issues appears to be evident.

• Implementing the Cutting Stock Problem in size optimization of steel trusses,
lead to a significant waste saving if compared with the minimum weight-only
approach. This benefit was obtained with an acceptable increment of the
structural mass.

• Generally, in most of the case studies investigated, the optimal solution ob-
tained by adopting traditional approaches does not coincide or even seem
to be in contrast with the one in which constructability issues and optimal
production processes were considered. Minimum structural cost assures a
slender solution but it represents, in most cases, the worst solution in terms of
practicability, complexity and sustainability.

The ultimate research goal is to establish the use of these methods as state of the
art in the near future and try to encourage practice towards that direction, away from
the trial and error processes for the design of structural systems.

8.3 Future works

As in the previous sections, considerations about possible developments of the
proposed optimization approaches will be summarized with respect to each topic.
Moreover, further investigations aimed to expand the range of application cases in
which the effect of structural optimization for solving practical design challenges is
analyzed will be illustrated.

• The goodness of adopting the Machine learning approach SVM algorithm as a
powerful tool to improve the local search ability of metaheuristic algorithms
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could be tested on new benchmark tests. In this way, the global performance
of the proposed method could be proved for an increasing computational level
required to solve these numerical problems. Moreover, different metaheuristic
algorithms could be selected for this purpose in which the adaptability of the
method could be tested not only for evolutionary or swarm-based strategies
but also for human and physics-based algorithms to detect the population’s
most compatible updating strategies.

• New attempts could be provided aiming to investigate the best match between
different optimization strategies starting from the proposed one in this thesis
to move toward hybridization with other evolution strategies like genetic
approach, genetic programming and differential evolution. Moreover, another
promising direction can be a hybridization with the estimation distribution
algorithm (EDA) Pelikan et al. (2015), which relies on building and updating
a complex probability distribution model of the search space domain, and
therefore, it is potentially able to give considerably much more information
about the fitness landscape with respect to a simple blind sampling inside the
search space.

• As future developments, improvements in the proposed retrofitting systems
could be achieved. It will be interesting to conduct a detailed design of the
connections between the concrete beam and the strengthening system and
provide a topological optimization with the aim to verify the optimal shape
of the consolidation system. Furthermore, a complete analysis that will take
into account realistic bridge actions (i.e. not only gravitational forces but also
horizontal components of wind and earthquake) on the entire deck considering
the global behaviour of the structure, will represent the final scope of the
research.

• Structural complexity during the construction phase could be investigated with
further considerations focused on realistic complexity cost function where
trends related to the increase of the number of pieces and different cross-
sections employed for the realization of the structure faithfully reflect the
industrial market needs. Basically, complexity indexes could be obtained
by suitable calibrations of the complexity cost function based on real-world
scenarios.
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• With specific regard to the case study 2 shown in Chapter 6, another future
investigation could be the optimal sizing of each member composing the in-
dustrial building. In fact, it is well-known that for the truss elements, it could
be convenient to employ I-shaped or H-shaped profiles, as well as UPN or
single and double L-shaped ones. The choice could be guided by the type of
feasible connection between the components that should be realized during
the assembly phase. Moreover, the number of modules could be included
as a parameter of the OF and not only as a parametric value. In this way,
an answer to the following questions could be obtained: what is the optimal
design which guarantees the minimum structural complexity? When all the
members composing the structures contribute to the overall complexity and
not only trusses’ members, the optimizer will prefer solutions with a high
number of modules resulting in more pieces in trusses or it will move toward
design with a lower number of frames for reducing the global complexity of
the structure?.
Another significant finding from the analyses is that the algorithm is not suffi-
ciently guided in the topology identification. In fact, during the optimization,
Octopus was free to assign any possible type of configuration, without any
penalty entirely dedicated to encouraging topologies with a minimum number
of elements or optimal paths. However, this aspect was considered indirectly
in the problem statement and a stable trend was recognized by observing the
results of the analysis in terms of OF, violation plot and unfeasibility propor-
tion at each iteration. Finally, new problem statements could include also
seismic action in load combinations according to various standard regulations.

• Various improvements could be provided in the implementation of Bin Packing
Problems into structural optimization. As discussed in the Chapter 7, The limit
of solving the Cutting Stock Problem lies in the high variability of the solution
due to the innate complexity of the problem, the request for a preventive
grouping for more complex structures, and the rigidity of the algorithm which
is characterized by several stagnation points across the iterations. Since the
CSP is a problem strictly related to the length of the items and the bins it
would be interesting in the future to consider the lengths of the elements as
design variables of the problem in order to perform size and shape optimization
simultaneously. Hence, optimal lengths of the purchased bars, according to
transportability constraints, will be found and an improvement in the waste
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saving could be recognized. With less effort, studies could be conducted
on analyzing the effect of CSP in different 2D and 3D truss typologies by
varying the number of subdivisions and, consequentially, the number of overall
connection joints. In this way, a topology optimization will be performed.
Moreover, since the proposed method treats only the weight as the objective
function of the structural optimization, it would be useful to explore more CSP
utilization in the cost minimization problem by considering other economic
factors (i.e. fabrication cost, connection cost, and maintenance). Finally, in
further developments, OF entirely based on environmental impact could be
formulated by adopting a life cycle assessment method for the minimization
of carbon emission or other environmental indexes.
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