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Abstract

Image segmentation is a critical capability for autonomous systems to understand their
surroundings. Although deep neural networks have enhanced image segmentation perfor-
mance, they require expensive and massive datasets for training, and they cannot update their
knowledge for new classes without experiencing catastrophic forgetting. In the first part of
this thesis, we address the issue of catastrophic forgetting by analyzing a unique aspect of se-
mantic segmentation that exacerbates it. At each training step, the annotation only covers the
new classes, while other classes, such as the ones already learned by the model, may appear
in the image as background. To solve this, we propose a simple yet efficient solution that
revisits the knowledge distillation framework and explicitly models this peculiarity. We also
extend this approach to incremental learning in object detection and instance segmentation.
In the second part of the thesis, we investigate learning new classes by reducing the number
of images needed. We introduce the incremental few-shot semantic segmentation setting,
where the model must learn new classes using only a few images. We propose a method for
this novel setting that combines prototype learning and knowledge distillation, effectively
preventing the model from forgetting old classes and overfitting the few images. Additionally,
we explore the extreme setting where no labels are available for novel classes, proposing a
self-training solution that extracts supervision from the unlabeled pixels in the training set.
Finally, in the last part of the thesis, we aim to learn a segmentation model without relying on
expensive pixel-level annotations, using cheaper alternatives instead. We suggest a general
loss function to learn from points and scribbles, exploiting the assumption that all pixels in
the image must belong to one of the annotated classes. Furthermore, we investigate the use
of image-level labels for incremental learning in semantic segmentation. We present a new
setting where a pre-trained model is trained to predict new classes using image-level labels.
Building on the knowledge distillation framework, we propose an approach that integrates a
localizer to extract pixel-level pseudo-supervision from image-level labels, which trains the
model on novel classes without forgetting old ones.
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Introduction



2 Introduction

1.1 Overview

A long-standing dream of researchers and engineers is to develop agents that are capable
of autonomously interacting with and operating in the world. One of the key abilities that
autonomous agents must possess is the ability to perceive their surroundings and collect
information from their sensors. Visual cameras, like human eyes, are crucial sensors that
enable systems to collect visual data to extract information about the objects around them,
their properties, and their functionalities.

Furthermore, autonomous systems should not only have a deep understanding of each
object appearing in the image, but also of the scene as a whole, as it allows them to reason
about the different objects and their relations. This ability is crucial in a wide variety of
applications such as self-driving cars, medical image analysis, and surveillance systems.

Due to its practical importance in the real world, a lot of effort has been devoted to the
field of computer vision with the goal of effectively analyzing the content and extracting
information from images and videos. Researchers have focused on the image semantic
segmentation task to enable systems to perceive their environment and reason about the scene
effectively. This task involves dividing an image into different regions and assigning each
pixel to a specific category or class, providing information on both the objects themselves
(their location, shape, and size) and their relations (their relative position, interaction, etc.).

In recent years, there has been a steep improvement in the semantic segmentation task,
thanks to the availability of large collections of images from the web [43, 84, 202, 32, 109],
and the development of advanced deep neural network architectures [96, 27, 149, 186, 31].
In particular, Fully Convolutional Neural Networks [96, 27] are the leading paradigm for
semantic segmentation, being highly effective in extracting visual features from images at
high resolution and providing precise information for each pixel in the image. However,
they have recently been challenged by visual transformer architectures [149, 186, 31], which
provide the additional feature of relating distant pixels, even from the first network layers.

Despite their effectiveness in image segmentation, deep neural networks still have some
limitations. First, they are extremely data-hungry and require thousands of annotated images
for training. This is a general issue for any computer vision task, but it is even more severe
in semantic segmentation, where each image should be annotated at the pixel level, i.e., a
class label should be provided for each pixel of the image. This leads to a prohibitive cost for
obtaining the dataset and limits the applications in the real world. Another major drawback
of deep architectures is that they are not designed to update their knowledge when new
categories are discovered and are limited to the set of classes present in the initial training
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set. Despite best efforts to collect the dataset, it is often hard to predetermine all the classes
that will be seen during system operation since the world is constantly changing, and new
devices, objects, and even diseases may appear every day.

Incremental Learning.

One possible solution to the latter problem could be to supplement existing datasets with
additional samples and retrain models from scratch. However, this approach may prove
impractical for scenarios involving frequent updates, as training on the expanded dataset
could be too time-consuming, leading to increased energy usage and carbon emissions by
machine learning models [119, 148, 160]. Moreover, retraining may not be viable if the
original data is no longer accessible due to privacy or intellectual property concerns.

An alternative approach that could be more effective is to fine-tune the model solely on
the extra annotated samples related to the new categories, enabling quicker and less expensive
updates. However, deep neural networks face a challenge in updating their parameters for
new classes without catastrophic forgetting [102], which erases previous knowledge.

The main goal of incremental learning is to develop a solution that can mitigate the
problem of catastrophic forgetting encountered in the latter approach. While research efforts
have traditionally focused on image classification [81, 132, 139, 69, 39, 41] and object
detection [145, 120], less attention has been paid to the semantic segmentation task.

In the first part of the thesis, we propose to fill this research gap by investigating the
additional challenges posed by the task. Specifically, we examine the scenario where a
model needs to be updated to segment new classes, given a dataset containing pixel-level
annotations only for them. However, the images may also contain classes outside the new
ones that are not annotated, either being classes seen in previous updates or that will be seen
in the future. The pixels of these classes are then considered as belonging to the special
background class, which contains all the pixels for which annotation is not provided. This
unique aspect introduces a challenge: the semantics of the background class change with
every training step, exacerbating catastrophic forgetting. Without adequately modeling the
semantic shift of the background class, the model may classify all old classes as belonging to
the background class, causing it to forget previous knowledge after a few iterations.

We propose a simple yet effective solution to this problem by revisiting the standard
knowledge distillation framework [81, 132] to consider that the background may contain
either old or future classes. Additionally, we extend our solution to incremental learning in
object detection and instance segmentation, where the issue of missing annotations for old
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and future classes has been overlooked by previous works [145, 120], but has a similar effect
on model performance, leading to severe catastrophic forgetting.

Although incremental learning effectively enables the integration of new classes over
time, it still requires the collection and annotation of a large dataset for the novel classes,
where labels are provided for each pixel, resulting in prohibitive expenses for practical
applications. To effectively alleviate the burden of collecting the dataset and learning novel
classes in a data-efficient manner, two different directions can be investigated: (i) designing
models that can learn novel classes using only a limited number of pixel-level annotated
images, and (ii) avoiding the use of expensive pixel-level annotations by resorting to weaker
annotation types, such as points, scribbles, or image-level labels.

Few-Shot and Zero-Label Semantic Segmentation.

The former direction aims to emulate the human ability to quickly learn novel classes
by associating them with the ones already known. However, such an ability is still an open
challenge for semantic segmentation models as the process requires a strong knowledge
transfer between old and new classes while preventing catastrophic forgetting. In the research
literature, this problem has been addressed in two separate fields: few-shot [143, 128, 146,
185] and zero-label semantic segmentation [185, 15, 51].

In few-shot semantic segmentation, the task is to learn novel classes with only a few
labeled examples. Previous works have either considered the setting as a binary segmentation
problem [143, 128, 37, 174], i.e., focused only on segmenting a single novel class, or allowed
the use of all existing images to fine-tune the model on the novel classes [146, 185], which
is often an unrealistic assumption. In the second part of the thesis, we introduce a novel
and more realistic setting, named incremental few-shot semantic segmentation, with the
goal of extending a segmentation model to learn new classes with only a few annotated
images and without relying on previously seen data. We propose a framework that addresses
the challenges of the novel task by combining prototype learning [125, 47] and knowledge
distillation [81, 132] to learn novel classes without overfitting the few images and forgetting
the old knowledge.

The zero-label semantic segmentation setting involves learning new classes without any
annotation for them. A common solution employed by previous works [185, 15, 51] is to
exploit textual descriptors, such as word embeddings, for all the classes and force the network
to learn a mapping between the visual features and the word space. However, previous works
completely ignore the fact that novel classes may also appear in the training dataset but
without annotations. In this thesis, we propose to exploit these unlabeled pixels and introduce
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a novel method that employs a self-training pipeline to provide labels for them. To reduce
the noise in the pseudo-labels, we enhance the supervision with a consistency constraint that
filters out predictions not consistent across different image augmentations.

Weakly Supervised Learning.

The second solution to reduce the annotation burden is to avoid pixel-level labels and
consider alternative forms of supervision. To this aim, different types of annotations have
been exploited to learn a semantic segmentation model, such as bounding boxes [33, 68],
scribbles [82, 167], points [11], and image-level labels [72, 118, 124, 8, 2, 77].

Points and scribbles are effective labels since they are cheap and provide precise localiza-
tion information on the target classes. They only require the annotator to draw a point or a
line on each class in the image. However, previous works [11, 126, 82] only considered the
few annotated pixels, disregarding the information that can be obtained from all the others.
In this thesis, we exploit the assumption that all the pixels in the image must belong to one of
the classes in the annotation. Specifically, we derive a general loss function that can extract
supervision from them by maximizing the probability of having any of the classes appearing
in the image in every pixel. Despite being simple, this loss demonstrates to achieve results
comparable and even superior to hand-crafted methods introduced by previous works.

Image-level labels are the cheapest annotation type, only requiring the annotator to report
the classes appearing in the image without providing any localization cue. They are also
easy to collect from the web, obtaining them from search engines or from the numerous
available classification datasets, such as ImageNet [35]. Despite their affordability, training
segmentation models with image-level labels is challenging since the model has to extract
localization cues by itself. Previous works [72, 2, 77] proposed to employ a classification
model trained using image-level labels to extract pixel-level pseudo-labels that are then used
to train a downstream segmentation model. However, they all focused on offline scenarios
where the model has a fixed knowledge of the world. In the third part of this thesis, we
take a different direction and investigate how to extend a segmentation model to learn new
classes over time using only cheap image-level labels. We propose a novel method that
builds on the knowledge distillation framework [81, 132] and introduces a localizer to extract
pseudo-supervision from the weak labels to learn novel classes.
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1.2 Contributions

Overall, the goal of this thesis is to provide effective and innovative solutions to extend
semantic segmentation models to new classes in a data-efficient manner without forgetting
previous knowledge. Specifically, in the first part, we introduce the task of incremental
learning in semantic segmentation, outlining the additional challenges of this scenario and
proposing a simple yet efficient solution. In the second part, we investigate the use of a
limited number of labeled images to learn new classes and propose the incremental few-shot
segmentation setting. We also explore the extreme case where no annotation is provided for
novel classes, presenting a novel method for zero-label semantic segmentation. Lastly, in
the final part, we examine how to learn to segment novel classes without requiring pixel-
level supervision by exploring weaker types of annotations such as points, scribbles, and
image-level labels. Below is a detailed list of the contributions presented in this thesis.

Incremental Learning. We investigate incremental learning for semantic segmentation,
object detection, and instance segmentation tasks, introducing the following contributions.

• We present the first benchmark for incremental learning in semantic segmentation that
considers the peculiar distribution shift issue that arises due to the presence of the
background class. The benchmark considers several previous incremental learning
methods proposed for image classification on two popular semantic segmentation
datasets.

• We introduce an incremental learning framework for semantic segmentation that is
able to cope with the semantic shift of the background class. In particular, it proposes
to revisit the classic objective function of incremental learning, the cross-entropy loss,
and the knowledge distillation loss, to explicitly model the evolving semantics of the
background class.

• We extend the previous method for object detection and instance segmentation, ad-
dressing a similar issue arising from the missing annotations of the old and future
classes in the current learning step.

Few-Shot and Zero-Label Segmentation. In the context of learning to segment new classes
from a limited number of images, we will introduce the following contributions.

• We introduce the few-shot incremental semantic segmentation setting. Differently
from previous settings, we focus on learning new classes from few-annotated images,
without forgetting old classes and with no access to the old training dataset.
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• We present a framework to learn new classes from a few annotated samples. The
framework is made in two steps: first, it computes the class prototypes for the new
classes and injects them into the classification weights, then, it fine-tunes the whole
network on the few images by using a tailored knowledge distillation framework.

• We investigate the limits of current zero-label semantic segmentation methods and
we show that performing self-training introducing a consistency constraint largely
improves the performance.

Weakly-Supervised Segmentation. We investigate three types of weak annotations, propos-
ing the following contributions.

• We propose a novel technique to learn from point and scribble supervision by exploiting
the unlabeled pixels. In particular, relying on the assumption that they should belong to
the background or to a class for which annotation is present in the image, we propose
a novel loss function that maximizes the probability on each unlabeled pixel of having
either an annotated class or the background.

• We introduce the weakly-supervised incremental learning semantic segmentation
setting (WILS), where we assess the abilities of methods to learn to segment new
classes over time, without forgetting, being provided only a dataset containing image-
level labels for new classes.

• We are introducing a novel framework for WILS, which we have name WILSON. This
framework includes a localizer module that extracts pseudo-labels for new classes using
image-level labels. The localizer module is also regularized to obtain more accurate
object boundaries by utilizing a localization-prior from the segmentation network.
Once the pseudo-labels are obtained, we employ a knowledge-distillation technique
to train the current network on the new classes without forgetting, by combining
supervision from both the localizer and the old network. This approach enhances the
accuracy of the current network in recognizing the new classes.
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1.3 Outline

In Chapter 2, we will introduce the main concepts of semantic segmentation and incremental
learning. We will provide an definition of semantic segmentation, introducing a formal
problem statement and the metric used for the task. In addition, we will provide an overview
of the most relevant works in semantic segmentation, with a particular focus on the Deeplab
architecture [26–28], and of the most common datasets for semantic segmentation. Next, we
will formally introduce the task of incremental learning, providing a summary of its main
setting definions. Finally, we will provide an overview of the incremental learning literature.

Chapter 3 will discuss the challenges of incremental learning in semantic segmentation
and object detection. In Section 3.2, we will describe the first method for incremental learning
in semantic segmentation (ILSS). In particular, we initially formalize the problem of ILSS,
highlighting the semantic shift of the background class in consecutive incremental training
steps. Next, we describe the MiB (Modeling the Background) framework, which revisits the
classical knowledge distillation framework modeling the semantic shift of the background.
In Section 3.3, we investigate the problem of incremental learning in the object detection and
instance segmentation task, noting that, similarly to Sec. 3.2, since the annotations for old
and future classes in a learning step are missing, the catastrophic forgetting is exacerbated.
To solve the issue, we propose the MMA (Modeling the Missing Annotation) method, which
revisits the standard knowledge distillation losses to keep the missing annotation into account.

Chapter 4 introduces works enabling learning to segment new classes with few or zero
images. First, we introduce a benchmark for few-shot incremental learning in semantic
segmentation in Sec. 4.2 and a framework able to work in such a challenging setting. In
particular, we present PIFS (Prototype-based Incremental Few-Shot Segmentation ) that
combines prototype learning with the knowledge distillation paradigm, preventing overfitting
on the new classes while avoiding forgetting. Next, Section 4.3 analyzes the extreme case
where no images are provided for novel classes and the model should learn to segment them
by being provided only a textual descriptor. Investigating the current state-of-the-art, we note
that they are not considering that unlabeled pixels contain complementary information about
unseen classes and thus we present STRICT, a method based on self-training to exploit them.
Self-training is performed by generating pseudo-labels that are further refined to respect a
consistency constraint among different augmented versions of the same image.

Chapter 5 focuses on learning a segmentation model using weak annotations. In Sec. 5.2,
we present a simple method that is able to learn a segmentation model from point and
scribble annotations. While on the annotated pixels we can use a partial cross-entropy loss,



1.3 Outline 9

we demonstrate that it is beneficial to use the other pixels for training. We design a loss
exploiting the assumption that, while they are not annotated, they can only contain one of
the classes in the annotation. Furthermore, in Sec. 5.3, a method learning to segment new
classes over time using cheap and widely available image-level is presented. The section first
introduces the novel setting, WILS (weakly incremental learning in semantic segmentation),
and then presents a framework, named WILSON to address it. To learn to segment new
classes, WILSON introduces a localizer network that provides pseudo-labels for the new
classes. Moreover, to avoid forgetting, it exploits the predictions of the network trained in
previous incremental steps. Mixing the pseudo-labels and the prediction of the old model,
we design a novel learning objective that learns new classes, without forgetting.

Finally, in Chapter 6, we summarize the findings of the thesis and identify the open
problems and future research directions.
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2.1 Semantic Segmentation

Semantic segmentation aims to partition an image into regions corresponding to the same
category, allowing for the extraction of meaningful information from the image and the
identification of different regions within the image. Semantic segmentation can be considered
a pixel-level classification problem, where the goal is to assign a class label to each pixel in
the image, such as “car" or “sky", regardless of distinguishing different instances of the same
class (e.g. two different cars belong to the same "car" segment).

Problem Statement. Formally, let us denote as X the input space (i.e. the image space)
and, without loss of generality, let us assume that each image x ∈X is composed by a set of
pixels I with constant cardinality |I |= N. The output space is defined as (Y )N , with the
latter denoting the product set of N-tuples with elements in a label space Y . Given an image
x the goal of semantic segmentation is to assign each pixel xi of image x a label yi ∈ Y ,
representing its semantic class. Out-of-class pixels can be assigned a special class, i.e. the
background class b ∈ Y . Given a training set T ⊂X × (Y )N , the mapping is realized by
learning a model fθ with parameters θ from the image pixels space X to their corresponding
segmentation mask (Y )N , i.e. fθ : X 7→ (Y )N .

Metrics. The easiest way to evaluate the model performance is to extend the standard
metric of image classification to pixel-level, i.e. using the Pixel Accuracy (PA). This metric
measures the number of pixels correctly classified. However, due to the large unbalance
in the class distribution, PA is largely biased toward the most frequent or larger classes
and fails to consider smaller objects. To better represent object of different sizes and with
different frequency, the mean Intersection over Union (mIoU) [43], or Jaccard Index, has been
introduced. Specifically, the Intersection over Union (IoU) computes the overlap between
the predicted segment for a class and the corresponding ground-truth annotation, divided by
their union, as illustrated in Fig. 2.1. Formally, the IoU is defined as:

IoU(c) =
T P(c)

T P(c)+FP(c)+FN(c)
, (2.1)

where TP, FP, and FN represent, respectively the true positive, false positive, and false
negative for the class c. When the prediction perfectly matches the annotation, the intersection
corresponds to the union, and the IoU score equals one. Differently, if the intersection is
void, the IoU score equals zero. The mIoU is then obtained by computing the average of the
IoU for all the classes considered.
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IoU =

Intersection 
(TP)

Union
(TP + FP + FN)

TP

TP

FP

FN

Fig. 2.1 Illustration of the Intersection over Union (IoU) metric.

2.1.1 Literature Review

Early works on semantic segmentation addressed the task as a clustering problem, introducing
additional information from edges and contours [62, 179]. With the rise of deep learning,
the region-based segmentation approaches [16, 49] have been introduced. First, they extract
distinct, free-form regions from an image and describe them using various features. Then, they
use these descriptions to classify the regions into different classes. At test time, the region-
based predictions are transformed into pixel-level predictions by assigning each pixel to the
class of the region it belongs to. This process is known as segmentation using recognition.
Fully-convolutional networks (FCN) [96], however, replaced them by considering semantic
segmentation as a per-pixel classification problem, learning a mapping from pixels to classes
without the use of region proposals. To improve the output sharpness, some works [137, 96]
proposed to mix the features coming from the first layers of the networks with the high-
level information coming from the last layers. Other works introduced network modules to
aggregate long-range dependencies in the feature maps [26–28, 200] or to exploit contextual
information [45, 61, 193, 192]. In the last few years, transformer [38] architectures are
getting large interest from the community due to their ability to incorporate long-range
dependencies at every layer of the network and many promising architectures have been
proposed [149, 186, 66, 94].

DeepLab [26–28]. In this thesis, we will frequently use DeepLab as a backbone for our
studies due to its simplicity and effectiveness. DeepLab [26–28] is a series of state-of-the-art
fully-convolutional network models developed for semantic segmentation. The architecture
of the third version, illustrated in Fig. 2.2, is based on two parts: a feature extractor and a
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Fig. 2.2 Overview of Deeplab-v3 [27] architecture. Image is taken from [27].

segmentation head. The feature extractor can be any classification backbone, often a ResNet
[55], whose output resolution is increased thanks to the use of dilated (atrous) convolutions
[190] that allow the model to aggregate more long-range dependencies without increasing the
number of model parameters. DeepLab-v3 designs a special segmentation head that is called
Atrous Spacial Pyramidal Pooling (ASPP). It is constituted by multiple parallel convolutions
with different dilation rates to capture multi-scale context and a global pooling operation,
which are then concatenated and processed to obtain the final classification prediction.

2.1.2 Datasets

Semantic Segmentation has seen large improvements in the last years thanks to the publication
of novel datasets that have been collected in multiple contexts and for different target
applications, such as automous driving [32, 6, 109, 136] and earth observation [172, 13].
In this thesis, we will employ three widely used datasets that contains images taken from
common contexts.

Pascal-VOC 2012 (VOC) [43] is a benchmark that contains 10582 training and 500 val-
idation images taken from common scenes. It includes 20 object categories, including
vehicles, animals, and indoor objects, and an additional background class consting of all
the non-annotated pixels. Following the common practice, in this thesis we will include the
pixel-level annotations from the SBD dataset [54]. Fig. 2.3a reports some examples of VOC
images.

ADE20K [202] is a challenging benchmark that contains 20 thousands images taken from
complex urban and indoor scenes. The datasets contains 150 classes, including both thing
(vehicles, indoor and street objects) and stuff (such as sky, grass, wall) classes, with very
different visual appearance, shape, and frequency. Some examples of the dataset are reported
in Fig. 2.3b.
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(a) Pascal-VOC 2012 (b) ADE20K (c) COCO-Stuff

Fig. 2.3 Illustration of semantic segmentation datasets.

COCO [18] and COCO-Stuff [17] are large-scale benchmarks for multiple tasks, including
semantic segmentation. They contain the same 164 thousands images but differs in the
annotation: COCO only contains 80 object (thing) classes while COCO-Stuff extends them
with 91 additional stuff classes. The stuff pixels in COCO are unified in a single background
class. Fig. 2.3c reports examples of COCO-Stuff.
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2.2 Incremental Learning

Incremental learning (also called continual or life-long learning) studies the ability of neural
network of incorporating new knowledge over time. This is a challenging problem in
deep learning as traditional neural networks are not designed to retain previous knowledge
while learning on a changing distribution, suffering catastrophic forgetting [102]. A simple
solution to avoid forgetting would be to maintain a constantly growing datasets containing
all the knowledge learned so far and retrain the model from scratch every time new data is
discovered. However, this is highly impractical for two reasons: first, it would require an
ever increasing memory to store all the data, and second, it would require more and more
computational resources to re-train the model from scratch every time. In addition, there
may be use-case where the training data are protected by privacy or intellectual property
constraint and cannot be used when retraining the model. Incremental learning thus focus on
extending the knowledge by fine-tuning the model on new data, representing the knowledge
to be incorporated, and possibly a small sample of previous data.

Three incremental learning settings can be found in literature [165], that are distinguished
on the type of knowledge to be integrated at every step: domains, tasks, or classes.

• Domain-incremental learning [100, 131, 169, 170] assesses the ability of a model to
deal with the covariate shift, i.e. when the data distribution changes and new domains
are discovered.

• Task-incremental learning [99, 81, 131] is closely related to multi-task learning, where
a model must perform different tasks simultaneously. Task-incremental learning is
approached as a multi-head setting, i.e. the tasks are considered independently and the
model often has a separate head to predict the output of each task. At inference time,
the models knows which is the task it has to perform.

• Class-incremental learning [132, 145, 21] adds, at every time step, new classes to the
model. Differently from the previous scenarios, it is considered a single-head setting,
i.e. the model should perform predictions among all the classes seen so far and it has a
single classification head.

In this thesis, we will focus on the more realistic and practical class-incremental learning
scenario, illustrated in Fig. 2.4.

Problem Statement. In class-incremental learning the training is performed over multiple
phases, called training steps. Each training step t introduces a novel set of classes Ct
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Fig. 2.4 An illustration of a class-incremental learning setting. At each training step t it is introduced a
new set of classes Ct and provided a new dataset Dt containing labels for them. The model is required
to learn the new classes while avoiding forgetting the old ones.

and a novel dataset Tt , that contains images and labels for the novel classes. The goal of
incremental learning is to update the model’s parameters θ t−1, trained at the step t−1, to
obtain a set of parameters θ t able to classify all the classes seen so far Y t =

⋃t
s=1Cs. Note

that the parameters θ t are obtained on the new dataset Tt , resulting in optimal parameters
that may largely different from previous tasks, inducing catastrophic forgetting [102] of
the previous classes. The challenge of incremental learning is find a good constrain for the
optimization problem such that the new parameters are close to the optimum for the previous
classes while able to learn the new classes.

2.2.1 Literature Review

Incremental-class learning has been extensively studied for the image classification task
[69, 139, 132, 24, 180, 59, 39, 41]. We can group the incremental learning approaches into
three categories: architecture-based [139, 187, 142], structural-based [69, 24, 194], and
functional-based [81, 132, 20, 36].

Architecture-based methods [139, 187, 98, 99, 92] aim to mitigate catastrophic forgetting
by modifying the neural network architecture to allocate more parameters for new tasks
while retaining knowledge of previous tasks. Progressive Networks [139] introduces lateral
connections to the main network at each incremental learning step, allowing the network
to obtain useful features for new tasks while freezing the old parameters, thus avoiding
catastrophic forgetting. However, this approach can result in a large network after multiple
tasks. PackNet [98] is based on pruning techniques and performs an iterative pruning and
fine-tuning procedure. At each training step, PackNet fine-tunes the free parameters of the
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network on the new task and then removes redundant parameters through pruning, ensuring
minimal performance drop. Piggyback [99] starts from a pre-trained network and learns a set
of binary masks for each new task, without tuning the original parameters and introducing
minimal memory overhead. However, both PackNet and Piggyback are typically evaluated
on multi-task settings where the task-id is provided during inference [98, 99]. Recently,
Dynamically Expandable Networks with Regularization (DER) [187] was proposed, which
achieves state-of-the-art performance on single-head evaluations while maintaining a low
memory footprint. DER adds a new feature extractor for each new training step and prunes
the network aggressively after training to limit parameter explosion.

Structural-based methods aim to avoid catastrophic forgetting by constraining the new
model to minimize differences in parameter values with respect to old ones [69, 194, 24,
7, 93]. Simply freezing the old model would not allow for learning novel classes, so these
methods aim to identify and penalize changes in the parameters most important for old tasks
while allowing other parameters to change to fit new tasks. The methods mostly differ in how
parameter importance is computed. Elastic Weight Consolidation (EWC) [69] proposed to
employ the diagonal Fisher information matrix to compute the importance of each parameter.
In particular, high values in the matrix are important to learn the previous task and thus,
their value should not change in the following training steps. Zenke et al. [194] proposed
to compute the score by computing the path integral of the gradient vector field along the
parameter trajectory, i.e. it estimates how each parameter contributed to changes in the total
loss. Chaudhry et al. [24] proposed a generalization of the two previous works [69, 194].
MAS [7] estimates the importance of each parameter by measuring the sensitivity when
perturbation are applied to them. While structural-based methods offer promising solutions
to the issue of catastrophic forgetting in incremental learning scenarios, their scalability to
large models and datasets is still challenging.

Functional-based methods [81, 39, 180, 132, 36] aim to prevent changes in the output
space of the model, rather than in the parameter space. The majority of the methods in this
group exploit knowledge distillation [57]. Specifically, at each training step, two instances of
the model are maintained: one is frozen after the previous learning step and acts as a teacher,
while the other is the student network that is trained on the new data. To prevent forgetting, a
regularization term is added that minimizes the distance between the activations produced by
the old network and the new one, effectively constraining the student to mimic the teacher
model outputs. The foundational work of this category is Learning without Forgetting (LwF)
[81], which proposes employing the Kullback-Leibler divergence between the probabilities of
the old and new models. Subsequent works have built upon LwF to improve its performance
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[132, 180, 59, 20]. Learning without Memorizing [36] proposed a different approach, which
is to minimize the differences in the attention maps produced by GradCAM [141]. PodNet
[39] proposed employing distillation also in the intermediate network features. Approaches
based on knowledge distillation demonstrated good flexibility and scalability across a wide
variety of tasks and settings, and thus, in this thesis, we will largely build methods belonging
to this category.

Rehearsal. In order to prevent forgetting in incremental learning scenarios, one common
technique is to use rehearsal learning. Rehearsal learning [132, 20, 59, 180] involves storing
relevant samples of previous classes in a small memory, which can then be used in subsequent
training steps. To ensure that the amount of old samples does not become too large, two
main strategies have been proposed. ICaRL [132] suggest keeping a fixed number of samples
per class, and decreasing the number of samples per class with each subsequent training
step. LUCIR [59], on the other hand, propose keeping a fixed number of samples per class,
and increasing the memory size with each step. The stored exemplars can either be used
during the training of new classes, mixed with samples from the new dataset [59, 132], or
used in a balanced fine-tuning procedure after each training step [20, 180]. Some studies
prefer to avoid storing old samples altogether due to data privacy or intellectual property
concerns, and instead use generative adversarial networks (GANs) [50] to generate images of
old classes [112, 144]. Finally, Liu et al. [91] propose a different approach, where exemplars
are parameterized and optimized on every training step to obtain the best representation for
both new and old classes.

Transformer architectures have recently demonstrated outstanding performance in com-
puter vision [38, 164, 163, 94] attracting the attention of the incremental learning community
[41, 177, 176] and showing interesting properties to learning new classes over time. In
particular, given the transformer use of classification token, DyTox [41] proposed to extract
an ad-hoc classification token per task. Differently, Learning to Prompt [177] stores a pool
of prompts that are employed to condition the whole forward execution of the patch tokens.
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3.1 Introduction

Incremental Learning has been extensively considered in image classification, but only a few
works extended it to more complex vision tasks. Shmelkov et al. [145] proposed to extend
incremental learning in object detection, while Michieli et al. [103] introduced a relaxed
incremental learning setting in semantic segmentation. However, they did not accounted
an additional challenge when bringing incremental learning to dense prediction tasks: the
presence of multiple classes in every image. Images in the current step, in fact, report
annotations only for new classes but they may contain also old or future classes. Without
considering and modeling their presence, catastrophic forgetting is exacerbated, resulting in
models unable to correctly predict old classes after a few incremental learning steps.

In this chapter, we first analyze the problem in semantic segmentation, showing that all
the non-annotated classes are collapsed in the artificial background class, introducing the
background-shift issue. We propose a method that revisits the standard knowledge distillation
framework to keep into account the shift and effectively address the issue. To assess our
contribution, we propose a novel semantic segmentation benchmark and we show our method,
named MiB, outperforms all the previous works, achieving a new state of the art.

Next, we analyze the problem in the object detection and instance segmentation tasks.
Similarly, we find that all the non-annotated objects are collapsed into background regions,
aggravating catastrophic forgetting. We design an approach that revisits the common knowl-
edge distillation technique to take into account the missing annotations. We benchmark our
approach, named MMA, in the existing object detection setting [145] and in a novel instance
segmentation setting, showing substantial performance gains with previous works.

The work presented in this chapter led to the publication of two works:

• Cermelli, F., Mancini, M., Bulo, S. R., Ricci, E., and Caputo, B. Modeling the back-
ground for incremental learning in semantic segmentation. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9233-9242).

• Cermelli, F., Geraci, A., Fontanel, D., and Caputo, B. Modeling Missing Annotations
for Incremental Learning in Object Detection. In Proceedings of the 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Workshop) (pp. 3700-3710).
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3.2 Incremental Learning in Semantic Segmentation

Incremental Learning in Semantic Segmentation has been overlooked by the community
despite being interesting and practical for applications. Previous works either investigate the
task for particular domains, such as medical [115, 114] or satellite [158] images, or study
the task in a relaxed setting [103], where the annotations for both old and new classes are
available at every training iteration. In this section we fill this research gap, proposing a new
realistic incremental class learning (ICL) setting for semantic segmentation where only new
class annotations are considered at every step.

A particular characteristic of semantic segmentation is the existence of the background
class, which identifies pixels that are not assigned to any other category. This class has a
minimal impact on the design of traditional offline semantic segmentation methods but it is
critical in the incremental learning setting. In fact, given that only the labels for the novel
classes are available at every incremental step, all the other pixels in the image are considered
background, either if they are old classes (seen in previous learning steps) or classes that
will appear in future steps. This shift in the semantics of the background class, illustrated in
Fig. 3.1, exacerbates the issue of catastrophic forgetting [102] and requires to be properly
considered by the method design to maintain good performance.

Inspired by previous ICL works in image classification [81, 132], we design a method
based on the knowledge distillation approach. However, we revisit the classical distillation-
based framework for incremental learning [81] by introducing two novel loss terms to
properly account for the semantic distribution shift within the background class, thus propos-
ing the first ICL approach tailored to semantic segmentation. We extensively evaluate our
method on two datasets, Pascal-VOC [43] and ADE20K [202], showing that our approach,
coupled with a novel classifier initialization strategy, outperforms traditional ICL methods.

The contributions of this section are: (1) a study of incremental class learning for
semantic segmentation and the problem of distribution shift due to the background class,
(2) the proposal of the new classification and knowledge distillation objective functions
and classifier initialization strategy to explicitly cope with the evolving semantics of the
background class, and (3) a benchmark comparing our approach over several previous ICL
methods on two popular semantic segmentation datasets, considering different experimental
settings. The code to replice our results and the benchmark can be found at https://www.
github.com/fcdl94/MiB.

https://www.github.com/fcdl94/MiB
https://www.github.com/fcdl94/MiB
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Fig. 3.1 Illustration of the semantic shift of the background class in incremental learning for semantic
segmentation. Yellow boxes denote the ground truth provided in the learning step, while grey boxes
denote classes not labeled. As different learning steps have different label spaces, at step t old classes
(e.g. person) and unseen ones (e.g. car) might be labeled as background in the current ground truth.
Here we show the specific case of single-class learning steps, but we address the general case where
an arbitrary number of classes is added.

3.2.1 Related Works

Most semantic segmentation techniques operate under an offline scenario [96, 28, 200, 83,
198, 27, 26], meaning that the training data for all classes is available beforehand. To the
best of our knowledge, the issue of ICL in semantic segmentation has only been addressed
in [115, 114, 158, 103]. Ozdemir et al. [115, 114] present an ICL approach for medical
imaging, modifying a standard image-level classification method [81] for segmentation and
devising a method to select relevant samples from old datasets for rehearsal. Similarly,
Taras et al. [158] propose a strategy for segmenting remote sensing data. On the other
hand, Michieli et al. [103] tackle ICL for semantic segmentation under a specific scenario
where labels for old classes are given while learning new classes, with the assumption that
novel classes are never present as background in previous learning steps. These assumptions
limit the applicability of their method to real-world scenarios. In this work, we present a
more comprehensive formulation of the ICL problem in semantic segmentation. Unlike
previous studies [115, 158, 103], our analysis is not restricted to medical [115] or remote
sensing data [158] and we do not impose any constraints on how the label space should
evolve across different learning steps [103]. Addionally, we provide a comprehensive
experimental evaluation of state of the art ICL methods on two novel ICL benchmarks in
semantic segmentation.
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Fig. 3.2 Our method operates as follows: during each learning step t, an image is processed by both
the old (top) and current (bottom) models.We use a cross-entropy loss to learn new classes (depicted
by the blue block) and a distillation loss to retain previous knowledge (represented by the yellow
block). To handle the semantic changes in the background, we implement the following steps: (i)
initialize the new classifier using the weights of the previous background classifier (as shown on
the left), (ii) compare the pixel-level background ground truth in the cross-entropy loss with the
probability of having either the background class (black) or an old class (represented by the pink and
grey bars), and (iii) link the background probability given by the old model in the distillation loss to
the probability of having either the background or a new class (depicted by the green bar).

3.2.2 MiB: Modeling The Background

Problem Definition. As described in Sec. 2.1, we racall the ICL setting training is realized
over multiple phases, called learning steps, and each step introduces novel categories to be
learned. In other terms, during the t-th learning step, the previous label set Y t−1 is expanded
with a set of new classes C t , yielding a new label set Y t =Y t−1∪C t . At the learning step t,
a model fθ t : X 7→ (Y t)N , with parameters θ t , has to be updated for learning the set of new
classes C t using a training set T t ⊂X × (C t)N . In addition, to extract knowledge of the
previous classes the training can rely on a frozen copy of the model trained in the previous
step t−1, i.e. fθ t−1 : X 7→ (Y t−1)N . As in ICL for image classification, we assume that
the labels set C t at training step t is disjoint to previous label sets except for the special
background class b. In other words, the dataset contintains annotation only for the novel
classes and the other pixels are assigned to the background class b ∈ Y .

Knowledge Distillation Framework. A simple method to tackle the ICL issue is to train
the model fθ t on each dataset T t one after the other. This is equivalent to fine-tuning the
deep network parameters of fθ t on T t using the parameters θ t−1 from the previous stage.
While straightforward, this method causes catastrophic forgetting, as there are no samples
from the previously seen classes in T t , leading to a bias towards the novel categories C t
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at the expense of the classes from previous sets. To overcome this in the context of image-
level classification ICL, a common approach is to couple the supervised loss on T t with a
regularization term, either considering the significance of each parameter for previous tasks
[69, 144], or distilling knowledge using the predictions of the old model fθ t−1 [81, 132, 20].
Our work takes inspiration from the latter solution and minimizes the following loss function:

L (θ t) =
1
|T t | ∑

(x,y)∈T t

(ℓce(x,y)+λℓkd(x)) (3.1)

where ℓce is the standard supervised loss (e.g. cross-entropy loss), ℓkd is the distillation loss,
and λ > 0 is an hyperparameter that balances the two terms.

We recall that in semantic segmentation we have the set of new classes C t and old classes
Y t−1 that share the void/background class b. However, the distribution of the background
class changes between incremental steps, as its annotations in T t may refer to every class
not in C t , i.e., classes that could belong to Y t−1 or to future unseen classes C u with u > t.
To account for this semantic shift in the background class distribution, in the following we
revisit the standard choice for the general objective function defined in Eq. (3.1).

Revisiting Cross-Entropy Loss. A pixel-level cross-entropy loss function is a standard
choice as ℓce in Eq.(3.1). It is calculated over all image pixels as follows:

ℓce(x,y) =−
1
N ∑

i∈I
logqt

x(i,yi) , (3.2)

where yi ∈ Y t is the ground truth label associated to pixel i and qt
x(i,c) represents the

probability of class c in pixel i calculated by the model fθ t for the image x.

However, using this cross-entropy loss function in Eq.(3.2) with the training set T t ,
that only contains information about the novel classes in C t , can result in even more severe
catastrophic forgetting problem. This is because the background class in T t could also
contain pixels associated with the previously seen classes in Y t−1. To address this issue, we
modify the cross-entropy loss function in Eq.(3.2) as follows:

ℓce(x,y) =−
1
N ∑

i∈I
log q̃t

x(i,yi) , (3.3)

where:

q̃t
x(i,c) =

qt
x(i,c) if c ̸= b

∑k∈Y t−1 qt
x(i,k) if c = b .

(3.4)
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With this modified cross-entropy loss function, our model can be updated to predict the
new classes while also accounting for the uncertainty over the content of the background
class. The comparison between the ground truth and its probabilities is no longer direct,
but with the probability of having either an old class or the background, as predicted by the
current model fθ t (Eq.(3.4)). The procedure is depicted in the blue block of Fig. 3.2. We note
that simply ignoring the background pixels within the cross-entropy loss is sub-optimal, as it
does not allow for adapting the background classifier to its semantic shift and for utilizing
the information about old classes in the new images.

Revisiting Distillation Loss. Distillation loss [57] is a common strategy in incremental
learning to transfer information from the old model fθ t−1 into the new one in order to prevent
catastrophic forgetting. A usual choice for the distillation loss ℓkd is:

ℓkd(x) =−
1
N ∑

i∈I
∑

c∈Y t−1

qt−1
x (i,c) log q̂t

x(i,c) , (3.5)

where q̂t
x(i,c) refers to the re-normalized probability of class c for pixel i given by fθ t .

Re-normalized is performed across all the old classes in Y t−1, i.e. :

q̂t
x(i,c) =

0 if c ∈ C t \{b}

qt
x(i,c)/∑k∈Y t−1 qt

x(i,k) if c ∈ Y t−1 .
(3.6)

The idea behind ℓkd is to encourage fθ t to generate activations similar to those generated by
fθ t−1 . This helps regulate the training process, so that the parameters θ t remain anchored to
the solution obtained for the previous classes, that is, θ t−1.

The loss defined in Eq.(3.5) has been used in various forms in different contexts, from
incremental-task learning [81] and incrental-class learning in image classification [132, 20]
to more complex scenarios such as detection [145] and segmentation [103]. Despite its
effectiveness, it has a major drawback in semantic segmentation: it completely ignores the
fact that the background class is shared across different learning steps. With Eq.(3.3) we
handled the semantic shift of the background regarding old classes (i.e. b ∈ T t includes
pixels from Y t−1). Differently, we use the distillation loss to handle the background-shift
issue for the future classes: the background in a previous step s, s < t, might have included
pixels of the current classes in C t .

Considering the above, the probabilities assigned to a pixel as background by the old
model fθ t−1 and the current model fθ t do not have the same semantic meaning. More
importantly, fθ t−1 might predict pixels of classes in C t as background, which we are trying
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to learn. This aspect, unique to the segmentation task and not present in previous incremental
learning methods, must be taken into account when distilling the old model into the new one.
To address this issue, we redefine the distillation loss defining the probabilities q̂t

x(i,c) in
Eq.(3.6) as follows:

q̂t
x(i,c) =

qt
x(i,c) if c ̸= b

∑k∈C t qt
x(i,k) if c = b .

(3.7)

Like Eq.(3.5), we still compare the probabilities of a pixel belonging to seen classes as
assigned by the old model with the current parameters θ t . However, unlike classical distil-
lation, in Eq.(3.7) the probabilities obtained with the current model are not altered and are
normalized across the entire label space Y t , instead of with respect to the subset Y t−1 (as in
Eq.(3.6)). Most importantly, the background class probability as given by fθ t−1 is not directly
compared with its counterpart in fθ t , but with the probability of having either a new class or
the background, as predicted by fθ t (as shown in the yellow block in Fig. 3.2).

The novel distillation loss in Eq.(3.7) have several advantages with respect to Eq.(3.6)
or other simple choices (e.g. excluding b from Eq.(3.6)). In our approach, the probabilities
assigned to a pixel by the old model fθ t−1 are compared with their counterparts in the current
model fθ t , while considering the entire label space Y t , not just the seen classes Y t−1.
Additionally, the probability of the background class assigned by fθ t−1 is compared with
the sum of probabilities of either a new class or the background as assigned by fθ t . This
allows for distillation of full information from the old model, without constraining pixels or
classes, and also propagates uncertainty of the semantic content of the background without
penalizing new classes being learned.

Classifiers’ Parameters Initialization. As mentioned before, the background class, repre-
sented by b, serves as a placeholder for pixels that belong to an unknown object class. At
each learning step t, the new classes in C t are unknown to the previous classifier fθ t−1 . This
means that unless the appearance of a class in C t closely resembles a class in Y t−1, fθ t−1

will likely assign pixels in C t to b. Given this initial bias in the predictions of fθ t on pixels
in C t , randomly initializing the classifiers for the new classes is sub-optimal. This is because
it creates a mismatch between the features extracted by the model, which are aligned with
the background classifier, and the randomly assigned parameters of the new classifier. As a
result, the network may initially assign high probabilities for pixels in C t to b, potentially
causing instability in the training process.

To tackle this challenge, we propose a method to initialize the parameters of the classifier
for novel classes in a way that distributes the probability of background uniformly among
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the classes in C t . For an image x and a pixel i, we set qt
x(i,c) = qt−1

x (i,b)/|C t |;∀c ∈ C t ,
where |C t | is the number of new classes (notice that b ∈ C t). Without loss of generality,
we consider a standard fully connected classifier. The parameters for class c at step t are
denoted as ω t

c,β
t
c ∈ θ t , with ω and β representing the weights and bias, respectively. The

initialization of ω t
c,β

t
c can be done as follows:

ω
t
c =

ω
t−1
b if c ∈ C t

ω t−1
c otherwise

(3.8)

β
t
c =

β
t−1
b − log(|C t |) if c ∈ C t

β t−1
c otherwise

(3.9)

where {ω t−1
b ,β t−1

b } are the weights and bias of the background class in the classifier of the
previous learning step. It is simple to see that the initialization in Eq.(3.8) and (3.9) results in
qt

x(i,c) = qt−1
x (i,b)/|C t | ∀c ∈ C t , as qt

x(i,c) ∝ exp(ω t
b · x+β t

b).

We will demonstrate through our experimental analysis that this simple initialization
approach has positive impacts on both the stability of the model during learning and the
final outcomes. This is because it reduces the burden of supervision imposed by Eq.(3.3)
during the learning of new classes and aligns with the principles behind our distillation loss
(Eq.(3.7)).

3.2.3 Experiments

ICL Baselines. In this study, our method is compared to standard ICL baselines, which
were originally designed for classification tasks, on the segmentation task by treating it as
a pixel-level classification problem. The results of six different methods, including three
structural-based methods and three functional-based approaches, are reported.

In the structural-based category, Elastic Weight Consolidation (EWC) [69], Path Integral
(PI) [194], and Riemannian Walks (RW) [24] were selected. These methods use different
techniques to calculate the importance of each parameter for old classes: EWC employs the
empirical Fisher matrix, PI uses the learning trajectory, and RW combines EWC and PI in a
unique model. EWC was chosen as it is a standard baseline used in [145]. PI and RW were
selected because they are simple applications of the same principle. These methods operate
at the parameter level, and to adapt them to the segmentation task, we kept the loss in the
output space unchanged (i.e., standard cross-entropy across the entire segmentation mask)
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and computed the importance of the parameters by considering their effect on learning in
previous training steps.

In the functional-based category, Learning without forgetting (LwF) [81], LwF multi-
class (LwF-MC) [132], and the segmentation method of [103] (ILT) were chosen. LwF refers
to the original distillation-based objective implemented in Eq.(3.1) with basic cross-entropy
and distillation losses, which is the same as [81] except that distillation and cross-entropy
share the same label space and classifier. LwF-MC is the single-head version adapted from
[81] as described in [132]. It employs multiple binary classifiers, with the target labels
defined using the ground truth for novel classes (i.e., C t) and the probabilities provided by
the old model for the old ones (i.e., Y t−1). Since the background class is both in C t and
Y t−1, LwF-MC is implemented by a weighted combination of two binary cross-entropy
losses, one for the ground truth and the other for the probabilities provided by fθ t−1 . Finally,
ILT [103] is the only method specifically designed for ICL in semantic segmentation. It
uses distillation loss in the output space, similar to our adapted version of LwF [81], and/or
distillation loss in the feature space attached to the network decoder’s output. In this study,
we use the variant where both losses are employed. We do not compare our method to
methods that use rehearsal (e.g., [132]), as they violate the standard ICL assumption of the
unavailability of old data, as done in [145].

We also include two other baselines in all tables, simple fine-tuning (FT) on each T t (as
described in Eq.(3.2)) and training on all classes offline (Joint). The latter can be considered
an upper bound. Our method is referred to as MiB (Modeling the Background) in the
tables. The results are presented as the mean Intersection-over-Union (mIoU) in percentage,
averaged over old, new and all classes, after the final incremental learning step.

Implementation Details. For all the methods, we utilize the Deeplab-v3 [27] architecture
with a ResNet-101 [55] backbone and an output stride of 16. To address memory constraints,
which are a crucial issue in semantic segmentation, we implement in-place activated batch
normalization [138]. The backbone of the network is initialized using the ImageNet pretrained
model given by [138]. We follow the training protocol outlined in [27] and use Stochastic
Gradient Descent (SGD) with the same learning rate policy, momentum, and weight decay.
Our initial learning rate is set to 10−2 for the first learning step and 10−3 for subsequent
steps, as described in [145]. We train the network with a batch size of 24 for 30 epochs on
the Pascal-VOC 2012 dataset and 60 epochs on the ADE20K dataset for each learning step.
The data augmentation procedure is the same as that described in [27] and the images are
cropped to 512×512 during both training and testing. To set the hyperparameters for each
method, we use the incremental learning protocol defined in [34], and we utilize 20% of the
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Table 3.1 Mean IoU on the Pascal-VOC 2012 dataset for different incremental class learning scenarios.

19-1 15-5 15-1
Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method 1-19 20 all 1-19 20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all
FT 5.8 12.3 6.2 6.8 12.9 7.1 1.1 33.6 9.2 2.1 33.1 9.8 0.2 1.8 0.6 0.2 1.8 0.6
PI [194] 5.4 14.1 5.9 7.5 14.0 7.8 1.3 34.1 9.5 1.6 33.3 9.5 0.0 1.8 0.4 0.0 1.8 0.5
EWC [69] 23.2 16.0 22.9 26.9 14.0 26.3 26.7 37.7 29.4 24.3 35.5 27.1 0.3 4.3 1.3 0.3 4.3 1.3
RW [24] 19.4 15.7 19.2 23.3 14.2 22.9 17.9 36.9 22.7 16.6 34.9 21.2 0.2 5.4 1.5 0.0 5.2 1.3
LwF [81] 53.0 9.1 50.8 51.2 8.5 49.1 58.4 37.4 53.1 58.9 36.6 53.3 0.8 3.6 1.5 1.0 3.9 1.8
LwF-MC [132] 63.0 13.2 60.5 64.4 13.3 61.9 67.2 41.2 60.7 58.1 35.0 52.3 4.5 7.0 5.2 6.4 8.4 6.9
ILT [103] 69.1 16.4 66.4 67.1 12.3 64.4 63.2 39.5 57.3 66.3 40.6 59.9 3.7 5.7 4.2 4.9 7.8 5.7
MiB 69.6 25.6 67.4 70.2 22.1 67.8 71.8 43.3 64.7 75.5 49.4 69.0 46.2 12.9 37.9 35.1 13.5 29.7
Joint 77.4 78.0 77.4 77.4 78.0 77.4 79.1 72.6 77.4 79.1 72.6 77.4 79.1 72.6 77.4 79.1 72.6 77.4

training set as a validation set. The final results are reported on the standard validation set of
the datasets.

Pascal-VOC 2012

We define two experimental settings for PASCAL-VOC [43] based on the way images are
sampled to create the incremental datasets. The first experimental setting, referred to as
the disjoint setup, is based on the work in [103]. In this setup, each learning step consists
of a unique set of images, with pixels belonging to classes seen in either the current or
previous learning steps. However, in contrast to [103], only the labels for pixels of novel
classes are assumed to be available at each step, while the labels for the old classes are
considered as background in the ground truth. The second experimental setting, referred to
as the overlapped setup, is based on the incremental learning for object detection setting
[145]. In this setup, each step contains all the images that have at least one pixel of a novel
class, with only the latter annotated. Unlike the disjoint setup, images may contain pixels of
classes that will be learned in the future, but they are labeled as background. This setup is
more realistic as it does not make any assumptions about the objects present in the images.

In line with previous works [145, 103], we perform three experiments on the addition of
one class (19-1), five classes all at once (15-5), and five classes sequentially (15-1) following
the alphabetical order of the classes to determine the content of each learning step.

Addition of one class (19-1). In this experiment, we conduct two learning steps. The first
step involves observing the first 19 classes, while the second step involves learning the
tv-monitor class. The results are reported in Table 3.1. Without the use of any regularization
strategy, the performance on past classes significantly decreases. The FT method performs
poorly, completely forgetting the first 19 classes. Surprisingly, using PI as a regularization
strategy does not result in any benefits, while EWC and RW improve performance by nearly
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15%. On the other hand, structural-based strategies are outperformed by functional-based
methods, with LwF, LwF-MC, and ILT performing better by a large margin. This confirms
the effectiveness of functional-based methods in preventing catastrophic forgetting. Our
method, which improves on standard ICL baselines, is particularly impressive in terms of
new classes, resulting in a 11% improvement in mIoU, without any forgetting of old classes.
When compared to LwF, our method provides an average improvement of around 15%,
demonstrating the importance of modeling the background in ICL for semantic segmentation.
These results are consistent across both the "disjoint" and "overlapped" scenarios.

Single-step addition of five classes (15-5). The following classes are added after the first
training set in this experiment: plant, sheep, sofa, train, tv-monitor. The results are presented
in Table 3.1. As in the 19-1 setting, FT and PI show a significant decline in performance, while
functional-based strategies (LwF, LwF-MC, ILT) outperform EWC and RW significantly.
Our method, on the other hand, achieved the best results, approaching the upper bound of
joint training. In the disjoint setup, our method outperforms the best baseline by 4.6% for
the old classes, 2% for the novel classes, and 4% in all classes. These gaps are even larger in
the overlapped setting, where our method surpasses the baselines by almost 10% in all cases,
highlighting its ability to exploit information in the background class.

Multi-step addition of five classes (15-1). The results in this setting, where the last 5 classes
are learned one by one, are presented in Table 3.1. This setting proves to be difficult for
existing methods, as they fail to perform well with a score below 7% on both old and new
classes. FT and structural-based techniques cannot retain prior knowledge and heavily favor
new classes, resulting in poor performance on the first 15 classes. The functional-based
methods also experience a significant decline in performance, losing over 50% of their
score from the single to multi-step scenario. However, our method still manages to perform
well, outperforming all baselines by a wide margin in both old (46.2% in the disjoint and
35.1% in the overlapped scenario) and new (nearly 13% in both setups) classes. The results
demonstrate that the overlapped scenario is particularly challenging, as it does not limit
which classes are present in the background, leading to an overall performance drop of 11%
on all classes.

Ablation Study. In Table 3.2, we present an extensive evaluation of our contributions in
the overlapped setup. Our analysis begins with the baseline LwF [81] that utilizes standard
cross-entropy and distillation losses. Firstly, we incorporate our modified cross-entropy (CE)
into the baseline, which enhances the capability of retaining old knowledge in all scenarios
without causing harm (15-1) or even improving (19-1, 15-5) the performance on the novel
classes. Secondly, we incorporate our distillation loss (KD) into the model, resulting in an
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Table 3.2 Ablation study of the proposed method on the Pascal-VOC 2012 overlapped setup. CE and
KD denote our cross-entropy and distillation losses, while init our initialization strategy.

19-1 15-5 15-1
1-19 20 all 1-15 16-20 all 1-15 16-20 all

LwF [81] 51.2 8.5 49.1 58.9 36.6 53.3 1.0 3.9 1.8
+ CE 57.6 9.9 55.2 63.2 38.1 57.0 12.0 3.7 9.9
+ KD 66.0 11.9 63.3 72.9 46.3 66.3 34.8 4.5 27.2
+ init 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7

Table 3.3 Mean IoU on the ADE20K dataset for different incremental class learning scenarios.

100-50 100-10 50-50
Method 1-100 101-150 all 1-100 100-110 110-120 120-130 130-140 140-150 all 1-50 51-100 101-150 all
FT 0.0 24.9 8.3 0.0 0.0 0.0 0.0 0.0 16.6 1.1 0.0 0.0 22.0 7.3
LwF [81] 21.1 25.6 22.6 0.1 0.0 0.4 2.6 4.6 16.9 1.7 5.7 12.9 22.8 13.9
LwF-MC [132] 34.2 10.5 26.3 18.7 2.5 8.7 4.1 6.5 5.1 14.3 27.8 7.0 10.4 15.1
ILT [103] 22.9 18.9 21.6 0.3 0.0 1.0 2.1 4.6 10.7 1.4 8.4 9.7 14.3 10.8
MiB 37.9 27.9 34.6 31.8 10.4 14.8 12.8 13.6 18.7 25.9 35.5 22.2 23.6 27.0
Joint 44.3 28.2 38.9 44.3 26.1 42.8 26.7 28.1 17.3 38.9 51.1 38.3 28.2 38.9

improvement in performance for both old and new classes. The improvement in old classes is
significant, especially in the 15-1 scenario (i.e. 22.8%). The improvement in the novel classes
is consistent and particularly pronounced in the 15-5 scenario (7%). This demonstrates the
unique aspect of our KD as it not only preserves old knowledge but also contributes to the
learning of new classes. Lastly, we add our classifiers’ initialization strategy (init) which
leads to an improvement in all scenarios, especially in the novel classes. It doubles the
performance in the 19-1 scenario (22.1% vs 11.9%) and triples it in the 15-1 scenario (4.5%
vs 13.5%), emphasizing the significance of considering the background shift during the
initialization stage for better learning of the new classes.

ADE20K

We create incremental datasets T t by dividing the entire dataset into separate image sets
with a minimum of 50 images per class in C t that have labeled pixels. Each T t provides
annotations only for the classes in C t while the remaining classes, both old and future,
are considered as background in the ground truth. In Table 3.3, we present the mean IoU
obtained by averaging the results from two different class orders: one proposed by [202] and
a random order. In this experiment, we compare our approach with functional-based methods
only (LwF, LwF-MC, and ILT) due to their lower performance compared to structural-based
methods.

Single-step addition of 50 classes (100-50). In the first experiment, we first train the
network with 100 classes, then add the remaining 50 classes all at once. The results in Table
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Fig. 3.3 Qualitative results on the 100-50 setting of the ADE20K dataset using different incremental
methods. The image demonstrates the superiority of our approach on both new (e.g. building, floor,
table) and old (e.g. car, wall, person) classes. From left to right: image, FT, LwF [81], ILT [103],
LwF-MC [132], our method, and the ground-truth. Best viewed in color.

3.3 show that the fine-tuning (FT) strategy performs poorly in large-scale settings, causing
complete forgetting of old knowledge. Using a distillation strategy, such as LwF, ILT, and
LwF-MC, reduces catastrophic forgetting. Among these methods, LwF-MC obtains the
highest score of 34.2% on past classes, while LwF performs the best on new classes with a
score of 18.9% higher than LwF-MC and 6.6% higher than ILT. Our method outperforms
all others, showing improvements on both past and new classes. Our results are close to the
upper bound of joint training, especially for new classes, with a gap of only 0.3%. In Figure
3.3, we present qualitative results that demonstrate the superiority of our method compared
to the baselines.

Multi-step addition of 50 classes (100-10). In the second experiment, we evaluate the
performance of our method in multiple incremental steps, where the network starts with
100 classes and the remaining 50 classes are added in increments of 10 classes. The results,
reported in Table 3.3, show that the FT, LwF and ILT methods have poor performance due
to catastrophic forgetting. LwF-MC shows a better ability to retain knowledge of previous
classes, but at the cost of reduced performance on new classes. Our method, however,
achieves the best balance between learning new classes and preserving previous knowledge,
outperforming LwF-MC by 11.6% considering all classes.
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Three steps of 50 classes (50-50). Finally, in Table 3.3, we examine the performance in
three consecutive stages of 50 classes. The previous incremental learning methods exhibit
different balances between learning new classes and avoiding forgetting old knowledge. LwF
and ILT achieve good scores on new classes, but they forget old knowledge. Conversely,
LwF-MC retains knowledge of the first 50 classes but fails to learn new ones. Our method
surpasses all baselines by a substantial margin, with a difference of 11.9% compared to the
best-performing baseline and attains the highest mIoU in each stage. Notably, the largest gap
is in the intermediate stage, where classes must be learned incrementally and retained from
being forgotten in the following learning stage.
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3.3 Incremental Learning in Object Detection

In the prior section, we explored incremental learning in semantic segmentation, which
presents an additional challenge in the form of a shift in the background semantic. Here,
we will analyze a similar issue in object detection. According to the incremental learning
in object detection (ILOD) definition in [145], only objects belonging to new classes are
annotated, while the rest (belonging to either old or future classes) are ignored, resulting in
missing annotations (see Fig. 3.4).

Research in ILOD has focused on introducing regularizations to prevent catastrophic
forgetting, however, the effect of missing annotations has not been taken into account.
Regions that are not annotated are usually treated as background areas and the model assigns
them to a specific background class. This can lead to objects that are not annotated being
associated with the background, which can worsen forgetting in already seen classes and
make it more difficult to train for future classes.

In order to address this issue, we propose MMA, which Models the Missing Annotations,
as an adaptation of the method presented in Sec. 3.2 and a revisitation of the common
distillation framework in ILOD [145, 120, 203]. This approach allows the model to predict
either an old class or the background on any region not associated with an annotation on
the classification loss, thus reducing the risk of catastrophic forgetting. Additionally, the
distillation loss is modified to match the teacher model’s background probability with the
probability of having either a new class or the background, allowing for easier learning
of new classes. To evaluate the effectiveness of our method, experiments are conducted
on the Pascal-VOC dataset [42] for a variety of single-step and multi-step tasks. Results
show that our method outperforms the current state-of-the-art without using any image from
previous training steps. Moreover, by adding an additional knowledge distillation term to
our framework, we can extend it to the task of instance segmentation. Experiments on the
Pascal-VOC dataset [43] demonstrate that our method outperforms the other baselines.

To summarize, this section contributions are: (1) the identification of the peculiar issue
of missing annotations in incremental learning for object detection, which was overlooked
by previous works, (2) the proposal of a novel method, MMA, that revisits the standard
knowledge distillation framework and outperforms previous methods on multiple ILOD
settings, and additionally (3) an extention of MMA to instance segmentation, where it
exceeds all other baselines. The code to replicate experiments in this section can be found at
https://github.com/fcdl94/MMA.

https://github.com/fcdl94/MMA
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Fig. 3.4 The figure depics the missing annotation issue in different learning steps in object detection.
At the training step t, annotations are only provided for newly added classes (represented with red
boxes). All other objects, both those from previous time steps (represented with blue boxes) and those
from future time steps (yellow boxes) are not annotated.

3.3.1 Related Works

Object Detection architectures can be broadly classified into two categories: one-stage
detectors [133, 162, 89, 19, 153, 204] and two-stage detectors [49, 48, 135, 56, 85]. The
two-stage detectors generally provide better performance but are less efficient. They involve
two steps: first by extracting regions of interest (RoIs) either through a neural network (e.g.,
Faster R-CNN [135]) or an external region proposer (e.g., Fast R-CN [48]), and then by
using a multi-layer perceptron on the RoIs to obtain the final classification and bounding box
regression. On the other hand, one-stage detectors directly predict the final output, without
the need to predict RoIs. Although these two architecture groups are powerful in an offline
setting, they are not suitable for adding new classes incrementally over time. In this work,
we focus on enabling two-stage methods, specifically Faster R-CNN, to learn new categories
over time without losing previous knowledge in the absence of original data.
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negative RoI (z=0)

Input

Old Classes
New Classes

Background
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Fig. 3.5 Overview of MMA, highlighting its contributions. Given an image, it is forwarded on the
student (top) and teacher (bottom) models. The blue box illustrates the behavior of revised cross
entropy loss on a negative RoI (i.e. RoI without annotations): the model maximizes the probability of
having either the background or an old class. In the red box, we show the effect of the distillation loss
on the classification output for a new class region: it associates the teacher background with either the
student background or a new class. Lastly, in green, it is reported the RPN distillation loss.

Incremental Learning in Object Detection. In recent years, there has been growing interest
in incremental learning for object detection. A landmark study in this field is [145], which
presents a framework that relies on two-stage object detectors and performs knowledge
distillation on the output of Fast R-CNN [48]. Several methods have since been proposed
that build upon this framework, extending it to the Faster R-CNN [135] architecture. These
methods incorporate distillation terms into the intermediate feature maps [188, 120, 25, 90,
203] and aim to prevent forgetting in the region proposal network [120, 25, 53, 203]. [203]
introduced a pseudo-positive-aware sampling algorithm to distinguish regions belonging
to old classes and avoid classifying them as background regions. However, this approach
only provides a partial solution as it does not account for missing annotations or model
confidence. Some works, such as [52, 67, 70, 1], focus on rehearsal techniques to preserve
old task knowledge, either by replaying intermediate features [1] or images [78, 52, 52]. [88]
proposes a parameter isolated method based on EWC [69] for object detection. Additionally,
a few studies have explored incremental learning using one-stage architectures [78, 121, 122].
In this study, we propose a distillation framework for two-stage architectures that explicitly
models missing annotations for objects not included in the current training step.

3.3.2 MMA: Modeling the Missing Annotations

The objective of object detection is to train a model that can locate and identify objects
within an image, represented by a rectangular box and a class label. The focus of this work
is on the R-CNN [48, 135, 56] family of detection models, denoted as fθ , with parameters
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θ . The detection model is comprised of three components: a feature extractor f FE
θ

, a region
proposal network (RPN) f RPN

θ
, and a classification head f RCN

θ
. Given an image x, the feature

extractor generates a dense feature map, which is then passed to the RPN. The RPN’s goal
is to produce a set of K rectangular regions of interest (RoIs) each with a binary objectness
score. The K RoIs are applied to the feature map and classified by the classification head,
which outputs the class probabilities p ∈ IR|Y |+1 for each RoI, where Y is the set of classes,
as well as rectangular boxes r ∈ IR4|Y | corresponding to each class. It’s important to note
that the classifier also outputs a class score for the background to signify the absence of
objects in the RoI.

In Incremental Learning for Object Detection (ILOD), the training is carried out in
multiple learning steps, each step adding a new set of classes to be detected. In the t-th
training step, a detection model fθ t is trained to learn the classes C t using a training set T t .
It’s important to note that although an image in the training set T t may contain multiple
objects of various classes, only annotations for classes in C t are provided following the
ILOD protocol [145]. Additionally, the old training sets are not available at training step t.
After the t-th step, the model fθ t is expected to predict for all classes seen so far, meaning its
output should take into account the classes in Y t = ∪t

t ′=1C
t ′ . We note that, following the

standard practices, C i∩C j = /0 for any i ̸= j.

In the standard Faster R-CNN training process as described in [135], a multi-task loss is
minimized, as given by equation 3.10:

ℓ f aster = ℓRPN
cls + ℓRPN

reg + ℓRCN
cls + ℓRCN

reg . (3.10)

The first two terms in the loss, ℓRPN
cls and ℓRPN

reg , are the classification and regression loss on
the Region Proposal Network (RPN), while the latter two terms, ℓRCN

cls and ℓRCN
reg , are applied

on the output of the classification head [48, 135]. For more details on the training of Faster
R-CNN, please refer to [48, 135]. However, despite its effectiveness, Faster R-CNN is not
well-suited for updating its weights to learn new classes. Fine-tuning the model using the
loss function given in equation 3.10 on a new training set T t causes the model to forget the
information it has previously learned, leading to catastrophic forgetting [102].

Previous studies [145, 120, 203, 53, 25] have suggested using knowledge distillation
[57, 81] to mitigate the issue of forgetting in incremental learning. In this approach, a student
model fθ t is trained to imitate the output of the previous model fθ t−1 . However, these studies
did not address the problem of missing annotations. In incremental learning, the dataset T t

at time step t provides annotations only for objects in C t , while objects belonging to past
or future classes that are present in the image are not annotated. As a result, these objects
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are treated as background in the standard detection pipeline, leading to two issues: (i) if the
RoI contains an object from an old class, the model is trained to predict it as background,
exacerbating the forgetting issue; (ii) if the RoI contains an object from a future class, the
model is trained to consider it as background, making it harder to learn new classes when
they will be presented. The issue of missing annotations is similar to the background shift
problem described in Sec. 3.2 for incremental learning in semantic segmentation. In the
following, we adapt the equations proposed in Sec. 3.2 to address the missing annotations
problem in incremental learning for object detection.

Revisiting Classification Loss. The Faster R-CNN classification loss ℓRCN
cls aims to ensure

that the network assigns the correct class label to the Region of Interests (RoIs). To do so, the
loss is computed for a set of K RoIs that have been generated by the RPN and either matched
with a ground truth label (positive RoI) or classified as the background (negative RoI). The
calculation of the loss can be expressed as follows:

ℓRCN
cls =

1
K

K

∑
i=1

zi ∑
c∈Y t

ȳc
i log(pc

i )+(1− zi) log(pb
i ), (3.11)

where zi takes the value of 1 for positive RoIs and 0 otherwise, ȳi is the one-hot encoded
class label (1 for the ground truth class and 0 for others), and pb

i represents the probability of
the i-th RoI belonging to the background class.

The equation specified in Eq. (3.11) was originally created for standard object detection
and as such, it does not account for the fact that only information about novel classes is
available in the ground truth. This presents a problem as all other objects in the image that
do not have a corresponding ground-truth association are treated as negative RoI, leading
the model to learn to predict the background class for them. This becomes particularly
concerning for objects belonging to old classes, as it results in severe catastrophic forgetting,
causing the model to forget the correct class of the object and replace it with the background.

In order to address this issue, we modify the equation Eq. (3.11) taking inspiration from
Eq. (3.4):

ℓRCN
cls =

1
K

K

∑
i=1

zi ∑
c∈C t

ȳc
i log(pc

i )+(1− zi) log(pb
i + ∑

o∈Y t−1

po
i ), (3.12)

where pc
i represents the probability of the class c for the query i, C t are the classes that are

newly introduced at time t, and Y t−1 refers to all the classes that were seen before the time t.
By using Eq. (3.12), the model is able to learn the new classes in the positive RoIs (zi = 1)
while ensuring that the background class does not take precedence over the older classes.
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Instead of forcing the background class to be the prediction for every negative RoI (zi = 0),
as Eq. (3.11) does, Eq. (3.12) allows the model to predict either the background or any old
class by maximizing the sum of their probabilities. The illustration for this can be seen in the
blue box of Fig. 3.5.

Revisiting Knowledge Distillation. Previous works [120, 203, 53, 25] employed two knowl-
edge distillation loss terms in the training objective to avoid forgetting:

ℓ= ℓ f aster +λ
1ℓRCN

dist +λ
2ℓRPN

dist , (3.13)

where λ 1, λ 2 are hyperparameters.

The objective of ℓRCN
dist is to preserve the information regarding the previously learned

classes in the classification head. Previous studies [145, 120] required the student model
to generate classification scores and box coordinates that are similar to the teacher model
for the old classes using an L2 loss. However, these works ignored the missing annotations,
meaning that the new classes have been seen previously, but since they lacked annotations,
they were labeled as the background class. This would cause the teacher model to predict
high background scores for the new class RoIs, making it more challenging for the student
model to learn the new classes, conflicting with the classification loss. To address this, we
propose a distillation loss that takes into account the missing annotations, formulated as
follows:

ℓRCN
dist =

1
K

K

∑
i=1

ℓRCN
dist_cls(i)+ ℓsmooth_l1(rt

i ,r
t−1
i ), (3.14)

ℓRCN
dist_cls(i) =

1
|Y t−1|+1

(pb,t−1
i log(pb,t

i + ∑
j∈C t

p j,t
i )+ ∑

c∈Y t−1

pc,t−1
i log(pc,t

i )), (3.15)

where the terms pk,t−1
i , rt−1

i and pk,t
i , rt

i represent, respectively, the classification and regres-
sion output for proposal i and class k for the teacher and student model, and b represents
the background class. In order to handle the classification scores, we propose modifying
with respect to previous works [145, 120] the first term in equation Eq. (3.14) that takes
into account the box coordinates. Similarly to Eq. (3.7), to model the missing annotations,
equation Eq. (3.15) uses all the class probabilities of the student model to match those
of the teacher model. The old classes Y t−1 remain unchanged between the student and
teacher models, while the teacher’s background pb,t−1

i is either associated with a new class
or the student’s background. By using equation Eq. (3.15), when the teacher predicts a high
background probability for a RoI belonging to a new class, the student is not forced to imitate
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this behavior but instead has the opportunity to solidify its new knowledge and predict the
correct class. This is illustrated in the red box of figure Fig. 3.5.

On the other hand, the purpose of ℓRPN
dist is to prevent the RPN from forgetting. Since

annotations for old classes are not available, the RPN is trained to predict a high objectness
score only for RoIs belonging to new classes. To ensure that the RPN continues to predict a
high objectness score for regions belonging to old classes, we utilize the loss proposed by
[120]. The student is made to imitate the teacher only in regions belonging to old classes,
where the teacher score is higher than the student score. For a set of A regions, ℓRPN

dist is
calculated as:

ℓRPN
dist =

1
A

A

∑
i=1

1[st
i≥st−1

i ]||s
t
i− st−1

i ||+1[st
i≥st−1

i +τ]||ω
t
i −ω

t−1
i ||, (3.16)

where st
i is the objectness score and ω t

i the coordinates of f RPN
θ t on the i-th proposal, || · || is

the euclidean distance, τ is a hyperparameter, and 1 is the indicator function equal to 1 if the
condition in the brackets is satisfied and 0 otherwise. It is important to note that when the
teacher produces an objectness score greater than the student, i.e., st

i > st−1
i , the proposal is

likely to contain an old class. On the other hand, when st
i ≥ st−1

i , the proposal is likely to
belong to a new class. In this case, forcing the student to mimic the teacher score may result
in errors that negatively impact the performance on new classes.

Extension to Instance Segmentation The purpose of instance segmentation is to generate
a precise mask that identifies each object in an image at the pixel level. To achieve this,
we utilize Mask R-CNN [56] which is an extension of Faster R-CNN that includes a mask
head f MASK

θ
. This mask head generates a binary segmentation mask for each Region of

Interest (RoI) with a shape of |Y |×H×W , where Y represents the set of classes and H,W
represents the resolution of the mask. The mask head is trained with an additional loss term
that is combined with the multi-task loss in Eq. (3.10). The Mask R-CNN loss is defined as:

ℓmask = ℓ f aster + ℓMASK
cls , (3.17)

where ℓMASK
cls is the per-pixel binary cross-entropy loss between the output of f MASK

θ
and the

binary mask of the ground truth class. For further information, please refer to [56].

In spite of the fact that the approach described in Sec. 3.3.2 already takes into account
forgetting in the detection head, the application of Eq. (3.17) brings the risk of forgetting
how to segment past objects while learning the new ones. Therefore, we further extend
Eq. (3.13) to incorporate a knowledge distillation term in the mask head. Formally, in the
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Table 3.4 mAP@0.5% results on single incremental step on Pascal-VOC 2007. Methods with † come
from reimplementation. Methods with * use exemplars.

19-1 15-5 10-10
Method 1-19 20 1-20 Avg 1-15 16-20 1-20 Avg 1-10 11-20 1-20 Avg
Joint Training 75.3 73.6 75.2 74.4 76.8 70.4 75.2 73.6 74.7 75.7 75.2 75.2
Fine-tuning 12.0 62.8 14.5 37.4 14.2 59.2 25.4 36.7 9.5 62.5 36.0 36.0
ILOD (Fast R-CNN) [145] 68.5 62.7 68.3 65.6 68.3 58.4 65.9 63.4 63.2 63.1 63.2 63.2
ILOD (Faster R-CNN) [145] † 70.3 65.2 70.0 67.8 72.5 58.0 68.9 65.3 69.2 53.0 61.1 61.1
Faster ILOD [120] 68.9 61.1 68.5 65.0 71.6 56.9 67.9 64.3 69.8 54.5 62.1 62.1
Faster ILOD [120] † 70.9 64.3 70.6 67.6 73.5 55.6 69.1 64.6 71.1 52.3 61.7 61.7
PPAS [203] 70.5 53.0 69.2 61.8 63.5 60.0 61.8 61.8
MVC [188] 70.2 60.6 69.7 65.4 69.4 57.9 66.5 63.7 66.2 66.0 66.1 66.1
OREO* [67] 69.4 60.1 68.9 64.7 71.8 58.7 68.5 65.2 60.4 68.8 64.6 64.6
OW-DETR* [52] 70.2 62.0 69.8 66.1 72.2 59.8 69.1 66.0 63.5 67.9 65.7 65.7
ILOD-Meta* [70] 70.9 57.6 70.2 64.2 71.7 55.9 67.8 63.8 68.4 64.3 66.3 66.3
MMA 71.1 63.4 70.7 67.2 73.0 60.5 69.9 66.7 69.3 63.9 66.6 66.6

case of instance segmentation, we use the following training objective:

ℓ= ℓmask +λ1ℓ
RCN
dist +λ2ℓ

RPN
dist +λ3ℓ

MASK
dist , (3.18)

where λ1, λ2, λ3 are hyperparameters.

The objective of ℓMASK
dist is to keep the segmentation masks for the old classes close to

the output of the teacher model. To do so, we employ a per-pixel binary cross-entropy loss
between the teacher model masks and the student ones. Specifically, for each pixel i and
class c in the set of old classes Y t−1, we compute a binary cross-entropy loss between the
teacher model mask mt−1

c,i = f MASK
θ t−1 and the student one mt

c,i = f MASK
θ t . Formally, we have:

ℓMASK
dist =

1
N|Y t−1|

N

∑
i=1

∑
c∈Y t−1

mt−1
c,i log(mt

c,i)+(1−mt−1
c,i ) log(1−mt

c,i), (3.19)

where N is the number of pixels in the image, i.e., N = H×W . We note that this loss is
only computed for the segmentation masks belonging to the old classes, while the masks
belonging to the new ones are not considered.

3.3.3 Experiments

Experimental Protocol. We evaluate our MMA approach on the Pascal-VOC dataset.
Specifically, we use the PASCAL-VOC 2007 [42] for object detection consisting of 5K
images with bounding box annotations for training and 5K for testing. For instance segmen-
tation, we employ the Pascal-VOC 2012 [43, 54] dataset which also reports the instance
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Table 3.5 mAP@0.5% results on multi incremental steps on Pascal-VOC 2007. Methods with † come
from reimplementation.

10-5 10-2 15-1 10-1
Method 1-10 11-20 1-20 Avg-S 1-10 11-20 1-20 Avg-S 1-15 16-20 1-20 Avg-S 1-10 11-20 1-20 Avg-S
Joint Training 74.7 75.7 75.2 75.2 74.7 75.7 75.2 75.2 76.8 70.4 75.2 73.5 74.7 75.7 75.2 75.2
Fine-tuning 6.6 28.3 17.4 21.8 5.2 12.3 8.8 16.7 0.0 8.0 2.4 6.7 0.0 4.6 2.3 8.6
ILOD (Faster R-CNN) [145] † 67.2 59.4 63.3 65.2 62.1 49.8 55.9 62.2 65.6 47.6 60.2 65.8 52.9 41.5 47.2 59.1
Faster ILOD [120] † 68.3 57.9 63.1 65.5 64.2 48.6 56.4 62.8 66.9 44.5 61.3 67.1 53.5 41.0 47.3 60.4
MMA 66.7 61.8 64.2 67.3 65.0 53.1 59.1 63.8 68.3 54.3 64.1 67.5 59.2 48.3 53.8 62.4

segmentation annotations. We use the standard instance segmentation split of Pascal-VOC
2012, using 8498 images for training and 2857 for evaluation. Following [145], we imple-
ment the following experimental protocol for both object detection and instance segmentation:
each training step contains all the images that have at least one bounding box of a novel
class. It is important to note that at each training step, labels for bounding boxes of novel
classes are assumed to be available, while all the other objects that appear in the image, either
belonging to past or future classes, are not annotated. This is a realistic setup since it does
not make any assumption on the objects present in the images and reduces the amount of
annotation required in each incremental step.

Implementation Details. For object detection, we followed the same approach as in previous
works [120, 203, 188, 52, 67, 70], using the Faster R-CNN architecture with a ResNet-
50 backbone. Similarly, for instance segmentation, we employed the Mask R-CNN [56]
architecture with a ResNet-50 backbone. Both backbones were initialized using the ImageNet
pretrained model [35]. We followed the same training protocol as in [145, 120], but we
increased the batch size from 1 to 4 in order to reduce the time required for training, scaling
accordingly the learning rate and number of iterations. In particular, for object detection we
trained the network with SGD, weight decay 10−4 and momentum 0.9. We used an initial
learning rate of 4 ·10−3 for the first learning step and 4 ·10−4 in the subsequent steps. We
performed 10K iterations when adding 5 or 10 classes, while we trained for 2.5K when
learning only one or two classes. We applied the same data augmentation as in [145, 120].
We set λ2 equal to 0.1, 0.5, and 1 when adding 10 classes, 5, and 1 or 2 classes, respectively.
λ1, λ3 were set to 1.

Object Detection Results

We evaluate our method by considering experimental settings with a different number of
classes in one or multiple training steps, as done by previous works [188, 203, 70, 145, 120].
Specifically, we report adding 10 (10-10), 5 (15-5) or 1 (19-1) class in a single incremental
step and performing two incremental steps adding 5 classes (10-5), five steps adding two
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classes (10-2) and either ten (10-1) or five (15-1) steps adding one class. We follow the same
approach as previous works and split the classes in alphabetical order.

Single-step incremental settings (10-10, 15-5, 19-1). Results are presented in Tab. 3.4,
where we compare our method, MMA, with previous works that either use rehearsal [67, 52,
70] or not use it [188, 203, 145, 120]. We note that the former methods are not compared
fairly with MMA, since we do not use any replay memory to store old samples. To ensure a
fair comparison, we also report the results of ILOD [145] and Faster ILOD [120] using our
same architecture and training protocol. Additionally, we provide two simple baselines: the
joint training upper bound, where the architecture is trained using the whole dataset and all
the annotations, and the fine-tuning, where the architecture is trained on the new data using
Eq. (3.10), without employing any regularization strategy. We report the results in terms of
mAP on old, new and all classes. The Avg metric equally weights the performance on both
new and old classes by simply averaging their aggregated mAP.

As can be seen in Tab. 3.4, fine-tuning experiences a significant decrease in performance
on the old classes, which demonstrates that catastrophic forgetting is a problem that needs to
be addressed. Previous works have improved the performance by tackling the forgetting issue
but MMA outperforms all of them, including those that use exemplars to prevent forgetting,
thus validating our approach. When compared with ILOD [145] and Faster ILOD [120], our
method achieves comparable performance on the old classes, but performs better on the new
classes, leading to an improvement of 1% on both 19-1 and 15-5, and even 10% on the 10-10
setting. We believe that this improvement is mainly due to the revised distillation loss, which
by modelling the missing annotations, eliminates inconsistent training objectives and thus
increases the performance. When comparing MMA to other state-of-the-art methods, we
observe that it outperforms the competitive rehearsal strategies in every setting without using
exemplars. On the 19-1 setting, MMA outperforms ILOD-Meta by 0.5% when considering
all classes equally (1-20) and by 1.1% OW-DETR when considering old and new classes
equally (Avg). Similarly, in the 15-5 and 10-10 settings, MMA outperforms the best rehearsal
method by 0.9% and 0.3% on all the classes, and by 0.7% and 0.3% on the Avg metric,
respectively.

Multi-step incremental settings (10-5, 10-2, 15-1, 10-1). We consider a more realistic
setting where we perform multiple incremental steps adding new classes to evaluate the
ability of MMA to alleviate catastrophic forgetting. We compare the behavior of MMA
against three baselines: fine-tuning, ILOD [145], and Faster ILOD [120], all implemented
following our experimental protocol. The results for the four considered settings are reported
in Tab. 3.5, showing the mAP% over multiple incremental steps and Fig. 3.6, where the
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Table 3.6 Ablation study of the contribution of MMA components in the 15-5 setting. Results are
mAP@0.5%. MMA is in green.

Eq. (3.12) ℓRCN
dist ℓRPN

dist 1-15 16-20 1-20 Avg
- - - 14.2 59.2 25.4 36.7
✓ - - 40.0 57.8 44.4 48.9
✓ UKD - 67.3 60.3 65.6 63.8
✓ l2 ✓ 73.7 56.8 69.5 65.3
✓ CE ✓ 72.8 59.4 69.5 66.1
✓ UKD ✓ 73.0 60.5 69.9 66.7

results after the last incremental step are displayed. Additionally, Tab. 3.5 reports the average
performance across multiple steps Avg-S.

It can be observed that carrying out multiple incremental steps is difficult and existing
methods exhibit a significant decrease in performance when compared to single step scenarios.
Fine-tuning the network on new data without using any technique to prevent forgetting leads
to the complete forgetting of old classes, resulting in performances close to 0% on old classes
at the last step. ILOD [145] and Faster ILOD [120] can effectively reduce catastrophic
forgetting, resulting in better results on both old and new classes. However, when compared
to MMA, both ILOD and Faster ILOD achieve poorer results. After the last step, MMA
is seen to obtain better performances on novel classes: +2.4% on 10-5, +3.3% on 10-2,
+6.3% on 15-1, and +6.8% on 10-1 compared to the best among the baselines. Additionally,
MMA also achieves comparable or greater performance than previous methods on the old
classes. Overall, MMA outperforms the best among ILOD and Faster ILOD by 0.9% on
10-5, 2.7% on 10-2, 2.8% on 15-1, and 6.5% on the 10-1 setting. It is noteworthy that the
improvement is greater when more classes are added, indicating that our method is better
suited for multiple-incremental steps. From the trend over multiple training steps in Fig. 3.6,
it can be seen that MMA is always comparable or better than previous methods. Notably,
MMA largely outperforms the other methods when the number of training steps is large, as
seen in the 10-1 setting.

Ablation Study. In Table 3.6, we present an in-depth analysis of our contributions, consider-
ing the 15-5 setting for incremental object detection. We evaluate each proposed component
separately: the revised classification loss (Eq. (3.12)), the classification head knowledge
distillation loss (ℓRCN

dist ), the use of the RPN distillation loss (ℓRPN
dist ), and finally, the use of a

feature distillation loss, as proposed in [120]. The first row indicates the results of simply
fine-tuning the network on the new data, without applying any regularization. It can be seen
that the results are poor on the old classes, while it achieves good performance on the new
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Fig. 3.6 mAP% results on multiple incremental steps on Pascal-VOC 2007.

ones. By adding the revised classification loss, the performance on the old classes substan-
tially improves: from 14.2% to 40.0%. This is due to the handling of missing annotations
that alleviates forgetting. By introducing the revised distillation loss presented in Eq. (3.15)
(UKD), the performance is further increased, both on the old classes reaching 67.3% and
on the new classes, rising from 57.8% to 60.3%. We believe that the improvement on the
new classes is due to the distillation loss, as the model is able to better differentiate the old
classes from the new ones, thus increasing the overall accuracy. The RPN distillation loss is
then introduced, leading to the final MMA model. We observe that the performance on the
old classes is further improved, reaching 73.0%, while the performance on the new classes
remains comparable.

Finally, we compare the revised knowledge distillation in MMA with other possible
choices. We draw inspiration from previous works and employ the L2 loss on the normalized
classification scores [145, 120] and the cross-entropy (CE) loss between the probability of
old classes [81]. We observe that MMA distillation performs better than these alternatives,
particularly on the new classes, which clearly demonstrates the importance of modeling the
missing annotations in order to learn them properly. On the average of old and new class
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Table 3.7 mAP@(0.5,0.95)% results of incremental instance segmentation on Pascal-VOC 2012.

19-1 15-5
Method 1-19 20 1-20 Avg 1-15 16-20 1-20 Avg
Joint Training 40.4 54.1 41.1 47.2 41.0 41.2 41.1 41.1
Fine-tuning 6.7 46.3 8.7 26.5 1.9 35.3 10.2 18.6
Fine-tuning w/ Eq. (3.12) 12.5 47.5 14.3 30.0 13.0 35.5 18.6 24.2
ILOD [145] 40.1 38.3 40.0 39.2 39.2 30.8 37.1 35.0
Faster ILOD [120] 40.6 38.1 40.4 39.3 39.4 30.3 37.1 34.8
MMA 40.6 43.0 40.8 41.8 38.2 33.7 37.1 35.9
MMA + ℓMASK

dist 41.0 42.8 41.1 41.9 40.2 32.2 38.2 36.2

performance, MMA achieves 66.7%, 1.4% and 0.6% more than when using the L2 loss or
the cross-entropy loss, respectively.

Instance Segmentation Results

We evaluate our method in instance segmentation considering two experimental settings:
adding one (19-1) and five (15-5) classes in a single training step. As in object detection,
we follow the alphabetical order of the dataset. Following the standard practice on instance
segmentation, we report the mAP averaged across 11 IoU thresholds, ranging from 0.5 to
0.95, with a step of 0.05. We compare our method, MMA, with fine-tuning, fine-tuning using
the revised classification loss (Eq. (3.12)), ILOD [145] and Faster ILOD [120]. For all the
methods we employ the same architecture and hyperparameters.

Table 3.7 shows the results for the 19-1 and 15-5 settings, reporting the average mean
Average Precision (mAP) of new and old classes separately, the average over all classes,
and the average of new and old classes (Avg), with them weighted equally. We can observe
that fine-tuning results in a significant amount of forgetting on old classes for both the 19-1
and 15-5 settings. Introducing the revised classification loss (Eq. (3.12)) helps to alleviate
forgetting, but the results are still low for old classes, indicating that a technique to prevent
forgetting is necessary. ILOD and FasterILOD do improve the performance on old classes,
but at the cost of a decrease in performance on novel classes: they both lose nearly 8% on the
19-1 and 5% on the 15-5 with respect to fine-tuning. In contrast, our proposed MMA clearly
improves the performance, preventing forgetting while also showing good performance on
novel classes. In particular, compared to ILOD and Faster ILOD, MMA obtains, on new
classes, nearly +5% and +3%, respectively on 19-1 and 15-5, while showing comparable
performance on old classes. Considering the extended version of MMA (MMA + ℓMASK

dist ),
it slightly improves the performance on old classes compared to MMA, while obtaining
comparable results on the new ones. Overall, it obtains 41.1% and 38.2% on the 19-1 and
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15-5, respectively, 0.3% and 0.9% better than MMA. Interestingly, we note that, without any
regularization on the mask head (MMA), we can still achieve good segmentation performance.
This is due to the non competitiveness among classes on the mask head, which only regresses
a binary segmentation mask, while the class is predicted by the classification head, as in
standard Faster R-CNN. Overall, MMA and its extension demonstrate to outperform the
other baselines in instance segmentation, showing a good balance between learning the new
classes and avoiding forgetting the old ones.
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3.4 Conclusion and Future Works

In this chapter, we investigated the catastrophic forgetting issue in image segmentation and
object detection tasks. We identified that, due to the presence of multiple classes in every
image and the fact that only annotations for novel classes are provided, the forgetting issue is
exacerbated by the presence of non-annotated old and future classes in the background.

In the first part, we investigated the incremental class learning problem in the context of
semantic segmentation, analyzing the semantic shift of the background class. To tackle this
challenge, we presented the MiB method, that introduces a novel objective function and a
classifier initialization strategy that enable the network to explicitly handle the semantic shift
of the background, effectively learning new classes without compromising its performance
in recognizing old ones. Our results indicate that our approach outperforms previous ICL
methods by a significant margin, across both small and large datasets.

In the second part, we considered the issue of missing annotations for old and future
classes in incremental learning for the object detection task, a problem that was overlooked
by previous works. Missing annotations in object detection mislead the model to consider
them as background region, effectively exacerbating forgetting on the old classes and making
harder to learn classes that will appear in the future. We tackled this issue by extending the
method designed in the previous section to object detection. The novel method, nicknamed
MMA, revisits the standard distillation framework to consider non annotated regions as
possibly containing past or future classes. Our approach outperforms the previous works on
the Pascal-VOC 2007 dataset, considering muliple class-incremental settings. Futhermore,
MMA exceeds methods employing rehearsal learning without using any sample from the
past. Finally, we showed an extension of MMA in the instance segmentation task, achieving
a new state of the art.

We hope that our work will set a new trend in the incremental learning community where
we go beyond the simple image classification task and consider more realistic and challeng-
ing tasks. As a future work, we aim to study the property of state-of-the-art transformer
architectures in these tasks, possibly extending the study to other challenging tasks, such as
panoptic segmentation.



Chapter 4

Few-Shot or Zero-Label Semantic
Segmentation
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4.1 Introduction

The high cost of collecting and annotating images at the pixel level in order to train semantic
segmentation models is a significant obstacle that restricts its applications. In the previ-
ous chapter, we examined the challenge of incremental learning in semantic segmentation
(Sec. 3.2) under the assumption that a substantial number of labeled images were available
for each training step. However, in reality, images depicting new classes are seldom available
in large quantities, and it may not be financially feasible to annotate them due to budget
constraints. In this chapter, we explore two different settings in semantic segmentation
with the goal of expanding the knowledge of a trained segmentation model using the fewest
possible images, or even just by providing a textual description of the new class.

In the first section, we introduce a new setting for incremental few-shot segmentation
(iFSS), where a model is tasked with segmenting new classes over time with only a small
number of images available and without forgetting the old ones. We show that previous ap-
proaches from similar research fields have not effectively addressed the challenges presented
in this scenario: learning new classes without overfitting or forgetting previous knowledge.
To address both of these issues, we have developed a framework called PIFS, which com-
bines prototype-learning and knowledge distillation. We demonstrate the effectiveness of our
approach on a novel benchmark comprising two datasets and multiple incremental scenarios.

In the second section, we take a step further and attempt to segment novel classes with
only a textual descriptor provided for them. This setting, known as Zero-Label Semantic
Segmentation, has been explored in previous studies [185, 15]. However, an important
aspect has been overlooked: some classes may appear in the background of images in the
dataset. To address this issue, we propose a new method called STRICT, which enhances
existing state-of-the-art approaches by incorporating an iterative self-training technique with
a consistency constraint to learn unannotated classes from available images.

The work presented in this chapter led to the publication of two works:

• Cermelli, F., Mancini, M., Xian, Y., Akata, Z., and Caputo, B. Prototype-based
incremental few-shot segmentation. In Proceedings of the 2021 British Machine Vision
Conference.

• Pastore, G., Cermelli, F., Xian, Y., Mancini, M., Akata, Z., and Caputo, B. A closer
look at self-training for zero-label semantic segmentation. In Proceedings of the 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (Workshop) (pp.
2693-2702).
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4.2 Incremental Few-Shot Segmentation

Collecting images and providing pixel-level annotations for real-world applications is often
a prohibitive cost. Ideally, we want to design segmentation models that are able to learn
new classes over time requiring only a few annotated images. Inspired by object detection
[122] and image classification [47] literature, in this section we aim to address the problem
introducing the practical scenario of Incremental Few-Shot Segmentation (iFSS). iFSS,
illustrated in Fig. 4.1,captures the challenges of previous settings and it has the goal to learn
a segmentation model able to learn new classes with few samples (as in Few-Shot Semantic
Segmentation (FSS) [143, 128, 37, 173, 195, 146]), while retaining good performance on
previous knowledge (as in Generalized FSS methods (GFSS) [185]) and without access to
old training data (as in Incremental Learning (IL) [103, 21]).

To evaluate iFSS, we have created an evaluation protocol and benchmark on two datasets,
varying the number of classes, images per class, and learning steps. We observe that
both IL and FSS methods are challenged when applied to this scenario, either focusing
on not forgetting old knowledge [103, 21] or failing to adapt the representation to the new
classes [47, 125, 146]. To address this issue, we propose Prototype-based Incremental Few-
Shot Segmentation (PIFS), which is the first method to combine prototype learning [47, 125]
with knowledge distillation [57]. PIFS exploits prototypes learning to incorporate new classes
from a few images, aggregating the pixel-level features of new classes to impring them as
weights on the classifier. Differently from existing few-shot methods [47, 125], during the
few-shot learning (FSL) steps the network is fine-tuned end-to-end to extend the feature
representation to account for the new classes. To prevent both overfitting and forgetting, we
introduce a novel prototype-based distillation loss that integrates new class probabilities in
the objective function. Additionally, we find that batch normalization [64] negatively affects
the performance in iFSS when using only a few iages, since data are no more i.i.d.. We solve
this issue replacing the standard normalization with batch-renormalization [63] in the FSL
steps training. Experiments demonstrate that PIFS consistently outperforms the baselines.

Our contributions are as follows. (1) We introduce the iFSS problem, which focuses
on learning from a limited number of images [143, 128, 37] while avoiding catastrophic
forgetting [102, 81, 21]. (2) We propose PIFS, which surpasses the shortcomings of IL and
FSL methods on iFSS by combining prototype learning (to initiate end-to-end training in
the FSL steps), knowledge distillation (incorporating new class scores to reduce forgetting
and prevent overfitting), and batch-renormalization (to address non-i.i.d. few-shot data).
(3) We construct an extensive benchmark for iFSS and demonstrate that PIFS consistently
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Fig. 4.1 Illustration of iFSS. A model is initially trained on a large labeled dataset to acquire a set of
base classes. Subsequently, for few-shot learning, it is able to segment new classes with only a few
annotated images and without access to the original datasets.

outperforms several IL and FSL methods on it. The code is available at http://github.com/
fcdl94/FSS.

4.2.1 Related Works

Few-shot Learning is the task of training models able to classify a set of classes from a
few samples. The two main approaches are optimization-based [130, 44, 110, 140] and
metric-learning [147, 47, 168, 152, 27, 125]. Optimization-based methods are related to
meta-learning, where a network is trained for a large variety of tasks such that it can solve new
learning tasks using only a small number of training samples. Metric-learning approaches,
on the other hand, have the goal of constraining the network embedding space such that
instances of the same class are close to each other, leading to fast adaptation to new classes by
already having a good representation. Recently, [27] demonstrated that fine-tuning a classifier
based on a fixed feature extractor, trained on a large number of classes, achieve comparable
performance to both optimization-based and metric-learning approaches while being much
simpler. PIFS is related to the metric-learning approaches, in particular to [147, 47, 125],
which learn to extract per-class prototypes from few images which are then used in the
classification layer.

Few-shot Segmentation is the extension of few-shot learning for the semantic segmenation
task. The standard approach for this task is metric-learning [143, 128, 37, 195, 173, 146, 197].
[37] adapted [147] to semantic segmentation by aggregating pixel-level feature representa-
tions to generate prototypes. [195, 173, 197] proposed refinement and iterative techniques to
improve the prototypes exploiting the few available images. While these methods focuses

http://github.com/fcdl94/FSS
http://github.com/fcdl94/FSS
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Table 4.1 Comparing different semantic segmentation settings. t denotes the current learning step, C t

denotes all classes labeled in the dataset T t while Y t = ∪t
s=0C

s.

Semantic Segmentation
Training Output

data few-shot class multi-step
Offline T 0 - Y 0 -
Few-Shot [143, 128, 37, 195] T t ✓ C t -
Generalized Few-Shot [185] ∪t

s=0T
s ✓ Y t -

Incremental Learning [103, 21] T t - Y t ✓

Incremental Few-Shot T t ✓ Y t ✓

only on learning novel classes, [146] proposed to update also the old classes prototypes
while computing the ones for new classes. Inspired by these works, PIFS employs prototype-
learning to generate an initialization for new-class classifier weights but, differently, it
fine-tunes the whole network using a distillation loss to reduce overfitting and forgetting.

Benchmarks. There are multiple settings with the goal of learning new classes in the
segmentation task, which shares some similarities with the proposed iFSS scenario. In
Few-Shot Segmentation (FSS) [143, 128, 37, 195, 173, 146, 197] the aim is to segment new
classes given only a few images depicting them. However, in FSS the training is performed
using an episodic scenario [168], focusing on segmenting only a novel class depicted by
annoteted images in the support set, often leading to a binary [143, 128, 146, 195] or 2-
way [37, 173, 197] segmentation problem, which is not practical for real use-cases. [185]
proposed Generalized Few-Shot Segmentation (GFSS) to overcome this issue. The goal of
GFSS is to segment train a network to classify both new and previously seen classes, learning
them respectively from a few and several annotated images. [185] focuses on an offline
setting, assuming that all the images can be accessed at every training step, that is often
unfeasible (Sec. 2.2). In contrast to these settings, we have seen in Sec. 3.2 that incremental
learning in semantic segmentation assumes to have a large dataset for training the new
classes without access to old datasets. The proposed iFSS setting relies on the intersection
of these benchmarks, requiring to learn new classes from a small dataset without accessing
old data. We note that there are settings similar to iFSS proposed for image classification
[47, 156, 134], object detection [122], and instance segmentation [46] but no previous work
extended the task to semantic segmentation. We summarize the differences between iFSS
and previous existing settings in Tab. 4.1.
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4.2.2 Incremental Few-Shot Segmentation (iFSS)

The objective of iFSS is to learn a model that assigns each pixel in an image its corresponding
semantic label in the set Y . This set is expanded over time with only a few pixel-level
annotated images for the new classes. Formally, let us denote Y t as the set of semantic
categories known by the model after learning step t, where learning step denotes a single
update of the model’s output space. A sequence of datasets {T 0, . . . ,T T} is received during
training, where T t = {(x,y)|x ∈X ,y ∈ (Y t)N}. We recall that x represents an image in
the space X ∈ IRN×3, with N is the number of pixels in the image (N = |I |). Each training
step introduces a set of novel classes C t such that C i∩C j = /0 for i ̸= j and Y t =

⋃t
s=0 C s.

The first dataset T 0 is large and contains multiple images for a many classes while all other
datasets T t are few-shot ones; that is, |T 0| ≫ |T t |, for all t ≥ 1. The model begins by
being trained on the large dataset T 0, then incrementally updated with few-shot datasets.
We refer to this first learning step on T 0 as the "base" step. It should be noted that at step t,
only dataset D t is available to the model. Two assumptions are made from this formulation:
i) each dataset provides annotations only for new classes; ii) pixels of old classes in Y t−1 are
labeled in dataset T t , but only if present. These assumption are different from the previous
work Sec. 3.2 since only a few images need to be fully annotated, being feasible also on
small budget.

4.2.3 Prototype-based iFSS

In this section, we introduce Prototype-based Incremental Few-Shot Segmentation (PIFS),
which is illustrated in Fig. 4.2. During the base step, PIFS learns a prototype-based model
using a standard training procedure. For the few-shot learning (FSL) steps, it first uses
prototype learning to initialize the weights of the classifiers for new classes and then fine-tunes
the network end-to-end with a prototype-based distillation loss while utilizing batch-renorm
to handle non-i.i.d. data.

Learning a prototype-based model. Our purpose is to discover a model fθ t that associates
each pixel with a probability distribution across the set of classes, i.e. fθ t : X → IR|I|×|Y

t |,
where t stands for the last learning step. We assume fθ t = gt ◦ et is composed of a feature
extractor et : X → IRN×d and a classifier gt : IRN×d → IRN×|Y t |, where d is the feature
dimension and gt is a softmax classifier with parameters W t = [wt

1, . . . ,w
t
|C t |]∈ IRd×|Y t |. This

definition encompasses most state-of-the-art segmentation architectures such as [26, 200].
At the initial step, we want to prepare fθ 0 to include new classes utilizing few examples. To
do so, we force the classifier weights to represent class prototypes. The prototypes should
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MAP

Few-shot Learning Step t

Batch
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Fig. 4.2 Illustration of PIFS. Initially, in the base step (top left) we train a prototype-based model with
the cross-entropy loss lCE . When few images of a new class are available (top-right), we use Masked
Average Pooling (MAP) to initialize the prototypes. We then fine-tune the network (bottom) with both
the cross-entropy loss and our prototype-based knowledge-distillation (lKD). To tackle the non-i.i.d.
few-shot data,we employ batch-renorm in the few-shot learning steps.

reflect the average pixel-level features of a class, so that the features extracted from (few)
pixels of the new classes give an accurate estimation of their respective classifier weights. In
accordance with prior work [47, 125], we achieve this through a cosine classifier. In the base
learning step, we employ the cross-entropy loss over all pixels to train the network:

ℓ0
CE(x,y) =−

1
N ∑

i∈I
log fθ 0(x)yi,i (4.1)

where fθ 0(x)c,i indicates the class c probability for the i-th pixel of x. To compute fθ t (x)c,i

we use a normalize using the softmax the cosine similarity between the features and the class
prototype wt

c:

fθ t (x)c,i = gt(et(x))c,i =
exp(st

c,i)

∑k∈C t exp(st
k,i)

, st
c,i = τ

et
i(x)

⊺wt
c

||et
i(x)|| ||wt

c||
(4.2)

where et
i(x) denotes the features obtained for the pixel i, and τ is a temperature value that

scales the cosine similarity in the range [−τ,τ]. The loss in Eq. (4.1) forces the model
to minimize the cosine distance between a class prototype and its feature representation,
ensuring their compatibility for the few-shot learning steps.

Initializing prototypes of new classes. At the few-shot learning step, our goal is estimate
the prototype wk for the class k ∈ C t employing the features representation of it from the
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dataset T t . Thus, the new class prototypes are computed aggregating the features extracted
for each pixel of the class k present in images of T t . To this aim, we follow previous works
[146, 37, 173] employing masked average pooling (MAP) to initialize the prototypes:

wt
k = MAPk(T

t) =
1
|T t

k |
∑

(x,y)∈T t
k

∑i∈I Mk,i(y)
et

i(x)
||et

i(x)||

∑i∈I Mk,i(y)
, (4.3)

where Mk(y) is a binary mask that indicates which pixels belong to class k, and T t
k is a subset

of the dataset T t where each image contains at least one pixel of class k. Despite being
simple, this strategy demonstrated to provide a good estimate of the class representation
that can be used as a classifier. Note that it is not needed in standard IL, where multiple
images are availabe, but is crucial in iFSS, where starting from random weights would lead
to overfitting the few images.

Prototype-based Distillation. Despite the feature extractor is able to extract good prototypes
to initialize the classifier, it may have a sub-optimal representation of the novel classes, given
their difference with the previous ones. To improve its expressivity, in the few-shot learning
steps we fine-tune the model end-to-end. However, as demonstrated in previous works
[47, 122], end-to-end training using only a few images may lead to overfitting the new classes
and forgetting the old ones. To address both issues, we design a novel distillation loss that
avoid forgetting by regularizing the model output while keeping into account the prototypes
for the new classes to avoid overfitting.

We train the model in the few-shot learning steps using the following objective function.
Given a pair (x,y) ∈T t , we compute:

ℓt(x,y) = ℓt
CE(x,y)+λℓt

KD(x, fθ t , fΘ) (4.4)

where λ is a hyperparameter, ℓt
CE represents the loss in Eq. (4.1) over Y t . ℓt

KD employs fΘ

as a teacher model to compute the knowledge distillation loss. In previous works [103, 21]
the teacher was a copy of the model frozen after the previous learning step, that is fΘ = fθ t−1 .
Differently, we aim to fully exploit the properties of prototype learning and we define fΘ

as the model after the inizialization of the prototypes ofr the new classes. Formally, we set
fΘ = f̂θ t , where f̂θ t = ĝt ◦ et−1 and the parameters Ŵ t = [ŵt

1, . . . , ŵ
t
|C t |] of ĝt as:

ŵt
k =

wt−1
k , if k ∈ C t−1

MAPk(T
t) otherwise.

(4.5)
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The distillation loss ℓt
KD is then defined as:

ℓt
KD(x, fθ t , fΘ) =−

1
N ∑

i∈I
∑

c∈C t
fΘ(x)c,i log fθ t (x)c,i. (4.6)

Note that in Eq. (4.6), the teacher produces scores for both old classes in Y t−1 and new
ones in C t that are used in the distillation loss. This presents two advantages w.r.t. standard
knowledge distillation in IL: (i) it alleviates forgetting by forcing the current model to keep
scores for old classes similar to the old model, (ii) it encourages to maintain the prototypes of
new classes close to their initial value given by et−1, reducing overfitting on the few images
of new classes.

Coping with non-i.i.d. data. Despite the regularized training, we found that in extreme
few-shot scenarios (e.g. 1-shot settings) a main cause of the drop in performance is the
fact that the data does not follow anymore the independent and identically distributed
(i.i.d.) assumption: we have small datasets where most pixels belong to new classes, thus
the input is not identically distributed. However, having i.i.d. data, in fact, is crucial for
standard normalization techniques, such as batch-normalization (BN) [64], that are frequently
employed in neural networks. In practice, BN layers normalize each value of the input zc

i ,
where c indicates the channel and i its spatial position, to have a learnable mean and standard
deviation:

ẑc
i = γ

zc
i −µc

σ c +β , (4.7)

where γ and β are the learnable parameters, and µc and σ c are, respectively, the mean and
standard deviation across all the images in the batch on the channel c. During inference,
the BN layers replace the batch statistics with the running statistics, which are the moving
averages of the mean µc

r and standard deviation σ c
r :

ẑc
i = γ

zc
i −µc

r

σ c
r

+β . (4.8)

A non i.i.d. input leads to a drift in the statistics of the BN layers in the network, making
them poor and biased and harming the performance.

Two simple solutions to solve this issue are either freezing and using the global BN
statistics of the base step both at training and inference, or using the one computed on the
new dataset during training but without their value at infrerence time. We found that the
former solution causes important training instability and the latter misaligns the features
extracted for the new classes at training and test time, leading to poor performance. Ideally,
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during the FSL steps the features should be normalized without: i) shifting the statistics
toward the new class data, harming old class performance; ii) disaligning the training and
inference normalization statistics. To solve this issue, taking inspiration from the incremental
learning literature [95], we propose the use of batch-renorm (BR) [63]. BR revisits BN by
normalizing a feature c with the running statistics in place of the batch statistics:

ẑc
i = γ(

zc
i −µc

σ c
σ c

σ c
r
+

µc−µc
r

σ c
r

)+β , (4.9)

where µc
r and µc are the global and batch mean, and σ c

r and σ c the global and batch standard
deviation. It is important to note that σ c

σ c
r

and µc−µc
r

σ c
r

are treated as constants for the purposes
of gradient computation . Moreover, after the base step we freeze µc

r and σ c
r to avoid a

shifting toward the new class statistics that would damage the model performance.

4.2.4 Experiments

Experimental Protocol. In order to assess the performance of a model, we need a large
dataset containing an initial set of classes and one or more few-shot datasets containing new
classes. We create such an experimental setting on the Pascal-VOC 2012 dataset containing
20 classes, and the COCO dataset containing 80 thing classes. Following previous work
on FSS [195, 173], we consider 15 and 60 of the classes as Base and 5 and 20 as New, for
the VOC and COCO datasets respectively. We propose two protocols, each starting with
pretraining on the Base classes: in one there is a single FSL step on all New classes, while
in the other we have multiple steps: 5 steps of 1 class on the VOC dataset and 4 steps of
5 classes on the COCO dataset. We divide the VOC dataset into 4 folds of 5 classes and
the COCO dataset into 4 folds of 20 classes, running experiments 4 times by considering
each fold in turn as the set of new classes. We name the single-step settings VOC-SS and
COCO-SS, and the multi-step VOC-MS and COCO-MS.

We looked at how well the model performs on different settings, using 1, 2 or 5 images in
the FSL step. We averaged the results of multiple trials, each using a different set of images.
The images were randomly sampled from the set of images containing at least one pixel of
the new class, without imposing any constraint about the presence of old classes. We only
used the provided few-shot images (both for weight-imprinting and for training) without
using other images. To ensure that the model does not use pixels from new classes in the
base step, we excluded from the initial dataset all the images containing pixels of new classes.
Finally, we report the results on the whole validation set of each dataset, considering all the
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seen classes. We assessed a methods performance using three metrics based on the mean
intersection-over-union (mIoU) as in GFSS [185]: mIoU on base classes (mIoU-B), mIoU on
new classes (mIoU-N), and the harmonic mean of the two (HM). As in [21, 103], we report
all the results after the last training step.

Baselines. We consider nine baselines to cmpare our method: three few-shot classification
(FSC) methods [125, 47, 161], two (G)FSS methods [146, 185], three IL methods [81, 103,
21] and naïve fine-tuning (FT). The models we compare are either state-of-the-art in the
setting they were proposed [47, 161, 146, 185, 103, 21] or simple yet effective baselines
(e.g. [125, 81]). FSC methods that we employ are Weight-imprinting [125] (WI) and
Dynamic WI [47] (DWI), that inject prototypes in the classification layer of the network;
Rethinking FSL [161] (RT), that emply a frozen representation and only fine-tunes the
classifier for new classes. From the FSS literature, we adapt Adaptive Masked Proxies [146]
(AMP), a WI variant updating also classification weights of the old classes, and Semantic
Projection Network [185] (SPN), a method designed for GFSS that projects the feature
representation in a semantic space , such as word embeddings. Finally, the IL methods
are Learning without Forgetting (LwF) [81], applying a standard distillation (KD) [57] on
the class probabilities; Incremental Learning Techniques (ILT) [103], that performs KD
at feature-level; and Modeling the Background (MiB) that has been described in Sec. 3.2.
Note that, for MiB, the revised cross-entropy of MiB reduces to the standard cross-entropy
formulation when old classes are annotated.

Implementation details. We use the Deeplab-v3 [28] with ResNet-101 [55] for all the
experiments. To reduce the memory footprint, we follow the implementation of [138],
unifying normalization and activation functions. We consider as feature extractor the ResNet-
101 followed by the ASPP and as classifier the 1×1 final convolutional layer. The ResNet-101
has been initialized on ImageNet dataset following the standatd practice of FSS and ILSS
[37, 143, 173, 185, 146, 21]. We train all the methods in the base step with a learning rate
10−2 and batch size 24 for 30 epochs on Pascal-VOC and 20 epochs on COCO. In settings
with a single FSL step, we update the model using batch size min(10, |Tn|) for 1000 iteration
with learning rate 10−3. In settings with multiple FSL steps, we fine-tune the model using a
batch size equals to min(10, |Tn|) for 200 iteration each step, employing a learning rate of
10−4. To ensure fair comparison, all the baselines have been re-implemented by us using the
same segmentation network and training hyperparameters. The results are reported using
single-scale full-resolution images, without applying any post-processing step.

iFSS: Single few-shot learning step. Table 4.2 reports the results on the single few-shot
learning (FSL) step setting of 5 classes on VOC-SS and of 20 classes on COCO-SS. PIFS
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Table 4.2 iFSS: mIoU on single few-shot learning step scenarios.

VOC-SS COCO-SS
1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

Method mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM
FT 58.3 9.7 16.7 59.1 19.7 29.5 55.8 29.6 38.7 41.2 4.1 7.5 41.5 7.3 12.4 41.6 12.3 19.0

FS
C

WI [125] 62.7 15.5 24.8 63.3 19.2 29.5 63.3 21.7 32.3 43.8 6.9 11.9 44.2 7.9 13.5 43.6 8.7 14.6
DWI [47] 64.3 15.4 24.8 64.8 19.8 30.4 64.9 23.5 34.5 44.5 7.5 12.8 45.0 9.4 15.6 44.9 12.1 19.1
RT [161] 59.1 12.1 20.1 60.9 21.6 31.9 60.4 27.5 37.8 46.2 5.8 10.2 46.7 8.8 14.8 46.9 13.7 21.2

FS
S AMP [146] 57.5 16.7 25.8 54.4 18.8 27.9 51.9 18.9 27.7 37.5 7.4 12.4 35.7 8.8 14.2 34.6 11.0 16.7

SPN [185] 59.8 16.3 25.6 60.8 26.3 36.7 58.4 33.4 42.5 43.5 6.7 11.7 43.7 10.2 16.5 43.7 15.6 22.9

IL

LwF [81] 61.5 10.7 18.2 63.6 18.9 29.2 59.7 30.9 40.8 43.9 3.8 7.0 44.3 7.1 12.3 44.6 12.9 20.1
ILT [103] 64.3 13.6 22.5 64.2 23.1 34.0 61.4 32.0 42.1 46.2 4.4 8.0 46.3 6.5 11.5 47.0 11.0 17.8
MiB [21] 61.0 5.2 9.7 63.5 12.7 21.1 65.0 28.1 39.3 43.8 3.5 6.5 44.4 6.0 10.6 44.7 11.9 18.8
PIFS 60.9 18.6 28.4 60.5 26.4 36.8 60.0 33.4 42.8 40.8 8.2 13.7 40.9 11.1 17.5 42.8 15.7 23.0

Table 4.3 iFSS: average mIoU across steps on multi few-shot learning step scenarios.

VOC-MS COCO-MS
1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

Method mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM
FT 47.2 3.9 7.2 53.5 4.4 8.1 58.7 7.7 13.6 38.5 4.8 8.5 40.3 6.8 11.6 39.5 11.5 17.8

FS
C

WI [125] 66.6 16.1 25.9 66.6 19.8 30.5 66.6 21.9 33.0 46.3 8.3 14.1 46.5 9.3 15.5 46.3 10.3 16.9
DWI [47] 67.2 16.3 26.2 67.5 21.6 32.7 67.6 25.4 36.9 46.2 9.2 15.3 46.5 11.4 18.3 46.6 14.5 22.1
RT [161] 49.2 5.8 10.4 36.0 4.9 8.6 45.1 10.0 16.4 38.4 5.2 9.2 43.8 10.1 16.4 44.1 16.0 23.5

FS
S AMP [146] 58.6 14.5 23.2 58.4 16.3 25.5 57.1 17.2 26.4 36.6 7.9 13.0 36.0 9.2 14.7 33.2 11.0 16.5

SPN [185] 49.8 8.1 13.9 56.4 10.4 17.6 61.6 16.3 25.8 40.3 8.7 14.3 41.7 12.5 19.2 41.4 18.2 25.3

IL

LwF [81] 42.1 3.3 6.2 51.6 3.9 7.3 59.8 7.5 13.4 41.0 4.1 7.5 42.7 6.5 11.3 42.3 12.6 19.4
ILT [103] 43.7 3.3 6.1 52.2 4.4 8.1 59.0 7.9 13.9 43.7 6.2 10.9 47.1 10.0 16.5 45.3 15.3 22.9
MiB [21] 43.9 2.6 4.9 51.9 2.1 4.0 60.9 5.8 10.5 40.4 3.1 5.8 42.7 5.2 9.3 43.8 11.5 18.2
PIFS 64.1 16.9 26.7 65.2 23.7 34.8 64.5 27.5 38.6 40.4 10.4 16.5 40.1 13.1 19.8 41.1 18.3 25.3

achieves the top results on every dataset and shot, outperforming the best IL method by
3.2% and 5.6% in HM, and the best FSL one by 6% and 2.6%, on VOC-SS and COCO-SS
respectively. SPN [185] is comparable with PIFS on 2 and 5 shot settings (+0.1 HM on VOC-
SS 2-shot), but it uses external informations (word embeddings) to improve generalization
on new classes. However, PIFS outperforms SPN with a margin of +2.8% HM on VOC-
SS, and +2% HM on COCO-SS for 1-shot settings, demotrating its superiority in this
challenging setting. Some methods (e.g., DWI, ILT) surpass PIFS in terms of mIoU-B
metric; however, they achieve suboptimal results when it comes to new classes due to
either fixed representations (e.g., DWI) or lack of prototype learning (e.g., ILT). While
suffering a slight decrease in mIoU-B, PIFS shows the best performance for new classes while
providing an optimal tradeoff between learning and remembering capabilities. Figure 4.3
compares qualitative results on VOC-SS 1-shot for different methods; WI and DWI with
fixed representations either focus too much on context (e.g., horse, third row) or assign pixels
to related classes (e.g., bicycle vs motorbike, second row), which is also observed in ILT and
SPN (e.g., dog, last row). On the other hand, PIFS provides precise segmentation masks even
when train samples differ significantly from test ones (e.g., cat, last row).

iFSS: Multiple few-shot learning steps. Table 4.3 reports the average performance obtained
under multiple FSL step settings, that is 5 steps of 1 class (VOC-MS) and 4 steps of 5 classes
(COCO-MS). VOC-MS is an extremely challenging setting: it contains few training images



4.2 Incremental Few-Shot Segmentation 63

Train Test WI DWI ILT SPN PIFS GT

Fig. 4.3 Qualitative results on the VOC-SS 1-shot setting.

(as little as one in the 1-shot case) that belongs only to one class, resulting in a clearly non-
i.i.d. setting. The PIFS approach has demonstrated a marked improvement compared to the
baseline methods, achieving an average 12.9% and 5.0% improvement in HM over the best
IL method on VOC-MS and COCO-MS respectively, and outperforming the best FSS method
by 8.3% and 0.9% on the same datasets. Additionally, PIFS has consistently outperformed
all non end-to-end methods, including WI, DWI, AMP, and RT, by an average of 2% on new
classes, showcasing the effectiveness of fine-tuning in even the most challenging scenario
with only one training image. On the other hand, FT failed in this scenario, emphasizing
the importance of prototype learning and the distillation loss in avoiding overfitting on new
classes and preserving knowledge of old classes. IL methods have struggled in learning
new classes, showing improvement only in COCO-MS 2 and 5 shots due to their knowledge
distillation losses (for example, a 1.2% improvement in HM on 2-shot and 5.1% improvement
on 5-shot for ILT). However, they still lag behind PIFS, with a 7% and 2.4% reduction in HM
on COCO-MS 2-shot and 5-shot respectively. The gap between PIFS and the best IL method
becomes even more pronounced in VOC-MS and 1-shot settings, with PIFS outperforming
the best IL method by 20.5% in HM on VOC-MS and 26.7% in HM on COCO-MS. This
is due to the difficulty of learning new classes from scratch with limited training images
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Table 4.4 Ablation of the different component of PIFS. WI: weight imprinting. BR: batch-
renormalization. PD: prototype-based distillation loss. KD: [81]. L2: [103].

VOC-SS 1-shot COCO-SS 1-shot
FT WI BR ℓKD mIoU-B mIoU-N HM mIoU-B mIoU-N HM
✓ 58.3 9.7 16.7 41.2 4.1 7.5
✓ KD 61.5 10.7 18.2 43.9 3.8 7.0
✓ L2 61.3 10.4 17.8 43.3 3.3 6.1

✓ 62.7 15.5 24.8 43.8 6.9 11.9
✓ ✓ 56.6 14.0 22.5 39.9 7.4 12.5
✓ ✓ PD 57.6 14.7 23.4 40.5 7.9 13.2
✓ ✓ ✓ 59.9 17.7 27.4 39.8 7.4 12.5
✓ ✓ ✓ KD 62.1 18.2 28.1 41.6 7.4 12.6
✓ ✓ ✓ L2 61.9 18.4 28.3 41.2 7.0 12.0
✓ ✓ ✓ PD 60.9 18.6 28.4 40.8 8.2 13.7

without leveraging prototype learning. Finally, SPN has shown a tendency to forget when
learning from small datasets (e.g., VOC-MS 1-shot), while PIFS still outperformed it (i.e.
+12.8% HM) despite not utilizing external knowledge.

Ablation study. In this section, we report an ablation study assessing the contribution of the
method components. We compared prototype initialization (WI) with a standard random
classifier, end-to-end training (FT), batch-renorm (BR) instead of batch normalization, and
our prototype knowledge distillation (PD) to standard ones, such as KD, distilling on old
class probabilities [81], and L2, acting on the features extracted from et−1 and et , losses.
The results on the challenging 1-shot benchmarks of VOC-SS and COCO-SS can be seen in
Tab. 4.4. The results of FT, FT+KD, and FT+L2 indicate that starting with random weights
in the classifier leads to poor performance on new classes. However, WI alone achieves
good results by leveraging prototype learning and avoiding forgetting. When the initialized
network is trained (FT+WI), there is an improvement compared to FT alone (at least +5% in
HM), but there is also a decrease in performance on base classes (nearly 6% and 4% HM on
COCO-SS and VOC-SS, respectively) due to forgetting. The table shows that both PD and
BR can mitigate forgetting. PD improves results on base classes in both datasets, while BR is
particularly effective when few images are available (27.4% HM on VOC-SS). Furthermore,
when applied together, they lead to the best performance on both datasets (13.7% HM on
COCO-SS). Finally, we compared our distillation loss (PD) to KD and L2 losses. Although
combining them with WI improves performance, our PD loss outperforms both (1.7% HM
over L2 and 1.1% HM over KD on COCO-SS), demonstrating the importance of designing a
distillation loss that also reduces overfitting of new class prototypes.
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Table 4.5 iFSS: mIoU on single few-shot learning step scenarios with background shift. PIFS* uses
the revised cross-entropy loss defined in Sec. 3.2.

VOC-SS-strict COCO-SS-strict
1-shot 2-shot 5-shot 1-shot 2-shot 5-shot

Method mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM mIoU-B mIoU-N HM
FT 55.0 10.2 17.2 55.5 19.2 28.6 43.7 26.8 33.2 35.3 4.5 8.0 32.8 7.4 12.1 26.9 11.1 15.7

FS
C

WI [125] 62.7 15.5 24.8 63.3 19.2 29.5 63.3 21.7 32.3 43.8 6.9 11.9 44.2 7.9 13.5 43.6 8.7 14.6
DWI [47] 64.3 15.4 24.8 64.8 19.8 30.4 64.9 23.5 34.5 44.5 7.5 12.8 45.0 9.4 15.6 44.9 12.1 19.1
RT [161] 60.1 11.0 18.6 62.3 19.7 29.9 61.0 26.0 36.5 46.0 4.0 7.3 46.5 5.1 9.2 46.8 7.5 13.0

FS
S AMP [146] 56.6 16.6 25.7 54.6 18.8 28.0 51.6 18.2 26.9 42.7 6.8 11.8 42.7 8.2 13.7 42.4 10.0 16.2

SPN [185] 56.4 16.4 25.4 57.1 25.3 35.1 48.7 30.2 37.3 38.1 7.0 11.8 37.0 10.4 16.3 33.2 15.1 20.8

IL

LwF [81] 60.6 11.2 18.9 62.8 19.5 29.8 56.2 29.7 38.9 43.0 4.5 8.1 42.6 8.3 13.9 40.6 13.7 20.5
ILT [103] 63.1 14.1 23.0 63.6 23.8 34.7 58.9 31.6 41.2 45.2 5.1 9.2 45.0 8.0 13.6 44.0 13.3 20.4
MiB [21] 61.0 6.1 11.1 63.6 13.7 22.6 65.0 29.4 40.5 43.7 4.2 7.7 44.2 7.1 12.3 44.4 13.8 21.1
PIFS 59.1 18.3 27.9 58.8 26.2 36.2 57.2 32.6 41.5 34.9 8.9 14.2 34.6 11.7 17.4 32.6 15.6 21.1
PIFS* 60.3 18.0 27.8 60.3 26.3 36.6 59.6 33.1 42.5 38.8 8.8 14.4 39.2 11.8 18.1 38.4 16.1 22.6

iFSS with annotations only for new classes. Despite annotating at pixel-level only a few
images highly reduces the labeling cost, it might be not feasible in some scenarios, such as
when annotation requires an expert (such as a doctor in medical images).In this section, we
assess the ability of our model to learn new classes without forgetting when old class pixels
are not annotated in the FSL steps. Note that this setting follows the definition of ILSS in
Sec. 3.2, where old class pixels are considered as background, introducing the issue of the
shifting semantic of the background class, exacerbating catastrophic forgetting. We follow
the disjoint protocol described in Sec. 3.2, where we exclude all the the images containing
pixels of new classes from the base step.

To better deal with this setting, we introduce PIFS*, that replace the cross-entropy
loss with the revised cross-entropy loss introduced in Sec. 3.2, effectively addressing the
background-shift issue. The results for the single-step configurations of VOC (VOC-SS-
strict) and COCO (COCO-SS-strict) are shown in Tab. 4.5. These results consider 1, 2 or
5 images in the FSL steps. The results show that PIFS and PIFS* attain the best balance
between learning and forgetting, obtaining the highest HM across all configurations. In
particular, PIFS* outperforms the best IL method by an average of 2.7% and 4% in terms
of HM for VOC and COCO, respectively, and outperforms the best FSL method by 5.7%
and 2.5% for the same datasets. SPN struggles to handle the background shift, resulting
in poor performance in mIoU-B, where PIFS* outperforms it by 6% on VOC and 2.7% on
COCO on average. Methods that only calculate classifier weights from new class pixels
(i.e. WI, DWI) remain unaffected by old class annotations and have the same performance
as the non-strict setting (Tab. 4.2). However, PIFS outperforms the best of them (DWI) by
5.7% and 2.5% on average in HM for VOC and COCO, respectively. Comparing PIFS and
PIFS*, it is observed that addressing the background shift helps in avoiding forgetting the
old classes, as demonstrated by the higher mIoU-B results obtained by PIFS*: it outperforms
PIFS by 1.7% on VOC and 4.7% on COCO on average.
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4.3 Zero-label Semantic Segmentation

A challenging goal of deep learning is to generate models able to predict novel classes
during test time without requring any additional training step. This field of study is known
in literature as zero-shot learning or zero-label semantic segmentation (ZLSS) [185, 15, 51]
when applied to the semantic segmentation task. The ZLSS setting assumes that a model
is trained on a dataset containing a set of seen classes for which pixel-level annotations are
provided. Then, during evaluation, the model is required to predict unseen classes, i.e. classes
for which it has never being provided any label during training. Despite the challenging
task, the ZLSS goal is to segment only unseen classes, discarding and forgetting all the
accumulated knowledge of seen classes. For this reason, to truly learn novel classes and
increase the model capabilities over time, the Generalized Zero-Label Semantic Segmentation
(GZLSS) setting has been proposed with the goal of evaluating segmentation models on both
seen and unseen classes. This setting is extremely challenging since it introduce a sever
class-imbalance issue: the model has seen multiple examples of seen classes during training
but it has been never explicitly trained to predict the unseen classes, leading to a significant
performance drop on them. Previous methods address the issue either by using external
information for the unseen classes [185] or by employing a generative model that synthesize
features of unseen classes [51, 15]. Despite they obtained promising results, previous works
did not considered that the training set may include many unlabeled pixels from unseen
classes due to the large amount of class co-occurrences in semantic segmentation, that can be
exploited to improve performance on unseen classes.

We propose to capture the latent information about unseen classes by supervising the
model with self-produced pseudo-labels for the unlabeled pixels. Generating accurate pseudo-
labels for unseen classes is extremely challenging since the model is highly uncertain on them
since it has never received supervision on these classes. Consequently, using a pretrained
GZLSS model (e.g., SPNet [185]) produce very noisy pseudo-labels and may compromise the
performance (as shown in Figure 4.4). To reduce the noise and produce better pseudo-labels,
we introduce an efficient Self-Training with Consistency Constraint (STRICT) method:
we consider a pseudo-label as correct only if the model predict it on multiple augmented
versions of the image and we periodically update the pseudo-label generator, progressively
improving the performance on the unseen classes. Through an extensive experimental study,
we show that STRICT outperforms previous works on two different dataset, PascalVOC12
and COCO-stuff, achieving a new state of the art.

Our main contributions are: (a) we devise STRICT, a method that employs a self-training
pipeline to obtain strong supervision for unseen classes from unlabelled pixels in GZLSS
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Fig. 4.4 In generalized zero-label semantic segmentation, pixels not annotated are ignored although
they might be relevant at test-time since they belong to unseen classes. We propose to pseudo-label
the unlabeled pixels on training images employing the Self-Training with Consistency Constraint
(STRICT) method. Labeled pixels and GT refers to the masked and actual ground truth, respectively.
SPNet and STRICT indicates the pseudo-labeled masks produced by SPNet [185] and STRICT.

exploiting a consistency constraints on different image augmentations; (b) we show that
a model fine-tuned through such process progressively enhances its ability in predicting
unseen classes, and consequently the quality of pseudo-labels; (c) we extensively analyze
our approach on two datasets, outperforming previous works.

4.3.1 Related Works

Zero-Shot Learning. The models for Zero-Shot Learning (ZSL) can be grouped into
four categories based on their approach for transferring knowledge from seen to unseen
categories [183]. The first category utilizes a two-stage method to calculate posterior class
probabilities using intermediate attributes obtained from images, which are further processed
by additional classifiers [74]. The second category views the task as a problem of visual-
semantic embedding, evaluating the compatibility between the visual and semantic spaces,
such that proximity indicates a semantic relationship [182, 5, 4, 116, 199]. The third category
employs a class-level semantic conditioned generator to provide synthetic CNN features for
unseen classes during the training of a discriminative classifier [184, 14]. The final category
addresses the task in a purely generative manner, modeling the class-conditional distributions
to capture semantic relationships between seen and unseen classes [10, 166, 79, 108].



68 Few-Shot or Zero-Label Semantic Segmentation

Generalized Zero Label Semantic Segmentation. Only three methods directly tackle
GZLSS: SPNet [185], ZS3 [15], and CaGNet [51]. SPNet adopts an approach of the second
category. Inspired by [116], it uses a segmentation model to extract visual features, which are
then projected into semantic features through matrix multiplication with a word embedding
representation. ZS3 and CaGNet extend the feature-generative method used in [14] for
classification. ZS3 uses a Graph Convolutional Network to incorporate contextual prior
knowledge about category relationships (e.g. "mouse is near the keyboard"), while CaGNet
does the same but at a pixel level, feeding the feature generator with a contextual latent code.
While ZS3 and CaGNet do not directly address GZLSS, they offer an extension of their
approach that do so through self-training (ZS5 and CaGNet + ST, respectively). In this study,
we build upon SPNet since it is a simple and flexible approach and we demonstrate how to
improve its prediction capabilities on unseen classes.

Self-training in semantic segmentation. Pseudo-labeling has been widely used as a self-
supervision strategy in poorly annotated computer vision scenarios [75, 9, 123, 151, 65].
The concept of self-training based on consistency has been widely used in the field of semi-
supervised semantic segmentation [205, 106, 113, 29]. In the PseudoSeg method [205],
pseudo-labels are generated for unlabeled pixels by fusing different predictions from the
decoder and Grad-CAM. The consistency of these predictions is then imposed on multiple
augmented images. On the other hand, the approach presented in [106] involves adversarial
training of a segmentation model that serves as a generator to improve the predictions for
unlabeled data. The discriminator is used to distinguish between real and fake predictions
and also as a measure of quality to select the most confident predictions. In [113], the
predictions are made invariant over different encoder’s output perturbations. Lastly, [29]
demonstrates that iteratively applying pseudo-labeling improves scene segmentation in urban
video sequences. In addition, self-training has been employed in transductive ZSL and
GZLSS. [196] operates in a transductive ZSL scenario, generating pseudo-labels using the
model confidence. In transductive GZLSS, [87, 9] employ an unbiased loss to filter and
enhance the quality of pseudo-labels. On the other hand, ZS5 and CaGNet filter out a
percentage of the less confident pseudo-labels produced for unlabeled pixels. Similarly, we
aim to produce pseudo-labels for unseen classes on unlabeled pixels improving the robustness
and generalization ability of GZLSS methods.
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4.3.2 STRICT: Self-training with Consistency Constraints

Problem definition. Let S = {1, . . . ,C s} and U = {C s + 1, . . . ,C s +C u} denote re-
spectively the disjoint label spaces of seen and unseen classes. T = {(x,y)|x ∈X ,y ∈
{{b}∪S N} is the training set where x is an image made of N pixels and y is its correspond-
ing label mask whose value yi at each pixel i ∈I (N = |I |) is its corresponding class label
belonging to one of the seen classes S or the unlabeled class denoted as b. For each class
is also provided a word embedding (e.g., word2vec [105]) associated to its class name. We
denote the word embedding matrices of seen and unseen classes with W s ∈ RD×|C s| and
W u ∈ RD×|C u|, where D is the dimension of the word embedding space. Given T , W s and
W u, GZLSS has the goal to learn a network capable of making pixel-wise predictions among
both seen and unseen classes.

Semantic projection network. SPNet [185] approach is made of a visual-semantic embed-
ding network and a semantic projection layer. The former, denoted as eθ , is a segmentation
backbone (such as DeepLab [26]) that maps the input image x to the visual embedding space,
that is eθ (x) ∈ RD×N . The semantic projection layer computes the product between the visual
embedding and word embeddings. Then, the softmax normalizes the outputs to obtain the
posterior probability over the seen classes:

P(ŷi = c|x;W s) =
exp(wT

c eθ (x)i)

∑c′∈S exp(wT
c′eθ (x)i)

(4.10)

where i is a pixel in I , wc ∈ RD represents the c-th row of the matrix W s and corresponds
to the class c word embedding. The standard cross-entropy loss is computed for a training
sample (x,y) as:

ℓCE =− 1
N ∑

i∈I
1[yi ̸= b] logP(ŷi = yi|x) (4.11)

where yi is the ground-truth at pixel i and 1[yi ̸= b] is the indicator function (1 if yi ̸= b

otherwise 0). We remark that pixels from unseen classes might be present, but not labeled
(i.e., yi = b), in the image x.

At test time, we obtain the model probabilities employing word-embeddings for both
seen and unseen classes. The prediction is then obtained with the following:

argmax
c∈S∪U

P(ŷi = c|x; [W s,W u]) (4.12)
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Algorithm 1: STRICT algorithm.
P0← ZLSS pretrained model;
Pt ← ZLSS model at iteration t;
Pt−1← ZLSS model at previous iteration (t-1);
{A1(·), ...,Ak(·)}← data augmentations;
T ← train set;
T ← number of iterations;
for t = 1,2, ...,T do

foreach (x,y) in T do
ŷ←model prediction Pt−1(x);
A← augmentations {A1(x), ...,Ak(x)};
Γ← hard pseudo labeled masks{ȳk, ...ȳK};
ȳ← A−1

1 (ȳk)∩ . . .∩A−1
K (ȳK);

ℓ← ℓCE(x,y)+λℓCE(x, ȳ);
Pt ← SGD model update;

end foreach
Pt−1← Pt

end for

Consistent pseudo-label generation. SPNet [185] is trained optimizing Eq. (4.11) on the
seen classes being given the training set T and word embeddings W s. A major difference
with standard ZSL setting, however, is that in the training set T appear labeled pixels of
seen classes but also unlabeled pixels of unseen classes, which are not exploited by SPNet
and ignored when computing the training loss. In practice, the unseen classes are actually
present in the dataset but they do not contribute to the training. To take into account the
presence of unseen classes, we introduce an effective pseudo-labeling technique to provide
a pseudo-annotation for the unlabeled pixels in the training set, i.e. for pixels i in T with
yi = b. We assume that the seen classes have been completely annotated in the training set,
and the unlabeled pixels can only belong to unseen classes. The pseudo-labeling strategy
thus produces labels only for the unseen classes. Specifically, for each of the training
images containing unlabeled pixels, the pseudo-label generator G computes ȳ = G(x), where
ȳ∈ {{b},U }N denotes the pseudo-label mask for the image x and ȳi = b if the pixel i belongs
to a seen class.

Directly obtaining the pseudo-labels from the model using its predictions is harmful
since the model is highly noisy (as shown in Fig. 4.4). Inspired by previous works in
the segmentation literature [113, 157, 129, 107, 73], we propose to reduce the noise by
employing an approach based on consistency regularization. We exploit the simple principle
that, if the model makes coherent prediction on multiple augmented versions of the same
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Fig. 4.5 An overview of STRICT: during the t-th iteration, the generator Gt produces a mask ȳk for the
unlabelled pixels of each of the K augmentations {A1(x), . . . ,Ak(x)}. The final pseudo-label mask ȳ
is obtained computing as the intersection among them. The model Pt is fine-tuned with the pixel-wise
cross-entropy loss computed both on labeled (y) and pseudo-labeled (ȳ) pixels. At the iteration (t +1),
Pt will be used for the pseudo-label generator.

image, it is very likely that the prediction is correct. Formally, providing the model with
an image x containing unlabeled pixels, K different data augmentations (denoted as Ak(·))
are applied to obtain K augmented images, denoted as {A1(x), . . . ,AK(x)}. A1 indicates the
identity mapping and we consider simple data augmentation techniques to generate the K
versions such as horizontal mirroring and resize with different scaling factors. Intuitively,
these data augmentations only transform the image spatially and the semantic content of each
pixel remains the same. To generate the pseudo-labels, we compute the model predictions
for every unlabeled pixels in each augmented image:

ȳk
i = argmax

c∈U
P(ŷi = c|Ak(x);W u) ∀k ∈ {1, . . . ,K},∀i ∈I . (4.13)

This operation led to a set of K predictions {ȳk, . . . , ȳK}. We then merge the K predictions to
obtain the pseudo-label by applying the intersection operation:

ȳ = A−1
1 (ȳk)∩ . . .∩A−1

K (ȳK), (4.14)

where A−1
k refers the inverse data augmentation function that reverts the distortions to return

in the original pixel coordinates. The intersection operator filters out the prediction that
are inconsistent across multiple image versions, reducing the noise in pseudo-labels. While
similar consistency regularization techniques have been explored in semi-supervised literature
[12], we are the first to apply the consistency constraints for the GZLSS task.
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Iterative self-training. Our goal is to exploit the ground-truth and pseudo-labels to iteratively
fine-tune the model to train it both on seen and unseen classes. Formally, we start from t = 0
with the model that is trained using only the ground-truth labels using Eq. (4.11). Then, in
each following step, we first employ the pseudo-label generator to obtain, for each training
image, a pseudo-label mask ȳ ∈ {{b},U }N of unseen classes that is complementary to the
real label mask y ∈ {{b},S }N of seen classes. Using y and ȳ we can in turn fine-tune the
model, improving its performance on both seen and unseen classes. Formally, at each training
step t we minimize the following loss:

ℓ= ℓCE(x,y)+λℓCE(x, ȳ) (4.15)

where ℓCE is the cross-entropy loss defined in Eq. (4.11) and λ is a hyperparameter. The first
loss term is the SPNet loss that exploits the ground-truth annotations, while the second term
utilizes the generated pseudo-labels on the unlabeled pixels. The loss provide supervision for
the unseen class without requiring any annotated images for them and providing a balanced
training set that improve performance in GZLSS. Algorithm 1 describes our iterative training
pipeline in details.

To summarize, STRICT initialize the model using the SPNet method and is then com-
posed of two iterative steps, as illustrated in Fig. 4.5: (1) twe generate pseudo-labels for
unlabeled pixels and (2) feed the pseudo-labels back to the training set and retrain the model
using Eq. (4.15). The two steps are repeated, meaning that the fine-tuned model will be used
to generate more accurate pseudo-labels for retraining the model.

4.3.3 Experiments

Datasets and metrics. Our method is tested on two datasets, PascalVOC [43] and COCO-
stuff [18], with data splits and validation procedure based on previous works [185, 51]. The
train/val/test sets are composed of mutually exclusive classes: 12/3/5 classes on PascalVOC
and 155/12/15 classes on COCO-stuff. To fine-tune, we use a two-stage procedure where
we first select the best hyperparameters on the seen train classes and unseen validation
classes, then train on both seen train and validation classes with fixed hyperparameters. For
PascalVOC, we conduct experiments with the background as one of the seen classes. GZLSS
performance is measured, following [185], in terms of mean Intersection over Union (mIoU)
on seen (S ) and unseen (U ) classes, as well as the harmonic mean (HM) between them.



4.3 Zero-label Semantic Segmentation 73

Method
PascalVOC COCO-stuff

S U HM S U HM
SPNet [185] 73.3 15.0 21.8 20.5 14.3 16.8
ZS3 [15] 77.3 17.7 28.7 34.7 9.5 15.0
CaGNet [51] 78.4 25.6 39.7 35.5 12.2 18.2
SPNet+ST [185] 77.8 25.8 38.8 34.6 26.9 30.3
ZS5 [15] 78.0 21.2 33.3 34.9 10.6 16.2
CaGNet + ST [51] 78.6 30.3 43.7 35.6 13.4 19.5
STRICT 82.7 35.6 49.8 35.3 30.3 32.6

Table 4.6 Comparing with the state of the art on PascalVOC and COCO-stuff.

Baselines and implementation details. We evaluated our approach against three GZLSS
methods: SPNet [185], and two generative methods, ZS3 [15] and CaGNet [51]. We also
included the self-training variants of CaGNet (CaGNet+ST) and ZS3 (ZS5), where the top
percentage of pixels assigned to unseen classes were used as pseudo-labels. We additionally
reported the results of another baseline, calibrated SPNet, trained through hard pseudo-
labelling of unlabeled pixels without consistency strategy (SPNet+ST). To ensure fairness
in comparison with previous works, we employed DeepLabV2 [27] as the segmentation
model with ResNet-101 [55] as backbone, pretrained on Imagenet following in previous
works [185]. We utilized SGD, with a momentum of 0.9 and a weight decay of 5 ·10−4, and
a polynomial decay with an initial learning rate of 2.5 ·10−4, as in [27]. We initialized the
network on seen classes training for 20K iterations on VOC and 100K iterations on COCO
with a batch size of 8 images. We then fine-tuned the network with our self-training strategy,
training one cycle of self-training for 2K iterations on PascalVOC12 and 22K iterations for
COCO-stuff. The SPNet and SPNet+ST have been reimplemented.

Comparison with the state of the art

In Tab. 4.6, we present the results of comparing our approach with the state of the art on
PascalVOC and COCO-stuff datasets. The experiments show that self-training strategies
outperform the performance of all methods and for all metrics. For instance, on PascalVOC,
ZS5 and CaGNet+ST improve their not self-trained counterparts by almost 5% and 4%
respectively, while SPNet+ST improves the base SPNet by 17% in HM. Similarly, on COCO-
stuff, ZS5 and CaGNet improve their performance by 1.5% and 1.3% respectively, while
SPNet+ST surpasses all more complex generative approaches on unseen mIoU and HM.
These results confirm that self-training is highly beneficial, especially for non-generative
methods. Furthermore, our STRICT strategy outperforms all published results by a good
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Table 4.7 PascalVOC results with background class included among the seen set.

Method
PascalVOC

S U HM
SPNet [185] 54.7 2.5 4.7
ZS3 [15] 59.0 4.0 7.5
SPNet+ST [185] 72.7 4.0 7.6
ZS5 [15] 66.1 1.7 3.7
STRICT 74.7 14.3 24.0

Table 4.8 Ablation of different transformations for the consistency constraint of STRICT on Pas-
calVOC.

Mirroring Scaling S U HM
77.8 25.8 38.8

✓ 80.4 27.2 40.7
down 82.1 27.8 41.5

up 82.0 31.1 45.1
random 81.6 29.4 43.2

✓ down 83.7 29.2 43.3
✓ up 82.5 32.9 47.0
✓ random 83.2 31.4 45.6

margin. On PascalVOC, it surpasses the previous state of the art (CaGNet+ST) by 6.1% on
HM and 5.3% on unseen mIoU, and on COCO-stuff, it surpasses CaGNet by 16.9% on unseen
class mIoU and almost 13.1% on HM. When compared with the SPNet+ST baseline, STRICT
shows a higher improvement on PascalVOC and a less marked improvement on COCO-
stuff. These improvements are significant and emphasize the importance of employing an
effective self-training strategy for zero-label semantic segmentation models. Moreover, the
self-training approach reduces the bias of the network on seen classes while not requiring
a calibration term or generating pixel features, as in the case of SPNet and generative
approaches, but rather exploiting the information coming from the unlabeled pixels.

Impact of the background on PascalVOC. The conventional GZLSS techniques used for
se,antic segmentation do not take into account the differentiation between foreground and
background, and only evaluate pixels of the foreground objects. We conducted an assessment
of the impact on performance when the background category is incorporated in the class space.
This scenario is notably more challenging as the pixels of unseen classes could be mislabeled
as background, resulting in the model’s inability to discriminate them effectively. Table 4.7
presents the results for our method, SPNet, ZS3, and their self-trained variations. All methods,
including STRICT and the baselines, experience a significant decline in performance when
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(a) Pseudo-labels generated with STRICT for Pas-
calVOC unseen classes when background is ignored.

(b) Pseudo-labels generated with STRICT for Pas-
calVOC unseen classes when background is included.

Fig. 4.6 Qualitative pseudo-labeling results of STRICT on PascalVOC without (left) and with (right)
background as seen class. Train GT refers to labels for the unseen classes.

the background is included in the classifier. For instance, when comparing Tab. 4.6 to Tab. 4.7,
we observe that SPNet achieves only 2.5% of mIoU on unseen classes, which is almost 12%
lower than Tab. 4.6, with an overall 4.7% on the harmonic mean (17% lower). The results
slightly improve with self-training, with SPNet+ST achieving 4% mIoU on unseen classes
and a 7.6% of harmonic mean. ZS3 surprisingly outperforms its self-trained counterpart ZS5
in this setting since generating a robust classifier for unseen classes in a generative manner
is challenging in segmentation because of the images’ high complexity. The bias of the
network towards predicting the background in place of unseen class pixels also hampers the
generation and pseudo-labeling process. However, our STRICT approach is effective even in
this scenario, with an mIoU on unseen classes of 14.3% and an overall harmonic mean of
24%. These results are comparable to the calibrated SPNet+ST performance in the standard
scenario where the background is ignored, with the performance being only slightly lower
(3% on harmonic mean and unseen class mIoU) than ZS3. Despite these promising outcomes,
the performance gap between our model in the two scenarios remains significant (25% on
harmonic mean and 21% on unseen mIoU), signifying that additional technical components
are required to address the technical challenges of GZLSS for object segmentation when
the background is included, explicitly addressing issues such as the semantic shift of the
background class (see Sec. 3.2).

Qualitative results. In order to compare our model with other baselines, we present the
qualitative semantic segmentation results of both our method and ZS5 in Fig. 4.8. The figure
demonstrates that our model can accurately detect pixels of both seen (e.g. person) and
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Fig. 4.7 STRICT mIoU along the iterative self-training procedure.

unseen (e.g. sofa) categories, and achieves a good balance between the two. For example, in
the second row of the left image, ZS5 misidentifies most of the pixels of the unseen class
sheep as a seen class cow, revealing its inclination towards seen classes. In contrast, our
model segments the sheep almost perfectly, with only a few misclassified pixels. Similarly,
ZS5 erroneously classifies the unseen class table as a seen class tv, while our model almost
correctly segments it. These images also highlight a limitation of our approach, namely,
the results depend on the number of co-occurring pixels. For instance, since the plant class
occupy a small area of the images, it is challenging for the network to generate consistent
pseudo-labels, resulting in lower recognition ability for that class. Future research may
consider strategies to regularize the supervision for unseen classes based on the number of
pseudo-labels generated for each of them.

Ablation study

Different image transformations. We perform a study regarding the most effective image
transformations for implementing the self-training with consistency constraints. We specif-
ically examine straightforward and reversible image-level changes, such as three versions
of multi-scaling (reducing, enlarging, and random scaling) and mirroring. The findings of
our evaluation are presented in Tab. 4.8. Overall, multi-scaling generally proves to be more
advantageous than only employing mirroring. Among the scaling options, increasing the
image size yields the best outcomes, with the highest mIoU on unfamiliar categories (31.1%)
and HM (45.1%). By integrating mirroring with upscaling, we achieve the most exceptional
performance, with a 32.9% mIoU on unfamiliar classes and a 47% HM.
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Fig. 4.8 Qualitative comparison of STRICT on PascalVOC.

Number of self-training iterations. The self-training procedure, which involves updat-
ing the pseudo-labeling model after each iteration, is a crucial element of our algorithm.
In Fig. 4.7, we examine the impact of the number of self-training iterations on STRICT.
We present the results as mIoU on unseen classes and harmonic mean, with and without
background. The findings reveal that the performance of both metrics and settings tends to
improve with an increase in self-training iterations. Notably, performance gains are rapid
until six iterations, following which they plateau or slightly decline. This decline may be due
to the absence of ground-truth for unseen class pixels, resulting in noisy predictions that are
partially but not entirely eliminated by our consistency constraint.

Qualitative analysis on pseudo-labels. Generating good pseudo-labels for our model on
unseen class pixels is a crucial for our algorithm. Figure 4.6a and Fig. 4.6b demonstrate
annotations on unseen classes produced by our model when the background is both ignored
and included during training. In each original image, the actual ground truth y is denoted as
GT, while the annotation for seen classes ys that the model sees prior to pseudo-labeling is
represented by labeled pixels. Although our starting point (SPNet+ST) detects the presence
of pixels of unseen classes, the predictions are noisy, with pixels assigned to classes that are
not present in the current image. However, our consistency constraint (STRICT) reduces the
noise, eliminating most of the pseudo-labels assigned to pixels of classes not present in the
image (e.g. train in third row of Fig. 4.6a, tv in first and fourth rows of Fig. 4.6b). With more
iterations, STRICT generates more refined pseudo-labels, where spatially coherent structures
are present. This indicates that the pseudo-label generator captures global information of
unseen classes, which is not possible to achieve with a single stage of pseudo-labeling.
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4.4 Conclusion

This chapter focused on reducing the effort needed to collect and annotate datasets for
learning novel classes over time. Two scenarios were explored: incremental Few-Shot
Semantic Segmentation (iFSS), where only a few annotated images are available to learn new
classes, and generalized zero-label semantic segmentation (GZLSS), where no annotation for
unseen (novel) classes is provided during training.

To tackle iFSS, a formal definition was introduced and compared with existing settings
we found in the literature. To address the challenges of the novel setting, PIFS was pro-
posed, which combines prototype learning with knowledge distillation to achieve robust
initialization of the parameters for the classifier on new classes and improve the network
features representation. PIFS exploits prototypes of new classes as additional regularizers in
the distillation loss to avoid overfitting and forgetting simultaneously. Furthermore, it also
utilizes batch-renormalization to cope with non-i.i.d. data. An extensive benchmark showed
that PIFS outperforms multiple incremental and few-shot methods that we adapted for iFSS.

For GZLSS, a self-training approach was proposed to segment classes not annotated in
the training set by leveraging their semantic representation. The proposed method, STRICT,
introduces a self-training pipeline that is simple, robust, and highly scalable. It relies on the
model ability to predict consistent probabilities on different augmented versions of the same
image to obtain coherent pseudo-labels. Futhermore, STRICT fine-tunes the model iteratively
using the generated pseudo-labels, strengthening the performance of unseen classes over
time. The effectiveness of this method was demonstrated on two commonly used benchmarks
for semantic segmentation, outperforming other more complex strategies in the GZLSS.

We hope that our study will serve as a base for future research. In particular, we hope that
our iFSS problem formulation and benchmark will bring forward the research to enable novel
realistic and practical applications. In the future, on one hand, we aim to further expand this
works in other segmentation tasks, such as instance and panoptic segmentation. On the other
hand, we aim to study the property of multi-modal (image and language) models, such as
CLIP [127], to extend their ability in zero-shot semantic segmentation.
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Weakly-Supervised Semantic
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5.1 Introduction

To train accurate semantic segmentation models it is necessary to collect pixel-level an-
notations for images in the dataset, a process that is time-consuming and expensive. The
significant burden of requiring annotations for each pixel of an image has led to several
research efforts toward building semantic segmentation models using cheaper, but weaker,
annotation types. Under this perspective, different types of annotation have been explored,
such as image-level labels [76, 60, 72, 150], bounding boxes [33, 117, 68], scribbles [82, 154]
and points [11, 126]. A comparison of the annotation types and their cost is reported in
Fig. 5.1. However, using weaker types of annotation requires a substantial effort to avoid
performance drops.

In this chapter, we will first analyze how to train semantic segmentation model using
point and scribbles annotations. We will extend the method present in Sec. 3.2 to model the
unlabeled pixels in the images. In particular, when considering point and scribbles annota-
tions, only a few pixels in the images are privded a label while the others are left unlabeled.
We exploit the assumption that the image may only contain classes present in the annotation
or the background and we adapt the cross-entropy loss presented in Sec. 3.2. We show that
our simple method improves the state of the art on two point and one scribble benchmarks,
outperforming the previous baselines on point supervision and achieving comparable results
with ad-hoc method when using scribbles.

Additionally, we investigate how to extend semantic segmentation models with new
classes over time using only image-level labels, proposing a novel framework, dubbed
WILSON. It relies on a distillation framework to avoid forgetting old classes and it introduces
an additional localizer module that extracts pixel-level pseudo-labels for the new classes. We
introduce a novel Weakly Incremental Learning Semantic Segmentation (WILSS) benchmark
to evaluate our method, showing it surprisingly achieves results comparable with methods
using pixel-level supervision.

The work presented in this chapter led to the publication of two works:

• Cermelli, F., Mancini, M., Bulo, S. R., Ricci, E., and Caputo, B. Modeling the back-
ground for incremental and weakly-supervised semantic segmentation. In IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol.44, no.12, pp. 10099-10113
(2021).

• Cermelli, F., Fontanel, D., Tavera, A., Ciccone, M., and Caputo, B. Incremental
learning in semantic segmentation from image labels. In Proceedings of the 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4371-4381).
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Person
Car
Bike

Fig. 5.1 Comparison of weakly annotation types. Time for annotation is taken from [11].

5.2 Semantic Segmentation from Point and Scribble Anno-
tations

Point and scribble supervision can be a cost-effective solution for image annotation, but
they result in partially annotated scenarios where only a few pixels are labeled with precise
localization information for each instance of a class. All other pixels in the image, however,
remain unlabeled, even if they may contain valuable information for learning to segment
the classes. In particular, they may contain any of the weakly annotated classes in the
image or the background. We report an example of this scenario in Fig.5.2 where there are
point-level annotations for bike, car and person classes. The definition of the setting entails
that non-annotated pixels may contain either the background or one of the three categories
above but not other classes without annotations in the image (e.g., train and bus).

Previous works in point [11, 126] and scribble-supervised [82, 154] semantic segmenta-
tion disregard the information containted in the non-annoteted pixels. A common solution
to deal with this scenario is to employ the partial cross-entropy, where the training loss is
computed only on the annotated pixels, discarding from the optimization process all the
others and thus losing information about the shape of the classes and wasting computation.

To address this issue and to exploit all the pixels in the image, we propose a loss,
complementary to the partial cross-entropy, that operates on the unlabeled pixels. Similarly
to incremental semantic segmentation (see Sec. 3.2), in this setting we consider all the
non-annotated pixels as belonging to a fictious background class that shift its semantic from
image to image, containing the real background or any of the annotated class. We encode
this prior in the cross-entropy loss and, inspired by MiB (Sec. 3.2), we force the model to
predict either a class present in the image or the background in the non-annotated pixels. We
benchmark our approach in semantic segmentation in the Pascal-VOC dataset using both
point [11] and scribble [82] supervision, showing performance superior or comparable to the
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Fig. 5.2 In point-supervised learning, the annotations provides a few annotated pixels. All the other
pixels are reported as background and they may contain any of the annotated classes.

state of the art. Furthermore, we consider a more challenging scenario, scene parsing with
point supervision, where all the pixels should be assigned a semantic class. Experiments on
ADE20k [126] demonstrate the effectiveness of our approach in this scenario.

To summarize, we provide the following contributions: (1) we propose to exploit the
unlabeled pixels in the point and scribble supervision setting, extending the approach intro-
duced in Sec. 3.2, and (2) we benchmark our novel approach on three weakly supervised
setting, obtaining competitive results against previous specialized and complex baselines.

5.2.1 Related Works

Several research efforts have aimed to reduce the significant burden of requiring annotations
for each pixel of an image in building semantic segmentation models. Cheaper, but weaker,
types of annotation have been explored, such as image-level labels [76, 60, 72, 150], bounding
boxes [33, 117, 68], scribbles [82, 154] and points [11, 126]. In this section, we focus on
weak supervision using points and scribbles. Scribble annotations are a fast way to collect
strong localization information for each class. In [82], the authors proposed to divide pixels
into super-pixels and use pixel-similarity as additional source of supervision. In contrast,
[154, 155] integrated graphical models into regularization losses to ensure consistent outputs
on similar pixels. More recently, Wang et al. [171] proposed using two additional sub-
networks to refine the model’s output iteratively and predict boundaries for more precise
segmentation results. Point supervision is more challenging, as it only provides one point
for each instance in the image. In [11], the authors proposed a three-component approach,
including an image-level prior to predict which objects are present in the image, a partial
cross-entropy on the labeled points, and an objectness prior, extracted from an external
model, to differentiate background and foreground pixels. In [126], the authors proposed a
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method for scene parsing using point supervision, which included a partial cross-entropy and
distance metric regularization to produce similar feature vectors for pixels of the same classes.
Differently from previous works, we show that a simple loss formulation, which considers
the uncertainty on unlabeled pixels, produces a performance improvement compared to the
standard partial cross-entropy adopted by multiple previous works.

5.2.2 Semantic Segmentation using Weak Supervision

Problem Formulation The objective of weakly supervised segmentation with point or
scribble annotations is to develop a model that can accurately predict the semantic class of
each pixel in an image, similar to traditional semantic segmentation (refer to Section 2.1).
However, unlike traditional semantic segmentation, the model is trained using a dataset with
incomplete pixel-level annotations, consisting of only points or scribbles. Specifically, for
each class instance in a training image, only one or a few annotated pixels that are contiguous
are provided. Formally, for an image x containing a set of pixels I and its label y in the
training set T , the annotations are only provided for the pixels in I x

S = {i : ∀ i ∈I s.t. yi ∈
Y }, where |I x

S |<< |I |. All the other image pixels are unlabeled. In this study, we focus on
three weakly semantic segmentation settings: point-based object segmentation [11], scribble-
based object segmentation [82], and point-based scene parsing [126]. Object segmentation
involves identifying and classifying countable objects, such as cars, bikes, and dogs, in
an image. The remaining pixels are labeled as background (represented by b), which is
considered a separate class in the model output space Y . Formally, the model aims to predict
a label yi ∈ Y for each pixel i in a given image based on a training set T ⊂X × (Y ∪u)N ,
where u indicates unlabeled pixels and N is the total number of pixels (N = |I |). Point
annotations are provided only for the objects in the image, with no points given for the
background class, following the protocols established in [11] and [82]. Differently, scribble-
based object segmentation, as described in [82], includes annotations for the background
class.

In contrast, scene parsing is a more complex task that involves predicting both countable
objects and non-countable stuff classes such as sky, road, and ground. All pixels in the image
are labeled with a semantic category, and the background class is not included in the label
space. The aim is to learn a model that maps each pixel i in an image to a label yi ∈ Y based
on a training set T ⊂X × (Y ∪u)N .

Partial Cross-Entropy. As the amount of labeled pixels is limited, previous studies [11,
126] have proposed to use a cross-entropy loss on the annotated points. Specifically, they
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introduced a partial cross-entropy (PCE) loss that only takes into account the pixels for which
an annotation is provided. Given an image x with the corresponding annotation y, the PCE
loss can be defined as:

ℓPCE(x,y) =−
1
|I x

S |
∑

i∈I x
S

logqx(i,yi), (5.1)

with qx(i,c) indicating the probability predicted by the model for class c in pixel i.

The cross-entropy loss is crucial for enabling the network to differentiate between classes
and accurately locate them within an image. Nevertheless, while using a PCE loss is simple
and convenient, it disregards any information that may be obtained from the unlabeled pixels.
To make use of this information, we will modify and adapt the principle introduced in Sec. 3.2
for the revised cross-entropy loss for this scenario.

Modeling the unlabeled. Our approach begins with the assumption that there is at least
one labeled pixel for each instance of a class within an image and that all pixels in it must
belong to one of these classes. By making use of this assumption, we can extract valuable
information from the unlabeled pixels by maximizing the probability extracted from the
model of having either one of these classes or the background. Formally, denoting the
set of classes appearing in the label y of an image x as Ux = {c : ∃ i ∈I x

S s.t. c = yi} and
I x

u = I \I x
S the set of unlabeled pixels, we minimize the following loss function:

ℓUNL(x,y) =−
1
|I x

u |
∑

i∈I x
u

log px(i,u) , (5.2)

where yi is the ground truth label associated to pixel i and px is computed as follow:

px(i,c) =

qx(i,c) if c ̸= u

∑k∈Ux qx(i,k) if c = u
(5.3)

with qx(i,c) indicating the probability predicted by the model for class c in pixel i. Incorporat-
ing the ℓUNL loss into our training procedure offers two distinct advantages when combined
with the ℓPCE loss. Firstly, the information from labeled pixels is propagated to the unlabeled
pixels, resulting in an additional source of supervision. This enables the network to learn
more effectively and make better use of the available labeled data. Secondly, in the event
that the network predicts an unlabeled pixel as belonging to a class c that is not present in
the current image (i.e., c /∈ Ux), the loss function provides feedback on the error. This is
beneficial as it enables the network to learn from errors and generalize more effectively.
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To summarize, given a training set T , we train the network to minimize the following
objective function:

L (θ) =
1
|T | ∑

(x,y)∈T
ℓPCE(x,y)+λ ℓUNL(x,y), (5.4)

where λ is a hyperparameter that weight the importance of unlabeled pixels We recall that
unlabeled pixels are many more than the labeled ones in weakly-supervised learning, thus
we need this parameter to rebalance their contributions.

We note that the proposed loss function can be used for both point and scribble, as well
as for both object segmentation and scene parsing tasks, without any modification. The only
difference lies in the set of classes present in the image, where for object segmentation, the
background class is always included, whereas for scene parsing, it is not considered. To the
best of our knowledge, our approach is the first to achieve state-of-the-art results in both
object segmentation and scene parsing using point and scribble supervision without the need
for any other prior knowledge or additional data, such as objectness prior [11].

5.2.3 Experiments

Point-based Object Segmentation on Pascal-VOC To evaluate our method for object
segmentation, we use the Pascal-VOC [43] dataset with the point annotations provided
by [11]. We use a Resnet-101 [55] backbone with dilated convolutions, as in standard
state-of-the-art architectures [27], and add a bilinear interpolation layer on top to recover
the input resolution without introducing additional trainable parameters. As in as in [11],
we initialize the backbone with an ImageNet pretrained model from [138], but we do not
initialize the classifier due to inability to establish the correct mapping among the ImageNet
indices published by [11] and the ImageNet classes. We re-implemented [11] using our
same backbone and training protocol to guarantee fair comparison. We train the network
using SGD with momentum 0.9, weight decay 10−4, and a polynomial learning rate policy
base_lr · (1− iteration

max_iterations)
0.9. The initial learning rate is set to 10−5 for the methods in

[11] and 10−4 for the fully-supervised baseline. We report the results for our method with
both learning rates. We train with a batch size of 24 for 30 epochs, cropping the images to
512×512 and applying data augmentation as in [27].

We present the results of our experiments in Tab. 5.1, which includes the mean intersection
over union (mIoU) and overall pixel accuracy (P-Acc). The first three rows of the table refer
to the methods proposed in [11]. The Img Lvl method, as described in [11], is trained using
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Table 5.1 Results on point-based weakly supervised segmentation on Pascal-VOC (mIoU in %).

Method mIoU P-Acc
Img Lvl [11] 33.2 76.0
Img Lvl + PCE [11] 34.7 58.9
Img Lvl + PCE + Obj [11] 42.1 81.5
PCE + bkg 38.8 81.9
Ours (lr 10−5) 45.3 82.3
Ours (lr 10−4) 46.7 83.6
Full Supervision 58.8 89.9

only image-level labels without considering the points location. This method achieves an
mIoU of 33.2%, which is 4.4% better than the one reported in [11]. In the second row, we
add the partial cross-entropy (PCE) loss as proposed in [11], and refer to it as Img Lvl +
PCE. For this method, we use all the points available in the annotation without weighting
them (αi = 1,∀i ∈IS). The addition of PCE leads to a 1.5% improvement in mIoU, but a
17.1% decrease in pixel accuracy. This can be attributed to the model bias towards semantic
classes, which causes it to assign object labels even to background pixels. When introducing
the Objectness Prior (Img Lvl + PCE + Obj), computed on an additional dataset following
[11], the results further improve, with the method achieving an mIoU of 42.1% and a pixel
accuracy of 81.5%.

Our method demonstrates superior performance compared to all three variants of [11].
We report our method twice in the comparison: Ours (lr 10−5) uses the same learning rate as
[11], while Ours (lr 10−4) uses a learning rate of 10−4 which we found to be better. With
both learning rates, our method achieves better performance than [11], indicating that our
method is better at modeling unknown pixels. Ours (lr 10−4) achieves an mIoU of 46.7%
and a pixel accuracy of 83.6%, which is inferior to the fully supervised baselines of 12.1%
and 6.3%, respectively. Notably, our method does not use any objectness prior computed on
external data, which is a key difference from [11].

To further prove that the improvement of our method is due to the way we model
unlabeled pixels rather than rescaling the contribution of the background class, we introduce
a baseline referred to as PCE + bkg. In this method, we still use Eq. (5.4), but we only
consider the background as a possible class for the unlabeled pixels. However, as shown in
Tab. 5.1, this method fails to learn the classes properly, achieving an mIoU of 38.8%, which
is 7.9% lower than Ours (lr 10−4). This is because considering all the unlabeled pixels as
background (PCE + bkg) biases the model towards this class. In contrast, our method models
the unlabeled pixels using the prior given by the point labels, which forces the network to
predict them either as background or as any of the annotated classes.
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Table 5.2 Results on scribble-based weakly supervised segmentation on Pascal-VOC (mIoU in %).

Method wo/ CRF w/ CRF
PCE 69.5 72.8
Ours 72.3 75.1
Scribble-Sup [82] - 63.1
NormalizedCut [154] 72.8 74.5
KernelCut [155] 73.0 75.0
BPG [171] 73.2 76.0
Full Supervision 75.8 76.4

Scribble-based Object Segmentation on Pascal-VOC In this study, our method for scribble-
supervised object segmentation was evaluated following the experimental protocol defined in
[155, 171]. The Pascal-VOC [43] dataset and the scribble annotation released by [82] were
used. The Deeplab-v2 architecture [26] with the Resnet-101 backbone [55] was employed,
and dilated convolutions were used to obtain an output resolution 8 times smaller than the
input, as in [155, 171]. Training the network was done on a single-scale resolution using a
polynomial learning rate policy base_lr · (1− iteration

max_iterations)
0.9, with a batch size of 10 images

and the following hyperparameters: base_lr = 2.5 ·10−4, momentum 0.9 and weight decay
5 ·10−4. The network was trained for 20K iterations using 321×321 cropped images, which
were horizontally flipped (left-right) and randomly scaled (from 0.5 to 2.0). During testing,
we followed the approach used in previous works [155, 171] by using multi-scale inputs (i.e.
[0.5, 0.75, 1.0, 1.25, 1.5]) and applying max voting to get the final prediction.

The mIoU with and without the dense CRF post-processing using scribble-supervision is
reported in Tab. 5.2. The top part of the table presents the results of methods not explicitly
designed for the scribble annotation, namely the PCE baseline and our method. The following
part presents the scribble-specific state-of-the-art approaches [82, 154, 154, 171], and the
fully-supervised upper-bound. Similarly to point supervision, the PCE baseline trains the
network using the cross-entropy only on labeled pixels, as described in Eq. (5.1). The
competitive performance of PCE, indicated by the mIoU of 72.8%, which is only 3.6%
below the fully-supervised upper-bound of 76.4%, demonstrates that the model can extract
meaningful information even from few pixels. However, by introducing our loss as reported
in Eq. (5.4), we outperform the PCE baseline. Specifically, our method achieves 72.3%
(+1.8% compared to PCE) without CRF and 75.1% (+2.3%) with CRF. This highlights the
importance of utilizing unlabeled pixels to improve the results.

Our method achieves competitive performance compared to state-of-the-art methods.
Specifically, when compared to NormalizedCut [154] and KernelCut [155], our method per-
forms slightly worse without using the CRF but outperforms them while using it (+0.6% with
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Table 5.3 Results on point-based weakly supervised scene parsing on ADE20K (mIoU in %).

Our protocol [126] protocol
Method mIoU P-Acc mIoU P-Acc
PCE 22.4 60.9 20.2 (17.7) 58.3 (58.0)
PDML [126] 21.1 56.6 19.3 (19.6) 55.5 (61.0)
Ours 22.9 62.2 21.0 59.5
Full Supervision 29.7 68.8 25.1 66.0

respect to NormalizedCut and +0.1% with respect to KernelCut). We argue that Normalized-
Cut and KernelCut outperform our method without CRF because they already integrate the
CRF in their training objective to better model the object boundaries. However, introducing
CRF post-processing at inference improves our method’s performance, recovering precise
object boundaries, while having less impact on NormalizedCut and KernelCut. Finally, BPG
[171] performs better than our method both without (+0.9%) and with (+0.9%) CRF post-
processing. However, we note that BPG introduces two sub-networks in the segmentation
architecture to model object boundaries, significantly increasing the number of parameters
and requiring additional supervision for boundary prediction. In contrast, we propose a
general method that introduces only a loss function on unlabeled pixels, without requiring
any modification to the network architecture or additional supervision.

Scene Parsing on ADE20K We tested our method on the scene parsing task proposed by
[126]. This task is based on the ADE20K dataset [202] and the point annotation used in the
LID Challenge 2020 1. As the code from [126] was not publicly available, we re-implemented
their method using the algorithm and details provided in their paper. Furthermore, we
evaluated the method using two different training protocols since we found that the protocol
proposed by [126] was sub-optimal. Both protocols use a Resnet-101 [55] architecture
with dilated convolutions, followed by a bilinear interpolation layer to recover the input
resolution. The first protocol is the one described in [126]. The network is trained using
stochastic gradient descent (SGD) with momentum 0.9, weight decay 5×10−4, and an initial
learning rate of 2.5× 10−4. The learning rate is decayed using a polynomial schedule of
base_lr · (1− iteration

max_iterations)
0.8. We iterate over the dataset using a batch size of 16, and the

images are randomly cropped to size 321×321. However, since the number of epochs was
not specified in [126], we train the network for 60 epochs. The second protocol we follow is
the one employed above for point-based object segmentation with the only difference that for
this scenario we set the base learning rate to 10−3.

1https://lidchallenge.github.io/challenge.html, track 2
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Table 5.3 presents the mean Intersection-over-Union (mIoU) and overall pixel accuracy
(P-Acc) results. The numbers reported in [126] are shown in brackets. To replicate the
PCE baseline proposed in [126], we apply cross-entropy loss only on the pixels that have
a labeled ground truth, as described in Eq.5.1. This baseline yields strong results: 22.4%
mIoU with our protocol and 20.2% mIoU with the protocol of [126]. Notably, our results
surpass those in [126] by 2.5% mIoU and 0.3% pixel accuracy. The PDML [126] baseline
performs comparably to [126] but exhibits a drop in performance of 1.3% and 0.9% mIoU
when compared to the PCE baseline. Our proposed method, however, outperforms both
baselines with 22.9% mIoU using our protocol, a 0.5% improvement over PCE, and 21.0%
using the [126] protocol, with a gap of 0.8% compared to PCE.
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5.3 Incremental Learning from Image-Level Labels

The current incremental learning methods can learn new classes over time, but they necessitate
costly annotations at the pixel level for training, which can be prohibitively expensive and
restrict their applicability in real-world scenarios. In this section, we hypotesizes that, to learn
new classes it may be feasible to transfer the model segmentation ability from old classes to
new ones without needing pixel-level annotations. Ideally, we would extend segmentation
models to new classes relying only on the cheapest form of annotation, image-level labels,
which are widely accessible and easy to collect online.

Therefore, we present a new task called Weakly-Supervised Incremental Learning for
Semantic Segmentation (WILSS). This innovative setup combines the properties of incre-
mental learning (training solely on new class data) and weak supervision (inexpensive
and widely available annotations). An illustration of WILSS is shown in Fig. 5.3. Apply-
ing existing weakly-supervised methods directly to incremental segmentation necessitates
(i) extracting pixel-wise pseudo-supervision offline using a weakly-supervised approach
[8, 175, 2, 150, 77] and (ii) updating the segmentation network by employing an incremental
learning technique [21, 40, 101]. Nonetheless, we contend that generating pseudo-labels
offline in incremental settings is sub-optimal, as it involves two separate training stages and
disregards the model knowledge of prior classes, which can be leveraged to learn new classes
more effectively.

We propose a weakly incremental learning framework for semantic segmentation, dubbed
WILSON. This framework incrementally trains a segmentation model using online pseudo-
supervision generated from image-level annotations, exploiting prior knowledge, to learn
new classes. To extend the standard encoder-decoder segmentation architecture [26–28],
we introduce a localizer module upon the encoder. The localizer serves to produce pseudo-
supervision for the segmentation backbone. To transfer the segmentation ability from old
classes to the new one and thus improve the pseudo-supervision, we train the localizer with
a pixel-wise loss guided by the predictions of the segmentation model. This regularization
fullfil two purposes. Firstly, it acts as a strong prior for the previous class distribution,
informing the model on where old classes are located in the image. Secondly, it provides a
saliency prior for extracting better object boundaries. In addition, we avoid the use of hard
pseudo-labels, as commonly used in previous works [175, 8, 77], since they would introduce
noise in the training process that is harmful for the perforance. Differently, we make use of
soft-labels extracted from the localizer considering the class probability distribution assigned
to each pixel in the image.
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Fig. 5.3 Illustration of WILSS. A model is first pre-trained on a set of classes (e.g. , person, motorbike,
car) using pixel-wise annotations. Then, the model is updated to segment new classes (e.g. , cow)
exploiting image-level labels and without access to old data.

To summarize, the contributions are the following. (1) We propose the novel WILSS
task with the aim of extending segmentation models with new classes using only image-level
supervisio. (2) We propose a novel framework, WILSON, that generates soft pseudo-labels
using a localizer from the image-level labels. (3) We evaluate WILSON on the Pascal
VOC [43] and COCO [84] datasets, demonstrating that it surpasses offline weakly-supervised
methods and achives comparable results w.r.t. pixel-supervised incremental learning methods.

5.3.1 Related work

Image-level supervision has become popular due to its low cost and high availability on the
internet, receiving the most attention over other types of weak supervision. The majority of
image-based weakly supervised approaches use a two-stage process [72, 111, 60, 2, 3, 76,
150, 22]. Firstly, they generate pixel-wise pseudo-labels by using a classification network,
and then they use them to train a segmentation model. The pseudo-labels are typically
obtained from the classification network by exploiting the Class Activation Maps (CAMs)
[201]. Differently, Araslanov et al. [8] propose a one-stage approach in which a segmentation
model is learned by generating pseudo-labels on the fly that are in turn used to self-supervise
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the model. To improve the quality of the pseudo-labels, many researchers have introduced
refinements steps [2, 3], additional losses [72, 60, 22, 175, 150, 8], or erasing techniques that
force the CAM to focus on non-discriminative parts of the image [178, 58, 23]. Recently,
some researchers have focused on using external information such as saliency estimation to
improve the pseudo-labels on the object boundaries [77, 189]. Despite the advancements in
pseudo-label generation techniques from image-level supervision, they operate in a static
scenario where the model learns from a fixed set of classes. In contrast, we focus on the more
challenging incremental learning setting where the model extends a trained segmentation
model using only image-level labels.

5.3.2 WILSON Framework

In the following, we formally define the novel problem setting. Next, we illustrate the
training procedure of the localizer, that has the goal of obtaining pseudo-supervision using
image-level labels and the information coming from the segmentation model. Finally, we
describe how to train the segmentation model to learn new classes without forgetting old
ones. The overall framework is depicted in Fig. 5.4.

Problem Definition WILSS extends the incremental segmentation setting defined in Sec. 3.2,
where training is realized over multiple learning steps and each learning step t introduces
a novel set of classes C t that, merged with the previous label set Y t−1, led to a new label
set Y t = Y t−1∪C t . In the initial step (t = 0) of WILSS, the model is trained on a dataset
with pixel-level annotations only for the initial classes, i.e. T 0 ⊂X × (C 0)N . Then, in
the following steps, the dataset contains only cheap image-level labels for the new classes.
Specifically, for (t > 0), the model is provided a dataset with only image-level annotations
for new classes T t ⊂X × (C t). As in standard incremental learning, we assume that, at
step t, only the dataset containing new classes can be used, and all the previous datasets are
not accessible anymore. The goal of WILSS is to obtain a model fθ t able to predict all the
seen classes, such that fθ t : X 7→ IRN×|Y t |. In the following, we assume the model is made
by two components, an encoder e and a decoder d, such that f (x) = d(e(x)).

Training the Localizer Drawing from the literature on Weakly Supervised Semantic Seg-
mentation (WSSS) [8, 175, 77, 80, 2, 72], we propose the use of a localizer g to generate
pseudo-supervision for the segmentation model using image-level labels. The localizer
utilizes the features of the segmentation encoder e to generate scores for all classes including
the background, old, and new ones as follows: z = g(e(x)) ∈ IR|Y

t |×N .
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Fig. 5.4 Illustration of the end-to-end training of WILSON. The localizer is directly trained using a
classification loss ℓCLS and the Localization Prior loss ℓLOC, which exploits the prior information of
the old model at step t−1. The segmentation model is supervised using CAM and old model output.
The gradient is not backpropagated on dotted lines.

In order to learn from image-level labels, we must first aggregate the pixel-level clas-
sification scores z. Typically, Global Average Pooling (GAP), i.e. averaging equally the
scores from all the pixels, is used for this purpose [2, 175]. However, this method produces
coarse pseudo-labels [8] because it uniformly encourages all pixels in the feature map to
be discriminative for the target class. To obtain more precise pseudo-labels, we use the
normalized Global Weighted Pooling (nGWP) method [8], which weights each pixel based
on its relevance for the target class. Specifically, the weight of each pixel is calculated
by normalizing the classification scores with the softmax operation ψ , i.e., m = ψ(z) The
image-level scores are computed as:

ŷnGWP =
∑i∈I mizi

ε +∑i∈I mi
, (5.5)

where ε is a small value that avoids numerical instability. In order to incentivize the detection
of all visible parts of the object, we introduce the focal penalty term as in [8]. It is computed
as follow:

ŷFOC = (1− ∑i∈I mi

N
)γ log(λ +

∑i∈I mi

N
), (5.6)

where λ and γ are hyper-parameters and N = |I |. We refer the readers to [8] for more
details on the nGWP and the focal penalty.

After obtaining the image-level score, we can then train the localizer using image-level
labels. We recall that, as in previous incremental learning scenario (see Sec. 3.2), we assume
that only to image-level annotations y for the new classes C t are provided in the dataset. We
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use the multi-label soft-margin loss to train the localizer:

ℓCLS(ŷ,y) =−
1
|K | ∑

c∈K
yclog(ŷc)+(1− yc)log(1− ŷc), (5.7)

where K = C t , ŷ = σ(ŷnGWP + ŷFOC), and σ the logistic function. It can be noted that,
while the loss is computed using annotations only for new classes, it is indirectly influencend
by the scores of the old classes due to the softmax normalization in Eq. (5.5). However, since
image-level annotations are cost-effective and new images can be annotated with ease, it is
possible to relax the conditions and allow for weak annotations for both old and new classes.
Under this scenario, the classification loss in Eq. (5.7) is calculated for all classes, and K is
equivalent to the set of all target classes Y t .

Localization Prior. The supervision provided by image-level labels is limited to the presence
of new classes in the image, and does not indicate their boundaries or the location of old
classes. However, we propose that such information can be gleaned from a previously learned
segmentation model. Specifically, the background score from the segmentation model can
serve as a saliency prior for improved object boundary extraction. Additionally, the scores of
old classes can guide the localizer in identifying and localizing their presence in the image,
thus directing its focus to alternate regions. Hence, we design a regularization loss that
aim at providing direct supervision on the localizer from the segmentation model trained
on step t−1, i.e. f t−1

θ
. We consider the regularization as a Localization Prior (LOC). It is

computed as a pixel-wise loss between the segmentation model outputs ω = σ( f t−1
θ

(x)) and
the classification scores z:

ℓLOC(z,ω) =− 1
|Y t−1|N ∑

i∈I
∑

c∈Y t−1

ω
c
i log(σ(zc

i ))+(1−ω
c
i )log(1−σ(zc

i )), (5.8)

where σ represents the logistic function. By incorporating the loss, the segmentation model
generates a pixel-level objective on previous categories, thereby transferring its segmentation
capability to the localizer. As opposed to the softmax operator that imposes rivalry between
categories, using the logistic function decouples the likelihood of each class, which is
advantageous to obtain accurate localization prior. Whenever a new class is present, the old
categories and the background will have a reduced score, indicating to the localizer that the
pixel pertains to a new class.

Soft Pseudo-Labels. To train the semantic segmentation model, standard WSSS methods
commonly extract hard-pseudo labels from the image-level classifier. Specifically, they
obtain a one-hot distribution qH,c for each pixel, assigning a value equals one to the class with
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the maximum classification score and zero to the other classes. Formally, they are obtained
as follows:

qH,c
i =

1 if c = argmaxk∈Y t mc
i ,

0 otherwise,
(5.9)

with m representing the softmax normalized score extracted from the localizer.

Despite being commonly employed in previous works, it is well-known that hard pseudo-
labels generated from an image-level classifier are noisy [80, 77, 8, 175]. Directly using
qH,c tfor supervising the segmentation network might harm the learning process, causing
the model to fit incorrect targets and leading to poor performance. To reduce the impact of
the noise, we propose the use of a smoothing operation [97] to generate soft-pseudo labels.
Formally, given a class c, the pseudo-supervision qc is computed as:

qc = αqH,c +(1−α)mc, (5.10)

where α is a hyperparameter that controls the smoothness in the pseudo-labels.

The localizer produces scores for both old and new classes, but the pseudo-labels output
distribution may be strongly biased towards new classes, since the novel dataset mainly
includes images depicting them. Consequently, adopting q as the only target for the seg-
mentation model would result in catastrophic forgetting [102]. To address this issue, we
draw inspiration from the knowledge distillation framework [57, 81] and replace the pseudo-
supervision derived from the localizer on old classes with the output of the segmentation
model f t−1

θ
that was trained in the preceding learning phase. The final pixel-level pseudo-

supervision q̂ is thus composed as follows:

q̂c =


min(σ( fθ t−1(x))c,qc) if c = b,

qc if c ∈ C t ,

σ( fθ t−1(x))c otherwise,

(5.11)

where b is the background class and σ is the logistic function. We note that, to alleviate the
background shift issue (see Sec. 3.2), we utilize the minimum value of the two distributions
for the background class.

Learning to Segment from Pseudo-Supervision. The pseudo-supervision q̂c is composed
by indepentent class probability scores. For this reason, we avoid the use of a standard
softmax-based cross-entropy loss and we propose the use of the multi-label soft-margin loss
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to train the segmentation model. Specifically, the segmentation loss is computed as follow:

ℓSEG(p, q̂) =− 1
N ∑

i∈I
∑

c∈Y t
q̂c

i log(σ( fθ t (x)c
i ))+(1− q̂c

i )log(1−σ( fθ t (x)c
i )). (5.12)

In conclusion, we remark that the localizer is discarded after the incremental learning
step and it is not employed during the testing phase, thus it does not increase neither the time
required for the inference nor the number of parameters.

5.3.3 Experiments

Datasets and Settings

We conducted a comprehensive evaluation of WILSON using two widely used benchmarks,
Pascal VOC 2012 [43] and MS-COCO [84]. To benchmark our method, we followed
the incremental semantic segmentation setting defined in Sec. 3.2 and evaluated it on two
different settings using the Pascal VOC dataset. The first setting, 15-5 VOC, involved
learning 15 classes in the first phase and then adding 5 new classes in the second phase. The
second setting, 10-10 VOC, involved performing two steps of 10 classes each. We used two
experimental protocols, namely the disjoint and overlap scenarios, to report the results. The
disjoint scenario included images containing only new or previously seen classes in each
training step, while the overlap scenario included all images containing at least one pixel
from a novel class in each training step. We also introduced a novel incremental learning
scenario, the COCO-to-VOC, consisting of two training steps. In the first step, we learned
the 60 COCO classes that were not present in the Pascal VOC dataset, and we removed all
images containing at least one pixel of the latter. In the second step, we learned 20 Pascal
VOC classes. We reported the results on the validation sets as the test set labels were not
publicly released. To evaluate the performance of the segmentation model, we used the mIoU.
We remark that unlike the previous incremental learning setting, in the proposed WILSS
setting, the incremental steps provided only image-level labels for the new classes.

Baselines Since WILSS is a novel setting, we lack direct comparable baselines. As a
result, we evaluate WILSON against two categories of methods, namely pixel-supervised
incremental learning approaches and weakly supervised semantic segmentation (WSSS)
methods tailored for this setting. We report the results of eight pixel-supervised methods that
represent the current state-of-the-art in incremental learning: LWF [81], LWF-MC [132],
ILT [103], MiB [21] (described in Section 3.2), PLOP [40], CIL [71], SDR [104], and
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RECALL [101]. It should be noted that RECALL [101] uses additional images from the
Web, unlike other methods. For the Pascal VOC dataset, we use the results published in
[101, 40], while for COCO-to-VOC, we run the experiments using the same code from
Section 3.2. Furthermore, we evaluate the performance of several state-of-the-art WSSS
methods, which we adapt to work in the incremental learning scenario. Specifically, we first
train a classification model using the images available in the incremental learning steps. Then,
we generate the hard pseudo-labels offline and train the segmentation model minimizing
the loss in Equation 5.12. We report the results obtained with pseudo-labels generated from
four methods: class activation maps (CAM), SEAM [175], SS [8], and EPS [77]. It is worth
mentioning that EPS uses an off-the-shelf saliency detector trained on external data, while
CAM, SS, and SEAM rely solely on image-level labels. All the baselines and WILSON were
trained using the same experimental protocols. We used the implementation provided by the
authors for each method to produce the results. To generate the pseudo-labels for CAM, we
used the EPS implementation.

Implementation Details For all experiments, we utilize the Deeplab V3 architecture [26]
with a ResNet-101 [55] backbone and output stride equal to 16 for Pascal VOC, and a
Wide-ResNet-38 [181] with output stride 8 for COCO, both pre-trained on ImageNet. To
decrease the memory footprint required by the experiments, we apply in-place activated batch
normalization [138]. The localizer that generates the CAMs is composed of 3 convolutional
layers, followed by batch normalization and Leaky ReLU, with the first two layers having a
kernel size of 3×3, the last layer having a kernel size of 1×1, channel numbers of s {256,
256, number of classes}, and a stride of 1. We train the model for 40 epochs, using SGD with
an initial learning rate of 0.001 (0.01 for the Deeplab head and the localizer), momentum
0.9, and weight decay 10−4, and a batch size of 24. For the first 5 epochs, we only train
the localizer. Afterward, we train the whole network by including pseudo-supervision from
the localizer and decay the learning rate using a polynomial schedule with a power of 0.9.
Similar to [8], we set λ = 0.01 and γ = 3 of Eq. (5.6). Following Eq. (5.6), we also use the
self-supervised segmentation loss on the localizer after the fifth epoch. For all experiments,
we set α = 0.5 in Eq. (5.10).

Results

Single step addition of five classes (15-5). After the initial learning stage, the following
5 classes of the VOC dataset are added: plant, sheep, sofa, train, and tv-monitor. Results
are reported in Tab. 5.4 of the paper. Despite being trained with only image-level labels,
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Table 5.4 Results on the 15-5 setting of Pascal VOC expressed in mIoU%. The best method using
Image-level supervision is bold. The best method using Pixel supervision is underlined. ⋆: results
from [101]. ⋄: results from [40].

Disjoint Overlap
Method Sup 1-15 16-20 All 1-15 16-20 All
Joint ⋆ Pixel 75.5 73.5 75.4 75.5 73.5 75.4
FT ⋆ Pixel 8.4 33.5 14.4 12.5 36.9 18.3
LWF ⋆ [81] Pixel 39.7 33.3 38.2 67.0 41.8 61.0
LWF-MC ⋆ [132] Pixel 41.5 25.4 37.6 59.8 22.6 51.0
ILT ⋆ [103] Pixel 31.5 25.1 30.0 69.0 46.4 63.6
CIL ⋆ [71] Pixel 42.6 35.0 40.8 14.9 37.3 20.2
MIB ⋆ [21] Pixel 71.8 43.3 64.7 75.5 49.4 69.0
PLOP ⋄ [40] Pixel 71.0 42.8 64.3 75.7 51.7 70.1
SDR ⋆ [104] Pixel 73.5 47.3 67.2 75.4 52.6 69.9
RECALL ⋆ [101] Pixel 69.2 52.9 66.3 67.7 54.3 65.6
CAM Image 69.3 26.1 59.4 69.9 25.6 59.7
SEAM [175] Image 71.0 33.1 62.7 68.3 31.8 60.4
SS [8] Image 71.6 26.0 61.5 72.2 27.5 62.1
EPS [77] Image 72.4 38.5 65.2 69.4 34.5 62.1
WILSON (ours) Image 73.6 43.8 67.3 74.2 41.7 67.2

WILSON achieves competitive results in both disjoint and overlap settings compared to
approaches trained with pixel-wise supervision. In the disjoint scenario, WILSON overall
outperforms RECALL and SDR by 1.0% and 0.1%, respectively, while maintaining enough
plasticity for learning new classes without requiring a replay buffer. Additionally, WILSON
surpasses PLOP and MIB by 1.0% and 0.5% on new classes. Comparing WILSON to WSSS
competitors, the results demonstrate the strengths of WILSON, including its ability to retain
knowledge of past classes and learn new semantic classes given only image-level annotations.
For new classes, WILSON outperforms EPS by +5.3% mIoU in the disjoint scenario, despite
the latter using saliency maps generated from an external off-the-shelf model. Furthermore,
SEAM is outperformed by 11.7% and SS by 17.8%. In the overlap scenario, WILSON
not only preserves all prior knowledge but also achieves a +7.2% boost when learning new
classes compared to EPS, resulting in an overall improvement of +5.1% compared to the best
methods (SS, EPS).

Single step addition of ten classes (10-10). In this setting, we introduce10 classes in the
incremental step, namely: dining-table, dog, horse, motorbike, person, plant, sheep, sofa,
train, tv-monitor. As shown in Tab. 5.5, our results are consistent with the 15-5 setting.
The differences between our WILSON method and the IL (pixel-wise supervision) methods
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Table 5.5 Results on the 10-10 setting of Pascal VOC expressed in mIoU%. The best method using
Image-level supervision is bold. The best method using Pixel supervision is underlined. ⋆:results
from [101].

Disjoint Overlap
Method Sup 1-10 11-20 All 1-10 11-20 All
Joint ⋆ Pixel 76.6 74.0 75.4 76.6 74.0 75.4
FT ⋆ Pixel 7.7 60.8 33.0 7.8 58.9 32.1
LWF ⋆ [81] Pixel 63.1 61.1 62.2 70.7 63.4 67.2
LWF-MC ⋆ [132] Pixel 52.4 42.5 47.7 53.9 43.0 48.7
ILT ⋆ [103] Pixel 67.7 61.3 64.7 70.3 61.9 66.3
CIL ⋆ [71] Pixel 37.4 60.6 48.8 38.4 60.0 48.7
MIB ⋆ [21] Pixel 66.9 57.5 62.4 70.4 63.7 67.2
PLOP [40] Pixel 63.7 60.2 63.4 69.6 62.2 67.1
SDR ⋆ [104] Pixel 67.5 57.9 62.9 70.5 63.9 67.4
RECALL ⋆ [101] Pixel 64.1 56.9 61.9 66.0 58.8 63.7
CAM Image 65.4 41.3 54.5 70.8 44.2 58.5
SEAM [175] Image 65.1 53.5 60.6 67.5 55.4 62.7
SS [8] Image 60.7 25.7 45.0 69.6 32.8 52.5
EPS [77] Image 64.2 54.1 60.6 69.0 57.0 64.3
WILSON (ours) Image 64.5 54.3 60.8 70.4 57.1 65.0

are minimal, and their results are nearly comparable. However, using the most accurate
incremental learning method, ILT, the gap in accuracy is 3.9% in the disjoint scenario and
shrinks to 2.4% in the overlap scenario when compared to SDR. Our technique outperforms
all offline WSSS competitors in the overlap protocols by more than +0.7% overall mIoU,
while achieving a comparable result (+0.2%) in the disjoint scenario. Qualitative results
demonstrating the superiority of WILSON on both new and old classes are shown in Fig. 5.5.

COCO-to-VOC. The most challenging set of experiments involves training the network
on 60 classes from the COCO dataset that are not shared with VOC, and then adding an
additional 20 classes from the VOC dataset in a second step. Evaluation of this experiment is
shown in Tab. 5.6 on both COCO and VOC validation sets. While WILSON’s performance
drops 8% compared to LwF when learning new classes, this experiment demonstrates our
ability to retain prior information while learning new classes under image-level supervision,
surpassing ILT performance on old classes (+2.8%), which is the top competitor trained with
pixel-wise supervision. WILSON outperforms all previous weakly supervised methods on
both old and new classes, both on COCO and VOC, with improvements of 4.8% in mIoU
from the best WSSS method (EPS) on COCO.
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Fig. 5.5 Qualitative results on the 10-10 VOC setting comparing different weakly supervised semantic
segmentation methods. The image emphasized the efficiency of WILSON in both learning new classes
(e.g. sheep, dog, motorbike) and preserving knowledge of old ones (e.g. cow, car). From left to right:
image, CAM, SEAM [175], SS [8], EPS [77], WILSON and the ground-truth. Best viewed in color.

Ablation Studies

Localization prior. In order to assess the effectiveness of the pseudo-supervision generation,
we conducted an ablation study by exploring various choices for training the localizer. Results
are reported in Tab. 5.8 for both the VOC 10-10 disjoint and overlap scenarios. The different
training strategies that are compared include: (i) using a constant value for the old classes, as
in [8]; (ii) using a fixed prior by concatenating the segmentation output of the old model to
the class scores when calculating m; (iii) providing a localization supervision to the localizer
using the softmax cross-entropy loss; and (iv) using the loss in Eq. (5.8). When a constant
value was used and past knowledge from the old segmentation network was disregarded,
it resulted in lower performance in comparison to the overall mIoU obtained when using
a localization prior, particularly on new classes (-4.4% on disjoint and -5.1% on overlap).
This indicates that teaching the localizer the location of previous classes is an effective
way to prevent forgetting and improve performance when learning new classes. However,
using aggressive priors, such as directly using the segmentation output of the old model,
hindered the network’s ability to effectively learn new classes, thus creating a gap of −4.0%
on disjoint and −4.3% on overlap scenarios with respect to ℓLOC. Additionally, using the
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Table 5.6 Results on the COCO-to-VOC setting expressed in mIoU%. The best method using
Image-level supervision is bold. The best method using Pixel supervision is underlined.

COCO VOC
Method Sup 1-60 61-80 All 61-80
FT Pixel 1.9 41.7 12.7 75.0
LWF [81] Pixel 36.7 49.0 40.3 73.6
ILT [103] Pixel 37.0 43.9 39.3 68.7
MIB [21] Pixel 34.9 47.8 38.7 73.2
PLOP [40] Pixel 35.1 39.4 36.8 64.7
CAM Image 30.7 20.3 28.1 39.1
SEAM [175] Image 31.2 28.2 30.5 48.0
SS [8] Image 35.1 36.9 35.5 52.4
EPS [77] Image 34.9 38.4 35.8 55.3
WILSON (ours) Image 39.8 41.0 40.6 55.7
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Fig. 5.6 Ablation study about the effect of α to smooth the one-hot pseudo-labels used to supervise
the ℓSEG. Test reporting the mIoU for both the Disjoint and Overlap VOC 10-10 protocols.

softmax cross-entropy loss to match the segmentation output proved to be detrimental for
performance, resulting in poor results for both new and old classes (-6.3% on disjoint and
-5.8% on overlap with respect to ℓLOC). This can be attributed to the fact that the cross-entropy
loss, due to softmax normalization, does not consider each class independently, and forces
the localizer to produce high scores for old classes even when they have low segmentation
scores.

Smoothing effect on pseudo-supervision. The smoothness of the pseudo-labels supervising
the segmentation model is regulated by the hyper-parameter α of Eq. (5.8). To optimize the
performance of the model, α should be properly tuned. We demonstrate that the model is
robust to this choice. We report five different values of α , ranging from 0 to 1 and the final
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Table 5.7 Performance evaluation of weakly supervised segmentation methods trained with direct
supervision on both old and new classes in the incremental step.

VOC 15-5
Disjoint Overlap

Method 1-15 16-20 All 1-15 16-20 All
CAM 70.5 34.7 62.6 71.6 36.0 63.7
SEAM [175] 71.9 26.9 61.7 70.8 28.1 61.0
SS [8] 71.8 26.3 61.7 72.1 27.6 62.1
EPS [77] 73.5 45.7 67.7 75.3 47.6 69.4
WILSON (ours) 75.0 46.0 68.9 76.1 45.6 69.5

VOC 10-10
Disjoint Overlap

1-10 11-20 All 1-10 11-20 All
CAM 63.1 42.2 53.9 66.6 45.0 56.8
SEAM [175] 66.0 50.4 59.7 70.9 54.6 64.0
SS [8] 60.8 26.0 45.2 69.6 33.0 52.6
EPS [77] 69.1 53.0 62.4 72.9 55.7 65.4
WILSON (ours) 69.5 56.4 64.2 73.6 57.6 66.7

Table 5.8 Ablation study to validate the robustness of pseudo-supervision considering different types
of localization priors for training the localizer.

Disjoint Overlap
Prior Loss 1-10 11-20 All 1-10 11-20 All

- - 64.8 49.9 58.8 69.4 52.0 62.0
Fixed - 66.1 50.3 59.7 71.4 52.8 63.4

Learned CE 61.1 46.0 54.5 67.6 49.5 59.2
Learned ℓLOC 64.5 54.3 60.8 70.4 57.1 65.0

mean Intersection over Union (mIoU) in the VOC 10-10 disjoint and overlap scenarios in
Fig. 5.6. The use of hard labels (i.e., α = 1) resulted in the model fitting the noise in the
supervision and forgetting prior knowledge, leading to poor performance and incapacity to
learn novel classes. For our experiment, we chose α = 0.5 as it balances between learning
and remembering. We noted that changing the values of α from 0 to 0.7 only marginally
affected the results, with an average difference of less than 0.5% between the disjoint and
overlap case.

Using supervision for all the classes. In this experiment, the evaluation is conducted by
providing image-level supervision for both old and new classes in incremental steps. The
results on VOC are reported in Tab. 5.7. A comparison with Tab. 5.4 and Tab. 5.5 reveals a
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notable improvement in performance. Specifically, all methods show an improvement, with
WILSON exhibiting an average improvement of 2% on both old and new classes in the 15-5
and 10-10 settings. These findings highlight the importance of incorporating knowledge
about old classes in pseudo-supervision generation for effective learning of new classes and
avoidance of forgetting. Furthermore, the results demonstrate that WILSON outperforms
offline WSSS methods in this scenario as well. WILSON achieves better performance in
every setting, surpassing EPS by 1.2% and 0.1% in the VOC 15-5, and by 1.8% and 1.3% in
the VOC 10-10 for the disjoint and overlapped scenarios, respectively.
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5.4 Conclusion

This chapter presented two solutions for one of the crucial factors that limits the application
of segmentation models: the annotation cost. We addressed the problem by investigating
three different types of weak supervision: point, scribble, and image-level labels.

In the first part of the chapter, we proposed a general method aimed at learning using
point or scribble supervision. We introduced a novel loss formulation that considered
unlabeled pixels as ground-truth annotations for any possible class that the image might have
contained, i.e., the classes with at least one annotated pixel. We benchmarked our novel
loss function against specialized methods on either point or scribble supervision in three
settings: point-based and scribble-based object segmentation using Pascal-VOC, and point-
based scene parsing on the challenging ADE20K dataset. Our model obtained competitive
performance with respect to previous approaches in both object segmentation and scene
parsing despite being general to both tasks and without any additional prior on the objects or
making assumptions on the provided annotations.

In the second part, we introduced a new setting called WILSS, which was designed to
update the knowledge of semantic segmentation models by utilizing low-cost image-level
annotations. Traditionally, weakly supervised learning techniques would require the creation
of pseudo-supervision offline, followed by the training of the segmentation model. How-
ever, our proposed method, WILSON, took a different approach by coupling the semantic
segmentation model with a localizer and utilizing image-level annotations on new classes to
produce pseudo-supervision online for the segmentation network. The results indicated that
the incorporation of a localization prior from the old model into the localizer significantly
improved the generation of pseudo-labels. To test the efficacy of our approach, we performed
three incremental learning experiments, and the results demonstrated that our method out-
performed WSSS baselines and achieved results that were comparable to fully supervised
incremental learning methods.

This chapter brings new solutions for an important issue in semantic segmentation.
However, these works are only the first step towards obtaining segmentation models that were
robust and that could learn incrementally new classes from heterogeneous weak annotations,
effectively exploiting the large amount of datasets available on the web.



Chapter 6

Conclusions and Future Works

6.1 Summary of Contributions

During the thesis, we explored how to incrementally add novel classes to a semantic segmen-
tation model, without forgetting the previous knowledge. This task introduces additional
challenges with respect to the tasks investigated by previous works (e.g., image classification),
due to the presence of multiple classes in each image in semantic segmentation. Further-
more, given the prohibitive cost for annotating images at the pixel-level, we focused on
data-efficient techniques, that are able to learn novel classes, without forgetting, reducing the
amound of data and annotations required for updating the model. Specifically, in Chapter 3,
we investigated the challenges of incremental learning in semantic segmentation, extending
the findings on object detection. Then, in Chapter 4, we focused on reducing the amount of
images required for the training. Finally, in Chapter 5, we studied techniques able to learn a
semantic segmentation model without using pixel-level supervision but cheap annotations
such as point, scribbles or image-level labels.

Incremental Learning in Segmentation and Object Detection. In Chapter 3 we investi-
gated incremental learning in complex vision tasks: semantic segmentation, object detection,
and instance segmentation. We found that these tasks introduces additional challenges with
respect to the simple classification due to the presence in each image of multiple classes that
may belong to either new categories, or classes learned in the past, or that will be learned
in the future, with only the novel classes being annotated. This characteristic exacerbates
catastrophic forgetting, harming the performance of the model even after few incremental
steps. We analyzed the problem in semantic segmentation, where the classes not present in
the annotation are considered as the background, leading to the background-shift issue: at
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every training step the semantic of the background in the training set changes, including all
the classes outside the ones that are being trained. We proposed a method, dubbed MiB, that
models the background shift by revisiting a standard knowledge distillation framework and
effectively alleviates catastrophic forgetting. In addition, we showed that a similar problem
is present in incremental learning for object detection, where old and future categories may
be present but not annotated and thus not considered as an actual object in the training
step. Taking inspiration from MiB, we proposed to model the missing annotations (MMA)
by designing an approach that revisits the losses employed in common object detection
frameworks.

Few-Shot and Zero-Label Semantic Segmentatation. We aimed in Chapter 4 to reduce
the burden of collecting and annotating datasets, introducing two techniques able to learn
new classes over time being provided only a few annotated images or even a simple textual
description for them. For the former setting, we introduced the Incremental Few-Shot
Semantic Segmentation scenario and we proposed PIFS, a method that combines prototype
learning with knowledge distillation to improve classifier parameter initialization and network
feature representation. PIFS employs prototypes of new classes as additional regularizers in
the distillation loss to prevent overfitting and forgetting simultaneously. The latter setting
considered is generalized zero-label semantic segmentation, where we proposed STRICT.
It is a self-training approach that uses the model’s ability to predict consistent probabilities
on augmented images to generate coherent pseudo-labels for unseen classes. The method
fine-tunes iteratively using these labels, improving its performance over time.

Weakly-Supervised Semantic Segmentatation Chapter 5 presented two solutions to ad-
dress the high cost of annotating datasets in semantic segmentation models entirely avoiding
the use of pixel-level labels. We proposed a general method to learn using point or scribble
supervision. We designed an objective function that not only exploits the few labels pixels,
but also considers the one unlabeled. Specifically,starting from the assumption that all the
pixels in the image must contain one of the classes reported in the annotation, we design an
loss that minimize the probability of having anyone of them in each pixel. This techniques
matches the performance of complex and specific methods while being general to both
tasks and without requiring external data. In the second part, we investigated a solution for
incrementally add new classes to a pretrained semantic segmentation model using cheap
and widely available image-level labels. We name this setting WILSS and we proposed a
novel framework, WILSON, that couples a knowledge distillation framework for semantic
segmentation with an additional localizer that is able to produce pseudo-supervision starting
from image-level labels.
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6.2 Open Issues and Future Works

In the following, we discuss some open issues of data-efficient incremental learning in
segmentation, proposing future research direction of our work.

Benchmarks and Performance on long incremental learning tasks. Despite the rapid
advances of the recent years, learning new classes over time without forgetting is still
challenging task, especially when considering complex tasks such as semantic segmentation
and object detection. Specifically, to truly design incremental learning methods able to
operate in the real-world, it is important to benchmark them on very long sequences of tasks,
where the model has to learn thousands of new classes during its lifetime. However, the
performance on such settings are often poor since the model is prone to forget the learned
knowledge after tens of tasks. In the future, it would be important to design more realistic
benchmarks, closing the gap with real-world applications.

Exploting Multi-Modal Models for Incremental Learning. The majority of incremental
learning methods rely on un-informative numerical labels to train their network. Very recently,
however, new multi-modal vision and language models [127] have been developed. These
models can predict classes being only provided captions or textual descriptors for them and
they have very interesing performance when tested on zero-shot settings [86]. Furthermore,
they are generating interest among the incremental learning community [159] due to their
intersing properties as learners. As a future work, it would be interesting to study the behavior
of these multi-modal models either for learning novel classes from very limited annotated
images (e.g., few-shot and zero-label semantic segmentation), or to exploit their properties to
extract semantic segmentation pseudo-supervision from image-level labels, thus reducing the
burden of collecting and annotating a large dataset.

Incremental Learning Beyond Semantic Segmentation. In this work we deeply examined
incremental learning in the semantic segmentation task, going beyond it only in Chapter 3
considering object detection and instance segmentation. However, while being fundamental
for multiple application, semantic segmentation is only a part of the whole segmentation task.
Recently, mask-based transformer-based architectures [31, 30, 191] demonstrated outstanding
performance on both semantic, instace, and panoptic segmentation tasks, achieving state-of-
the-art results on every task without changing either the architecture or the loss functions. As
a next step, we aim to investigate incremental learning with these architectures, addressing
seamlessy a broader range of applications.
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