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Abstract

The obstruction of critical blood vessels caused by clots is one of the leading causes of
death worldwide, causing the development of efficient antithrombotic strategies to be
of the utmost importance. Blood clots are usually treated using a tissue plasminogen
activator (tPA), a protein that is able to dissolve the clot, restoring normal blood
flow and preventing the major consequences ischemic events lead to. However, this
treatment requires a prompt administration of the active agent and a careful choice
of the dosage, as the amount of freely circulating active agent should not overcome
a certain threshold. In recent years, a lot of effort has been put into overcoming
these limitations and developing novel drug delivery systems. One of the most
interesting and promising is based on shear-responsive drug carriers, micrometric
clusters of polymeric nanoparticles, coated with the active agent and produced via
spray drying. The carriers are stable under normal blood flow conditions but are
designed to undergo breakup right onto the clot, in response to the local increase
in the hydrodynamic stress caused by the lumen restriction itself. The resulting
fragments are more likely to adhere to the clot, enhancing the efficiency of the
thrombolytic action.

The present work moves the first steps to the establishment of a simulation frame-
work able to follow the production process of the carriers from the agglomeration
via spray drying to the shear-inducted de-agglomeration: the production process
of the clusters and their subsequent breakup is investigated and simulated through
discrete element methods (DEM), while the flow field in an obstructed blood vessel
is investigated using computational fluid dynamics (CFD) techniques to show that
the increase in hydrodynamic stress is able to act as a trigger for the activation of the
carriers.

A qualitative relationship between the spray drying process conditions and the
morphology of the final product has been identified: fast particle diffusion and long



iv

shrinkage time (low Péclet number) lead to the formation of compact agglomerates,
while hollow agglomerates are obtained for slow particle diffusion and short shrink-
age time (high Péclet number). A dataset of plausible compact and hollow carrier
morphologies has been generated by DEM spray drying simulations, and a statistical
analysis of the response of carriers to the CFD-calculated flow field in an obstructed
microfluidic device has been performed, thus linking the process conditions of the
formation of agglomerates to their response to pathological shear stresses. The
correlation between hydrodynamic forces and internal mechanical stresses has been
studied using a discrete element method based on Stokesian dynamics. CFD simula-
tions have shown that the presence of a peak in hydrodynamic forces caused by the
occlusion of the vessel can act as an internal, non-invasive activation mechanism for
drug carriers.

Future experimental validations of the agglomeration and de-agglomeration
process are necessary for the development of a reliable protocol for the production
of drug carriers via spray drying and to validate the strict connection between
morphology and process conditions that has been found using numerical methods.
The direct observation of the activation process of the manufactured agglomerates in
a real microfluidic device is necessary for refining the parameters of the proposed
framework in order to properly match experimental evidences. At that point, CFD-
DEM simulations can act as a valuable guideline for the production process: the
choice of the material and the identification of the proper size and shape are the
key steps for an optimal design of shear-responsive drug carriers able to correctly
perform an efficient thrombolytic action.
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Chapter 1

Introduction

One of the main causes of death worldwide is the obstruction of critical blood vessels
caused by clots [1]. Thrombosis events lead to a variety of life-threatening ischemic
conditions, such as strokes or myocardial infarction. Therefore, the development of
efficient antithrombotic strategies is of the utmost importance. The only treatment
for acute ischemic events currently approved by the Food and Drug Administration
is the use of a tissue plasminogen activator (tPA), a protein that is able to dissolve the
clot, restoring normal blood flow and preventing the major consequences ischemic
events lead to [2, 3]. However, this kind of treatment is heavily limited: it requires a
prompt administration of the active agent and a careful choice of the dosage, in order
to limit the amount of freely circulating active agent, which could lead to different
but equally severe adverse effects, such as bleeding.

In recent years, a lot of effort has been put into overcoming the limitations
mentioned above and developing novel drug delivery systems. The undesired effects
of the drug along its circulation in the body should be minimized, and a localized
action of the treatment is desired, i.e., the design of drug carriers should focus on their
ability to deliver the drug only at the pathological location. To address this challenge,
a number of strategies based on a targeted drug delivery system has been developed
[4]: liposomes encapsulating tPA and undergoing rupture as a response to an external
ultrasound source [5], magnetic microrods mechanically disrupting the clot under the
action of an external magnetic field [6, 7], carriers made of microbubbles covered by
magnetic nanoparticles with responsiveness to both the magnetic field and ultrasound
solicitation [8], polymer particles encapsulating magnetite and tPA [9], and core–



2 Introduction

shell fibrin-specific colloidal hydrogels [10]. However, all such approaches show
some critical aspects: they require a rather precise knowledge of the clot position,
because an external activation mechanism is needed to proptly release the drug on
the pathological site.

A promising drug targeting method has been proposed by Korin and coworkers
[11], and it is based on shear-responsive drug carriers. The drug carrier is here con-
stituted by a micrometric cluster of polymeric nanoparticles, coated with the active
agent and produced via spray drying. After intravenous injection, the agglomerates
are stable under normal blood flow conditions but are designed to undergo breakup
right onto the clot, in response to the local increase in the hydrodynamic stress
caused by the lumen restriction itself [12, 13]. The resulting fragments experience a
lower drag force with respect to the parent agglomerate and therefore are more likely
to adhere to the clot and perform the thrombolytic action, as visualized in Fig. 1.1.
This biophysical strategy is borrowed from the shear-based activation mechanism
of normal circulating platelets and offers a robust and broadly applicable targeting
method: it benefits of the narrowing of the lumen diameter and of the consequent
local increase in the shear stress, which occurs regardless of the specific cause or
location of the clot. Moreover, no external activation mechanisms are required:
the drug release is triggered by the breakup of the carrier, that is induced by the
obstruction itself. Even if there is uncertainty about the efficacy of this approach
in dealing with fully obstructed vessel, and the knowledge of the type and location
of the clot is needed to select the proper carrier size and site of administration, the
drug delivery strategy based on shear-responsive carriers is undoubtedly interesting,
as it is a possible answer to the two main challenges in the treatment of obstructed
blood vessels: the undesired interactions with non-pathological regions would be
drastically reduced and the internal activation mechanism guarantees a localized and
performative drug release.

Although preclinical tests have shown convincing results, shear-responsive ag-
glomerates are not widely employed as drug carriers at the present time. Demanding
and challenging in-vivo and/or in-vitro experimental trials are in fact needed to refine
such a drug delivery strategy. A proper and effective design of the drug carriers
requires a thorough investigation of the flow field in proximity of an arterial obstruc-
tion, together with the response of carriers to the hydrodynamic stress, that is related
to properties such as dimension, shape and material, and the conditions required in
the production process to obtain shear-responsive agglomerates that are suitable for
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the proposed pharmaceutical issue. Numerical simulations represent a powerful tool
to establish a framework that can act as a guide for future experimental tests. Compu-
tational fluid dynamics (CFD) simulations, for instance, have been successfully used
to predict the wall shear stress distribution in aortic vessels, accurately reconstructed
by magnetic resonance imaging [14], and simulations on model representations of
obstructed vessels elucidate the role that the blood flow field distortion has on platelet
aggregation and clot formation [15]. Cardiovascular research has also used CFD to
predict how hemodynamics changes as a result of pathology [16], surgical outcomes
[17, 18], design artificial medical devices [15]. Ultimately, computational fluid
dynamics has been frequently used to obtain a complete and thorough knowledge
of the flow characteristics, necessary to investigate the effect of the hydrodynamic
stress on agglomerates flowing inside an obstructed vessel. A detailed simulation
of the behaviour of agglomerates immersed in a flow field, i.e., information about
their mechanical response to fluid dynamic stress eventually leading to breakup, can
in fact be obtained by coupling CFD results with a discrete element method (DEM)
[19].

The present work investigates the flow field in an obstructed blood vessel to show
that the increase in hydrodynamic stress is able to act as a trigger for the activation of
shear-responsive agglomerates. The formation of the shear-responsive drug carriers
via spray drying is investigated and simulated through DEM as well. This leads to a
better comprehension of the influence of process conditions on the morphology of
the drug carriers, and ultimately on their mechanical stability. Once that the flow field
inside an obstructed vessel is fully known and a population of well-characterized
carriers with different morphologies and level of agglomeration has been obtained,
the two branches of the problem can be joint together: a discrete element method

Fig. 1.1 Agglomerate of nanoparticles flowing in a partially obstructed vessel. When the
agglomerate enters the high shear zone generated by the lumen obstruction, it breaks into
smaller fragments.
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based on Stokesian dynamics is employed to accurately evaluate the stresses acting
on the particle–particle bonds and to finally predict the occurrence of breakup in the
obstruction. In other words, the present work takes the first steps to the establishment
of a simulation framework able to follow the production process of the carriers from
the agglomeration via spray drying to the shear-induced de-agglomeration.

As mentioned above, the first step of the work is focused on the formation of
the carriers via spray drying, and the simulation of the process through a DEM
approach. The aim of this step is to enlight the influence of process conditions on
the morphology of agglomerates produced by spray drying, focusing on the role of
the Péclet number in obtaining different recognizable classes of agglomerates. As
a result of the simulation campaign, a dataset of agglomerate morphologies with
different properties is obtained. The methods are discussed in Chapter 2: section 2.1
shows the basic principles of contact mechanics between particles, while in section
2.2 the discrete element method and the related software used for the simulation of
agglomerate formation via spray drying is presented. The results are summarized in
Chapter 3, where DEM simulations are first validated against a continuous method
for short times and then a correlation between the final obtained morphology and the
process conditions has been found.

The DEM approach used in the first step is devoted to simulate the agglomeration
of nanoparticles due to the shrinkage of a single droplet in a spray drying process.
However, a refinement of the DEM method is required to effectively simulate the
restructuring and breakup experienced by agglomerates when exposed to hydro-
dynamic forces. Therefore, the second step of the work describes and applies the
Stokesian dynamics approach, a DEM method suitable for de-agglomeration phe-
nomena. The methodology is depicted in Chapter 2, section 2.3, while in Chapter 4
the behaviour of clusters exposed to simple flows is investigated: the main dissimi-
larities in the response of agglomerates having different morphologies but exposed
to the same flow field are highlighted, and an evaluation of the impact of simplifying
assumptions on the upcoming simulation campaign is conducted.

In the third step of the work, the flow field in a microfluidic device mimicking
an obstructed blood vessel is investigated using CFD techniques. Then, results
from CFD and DEM are coupled in order to calculate the mechanical response
of agglomerates produced via spray drying to the pathological flow field stress
typically encountered in obstructed blood vessels. The effect of the obstruction in
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the microchannel is also compared with the peak in hydrodynamic stress obtained in
more realistic representations of an obstructed blood vessel, an axisymmetric and
an asymmetric stenosis, to verify the feasibility of the artificial microfluidic device
to reproduce the pathological shear stress encountered in proximity of a clot. The
methodology followed for CFD simulations is described in Chapter 2, section 2.4,
and the results are discussed in Chapter 5.



Chapter 2

Methods

Parts of this Chapter are based on articles published by the candidate. In particular,
sections 2.2 and 2.3 are partially taken from "Micromechanics and strength of
agglomerates produced by spray drying", Vasquez Giuliano, L., Buffo, A., Vanni, M.,
Frungieri, G., JCIS Open, 2023 [20]; section 2.4 is partially taken from "Response
of shear-activated nanotherapeutic particles in a clot-obstructed blood vessel by
CFD-DEM simulations", Vasquez Giuliano, L., Buffo, A., Vanni, M., Lanotte, A.
S., Arima, V., Bianco, M., Baldassarre, F., Frungieri, G., The Canadian Journal of
Chemical Engineering, 2022 [19].

2.1 Contact mechanics

In this section, the basics of contact mechanics between particles are discussed. The
case of colliding particles in absence of adhesion effects is presented, and then a
model for collision in presence of adhesion is formulated. A more detailed review of
the subject can be found in reference [21].

2.1.1 Basics of contact mechanics - non adhesive particles

When two bodies collide, deformation and stresses occur, giving rise to contact forces
and torques acting on the two bodies. The comprehension of contact mechanics is of
the utmost importance to model the phenomena. To understand the principal laws
underlying the phenomenon, let’s consider a pair of non-adhesive spheres in contact.



2.1 Contact mechanics 7

Sphere i is characterized by radius ai, elastic modulus Ei, Poisson ratio νi and shear
modulus Gi, sphere j is characterized by radius a j, elastic modulus E j, Poisson ratio
ν j and shear modulus G j. It is convenient to define effective parameters a, E, G as:

1
a = 1

ai
+ 1

a j

1
E =

1−ν2
i

Ei
+

1−ν2
j

E j
1
G = 2−νi

Gi
+

2−ν j
G j

(2.1)

If a force that is normal to sphere surface is acting, the spheres contact each other
not over a single point, but over a finite, circular region. The contact radius b is
defined as the radius of the contact region. Since the spheres are deformed at contact,
it is possible to define also the normal overlap δN as the difference between the sum
of the undeformed spheres’ radii and the distance between their centers. Simple
geometric considerations [21] show that the contact radius is related to normal
overlap according to the following equation:

b =
√

aδN (2.2)

Eq. 2.2 is valid only if the contact radius is small compared to the radius of the
sphere. The system made by two deformed particles in contact is illustrated in Fig.
2.1.

Let’s consider direction z to be the direction normal to the contact region. The
elastic displacements of the two spheres along z, namely uzi and uz j, have to satisfy
the kinematic relationship expressed by Eq. 2.3 at any point on the contact region
located at a distance r from the center of the region.

uzi +uz j = δN − r2

2a
(2.3)

Contact models relate the normal contact force Fn with the normal overlap δN . This
relationship has been expressed in various ways: force-displacement laws modelled
over a spring, a dashpot, a slider or combinations have been exploited, and if the
dissipation of energy and the plastic deformation are taken into account, an hysteretic
behaviour of the load-displacement curve should be expected.

The mutual configuration of two spheres has 6 degrees of freedom (DoF): 1 DoF
from normal straining, 2 DoFs from sliding, 1 DoF from twisting, and 2 DoFs from
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Fig. 2.1 Normal overlap δN and contact radius b for two spherical particles in contact.
Dashed lines denote the undeformed particle surfaces, solid lines denote the deformed
particle surfaces.

rolling, as visualized in Fig. 2.2. This means that also resistances to non-normal
motions should be modelled, and they can be expressed as forces, torques or a
combination of them.

An expression for normal elastic force between two non-adhesive elastic spheres
in contact has been derived by Hertz [22]. The derivation has been conducted under
a few working hypoteses: each sphere is treated as an elastic half-space loaded
within the small contact region (contact radius much smaller than the sphere radius)
producing displacements satisfying Eq. 2.3; moreover, contact surfaces are supposed
to be frictionless, so that only the normal interaction force is relevant.

Let’s consider a cylindrical polar coordinate system (r, θ , z), being z = 0 the top
boundary of an elastic half-space that fills the region z < 0. It is stated in Eq. 2.3
that the displacement uz in the z direction within a circle of radius b on the surface
z = 0 is proportional to r2. This can be obtained by imposing the following surface
pressure distribution:

p = p0
[
1− (r/b)2]1/2

(2.4)

where the coefficient p0 is related to the elastic normal force Fn, that pushes the
particles together along the line of centers (Eq. 2.5).

Fn = 2π

∫ b

0
p(r)rdr =

2
3

p0πb2 (2.5)
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Fig. 2.2 Relative displacements between contacting spheres. From left to right: normal
interaction; sliding; twisting; rolling.

Let’s consider now a point force P acting perpendicularly to the surface of the elastic
half-space. The solution for the problem is given by Timoshenko and Goodier [23]
as:

[uz]z=0 =
P(1−ν2

i )

πEir
(2.6)

when considering the material labelled as i. If a distributed load p(r) over a circle
with radius b is considered, P can be thought as an infinitesimal load pdb applied at
the location x′ on the half-space surface. If Sc is the contact surface of radius b, the
displacement at the generic location x is:

uz(x) =
1−ν2

i
πEi

∫
Sc

p(x′)
|x′−x|

db′ (2.7)

Performing the integration and substituting Eq. 2.4 into Eq. 2.7:

uzi =
1−ν2

i
Ei

π p0

4b

(
2b2 − r2) (2.8)

An analogous expression can be written for uz j. Substituting in Eq. 2.3:

uzi +uz j =
π p0

4bE

(
2b2 − r2)= δN − r2

2a2 (2.9)
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From Eq. 2.2 and 2.9 (at r > 0), it is possible to obtain the following expressions:

b = πap0
2E

δN = πbp0
2E

(2.10)

Finally, the classical Hertz force expression for elastic contact of contacting spheres
is obtained by substituting Eq. 2.10 into Eq. 2.5.

Fn =
4Eb3

3a
= KHδ

3/2
N (2.11)

where KH is the stiffness coefficient given by:

KH =
4
3

E
√

a (2.12)

Eq. 2.12 can be re-written as:
Fn = kNδN (2.13)

where the stiffness kN is expressed in term of contact region radius as kN = 4Eb/3.

In an elastic contact model, the conservation of the net kinetic energy is implied,
i.e., the relationship between force and displacement is the same during loading and
unloading. In the practice, a dissipation to heat occurs during a collision process.
There are models to characterize a collision by a restitution coefficient: a restitution
coefficient of unity is associated to a complete elastic collision, while for a complete
inelastic collision the restitution coefficient is zero.

2.1.2 Adhesive force in the normal interaction

In Section 2.1.1 contact mechanics between spheres has been discussed as they were
adhesionless. Although this theory is effectively applicable in problems involving
granular materials of large size, adhesion phenomena are of the utmost importance
at small scales. Spheres of millimetric size are sometimes subject to liquid bridging,
while van der Waals attraction phenomena are always significant for micrometric
particles [24]. Experimental evidences of a deviation of the area of the contact
region from the value predicted by the Hertz theory for small particles highlight
the importance of interaction forces at small scales: van der Waals forces, electric
double layer repulsion, liquid bridging, and others.



2.1 Contact mechanics 11

Macroscopic van der Waals forces arise from the interaction potential between
atoms or molecules. At the particle scale, the adhesive force betwen two particles
originates from the sum of attraction forces between all the microscopic elements
within the two bodies. This results in an attraction potential that is inversely propor-
tional to the square of the surface-to-surface distance h and directly proportional to
the Hamaker coefficient Ah, whose magnitude depends on the material of the two
interacting bodies and the medium filling the space between them. The pressure p,
i.e., the normal force per unit area, is obtained from the derivative of the interaction
energy with respect to the surface-to-surface distance.

The pairwise summation of intermolecular energies generates the interaction
potential between two macroscopic bodies as the sum of a long-range attractive
potential and a short-range repulsive potential. This means that two relatively distant
bodies are attracted to each other, until the point where short-range steric repulsion
becomes relevant. The long-range force is the macroscopic van der Waals force,
resulting from induction, orientation and dispersion intermolecular effects. The latter
is the most relevant: it originates at atomic/molecular level from the fact that the
instantaneous position of electrons surrounding an atomic nucleus gives rise to a
temporary electric polarized field. This field induce polarization in surrounding
atoms, thus resulting in an electrostatic interaction between induced dipoles also at
the particle scale. The short-range force is the steric repulsion due to the overlap
of electron clouds of two different atoms. Fig. 2.3 shows the typical trend of the
normal force as a function of the distance h between two macroscopic plane surfaces.
It has the generic form1:

p(h) =−Ah−n +Bh−m (2.14)

where A and B are positive constants, and m is a positive number higher than n. The
sign of p is conventionally negative when referred to a compression: therefore, the
first term accounts for the attractive force, the second term accounts for the repulsive
one. If m > n, attraction is more significant at long range, while repulsion prevales at
short range. The term δ is the equilibrium gap thickness for two contacting spheres
in a vacuum, i.e. the separation distance for which attractive forces and repulsive
forces balance each other, and therefore p(δ ) = 0. With these considerations made,
it is possible to define the surface energy density γs as half the reversible work (per
unit surface area) required to separate two surfaces with initial separation distance

1If the molecules of the plates interact via the 6-12 Lennard-Jones potential, the exponents of Eq.
2.14 become n = 3, m = 9.
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Fig. 2.3 Normal force per unit area p as a function of the surface-to-surface distance h.
The term δ is the equilibrium gap thickness, and it separates the attraction region from the
repulsion region. The area between the curve and the horizontal axis in the attraction region
is 2γs.

δ . It can be noticed that the area between the curve and the horizontal axis in the
attraction region is 2γs.

In order to appropriately model the combined adhesion-elastic force for two
contacting spheres, the length scales associated respectively with elastic deformation
and with adhesive force have to be estimated and compared. This result can be
obtained by using the argument suggested by Tabor, which is based on the analysis
of the orders of magnitude. According to the Hertz theory, the normal overlap δN in
absence of adhesion can be written by combining Eq. 2.11 and 2.12 as:

δN =

(
9

16
F2

n
E2a

)1/3

(2.15)

where Fn is the compressive force. If compression is generated by attractive van
der Waals force, we can assume that the elastic normal force Fn has the same
order of magnitude of the critical pull-off force Fpo, which is proportional to the
effective sphere radius and to the surface energy density as will be shown in Eq. 2.35.
Consequently, we set Fn ∼ aγs in Eq. 2.15, and thus the order of magnitude of the
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normal overlap with adhesion can be estimated as:

δN ∝

(
aγ2

s
E2

)1/3

(2.16)

Eq. 2.16 estimates the length scale associated with elastic deformation. The equilib-
rium gap thickness δ of Figure 2.3 is the length scale associated with the adhesive
force, and their ratio is defined as the Tabor parameter λT (Eq. 2.17).

λT =

(
4aγ2

s
E2δ 3

)1/3

(2.17)

For λT ≪ 1 the elastic deformation has a negligible effect: therefore, the total normal
force acting on the particle is simply the sum of the elastic force predicted by the
Hertz theory and the adhesive force for two contacting spheres. In this case, the
adopted model for the normal contact force is the Derjaguin-Muller-Toporov (DMT)
model [25]. On the other hand, for λT ≫ 1 the elastic deformation plays a non-
negligible role: in this case, spheres are subjected to deformation and a flattened
contact region has to be considered. The adhesive force is supposed to act only
within the contact region, and it can be determined by approximating the contacting
sphere surfaces as two flat planes. This is what happens with compliant materials
and, in this case, the adopted model for the normal contact force is the JKR model
[26]. The JKR model is indeed the one adopted for breakup DEM simulations in this
work.

As mentioned above, in JKR model it is assumed that for two spheres with radius
a1 and a2 the contact radius b is larger than the contact radius predicted by the Hertz
theory, from now on referred to as bh, because of the additional compression due to
adhesive force, and that adhesive force only acts inside the contact region. These
considerations are summed up in Fig. 2.4.

The following approach is adopted to determine the contact radius b and the
critical pull-off force Fpo: the total energy UT of the system is estimated as a function
of b, then the equilibrium condition dUT/db = 0 is imposed. UT can be thought as
the sum of three terms: the stored elastic energy UE , the mechanical energy UM, and
the surface energy US. Given the normal loading F with no adhesion, the contact
radius is the one predicted by Hertz theory. Recalling Eq. 2.11 and 2.12 it is possible
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Fig. 2.4 Visual comparison of the contact between two spheres with radius a1 and a2 as
predicted by Hertz model and JKR model. Contact radius is bh and b respectively.

to write the following expression for F :

F =
4
3

Eb3
h

a
=

κb3
h

a
= κ

√
aδ

3/2
h (2.18)

κ = 4E/3 is a coefficient related to the stiffness (κ = KH/
√

a), and the normal
overlap δh is equal to b2

h/a.

It is now useful to introduce the plot of normal compressive load F as a function
of the normal overlap (Fig. 2.5): the state of the system described by the Hertz
equation is associated to point A in the plot. When adhesive force is taken into
account, the enhanced compression makes the contact area, the contact radius and
the normal overlap larger. The point in Fig. 2.5 representing this situation is point B.
The effective Hertz loading F1 associated to the contact radius b would be:

F1 =
κb3

a
= κ

√
aδ

3/2
1 (2.19)

where δ1 = b2/a. Following the curve of Hertz loading, it can be noticed that the
point representing this situation is point C. The elastic energy stored in the system
can be obtained using Fig. 2.5. In fact, the plot shows the two steps composing the
JKR loading path:

• O-C is a Hertz-type loading with no adhesion effects, i.e., with γs = 0, that
requires energy UO−C ;
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Fig. 2.5 Normal compressive load as a function of the normal overlap. Letters illustrate the
loading path of JKR model: Hertz-type loading from O to C with γs = 0; unloading from C
to B at constant contact radius b.

• C-B is an unloading process at constant contact radius b, that releases energy
UC−B .

The energy required for the first step is:

UO−C =
∫

δ1

0
FdδN =

2
5

κ a1/2
δ

5/2
1 =

2
5

κ
b5

a2 (2.20)

To calculate the energy released in the second step, Eq. 2.21 from Boussinesq
theory is employed [27], relying on the fact that the unloading process is similar to
the problem of a flat punch.

dδN =
2dF
3bκ

(2.21)

The integration of Eq. 2.21 leads to an expression for the overlap δN at point B.
Thanks to Eq. 2.18 and 2.19 it is possible to write it as a function of b, bh and a.

δN = δ1 +
2F −2F1

3bκ
=

b2

3a
−

2b3
h b−1

3a
(2.22)
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The energy associated to the second step is therefore:

UC−B =
∫

δ

δ1

FdδN =
∫ F

F1

2F
3bκ

dF =
F2 −F2

1
3bκ

=
1
3

κ
b6

h b−1 −b5

a2 (2.23)

It can be noticed that, due to the fact that b is larger than bh, UC−B has a negative
value: in fact, it represents a release of energy during the unloading step. Finally, the
elastic energy can be calculated as:

UE =UO−C +UC−B =
1

15
κ

b5

a2 +
1
3

κ
b6

h b−1

a2 (2.24)

The mechanical energy UM at point B is equal to −FδN . Knowing Eq. 2.18 and
2.21 it can be written as:

UM =−1
3

κ
b3

h b2 +2b6
h b−1

a2 (2.25)

The surface energy US is simply given by:

Us =−2πγsb2 (2.26)

The total energy can finally be written as the sum of the elastic, mechanical and
surface energy.

UT =
1

15
κ

b5

a2 −
1
3

κ
b6

hb−1

a2 − 1
3

κ
b3

hb2

a2 −2πγsb2 (2.27)

The equilibrium condition is:

dUT

db
=

κ

3b2a2

[
b6 −2

(
b3

h +6πaγs
a
κ

)
b3 +b6

h

]
= 0 (2.28)

Using expressions for F and F1 (Eq. 2.18 and 2.19), and solving Eq. 2.28 for F1:

F1 = F +6πaγs +
√

12πaγsF +(6πaγs)2 (2.29)
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If F = Fn and substituting again F1 = b3κ/a, an equation for the contact radius in
presence of adhesion is obtained.

b3 =
3a
4E

[
Fn +6πaγs +

√
12πaγsFn +(6π aγs)2

]
(2.30)

Moreover, an expression for the normal overlap can be obtained by re-arranging
previous results into an expression for F −F1 and substituting into Eq. 2.22.

δN =
b2

a
−
√

4πbγs

E
(2.31)

A relevant parameter descending from these equations is the contact radius at
zero applied load b0, obtained by setting Fn = 0 in Eq. 2.30.

b0 =

(
9πγsa2

E

)1/3

(2.32)

Modified forms ot these results express the normal force and the normal overlap
in terms of b/b0 and referred to the critical force and overlap at the pull-off point,
namely Fpo and δpo respectively [28].

Fn

Fpo
= 4

(
b
b0

)3

−4
(

b
b0

)3/2

(2.33)

δN

δpo
= 61/3

[
2
(

b
b0

)2

− 4
3

(
b
b0

)1/2
]

(2.34)

The critical pull-off force and the critical overlap predicted by the JKR model are:

Fpo = 3πaγs (2.35)

δpo =
b2

0

2 ·61/3 ·a
(2.36)

According to JKR theory, when particles are moved away the overlap is allowed to
assume negative values, taking into account the necking of the material. Complete
detachment happens at the critical pull-off point, i.e., when Fn = Fpo and δN = δpo.
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2.1.3 Non-normal interactions

Non-normal interaction modes have to be discussed as well. A sphere "slides" when
its surface slips relative to that of the other sphere in contact. This is due to relative
tangential motion of the surfaces within the contact region. The slip velocity is us,
oriented along the slip direction ts, and along the same direction the slip resistance
force Fs acts. Since Fs is not directed through the sphere center, a sliding torque
ri Fs (n× ts) arises. The tangential force acting on impacting spheres is usually
determined relying on the spring-dashpot-slider model by Cundall and Strack [29].
According to this model, Fs is proportional to the tangential displacement δs and
depends on the sliding velocity us according to the following equation:

Fs =−ksδs · ts −ηsus · ts (2.37)

where ks = 8Gb(t) is the tangential stiffness coefficient [30], ηs is a damping coeffi-
cient. The particle tangential displacement is given by:

δs =
∫ t

t0
us(τ) · ts dτ (2.38)

where t0 is the time marking the beginning of the impact. The above equations are
valid up to a critical value of the magnitude of the tangential force Fcrit

s . Once this
threshold has been exceeded, the system enters in a condition of dynamic friction.

The twisting motion is similar, but the spheres rotates at different rate in a
direction along the normal vector connecting their centers. Therefore, the slip
velocity is nil at the center of the contact region, and it increases linearly within the
contact region with distance from the contact point. The resistance opposed by the
sphere to twisting motion is a twisting torque oriented parallel to the normal vector.
The twisting resistance is modelled analogously to the sliding resistance. Being kt

the tortional stiffness coefficient, ηt the dissipation coefficient, and Ωt the relative
twisting rate of the two colliding spheres along the normal direction, the twisting
resistance torque is defined as:

Mt =−kt

∫ t

t0
Ωt(τ)dτ −ηtΩt (2.39)

The slip starts at the outer edge of the contact region and progress toward its center
as long as the twisting moment increases, up to the reaching of a critical value [31].
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Rolling occurs when spheres rotate and translate in such a way that they move
tangentially relative to each other with no slipping occurring. Given the rolling
velocity ur distinguished from other types of motion, a spring-dashpot-model similar
to the model for sliding resistance has been proposed [32]. The rolling displacement
ξr is defined as:

ξr =
∫ t

t0
ur(τ) · tr dτ (2.40)

where tr is the rolling direction. Together with the rolling stiffness coefficient ηr and
the rolling damping coefficient ηr, it contributes to define the rolling torque Mr as:

Mr =−krξr −ηrur · tr (2.41)

This equation describes the rolling torque up to the reaching of a critical value.
Beyond the threshold, the rolling torque magnitude is supposed to be equal to the
critical value.

The effect of adhesion on tangential interactions can also be considered. For small
adhesive particles, the relevance of sliding and twisting is reduced, and therefore
simple expressions can be used to take them into account. Thornton and Yin [33, 34]
proposed a model based on the spring-dashpot-model by Cundall and Strack for
non-adhesive particles. In this model, the sliding force Fs is described by Eq. 2.37
when |Fs| < Fcrit

s , and by Fs = −Fcrit
s when |Fs| ≥ Fcrit

s , where the value of the
critical sliding force is related to the normal interacting force. The influence of
adhesion can be taken into account by simply implementing the pull-off force Fpo in
the expression for the critical value of the sliding force:

Fcrit
s = µF |Fn +2Fpo| (2.42)

where µF is a friction coefficient.

Analogous considerations can be made when it comes to twisting resistance.
Fcrit

t is again µF |Fn + 2Fpo| as in Eq. 2.42, and it is used to calculate the critical
twisting torque:

Mcrit
t =

3
16

πbFcrit
t (2.43)

The simple extension of the Cundall-Strack model to the adhesive case by re-
defining the critical force is not valid for rolling, as the asymmetry of the stress
distribution due to the adhesive force is the principal physical mechanism underlying
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Fig. 2.6 Adhesive sphere rolling on a planar surface. The asymmetry in the contact region
due to the necking occurring in the rear side of the particle makes the centroid C’ moves
ahead of the centroid of the contact region C. The lag between their horizontal positions is
the rolling displacement ξr.

rolling resistance. A simple model for adhesive rolling resistance has been derived
by Dominik and Thielens [35]. Let’s consider a simple system constituted by an
adhesive particle in contact with a plane, although the following considerations would
fit any two spheres colliding. When the sphere is not rolling, the stress distribution
predicted by the JKR model is symmetric about the contact point, i.e., the point
on the contact surface directly below the particle centroid. When the sphere starts
rolling, the situation depicted in Fig. 2.6 is realized. As can be seen, the material
points of the particle on the front side continually jump on a state of contact with
the planar surface, whereas the points on the rear side are continually pulled off.
According to JKR theory, the jump-on occurs when the normal overlap δN is 0, while
pull-off is delayed due to necking and occurs at δN = −δpo. This gives rise to an
asymmetry in the contact region: in the rear side, the particle remains in contact with
the planar surface for a longer time, causing the rise of the rolling displacement ξr,
i.e., the distance between the horizontal position of the centroid C’ and the horizontal
position of the center of the contact region C. The rolling resistance torque Mr is the
product of the adhesive force Fa = 4Fpo (b/b0)

3/2 and the rolling displacement ξr.
Therefore, the adhesive force Fa can be interpreted as a rolling coefficient kr, and the
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rolling resistance torque can be defined as:

Mr =−krξr (2.44)

When a particle starts rolling, the contact region stays fixed because of the resistance
opposed by Mr until a critical rolling displacement ξ crit

r is reached. Then, the particle
starts rolling, keeping a horizontal displacement ξ crit

r between O and C. In other
words, Mr =−krξ

crit
r for ξr ≥ ξ crit

r . The rolling displacement is calculated from the
rolling velocity ur in a similar fashion to Eq. 2.40. The critical rolling displacement
can also be expressed in terms of a critical rolling angle φ crit

r as:

φ
crit
r = ξ

crit
r /a (2.45)
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2.2 DEM modelling for spray drying

The spray drying process was examined by a discrete element method able to
accurately track the motion of each single colloidal particle. The motion dynamics
of the particles was modelled through the open-source software Yade, appropriately
modified to take into account the relevant forces acting on the particles, or bodies,
during the shrinkage of the droplet, namely the capillary force, the Brownian force
and the adhesive forces acting on the particles.

In Yade, bodies move through the simulation space and interact with each other.
During a single iteration loop, the forces acting on each body are resetted, interac-
tions between bodies are updated and the detection of new collisions begins. New
interactions are defined and characterized, and forces acting on bodies are calculated
using constitutive laws based on displacements. Finally, Newton’s second law is
used to calculate acceleration of bodies, and velocity and position of each body are
updated. Time is increased by a fixed timestep ∆t and a new iteration loop begins
[36]. The main steps of the simulation loop are summarized in Fig. 2.7.

2.2.1 Contact forces

Particles are rigid but a certain overlap is allowed: under the hypotesis that deforma-
tion occurs only in a small region, the overlap is used to model interaction forces [37].
A normal stiffness kN is calculated using Eq. 2.46: this stiffness is analogous to the
stiffness of two springs in serial configuration with lengths equal to the sphere radii
and it is related to the elastic modulus E of the bodies, as highlighted in Fig. 2.8. The
equation is obtained considering the change of distance between the sphere centers
as distributed onto deformations of both spheres, proportionally to their compliances.
The displacement generates forces proportional to the stiffness.

kN =
2EiaiE ja j

Eiai +E ja j
(2.46)

A sliding stiffness ks (or shear stiffness) is defined as a fraction of kN . The following
relation between inter-particle forces and the friction coefficient tan(φc), where φc is
the contact friction angle, has to be true [38]:

||Fs|| ≤ ||Fn tan(φc)|| (2.47)
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Fig. 2.7 Simulation loop in Yade.
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Fig. 2.8 Contact between the sphere i with radius ai and elastic modulus Ei, and sphere j
with radius a j and elastic modulus E j. The normal stiffness is analogous to the stiffness of
two springs in serial configuration with lengths equal to the sphere radii.

As already mentioned in Section 2.1.1 (Fig. 2.2), the modes of spheres interac-
tion are normal displacement, sliding, twisting and rolling. Normal displacement
originates from the relative linear velocity of the particles along the interaction axis,
described by the unit vector n; sliding is caused by the relative linear velocity per-
pendicular to n; twisting originates from the relative rotational velocity component
parallel with n; rolling is caused by the relative rotational velocity component per-
pendicular to n. The principal components of the relative movement are the normal
deformation and the shear deformation. The normal deformation is characterized by
the overlap δN , the difference between the sum of the radii of the spheres and the dis-
tance of their centers or, in another view, the displacement of the initial contact point
in the normal direction. Shear displacement δ⃗s describes tangential interaction and is
the component of the displacement of the initial contact point which is perpendicular
to the contact line.

Every interaction is characterized by kinematic variables that are used to calculate
the forces acting on the two spheres using constitutive laws. The forces are calculated
accordingly to the selected contact model: the simplest contact model available in
Yade is a non-cohesive elastic-frictional contact model based on the work by Cundall
and Strack [29]. Properties of the material such as density, elastic modulus, etc. are
defined, and when a new contact is detected, the interaction is created and related
variables such as normal stiffness kN , shear stiffness ks and contact friction angle
φc are computed on the basis of the material associated to the bodies [38]. At each
step, displacements δN and δs are computed. If δN > 0 the interaction is cancelled,
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otherwise the normal force Fn and a trial shear force Ft
s are calculated as follows:

Fn = kNδnn (2.48)

Ft
s = ksδδδ s (2.49)

Fs = Ft
s if |Ft

s| ≤ |Fn| tan(φc), otherwise the adjusted value for the shear force is
Fs = Ft

s
|Fn| tan(φc)

|Ft
s|

. The total force F = Fn +Fs is applied at the contact point, so it
generates torques as shown in Eq. 2.50 and 2.51.

M1 = d̄1(−n)×F (2.50)

M2 = d̄2 n×F (2.51)

Additional forces arise from the binary interactions between the primary particles
at contact. Besides the elastic-frictional model previously described, a cohesive
normal force has been set, which was estimated according to the Johnson-Kendall-
Roberts (JKR) theory of contact mechanics as [39]:

Fcoh = Fpo =
3
2

πγsa (2.52)

where γs is the superficial energy of the monomers2, and where the first equality
states that the cohesive force equals the pull-off force Fpo required to break the bond
between the two particles. It should be noticed that Eq. 2.52 is equivalent to Eq.
2.35, because the radius in the latter equation is an effective radius, equal to a/2 for
spheres of the same size.

2.2.2 Hydrodynamics forces and Brownian motion

Besides the forces arising from the particle-particle interactions, forces exerted by
the fluid on the suspended particles are modelled as well. Viscous force and torque
acting on the particles were considered according to the free–draining approximation,
thus assuming that every particle interacts with the surrounding fluid as if it were
alone in the system, i.e., neglecting all fluid-mediated particle-particle interactions
[40–43]. Consequently, the viscous force acting on a single primary particle reduces

2If the particles are surrounded by a liquid, γs is the interfacial liquid-solid energy.
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to the Stokes drag force:

Fdrag =−6πµla(ẋp − ẋl) (2.53)

where µl is the liquid viscosity, a the radius of the primary particle, ẋp the linear
velocity of the particle and ẋl the linear velocity of the liquid at the particle coor-
dinates, which, under the condition of stagnant fluid, is equal to zero. Drag torque
calculations are similar, but rotational velocities ωωω are required:

TTT drag =−8πµla3(ωωω p −ωωω l) (2.54)

Brownian effects were taken into account, in order to capture the diffusion of the
primary particles in the medium. To this aim, the Brownian force acting on a particle
was implemented as follows [44]:

Fbrown =

√
24kbT ·6πµla

∆t
·χχχ (2.55)

where kb is the Boltzmann constant, ∆t is the fixed timestep between iterations and
χχχ is a three-elements vector where each element is a random number drawn at each
iteration from a uniform distribution between −0.5 and +0.5. Brownian torque
calculations are analogous and are based on the following equation:

TTT brown =

√
24kbT ·8πµla3

∆t
·χχχ (2.56)

All other fluid-particle of particle-particle interactions are neglected, including
colloidal van der Waals or double layer forces.

2.2.3 Integration of motion

Forces and torques acting on particles are employed to integrate motion equations
by using the second order leapfrog method. These equations are solved individually
for each particle, so the following steps will be referred to the integration of motion
for a single sphere. According to the definitions given in Section 2.2.1, if xi is the
position of a particle at a certain time ti, xi+1 is the position of the particle at time
ti+1 = ti+∆t. The value is updated using the acceleration ẍi computed from the total
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force F acting on the particle and its mass m (Eq. 2.57).

ẍi = F/m (2.57)

Acceleration can be expressed with a 2nd order finite difference, obtaining:

ẍi ∼=
xi−1 −2xi +xi+1

∆t2 (2.58)

xi+1 = xi +∆t
(

xi −xi−1

∆t
+ ẍi ∆t

)
(2.59)

Informations about the value of xi−1 have already been lost. However, if one uses
the approximation described by Eq. 2.60, Eq. 2.59 changes into Eq. 2.61.

ẋi−1/2 ≃
xi −xi−1

∆t
(2.60)

xi+1 ≃ xi +∆t
(
ẋi−1/2 + ẍi ∆t

)
(2.61)

The term between brackets in Eq. 2.61 is an approximation for the current mean
velocity ẋi+1/2:

ẋi+1/2 ≃ ẋi−1/2 + ẍi ∆t (2.62)

Firstly, the algorithm computes the value of the current mean velocity ẋi+1/2 (Eq.
2.62), which will be stored and used as ẋi−1/2 in the next step; then, the position
xi+1 is calculated (Eq. 2.63). It is worth to notice that positions x are known at times
i∆t, while velocities ẋ are known at times (i+1/2)∆t.

xi+1 = xi + ẋi+1/2 ∆t (2.63)

The particle orientation qi is updated in a similar manner. For spherical objects,
the inertia tensor is diagonal in every orientation, i.e., I11 = I22 = I33. Therefore, the
current angular acceleration ω̇ωω i can be computed if current torque T is known.

ω̇ωω i =
T
I11

(2.64)

The value of ωωω i+1/2 is obtained with an equation similar to Eq. 2.62.

ωωω i+1/2 = ωωω i−1/2 + ω̇ωω i ∆t (2.65)
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The rotation vector is a quaternion defined as ∆q = ωωω i+1/2 ∆t. Finally, the next
orientation qi+1 can be computed as:

qi+1 = qi +∆q (2.66)

The critical, fixed timestep ∆tcr for the stability of the explicit integration method
is calculated as follows. The properties of the material has to be defined, such as
density ρp and the elastic modulus E. Explicit integration schemes are employed
and critical timestep calculations are based on sonic speed

√
E/ρp.

∆tcr = a

√
ρp

E
(2.67)

in Equation 2.67 the timestep is defined in such a way that the elastic wave does not
propagate farther than the minimum distance of integration points in a single step.
This distance can be identified as the sphere’s radius a because it is the minimum
distance between two objects, if the two objects are the sphere and a facet.

The computational time Z increases linearly with the number of monomers. Also,
computational time increases if the monomers are smaller, because in that case
the computed timestep between iterations would be smaller. In particular, Z varies
linearly with the radius of particles a. For a fixed domain volume V and a fixed
simulated time ζ , Z roughly depends on the number of simulation steps nstep, on
the number of particles np an on the number of computational cores nCPU . Some of
these variables can be related to the particle radius a as follows:

• The number of simulation steps nstep (Eq. 2.68) depends on the choice of the
critical timestep ∆tcr, estimated by p-wave velocity. st is the timestep safety
factor.

nstep =
ζ

st∆tcr
=

ζ

sta

√
E
ρp

(2.68)

• For a certain value ppack of packing porosity, the number of particles np can
be estimated as:

np = ppack
V

4
3πa3

(2.69)

So the computational cost can be roughly estimated as Z ∝ a−1a−3 ∝ a−4. It has
to be noticed that this relation is obtained for a fixed simulation volume: if other
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parameters are allowed to vary, the proportionality between the computational time
and the particle radius can be different. The Yade code used for the simulation of the
spray drying of a single droplet is given in Appendix A.
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2.3 DEM modelling for breakup

The approach described in Section 2.2 is focused on the agglomeration of clusters,
i.e., on their formation via spray drying. In that case, the role of fluid dynamic forces
was minor in comparison to the capillary effect of the shrinking interface, and also
highly accurate modelling of contact mechanics was not required, because adhesive
forces were so strong to freeze the configuration of the growing aggregate after every
contact. The de-agglomeration of the clusters provoked by viscous forces is equally
important for the proposed case study. Agglomerates are in fact required to break up
in the proximity of the occlusion, where large shear stresses hold. In this case, beside
the intensity of the shearing force which is determinant in inducing dispersion, a
key role is played also by the spatial arrangement of the primary particles within
the agglomerate, which strongly affects the distribution of the mechanical stress in
the network of contacting particles, the breakup occurrence and consequently the
fragment size distribution [40, 45–47]. The study of the agglomerate rupture due
to viscous stresses, performed by an in-house code, required two improvements
in the DEM compared to the model used for simulating the spray drying process.
Firstly, the viscous forces, which are responsible for breakage, had to be predicted
accurately. The free–draining approximation, used in the first part of the work
because of its favorable computational cost, neglects in fact fluid-mediated particle-
particle interactions, which are known to strongly influence the way agglomerates
undergo restructuring and breakup [48, 49]. Secondly, in this case, it was necessary
to accurately compute and track the distribution of the mechanical stresses within the
agglomerate structure, in order to ascertain if the critical stress inducing fracture is
reached at any particle-particle contact. This effect was largely neglected in the first
part of the work, i.e., the formation of rigid clusters of particles, in which the spatial
configuration of the particles was seen to be frozen after contact. In the second part
of the work, for rigorously addressing the deagglomeration phenomenon, Stokesian
dynamics (SD) approach was adopted [46, 50–53]. The method allows to accurately
predict the hydrodynamic stress, coupled with proper models for describing the
colloidal particle-particle interactions [47, 54].
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2.3.1 Stokes equations

The system of interest is made by spherical particles dispersed in a Newtonian fluid.
Particles can be linked by van der Waals forces, constituting agglomerates. The
hydrodynamic force exerted by the fluid can induce modifications in the particle-
particle bonds, and even their breakup. The problem is characterized by resorting to
Navier-Stokes equations for incompressible and Newtonian fluids. In a dimensionless
form:

∇
∗ ·u∗ = 0 (2.70)

St
∂u∗

∂ t∗
+Reu∗ ·∇∗u∗ =−∇

∗p∗+∇
∗2u∗ (2.71)

If µl is the dynamic viscosity of the fluid and L, T̃ and Ũ are representative of a
characteristic length, time and velocity of the considered system, the dimensionless
quantities in Eq. 2.70 and 2.71 are defined as:

• ∇∗ = L∇

• u∗ = u/Ũ

• t∗ = t/T̃

• p∗ = pL/(µlŨ)

The Reynolds number Re and the Stokes number St are two fundamental dimension-
less numbers characterizing the investigated system, defined as:

Re =
ρlŨL

µl
; St =

L2

T̃ νl
(2.72)

ρl is the fluid density, νl = µl/ρl is its kinematic viscosity.

For L = a, Reynolds and Stokes number are referred to particles and are called
Rep and Stp respectively. In the investigated system, the radius a of particles is
small, so it is valid the assumption of Rep ≪ 1 and Stp ≪ 1. Moreover, by assuming
T̃ = a/Ũ , it can be noticed that Rep = Stp. Under the discussed hypotheses, the
creeping flow condition is realized: the inertial and the acceleration terms in Eq. 2.71
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are negligible and one is therefore able to write Eq. 2.70 and 2.71 as the following
Stokes equations. This is known as the Stokes approximation.

∇ ·u = 0 (2.73)

0 =−∇p+µl∇
2u (2.74)

Stokes equations are time-independent, are linear with respect to u, and are reversible,
i.e., (−p,−u) is a solution of the equation if (p,u) is a solution as well [55].

Eq. 2.73 and 2.74 define a flow field exerting a hydrodynamic force and torque
on the particles. Colloidal interactions between particles are also taken into con-
sideration, while Brownian motion is neglected, as will be discussed in the next
sections. Particles’ inertia is supposed to be negligible, and therefore forces acting
on particles must balance each other. Hydrodynamic force and torque are balanced
by the colloidal and contact forces and torques for every particle in the system, as
described by Eq. 2.75. Fhydro =−Fcont

Thydro =−Tcont
(2.75)

The complete solution of the Stokes equation and the subsequent calculation of
forces and torques would require a notable computational cost. However, a different
approach can be employed to calculate the hydrodynamic forces exerted by the
fluid on particles and agglomerates. Stokesian Dynamics is an approach that uses
a truncated multipole expansion of the rigorous solution of the Stokes equations
for long-range interactions, while short-range interactions between particles are
modelled using the lubrication theory. In this way, Stokesian dynamics is able of
accurately simulate the hydrodynamic interactions at a reasonable computational
cost [56, 57].

2.3.2 Single particle in Stokes regime

In this section, the equations governing the behaviour of a fixed, single, spherical
particle in Stokes regime are shown [58]. The velocity of the undisturbed flow field
u∞ at the generic location x can be written as a 1st order Taylor expansion centered
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Fig. 2.9 Single particle in Stokes regime. Left: particle immersed in a uniform flow field.
Middle: particle immersed in a pure rotating flow field. Right: particle immersed in a pure
straining flow field.

in x0:
u∞(x)≈ u∞(x0)+∇u∞(x0) · (x−x0) (2.76)

Eq. 2.76 is sufficiently accurate if the difference between x and x0 is small. Let’s
center the reference system in x0: if u∞(x0) is re-written as u∞ for brevity, and if the
velocity gradient ∇u∞(x0) is decomposed in an antisymmetric and a symmetric part,
Eq. 2.77 is obtained.

u∞(x) = u∞ +Ω
∞ ·x+E∞ ·x (2.77)

Ω∞ and E∞ are the rate-of-rotation and rate-of-strain tensors. As previously men-
tioned, Stokes equation is linear: therefore, the behaviour of a single particle in a
generic flow field can be thought as the superposition of a uniform flow field u∞, a
rotating flow field Ω∞ ·x and a straining flow field E∞ ·x. A visual representation of
the three types of flow field has been given in Figure 2.9. The overall effect of the
flow field on the particle is the sum of the effect of every single type of flow field.

The effect of the uniform flow field on an immersed spherical particle is obtained
by imposing a no-slip condition at the particle surface, and prescribing that the flow
field is undisturbed at large distance from the particle. The solution of the problem
leads to some considerations: the particle causes a slowly-decaying distortion of the
uniform flow field, therefore another particle in the system would be influenced by
the presence of the first particle even for a relatively long distance. Moreover, Eq.
2.78 arises from the integration of the stress tensor over the particle surface, and
allows one to calculate the hydrodynamic force exerted by the fluid on the particle.

Fhydro = 6πµlau∞ (2.78)
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As mentioned above, the particle has been supposed to be fixed, but this result can
be extended to the case of a particle moving at velocity up. The inertia is negligible
in Stokes regime, therefore it is easy to switch to a reference frame moving with the
particle. Solving the problem in this reference frame and then getting back to a fixed
reference frame, Eq. 2.79 is obtained.

Fhydro = 6πµla(u∞ −up) (2.79)

Let us consider the case in which the particle is immersed in a pure rotating
flow field, i.e., the only velocity associated to the fluid is the rotational velocity ωωω∞.
If boundary conditions analogous to the ones discussed for the uniform flow field
are imposed, the following results are obtained: the influence of the particle on the
surrounding flow field decays faster; the hydrodynamic force exerted by the fluid on
the particle is zero because of the intrinsic symmetry of the problem; a hydrodynamic
torque arises, and it can be calculated by resorting to Eq. 2.80:

Thydro = 8πµla3(ωωω∞ −ωωω p) (2.80)

where ωωω p is the rotational velocity of the particle.

At this point, let us consider a particle immersed in a pure straining flow field.
In this case, both the net force and torque are null. The resistance opposed by the
particle to the straining component of the flow, i.e., the stresslet, can be calculated in
index notation as:

Si j =
20
3

πµla3E∞
i j (2.81)

Another notable case is represented by a particle freely moving in a pure shear
flow, i.e., the velocity of the fluid linearly changes along a direction, following the
law u∞ = (0,0, γ̇y), where γ̇ is the shear rate. The flow is obtained by combining the
contribution of a rotating and a straining component, as shown in Eq. 2.82, 2.83 and
2.84.

u∞(x) = Ω
∞ ·x+E∞ ·x (2.82)
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Ω
∞ =

1
2

 0 0 0
0 0 −γ̇

0 γ̇ 0

 (2.83)

E∞ =
1
2

 0 0 0
0 0 γ̇

0 γ̇ 0

 (2.84)

According to Eq. 2.79 and 2.80, the relative linear and angular velocity of a
particle immersed in the fluid is proportional to the force and the torque exerted by
the fluid on the particle, respectively. Moreover, hydrodynamic force and torque
counter-balance the remaining forces and torques acting on the particle (Eq. 2.75).
The relation between hydrodynamic forces exerted by a known flow field and the
motion of the suspended particle α can be expressed by the following linear system:



a′ 0 0 0 0 0 0 0 0 0 0
0 a′ 0 0 0 0 0 0 0 0 0
0 0 a′ 0 0 0 0 0 0 0 0
0 0 0 b′ 0 0 0 0 0 0 0
0 0 0 0 b′ 0 0 0 0 0 0
0 0 0 0 0 b′ 0 0 0 0 0
0 0 0 0 0 0 2c′ 0 0 0 c′

0 0 0 0 0 0 0 2c′ 0 0 0
0 0 0 0 0 0 0 0 2c′ 0 0
0 0 0 0 0 0 0 0 0 2c′ 0
0 0 0 0 0 0 c′ 0 0 0 2c′
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(2.85)

where:
a′ =

1
6πµla

; b′ =
1

8πµla3 ; c′ =
3

20πµla3

Tensors S and E∞, symmetric and traceless, are reduced to the equivalent five-
component column vectors:

• S = (Sxx,Sxy,Sxz,Syz,Syy)

• E∞ =
(
E∞

xx −E∞
zz,2E∞

xy,2E∞
xz,2E∞

yz,E
∞
yy −E∞

zz
)
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The 11×11 matrix is the mobility matrix for a particle immersed in a flow field.

2.3.3 Multi-particle system

Eq. 2.85 can be easily extended to a colloidal suspension composed by np particles,
resulting in a 11np× 11np mobility matrix, i.e., 11np independent equations. If
particles do not hydrodynamically interact with each other, the approach is referred
to as the free-draining approximation.

However, it is possible to go further and take into consideration the hydrodynamic
interactions between the particles suspended in the fluid. Faxén laws evaluate
force, torque and stresslet acting on each suspended particle taking into account
the disturbance that other particles exert on the flow field [58, 59]. The flow field
disturbance u′i is the difference between the disturbed flow field and the flow field
if no other particles were suspended in the fluid. In index notation, it is u′i(x) =
ui(x)−u∞

i (x). Faxén laws for force, torque and stresslet are the following:

Fα
i = 6πµla

[
−
(

1+
a2

6
∇

2
)

u′i(x
α)+(uα

i −u∞
i (x

α))

]
(2.86)

T α
i = 8πµla3

[
−1

2
εi jk∇ ju′k(x

α)+(ωα
i −ω

∞
i (x

α))

]
(2.87)

Sα
i j =

20
3

πµla3
[
−
(

1+
a2

10
∇

2
)

E ′
i j(x

α)+(−E∞
i j )

]
(2.88)

εi jk is the Levi-Civita operator. If the disturbance is equal to zero, Eq. 2.79, 2.80
and 2.81 referred to the particle α are re-obtained.

Eq. 2.86, 2.87 and 2.88 still require a model for the disturbed flow field, in order
to get a closure. Considering the case of a particle fixed in a uniform flow field, the
combination of the velocity field solution with Eq. 2.78 in the limit a → 0 results in
the point-force solution of the Stokes equation, the Stokeslet.

uPF
i = Ji j ·

Fhydro
i

8πµl
(2.89)
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where Ji j is the Oseen-Burgers tensor, or stokeslet propagator (Eq. 2.90).

Ji j =

(
δi j

r
+

xix j

r3

)
(2.90)

Following a similar procedure, the solution for the point-torque and point-stresslet is
obtained (Eq. 2.91 and 2.92) and expressed through the associated propagator tensor,
Ri j and Ki jk respectively.

uPT
i =

1
8πµl

εi jkT hydro
j rk

r3 = Ri j
T hydro

j

8πµl
(2.91)

uPS
i =− 1

8πµl

3xix jxk S jk

r5 = Ki jk
S jk

8πµl
(2.92)

Thanks to these equations, it is possible to extract the solution of the Stokes
flow for a certain distribution of forces f j as the superposition of the flow fields
individually generated by each force, as expressed by the following equation:

ui(x) = u∞
i (x)−

1
8πµl

np

∑
α=1

∫
Sα

Ji j(x−y) f j(y)dSy (2.93)

The point of application of each differential force is indicated by the vector y. Eq.
2.93 is not explicitly solved by the Stokesian dynamics approach, wich instead
focuses on a multipole expansion of the flow field about the center of the particle α .
The n-th moment of this expansion reads as:

Mα
n =−

∫
Sα

(yi − xα
i )

n f j(y)dSy (2.94)

The zero moment, obtained by imposing n = 0, is the total force exerted by the
particle on the fluid; The first moment (n= 1) can be decomposed in an antisymmetric
component related to torque, and a symmetric component related to stresslet. The
multipole expansion is then written as:

u′i(x)= ui(x)−u∞
i (x)=

1
8πµl

np

∑
α=1

(
1+

1
6

a2
∇

2
)

Ji jFα
j +Ri jT α

j +

(
1+

1
10

a2
∇

2
)

Ki jkSα
jk

(2.95)
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The problem is closed by coupling Eq. 2.95 with the Faxén laws expressed by Eq.
2.86, 2.87 and 2.88.

The result is a 11np×11np linear system that couples linear velocity of particles,
angular velocity of particles and rate of strain of the fluid with hydrodynamic force,
torque and stresslet through a far-field mobility matrix M ∞. The system can be
written in a compact notation as [56]:

u−u∞ (x)
ωωω −ωωω∞ (x)
−E∞ (x)

=−M ∞


Fhydro

Thydro

S

 (2.96)

where Fhydro = (F1, ...,Fα , ...,Fnp), Thydro = (T1, ...,Tα , ...,Tnp) and S are the hy-
drodynamic forces, torques and stresslet acting on the np particles composing the
agglomerate. The mobility matrix is symmetric and positive definite, therefore it can
be divided in submatrices, as reported in Eq. 2.97.

M ∞ =

 M ∞
UF M ∞

UT M ∞
US

M ∞
ΩF M ∞

ΩT M ∞
ΩS

M ∞
EF M ∞

ET M ∞
ES

 (2.97)

This formulation of the method is known as Force-Torque-Stresslet, or FTS. It is
the most accurate formulation based on Stokesian dynamics approach, although
low order and less precise formulations are also possible, by truncating the mul-
tipole expansion at the zero-th moment (F formulation) or at the anti-symmetric
component of the first moment (FT, or Force-Torque formulation). The vectors
u = (u1, ...,uα , ...,unp) and ωωω = (ωωω1, ...,ωωωα , ...,ωωωnp) are the linear and angular ve-
locities of the primary particles, while u∞ (x) and ωωω∞ (x) are the linear and angular
velocities of the undisturbed flow field at the particle location x. The Brownian effect
is neglected in this formulation, because SD approach will be adopted for systems
composed by relatively large aggregates immersed in flow fields exerting a high
hydrodynamic force: in other words, the role of Brownian motion is negligible with
respect to the effect of the shear flow in our breakup simulations.

The far-field mobility matrix takes into account only long-ranged interaction
between particles, therefore it correctly describes hydrodynamic interactions be-
tween particles that are relatively far apart. SD approach introduces a short-ranged
correction based on lubrication theory, in order to correctly reproduce the behaviour
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of the particles that are in relative motion close to each other. This is achieved
by treating lubrication forces as two-body interactions and introducing them in a
pair-wise additivity manner. Inverting the far-field mobility matrix, a resistance
matrix R is obtained. This resistance matrix needs to be corrected by adding the
two-body resistance function R2B and subtracting the far-field two-body resistance
function R∞

2B in order not to count twice for those interactions. Expressions defining
the far-field two-body resistance function are found in the literature [55]. The overall
resistance matrix R is therefore calculated as follows:

R = (M ∞)−1 +R2B −R∞
2B (2.98)

By dividing the resistance matrix in submatrices:

R =

 RUF RΩF REF

RUT RΩT RET

RUS RΩS RES

 (2.99)

and using Eq. 2.75, the problem can be reformulated as:{
u
ωωω

}
=

{
u∞ (x)
ωωω∞ (x)

}
+

[
RUF RΩF

RUT RΩT

]−1{
Fcont +REF E∞

Tcont +RET E∞

}
(2.100)

Time integration of u and ωωω gives the location and the orientation of the particles. In
our code, the integration step is performed by a first-order explicit Euler method.

2.3.4 Contact and colloidal forces

Contact mechanics allows us to convert the hydrodynamic forces and torques exerted
by the fluid on the particles into a distribution of internal mechanical stress. Such
internal tensions govern the relative displacement of the particles in the cluster.
The normal contact force acting between a pair of primary particles was obtained
by linearisation of the JKR theory [39, 47], which is the most suitable model for
the relatively compliant polymeric particles we will examine in the next chapters,
according to Tabor’s criterion. For a pair of contacting particles the surface-to-surface
distance h is related to the force Fn acting along the normal direction. This distance
is nil when undeformed particles are just in contact and may become positive or
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negative due to the deformation of the contact region under traction or compression,
respectively. The relationship between h and Fn is as follows:

h =
b2

0
a

(
1+
√

1+Fn/Fcoh

2

)1/3

·

(
1−3

√
1+Fn/Fcoh

3

)
(2.101)

b0 =

[
9πγsa2 (1−ν2)

2E

]1/3

(2.102)

where b0 is the zero-load contact radius, γs is the surface energy of the solid, and
ν and E are respectively the Poisson ratio and the elastic modulus of the primary
particles. The cohesive force of the contact, i.e., the largest traction force that the
contact can bear, is given by Eq. 2.52.

When two contacting particles are pulled apart, due to cohesive forces, the
contact is preserved up to a positive surface-to-surface distance, referred to as pull-
off distance hpo, which is the distance at which detachment occurs abruptly:

hpo =

[
3π2γ2

s a
(
1−ν2)2

8E2

]1/3

(2.103)

In physical terms it means that, while particles are moving apart, a small neck of
material is present at the contact, preventing detachment as long as its length is
smaller than hpo.

When particles are not in contact but are located in very close proximity, a
normal force arises because of colloidal van der Waals attraction. The strength of the
interaction depends on h, the surface-to-surface distance, according to the following
law:

FV DW
n =

Ah a
12(h+ z0)2 (2.104)

where Ah is the Hamaker constant, and z0 is the minimum approach distance, intro-
duced to avoid the infinite attraction force that would be obtained at contact (h = 0);
in fact, the molecular roughness of the particles and the short-ranged repulsion
prevent this singularity from happening and keep the attraction force finite.

Particles are brought to contact by van der Waals attraction, up to h = 0. Given
the prescribed JKR contact model, particles are deformed by the attraction force,
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Fig. 2.10 Complete DEM model for two interacting particles. Dashdot line: normal force
Fn given by van der Waals attraction (pre-contact). Solid line: Fn given by the JKR contact
model (post-contact). Attraction for Fn < 0, repulsion for Fn > 0. Discontinuities between
the two models in h = 0 and h = hpo.

up to a condition of overlap (h < 0). If a traction load is applied, particles can be
separated, but they are considered to be still in contact even for h > 0 to simulate
the necking phenomena: the bond is broken when the critical pull-off distance hpo is
reached. At that point, normal force is again modelled as a van der Waals attraction.
In other words, a discontinuity in the normal force arises at h= 0 and h= hpo because
of the switch between the van der Waals model and the JKR model occurring in
these two points. These considerations are visualized in Fig. 2.10.

Forces and torques related to non-normal interactions, i.e., mutual sliding, rolling
and twisting, were predicted by the model by Marshall [60], and are present only
when particles are in contact. The sliding resistance force was calculated using a
spring model which prescribes that:

Fs = min
(

ks

∫ t

0
us(τ)dτ · ts ; Fcrit

s

)
(2.105)



42 Methods

where ks is the sliding stiffness coefficient, and it is estimated using the following
equation [52]:

ks ≈ 3.3
[πγs(1−ν)]1/3

2−ν

(
aE

1+ν

)2/3

(2.106)

The term us in Eq. 2.105 is the component of the particle relative velocity at the
contact point aligned with the sliding direction ts. As long as the tangential force
responsible for sliding is lower than the critical value Fcrit

s , the force can be balanced
by the elastic reaction of the contact, which is proportional to the tangential displace-
ment. The critical displacement ξ crit , corresponding to Fcrit

s , is estimated on the
basis of the work of Dominik and Thielens [61]:

ξ
crit ≈ 0.05

π E b2
0

2(1+ν)
(2.107)

The twisting resistance torque Mt opposes the relative rotation of two particles
around the axis connecting their centers. It is calculated using a relationship similar
to the one of Eq. 2.105 and reads as:

Mt = min
(

kt

∫ t

0
Ωt(τ)dτ ; Mcrit

t

)
(2.108)

where Ωt is the relative torsional velocity. The torsional stiffness coefficient kt is
given by:

kt = 6πγsa2(1−ν) (2.109)

The critical angular displacement φ crit
t , corresponding to the largest torsional torque

that can be balanced by the elastic reaction of the contact before the contact point
advances, is given by:

φ
crit
t ≈ 0.05

E b3
0

18γsa2(1−ν2)
(2.110)

The rolling resistance torque Mr and stiffness coefficient kr are defined analo-
gously to the sliding and twisting parameters. In order to distinguish the effect of
rolling from other types of motions, the relative rolling velocity ur between the two
contacting spheres i and j is defined as follows [62]:

ur =−a(ΩΩΩi −ΩΩΩ j)×n (2.111)
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where ΩΩΩi and ΩΩΩ j are the angular velocities of the two particles and n the unit vector
connecting their centers. The rolling resistance Mr is calculated as:

Mr = min
(

kr

(∫ t

0
ur(τ)dτ

)
· tr ; Mcrit

r

)
(2.112)

where the term tr is the direction of rolling, i.e., the unit vector aligned with the
direction of the rolling velocity ur. The rolling stiffness coefficient kr and the critical
angular displacement φ crit

r were respectively computed as:

kr = 3πγsa2 (2.113)

φ
crit
r ≈ 0.2

b0

a
(2.114)

2.3.5 Rigid body approximation

A notable simplification of the method can be obtained in the limit of small elastic
deformations. In this case, an agglomerate can be described as a rigid body: in other
words, the relative position of the primary particles never changes, and therefore the
velocity of each particle can be easily related to the velocity of the center of mass of
the agglomerate, as shown in Eq. 2.115.uα = ucm +ωωωcm × (uα −ucm)

ωωωα = ωωωcm
(2.115)

Given the small dimension of the agglomerates, inertia is supposed to be negligi-
ble, therefore forces and torques acting on the agglomerate must be zero.∑

np
α=1 (F

α +Fα
ext) = 0

∑
np
α=1 [T

α +(uα −ucm)× (Fα +Fα
ext)] = 0

(2.116)

Fα
ext is the force acting on particle α .

To identify the occurrence of breakup, the hydrodynamic stress required is deter-
mined by comparing the internal force acting at each contact with the pull-off value
required for severing the bond. The small scale motions at intermolecular contacts,
due to surface forces or local deformations, are not considered in the approach,
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making the problem much better conditioned. The approach was proposed originally
for isostatic agglomerates [51] and then extended to hyperstatic agglomerates [52]
and it has then applied to the dynamics of breakup in turbulent fluids [63] and in
highly viscous systems [64, 65]. Although this assumption causes the loss of some
information about the dynamics of restructuring of the agglomerate, it can be em-
ployed without losing in accuracy if the agglomerate behaves almost like a rigid
body until the breakup event, giving a substantial reduction of computing time.
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2.4 CFD

Computational fluid dynamics is employed to thoroughly characterize the flow field
of a fluid in an obstructed vessel. The equations of motion are solved using the
software ANSYS Fluent 20. The resolution is based on a finite volume method
[66], i.e., the solution is reached in an iterative way by dividing the domain into sub-
domains called cells and by solving equations of motion in every cell. The system
investigated using CFD is biphasic, the continuous phase being a fluid flowing in an
obstructed vessel, and the dispersed phase being micrometric drug carriers. Blood
is a non-Newtonian fluid, composed of a continuous plasma matrix and a disperse
phase, which includes red blood cells, white blood cells, and platelets. Although
all these entities have size comparable with our drug carriers, we have considered
blood as a pseudo-homogeneous liquid for the sake of simplicity. The particular
composition of blood leads to a shear-thinning rheological behaviour, which has been
described by resorting to a plethora of non-Newtonian models [67–69]. However, the
common assumption of a Newtonian behaviour was seen to be sufficiently accurate
in large vessels [70] and for high shear stresses [71]. Moreover, the influence of
the dispersed phase (the drug carriers) on the flow field has been considered to be
negligible given the small concentration and size of agglomerates, and therefore
they were treated as tracer particles carried passively by the flow field. Finally, the
short-term target of these simulations is to replicate a plausible experimental setup
made by a dispersion of aggregates in a Newtonian fluid flowing in a microfluidic
device. For all these reasons, CFD was employed to simulate the flow field of a
continuous phase, Newtonian and incompressible. The path of massless particles
passively carried by the flow field can be extracted, and agglomerates are considered
to travel along these trajectories.

To model the continuous phase, the continuity equation and the Navier-Stokes
equations were solved for a Newtonian, incompressible fluid by resorting to the
no-slip condition for the walls of the vessel. The code solves the following continuity
and momentum transport equations:

∇ ·u = 0 (2.117)

ρl
∂u
∂ t

+ρl∇ · (uu) =−∇p+∇τ̃ (2.118)
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where u is the velocity of the fluid, ρl is the fluid density, p is the pressure, and τ̃ is
the viscous stress tensor. The system is laminar, and viscosity was assumed to be
constant, hence the stress tensor is:

τ̃ = µ
(
∇u+∇uT) (2.119)

The system quickly evolves to the condition of steady-state, so this is the condition
of interest.

The code is based on a finite volume method approach to solve partial differential
equations. The linear system resulting from the discretization of the conservation
equations was solved by the software using a pressure-based segregated algorithm
[72]. Pressure and velocity were coupled by using the Semi-Implicit Method for
Pressure Linked Equations (SIMPLE) algorithm. Starting from an initialized solu-
tion:

1. Momentum equations are solved sequentially;

2. The obtained flow field is corrected using a pressure equation derived from
continuity and momentum equations;

3. Properties of the system are updated;

4. Process is repeated until convergence is reached.

As mentioned above, the computational domain is subdivided in cells. The cells
are mostly hexahedral, and they are aligned to the flow field in order to reduce the
numerical diffusion effect. A second order upwind scheme was employed for spatial
discretization.

Once that the flow field of the continuous phase has been calculated, it is possible
to extract a set of trajectories followed by particles dispersed in the fluid. In Stokes
regime, it is possible to calculate the trajectory through a balance of the forces acting
on a single particle, the so-called Basset-Boussinesq-Oseen (BBO) equation [73].

As mentioned above, the system is considered to be highly diluted, therefore the
trajectories of every agglomerate flowing in the obstructed vessel is computed as if
the agglomerate was alone. Moreover, if agglomerates are supposed to be massless,
many terms in the BBO equation vanish and their trajectory is described in terms of
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the velocity of the fluid u(x) = dxl/dt by the simple equation:

dxl

dt
= ẋp (2.120)

eventually re-written as:
dẋp

dt
=

1
τp

(ẋl − ẋp)+ac (2.121)

where ac is the acceleration due to forces acting on the particle, except for drag force,
taken into account by the particle relaxation time τp, which is defined as:

τp =
2ρpa2

9µ

24
CD Re

(2.122)

where CD is the drag coefficient and Re is the Reynolds number. Eq. 2.121 can be
solved with a temporal discretization. Using an implicit trapezoidal scheme, Eq.
2.123 is obtained.

ẋn+1
p − ẋn

p

∆t
=

1
τp

(ẋ∗l − ẋ∗p)+an
c (2.123)

ẋn+1
p is the particle velocity at step n+1, ẋn

p is the particle velocity at step n, an
c is

the acceleration at step n, and ẋ∗l =
1
2(ẋ

n
l + ẋn+1

l ), ẋ∗p =
1
2(ẋ

n
p + ẋn+1

p ) are the average
velocities between the two considered steps, for the fluid and the particle respectively.
Explicit schemes are employed for a preliminary calculation of the terms ẋn+1

l and
ẋn+1

p . Finally, the position of the particle is updated from the step n to the step n+1
through the following equation:

xn+1
p = xn

p +
1
2

∆t(ẋn
p + ẋn+1

p ) (2.124)

A massless particle has the same velocity of the fluid at the particle position, i.e.,
ẋl = ẋp. This condition leads to a massive simplification of the algorithm for particle
tracking.

Hydrodynamic forces acting on the dispersed phase have to be monitored along
trajectories, and are related to the velocity gradient and the strain rate. The velocity
gradient ∇u defined by Eq. 2.125 is monitored along every trajectory. D is its
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symmetric component.

∇u =


∂ux
∂x

∂ux
∂y

∂ux
∂ z

∂uy
∂x

∂uy
∂y

∂uy
∂ z

∂uz
∂x

∂uz
∂y

∂uz
∂ z

 (2.125)

D =
1
2
(
∇u+∇uT)= 1

2


2∂ux

∂x
∂ux
∂y +

∂uy
∂x

∂ux
∂ z + ∂uz

∂x
∂uy
∂x + ∂ux

∂y 2∂uy
∂y

∂uy
∂ z + ∂uz

∂y
∂uz
∂x + ∂ux

∂ z
∂uz
∂y +

∂uy
∂ z 2∂uz

∂ z

 (2.126)

The strain rate γ̇ is related to the traces of tensors D and D2 and it is calculated
as3:

γ̇ =
√

2[tr(D)2 − tr(D2)] (2.127)

It is worth noting that a pure shear flow with a single non-zero component of the veloc-
ity gradient ∂ux/∂y has strain rate γ̇ = |∂ux/∂y|, whereas a planar elongational flow
with ∂ux/∂x =−∂uy/∂y ̸= 0 and all other components null gives γ̇ = 1

2 |∂ux/∂x|. In
finite volume solvers, such as Fluent, the velocity gradient, and therefore the strain
rate, has a constant value in every cell of the mesh, and we used that value without
further interpolation, in view also of the high resolution of the grid. Hence, the value
of the strain rate at a specific point along a trajectory is the value of the strain rate in
the cell where the point is located.

The flow field is characterized also by the vorticity ω̃ , related to the antisymmetric
component of the velocity gradient ω∞

i j , as expressed by the following equations:

ω
∞
i j =

1
2

(
∂ui

∂x j
−

∂u j

∂xi

)
(2.128)

ω̃ =
√

2ω∞
i j ω∞

i j (2.129)

The strain rate and the vorticity are a measure of the elongational and the ro-
tational component of the flow field, respectively. The relative weight of the two

3In terms of components of the velocity gradient:

γ̇ =

√
2
(

∂ux
∂x

)2
+2
(

∂uy
∂y

)2
+2
(

∂uz
∂ z

)2
+
(

∂ux
∂y +

∂uy
∂x

)2
+
(

∂ux
∂ z + ∂uz

∂x

)2
+
(

∂uy
∂ z + ∂uz

∂y

)2
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Fig. 2.11 Flow field as a function of the mixing index λ . For λ → 0 to λ → 1 the flow field
goes from purely rotational to purely elongational. For λ ≃ 0.5, the flow is in condition of
simple shear.

components is expressed as the mixing index λ , defined as:

λ =
γ̇

γ̇ + ω̃
(2.130)

For λ → 0, the flow field is predominantly rotational; for λ → 1, it has a strong
elongational component; for λ ≃ 0.5, the flow is in condition of simple shear, that is,
the rotational and the elongational components equally contribute to the flow field.
These considerations are summarized in Fig. 2.11.



Chapter 3

Simulation of spray drying

The chapter is based on the following article written by the candidate: Vasquez
Giuliano, L., Buffo, A., Vanni, M., Frungieri, G., "Micromechanics and strength of
agglomerates produced by spray drying", JCIS Open, 2023 [20].

3.1 Dynamics of spray drying

The tuning of the properties of the final drug carriers is intertwined with the produc-
tion conditions. Therefore, a better understanding of the spray drying process leading
to the formation of agglomerates is fundamental to drive the agglomeration mech-
anism and to control the morphology of the clusters and their mechanical features.
Spray drying is a well-established technique to produce agglomerates of nanoparti-
cles for pharmaceutical purposes [74–78]. Besides, it is also frequently applied in
the manufacturing of ceramic powders [79, 80], the production of storage supports
for lithium ions [81], of multi functional textiles [82], and it is often employed in
the food industry, where it is used to increase the stability of perishable products
[83]. The process starts from a liquid suspension of small colloidal particles: the
suspension is atomized by flowing through a nozzle, it is brought in contact with
a hot drying gas, and the suspension droplets generated upon atomization finally
undergo evaporation, returning dry large agglomerates composed of small primary
particles in contact. The morphology of the agglomerates produced in a spray drying
process depends upon several variables, such as humidity, temperature, dimension of
the atomized droplets and primary particles size and shape [84–86]. In this context,
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a number of theoretical and experimental studies showed that, among the most rele-
vant parameters affecting the cluster morphology, the droplet Péclet number plays a
key role. This dimensionless number expresses the ratio between the characteristic
Brownian diffusion time of the colloidal particles inside the evaporating droplet
and the characteristic droplet evaporation time [87–90]. A high value of the Péclet
number is obtained if the velocity of diffusion of the primary particles in the droplet
is slow compared to the droplet shrinkage velocity. In this case, the particles tend
to accumulate at the evaporating front and, if adhesive forces between particles
are strong enough to keep the particle in contact, the final agglomerate becomes
a spherical shell, characterized by a void core and by an external crust made of
contacting particles. On the contrary, low Péclet number conditions are encountered
when the solvent evaporation is slow and the particle Brownian motion is intense; in
this case the concentration of particles in the droplet is kept homogeneous throughout
the drying process and the resulting agglomerate is compact [91].

The high variability of parameters involved in spray drying makes the process
hard to model in its entirety. Therefore, it can be convenient to observe the drying
of single droplets by mimicking the process conditions in the actual spray dryer
[88], and to develop models for the process based on these observations. Different
approaches can be adopted to model the solid phase dynamics during a spray drying
process. Some rely on the study of the nucleation and growth of the solid phase
thanks to energy and mass transport equations linked to a population balance model
[92–94]. It has also been shown that the population balance can be coupled with
CFD simulations to estimate model parameters, track the droplet trajectories and
improve the predictions made by the model [95]. Although this method can provide
some insights in the morphology of the produced agglomerates, it cannot reach the
level of structural details that discrete element method simulations are able to return
[96]. This method was employed for instance by Miyazaki and coworkers [97] to
study particle aggregation in an evaporating droplet and was also used to describe
the spray drying process when the radius of the colloidal particles follows a bimodal
distribution [98, 99]. For this reason, in this thesis the formation of the agglomerates
has been studied by a discrete element method, able to accurately track the motion of
each single colloidal particle by keeping into account all the relevant particle-particle
interactions, both direct and fluid-mediated, including therefore van der Waals forces,
contact forces, Brownian motion and fluid induced stress.
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The simulated system consists of a population of spherical colloidal particles with
common radius a, initially uniformly dispersed within a single spherical shrinking
droplet of water. The temperature T in the droplet was assumed to be uniform. As
mentioned in Section 2.2.3, forces and torques acting on the primary particles are
calculated in order to evolve their equations of motion, and are solved individually
for each particle. The position of a single particle is updated for the next timestep
by a second order integration of the equation of motion (See Eq. 2.57). The term
on the right-hand side counts for all the forces the particle is subject to: the already
mentioned drag force, brownian force, adhesive force, and the capillary force, which
acts on the particles located at the evaporating front. A quadratic law was prescribed
to model the reduction in time of the droplet radius R starting from the initial value
R0 [99]:

[R(t)]2 = R2
0 − k · t (3.1)

from which the total evaporation time τ corresponding to the condition R(t) = 0 can
be calculated as τ = R2

0/k. Equation 3.1 is inferred from a mass and heat balance on
the droplet and predicts a linear decrease of droplet surface in time. Such a model
is fully appropriate for the first stage of drying, where the solvent occupies a major
portion of the evaporating front and as such the process is similar to the evaporation
of a particle-free droplet of solvent. An explanation for the prescribed quadratic law
is given in Appendix B. It has to be mentioned the fact that as drying proceeds the
evaporation rate might be affected by the accumulation of particles on the droplet
surface which forces the solvent to diffuse through the void space between them
[92, 100]. However, even if such a feature can be in principle incorporated in this
modelling framework, no established form for describing this secondary stage of
drying exists. Furthermore, the entity of adhesion forces in the following simulation
is such that small or no restructuring of the final agglomerate is observed after
contacts have been established, making the effect of the final part of the evaporation
on aggregate morphology unimportant.

As the droplet dries, the solid particles are drawn inwards by capillary forces.
The force arising from the interaction between the surface of the droplet and the
particles wet by it is therefore modelled as a force oriented toward the center of the
spherical droplet whose magnitude, proportional to the wet perimeter of the particle,
was calculated as:

Fc = 2πσ

√
a2 − (r−R)2 (3.2)
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Fig. 3.1 Primary particle in contact with droplet surface: estimation of the wet perimeter and
capillary force.

where σ is the surface tension of the liquid and r the radial coordinate of the particle
in a reference system centered at the droplet center of mass (Fig. 3.1). In principle
the rigorous evaluation of the capillary force should take into account the shape of
the meniscus at the solid-liquid contact line and the contact angle. Equation 3.2 is
therefore a simplification that correctly predicts the maximum capillary force for a
fully wettable particle at the interface (2πaσ ), and allows for a smooth transition of
Fc to zero when the particle becomes completely immersed in the liquid.

As already mentioned, contact forces are assumed to be strong enough to make
post-contact deformations extremely small. Hence, the generated structure is rigid,
and does not exhibit the restructuring that may occur as a result of significant
sliding or rolling phenomena of one particle on another in the secondary part of
drying. Under these conditions, the results do not depend on the intensity of the
capillary centripetal force, which merely moves the particles towards the center of
the droplet without being able to induce rearrangement of the structure. Based on
this consideration, a surface tension value that is much lower than that of the real
liquid-vapour interface has been adopted. This made the simulations more stable and
faster, without affecting the robustness of the predictions.

In this part of the work, no direct modelling of particle-particle hydrodynamic
interactions has been adopted, i.e., lubrication forces and pre-contact van der Waals
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attraction between particles were both neglected at this stage, proceeding from the
assumption that they have opposite effects in inducing particle contact. Lubrication
forces tend in fact to keep particles away from each other, whereas van der Waals
forces act promoting their contact. Their interplay may play a role in the kinetics of
the contact formation but it is not expected to significantly affect the agglomerate
morphology once contacts are formed. It is believed in fact that agglomeration in
a shrinking droplet is driven by the capillary force acting on the particles sitting
at the liquid-vapour interface, which, by retracting, pushes the particles towards
each other inducing a force that is largely dominating over the resistance induced
by hydrodynamic interactions. The parameter values used for the spray drying
investigation are listed in Table 3.1.

3.2 Validation for short times

The predictions obtained by the single-droplet discrete element method simulations
have been compared with a continuous model which can be deemed as a good
approximation of the spray drying process in the initial part of the evaporation
process and in the limit of low particle concentration. In such conditions, the
dynamics of the population of particles can be studied as one would study the
evolution of the concentration of a dissolved solute, which undergoes molecular
diffusion inside the shrinking droplet.

We assumed the droplet to have an initial radius equal to R0 and to shrink
accordingly to the quadratic law of Eq. 3.1. The receding velocity v of the evaporating
front is therefore given by:

v =−dR
dt

=
k/2
R

(3.3)

Parameter Symbol Value Units

Particle density ρp 1300 kg m-3

Elastic modulus E 3.40 GPa
Poisson ratio ν 0.5 -

Surface tension σ 1.75 ·10−4 N m-1

Superficial energy γs 4.80 ·10−3 N m-1

Table 3.1 Parameter values used for the contact forces in Yade simulations.
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If C(r, t) is the solute concentration,i.e., the number concentration of primary par-
ticles, its evolution in time inside the spherical droplet can be described by the
following unsteady diffusion equation [101]:

∂C
∂ t

=
D
r2

∂

∂ r

(
r2 ∂C

∂ r

)
(3.4)

with boundary conditions at the center of the droplet and at the receding front,
respectively defined as: [

∂C
∂ r

]
r=0

= 0 (3.5)

[
vC−D

∂C
∂ r

]
r=R(t)

= 0 (3.6)

The boundary conditions prescribe therefore that the system has radial symmetry
(Eq. 3.5), and that the interface is impermeable to the solid, such that the diffusive
flux given by the Fick’s law balances the flux vC at the outer radius of the droplet
(Eq. 3.6). We set a uniform initial concentration defined as C|t=0 =C0. Parameter
D is the diffusion coefficient of the primary particles due to the Brownian motion,
which was calculated using the Stokes-Einstein equation:

D =
kbT

6πµa
(3.7)

where kb is the Boltzmann constant. The continuous problem is conveniently re-
formulated in term of dimensionless concentration Γ =C/C0, dimensionless time
θ = kt/R2

0 and dimensionless radial position ρ̃ = r/R(t). By doing so, the moving
boundary problem defined by the boundary condition of Eq. 3.6 is transformed in a
fixed boundary problem, where the condition is applied at the constant dimension-
less coordinate ρ̃ = 1. Moreover, the solution depends on a single parameter, the
Péclet number k/D, i.e., the ratio between the velocity of droplet evaporation and
the velocity of diffusion. The dimensionless set of equations reads as follows:

∂Γ

∂θ
=− ρ̃

2(1−θ)

∂Γ

∂ ρ̃
+

D/k
1−θ

(
2
ρ̃

∂Γ

∂ ρ̃
+

∂ 2Γ

∂ ρ̃2

)
(3.8)
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Fig. 3.2 Average concentration profile in a shrinking droplet for different values of the
dimensionless time obtained from DEM simulations (solid lines) and the continuous model
(dashed lines). Black, red and blue lines correspond to dimensionless times θ of 0.0, 0.2 and
0.4 respectively. Left: Pe = 1. Right: Pe = 10.

[
Γ−2

D
k

∂Γ

∂ ρ̃

]
ρ̃=1

= 0 ; θ > 0 (3.9)

Γ(θ = 0) = 1 ; 0 < ρ̃ < 1 (3.10)

Equation 3.8 was solved by using a second order finite difference scheme for dis-
cretizing the spatial coordinate and a Runge-Kutta scheme for the time advancement
of the discretized solution.

Results for two different values of the Péclet number are reported in Fig. 3.2 as
dashed lines and compared with the discrete element method results (solid lines). The
graphs report the number particle concentration profile in the shrinking droplet for
three different dimensionless times: θ = 0.0, θ = 0.2 and θ = 0.4. It can be noticed
that the average concentration increases in time as a consequence of droplet volume
reduction, but also that the Péclet number has a significant effect on the concentration
profile dynamics. The particle concentration is almost homogeneous in the droplet
volume for Pe = 1, because of the predominant effect of particle diffusivity over
droplet shrinkage, whereas for larger Péclet, the concentration rapidly increases at
the periphery of the droplet and a steep variation of the concentration profile can be
observed along the radial coordinate r.

The graphs also report the DEM predictions; here the concentration profiles
were obtained by using data from 25 equivalent realizations of the process, with 100
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monomers a [nm] R0 [µm] τ [ms] D [m2/s] Pe

100 10 0.215 0.21 2.2 ·10−11 10
100 10 0.215 2.10 2.2 ·10−11 1

Table 3.2 Main parameters of the DEM simulations contrasted with the continuous method
of Eq. 3.4.

primary particles in each realization. The main parameters of the DEM simulations
are reported in Table 3.2. The number concentration in the surroundings of each
primary particle was calculated by considering the spherical shell that includes the 20
particles located immediately before and after the considered particle along the radial
coordinate. The agreement between the continuous and discrete results is satisfactory,
with the small discrepancies to be ascribed to the finite size of the particles used in
the DEM simulations compared to the droplet size, which necessarily induce some
statistical noise in the data. Moreover, it is unlikely for a particle of finite size to have
its center of mass located at the extreme periphery of the droplet, thus explaining
the concentration drop for r/R(t) → 1 . Nevertheless, the agreement proves that
the adopted simulation strategy correctly predicts the particle collective behaviour
inside the droplets. While in the present section only the early stages of drying are
simulated, i.e., up to θ = 0.4, in the following sections the spray drying process will
be simulated in its entirety, i.e., up to θ = 1.

3.3 Results

3.3.1 Péclet number

The ratio between the time scale of diffusion and the time scale of droplet evaporation,
described by the Péclet number, was seen to have a major influence on the final
morphology of the agglomerates. In the following DEM simulations, we computed
the Péclet number as:

Pe =
R2

0
Dτ

(3.11)

where R0 is the droplet initial radius, τ is the shrinkage time of the droplet, given
by the shrinkage rate relationship of Eq. (3.1), and D is the diffusion coefficient of
the primary particles due to the Brownian motion, which was calculated using the
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Fig. 3.3 Formation of agglomerates in a shrinking droplet at different conditions of Péclet
number. Top: large Péclet number, diffusion is slow compared to the evaporation velocity,
the particles accumulate at the evaporating front, resulting in a hollow aggregate. Bottom:
low Péclet number, diffusion is fast compared to the evaporation velocity, the concentration
of primary particles in the droplet is homogeneous throughout the process, resulting in a
compact aggregate.

Stokes-Einstein equation (Eq. 3.7). In Eq. 3.11, R2
0/D can be seen as a characteristic

diffusion time of the particles inside the droplet.

The Péclet number is large when diffusion is slow compared to the evaporation
velocity: in this case, the particles are not re-distributed in the droplet by Brownian
motion and were seen to accumulate at the evaporating front, where they constituted
a spherical shell or crust. On the contrary, the Péclet number is low if diffusion is fast
compared to the time scale of evaporation: in this case, the concentration of primary
particles in the droplet was seen to be kept homogeneous by Brownian motion
throughout the evaporation, and finally the generation of homogeneous and compact
spherical agglomerates was observed. A visual explanation of the phenomenon is
presented in Fig. 3.3.

We quantitatively characterized these different emerged morphologies by com-
puting the radial distribution of the primary particles, the diameter dc and the crust
thickness hc of the agglomerates generated. The radial distribution for a sample of
agglomerates is presented in Fig. 3.4 as a cumulative distribution function (CDF)
that reports the fraction of particles located at radial distance from the center of mass



3.3 Results 59

Fig. 3.4 CDF of the particle radial distribution in agglomerates obtained for different values
of Péclet number. The structures obtained for Pe → ∞ and Pe = 1 are visually shown. The
colormap highlights the difference between the empty core of the cluster obtained for Pe → ∞

and the compact core of the cluster obtained for Pe = 1. Green primary particles are close to
the centre of mass of the agglomerate, red primary particles are far from it.

of the granule smaller than r. The plot compares the agglomerates generated from
three simulations conducted at different Péclet numbers, obtained by varying the
shrinkage velocity. The principal simulation parameters are reported in Table 3.3. In
all cases the agglomerates are made of around 100 primary particles. For the ideal
case of Pe → ∞, the diffusion coefficient D was set to zero. From the CDF and the
picture of the agglomerates, it can be noticed that clusters with a compact core were
obtained at low Péclet numbers (Pe < 10), while hollow agglomerates with a large
internal cavity were observed for Pe → ∞. Fig. 3.5 shows the evolution in time of
the simulations conducted at Pe → ∞ and Pe = 1. Similarities with the theoretical
behaviour proposed in Fig. 3.3 can be observed.

monomers a [nm] R0 [µm] τ [ms] D [m2/s] Pe dc [nm] hc/dc

∼100 10 0.215 0.21 0 ∞ 160 0.28
∼100 10 0.215 0.21 2.2 ·10−11 10 132 0.43
∼100 10 0.215 2.10 2.2 ·10−11 1 132 0.44

Table 3.3 Effect of the Péclet number - principal parameters of simulations and values of dc,
hc and hc/dc associated to the final cluster.
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Fig. 3.5 Formation of agglomerates in a shrinking droplet simulated at Pe → ∞ (top) and
Pe = 1 (bottom), and cross-section of the final hollow and compact agglomerates. The
agglomerate obtained at Pe → ∞ shows an empty core, while the agglomerate obtained at
Pe = 1 is compact.

The outer radius of a cluster has been defined as the mean distance from the
c.o.m. of 10% of the farthest primary particles plus the radius of a primary particle;
analogously, the inner radius is the mean distance of 10% of the nearest particles
minus the radius of a primary particle [98]. Following these definitions, the diameter
of the agglomerate dc is two times the outer radius and the crust thickness hc is the
difference between the outer radius and the inner radius. A visual representation is
given in Fig. 3.6 . The ratio hc/dc can be used to characterize the agglomerates: a
low value of hc/dc means that the agglomerate is shell-shaped with an inner cavity,
and it is classified as an hollow agglomerate; on the other hand, the maximum
theoretical value for hc/dc, which is equal to 0.5, holds for clusters that are compact
and homogeneous, and classified as compact. The values of hc/dc reported in
Table 3.3 confirms what inferred from the particle radial distribution. For low Péclet
numbers hc/dc tends to 0.5, meaning that the final agglomerate is compact, whereas
for Pe → ∞, hc/dc is small, and the resulting agglomerate can be classified as hollow.

In the production of micrometric agglomerates, the initial droplet radius is often
reported to be around 20-50 µm and the shrinkage time to range between 0.01 and
0.1 s. Under these conditions, which are quite frequent in practical drying systems,
the Péclet number is always much larger than the unity, even in the presence of
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Fig. 3.6 Visual representation of the diameter of the agglomerate dc and the crust thickness
hc. a is the radius of primary particles composing the agglomerate.

extremely small primary particles. For this reason we examined in some detail the
behavior of the system in the high Péclet regime and, in particular, the effect of the
evaporation time τ on the final shape of the granules. A set of simulations at large
Péclet number but with different shrinkage times was performed (Table 3.4). For
every condition of the system, five different but equivalent simulations were realized.
The results are summarized in Figure 3.7, where it can be noticed that both the size
(left plot) and the ratio hc/dc (right plot) are not affected by the variation of the
shrinkage time in the high Pe limit, thus proving that in such a regime agglomerate
morphology become insensitive to small variations of the drying conditions.

monomers a [nm] R0 [µm] τ [ms] D [m2/s] Pe

60 1000 40 3 2.2 ·10−13 2.4 ·106

60 1000 40 6 2.2 ·10−13 1.2 ·106

60 1000 40 12 2.2 ·10−13 6.1 ·105

60 1000 40 18 2.2 ·10−13 4.1 ·105

60 1000 40 25 2.2 ·10−13 2.9 ·105

Table 3.4 Principal parameters of the simulations for evaluating the effect of the shrinkage
time τ in the high Péclet number limit.
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Fig. 3.7 Values of hc, dc and ratio hc/dc for clusters obtained at high Péclet number by
varying the shrinkage time τ . For every τ , five different but equivalent simulations are
considered. The cluster morphology is not significantly affected by the shrinkage time in the
high Péclet number regime.

3.3.2 Solid Fraction

Although the Péclet number is a valuable tool to characterize this kind of simulations,
some variables are not taken into account in its definition, for instance the volumic
fraction of nanoparticles dispersed in the droplet. If the solid fraction is increased,
agglomerate morphology may not be fully described by the Péclet number, i.e.,
aggregates could not be exactly classified as compact or hollow. In order to study the
effect of particle concentration on the final cluster, simulations at Pe → ∞ have been
conducted, starting from 1% solid fraction, then increased up to 2%, 5% and 7% by
varying the number of monomers. Table 3.5 summarizes the results. No significant
differences in terms of hc/dc have been observed, suggesting that the formation of
an irregular aggregate requires a much higher solid fraction, incompatible with the
computational cost of the simulations. However, relying on the fact that D is set to
zero for this peculiar set of simulations, it is possible to increase the solid fraction
by tuning the monomer radius a eluding any influence on the diffusivity and on the
Péclet number. In this way, a high solid fraction can be set without significantly
affecting the computational time. The radius of the monomers has been modified in
order to obtain a solid fraction of 2%, 5%, 7%, 10%, 14%, and results are shown in
Table 3.5 and in Fig. 3.8. The ratio hc/dc reaches higher values when bigger primary
particles are considered, showing that the higher is the solid fraction, the less defined
is the crust of the resulting agglomerate. The trend of the CDF associated to the
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radial distance of primary particles with respect to the c.o.m. of the agglomerates
leads to analogous considerations.

3.3.3 Comparison with notable agglomerates

In this Section, agglomerates produced via single-droplet simulation of spray drying
are compared with notable agglomerates having similar properties. Compact clusters
produced at Pe = 1 and hollow clusters produced at Pe → ∞ are compared with
random close packing (RCP) agglomerates and hollow agglomerates of similar size,
shape and dimension of the monomers.

RCP agglomerates were generated numerically using the Random Close Packing
algorithm proposed by Skoge and coworkers [102], which arranges particles in
such a way as to minimize the void fraction inside the aggregate (around 36%),
avoiding at the same time the formation of an ordered structure. Starting from this
highly-compacted type of structure, notable hollow agglomerates were generated
by removing internal primary particles while keeping intact the outer shell. The
parameter Rv normalized over the maximum radius of the agglomerate Rmax defines
the radius of the internal void core of these artificially generated clusters. Fig. 3.9
shows a notable aggregate for each class. Compact agglomerates generated via spray
drying were compared with RCP agglomerates of the same size: for both classes,
a=10 nm and np ≈ 90. In the same way, hollow agglomerates generated via spray

monomers a [nm] solid fraction Pe dc [nm] hc/dc

100 10 1.1% ∞ 153 0.31

197 10 2.0% ∞ 195 0.29
515 10 5.2% ∞ 259 0.32
687 10 6.9% ∞ 276 0.31

100 13 2.0% ∞ 198 0.34
102 17 5.1% ∞ 251 0.32
94 19 6.6% ∞ 268 0.38
95 22 9.5% ∞ 307 0.40
89 25 13.9% ∞ 329 0.40

Table 3.5 Effect of the solid fraction - principal parameters of simulations and values of dc

and hc/dc associated to the final cluster. Radius of the droplet is 0.215 µm, τ is 0.21 ms .
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Fig. 3.8 CDF of the particle radial distribution in agglomerates obtained at D equal to zero
for different values of the monomer radius a and solid fraction.

Fig. 3.9 From left to right: Random Close Packing agglomerate; hollow agglomerate
generated from an RCP agglomerate by imposing a ratio between the radius of the internal
void core Rv and the maximum radius of the original agglomerate Rmax equal to 0.3; hollow
agglomerate with Rv/Rmax=0.5 ; hollow agglomerate with Rv/Rmax=0.7 . Green primary
particles are close to the centre of mass of the agglomerate, red primary particles are far from
it.
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drying were compared with notable hollow agglomerates having similar size and
different void fractions at their core: Rv/Rmax=0.3, 0.5, 0.7 . For every class, a=10
nm. Notable hollow agglomerates with Rv/Rmax=0.7 are similar to agglomerates
produced via spray drying also in terms of number of monomers: for both classes,
np ≈ 110. For every class of agglomerates, 10 different but equivalent realizations
were analyzed. The different classes were compared on the basis of their size, the
ratio hc/dc, the average coordination number of the primary particles cn and the CDF
of the radial distance of primary particles from the center of mass of the agglomerate.
All these properties have been averaged over the entire population of aggregates of a
certain type, and angle brackets are used to represent an averaged quantity.

Values of ⟨dc⟩, ⟨hc/dc⟩ and ⟨cn⟩ with the associated standard error bar for every
class of agglomerates are shown in Table 3.6, while CDF curves are presented in
Fig. 3.10. Every curve is representative of an entire population of agglomerates.
Properties of agglomerates generated at Pe = 1 are remarkably close to RCP aggre-
gates with the same number of primary particles in terms of size and compactness,
as inferred from the associated ratio ⟨hc/dc⟩ close to 0.5 and the high coordination
number ⟨cn⟩ shown in Table 3.6. The distributions of monomers in the cluster is
very similar for the two classes of agglomerates, although the external region of
agglomerates produced via spray drying (Fig. 3.10, red curve) is more irregular
with respect to the well-defined RCP agglomerates (orange curve). The aggregates
produced at Pe → ∞ compare well with hollow aggregates with prescribed internal
void core. As the size of the internal void core increases, the average coordination
number decreases with respect to compact clusters and the external crust becomes
thinner, as highlighted by the ratio ⟨hc/dc⟩ in Table 3.6 and the cumulative distri-
bution functions in Fig. 3.10 . The shell structure of agglomerates produced via
spray drying at high Péclet number is well defined and their properties are similar to
artificially generated hollow agglomerates having comparable size and number of
monomers.

3.4 Conclusions

DEM simulations of a single-droplet spray drying process make it possible to gener-
ate numerically a plurality of agglomerates suitable for the proposed pharmaceutical
issue. Moreover, the simulation is able to capture the impact of the most important
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Fig. 3.10 CDF curves of the radial distance of primary particles from the center of mass
of the agglomerates. Red: compact agglomerates obtained via spray drying simulations.
Orange: RCP compact agglomerates. Blue: hollow agglomerates obtained via spray drying
simulations. Green: hollow agglomerates generated from RCP agglomerates by imposing
Rv/Rmax=0.3 (dashed line), Rv/Rmax=0.5 (dashdot line), Rv/Rmax=0.7 (dotted line). Every
CDF is representative of the entire population.

process conditions, summed up by the Péclet number, on the morphology of the
cluster. The resulting agglomerates have been characterized by the ratio between
their diameter and their crust, their hyperstaticity, the distribution of primary particles
inside the volume of the agglomerate and a comparison with notable and already
well-characterized types of agglomerates. After this analysis, two distinct classes
have been distinguished: process conditions of low Péclet number led to the forma-

Class np a [nm] ⟨dc⟩ [nm] ⟨hc/dc⟩ ⟨cn⟩

Compact (spray drying) ∼ 90 10 129±5 0.44±0.01 3.83±0.11
Compact (RCP) ∼ 90 10 125±1 0.43±0.01 3.13±0.15

Hollow (spray drying) ∼ 110 10 163±6 0.31±0.02 3.01±0.04
Hollow (Rv/Rmax=0.3) ∼ 200 10 163±1 0.40±0.02 3.41±0.12
Hollow (Rv/Rmax=0.5) ∼ 180 10 161±5 0.35±0.05 3.15±0.24
Hollow (Rv/Rmax=0.7) ∼ 110 10 168±3 0.26±0.02 2.34±0.06

Table 3.6 Principal characteristics of every class of agglomerates and values of dc, hc/dc and
cn averaged over the entire population of different but equivalent realizations.
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tion of compact spherical agglomerates with uniform density, whereas in condition
of high Péclet number hollow agglomerates were obtained.

At this point, we are able to generate a dataset of dried aggregates, but little has
been said about their de-agglomeration in response to hydrodynamic forces. To do
so, an improved discrete element method based on Stokesian dynamics is employed
in Chapter 4.



Chapter 4

Breakup of agglomerates in simple
flows

The chapter is based on the following article written by the candidate: Vasquez
Giuliano, L., Buffo, A., Vanni, M., Frungieri, G., "Micromechanics and strength of
agglomerates produced by spray drying", JCIS Open, 2023 [20].

Beside the agglomeration process, the mechanical response of the agglomerates to
the fluid dynamic stress, i.e., the activation mechanism, has to be investigated as well
[12, 13, 103]. To predict the pharmaceutical activity of the drug carriers, a detailed
simulation of their behaviour when immersed in a flow field can again be obtained
by DEM simulations. [45, 50, 104]. However, different degrees of complexity can
be introduced in DEM simulations when modelling the fluid dynamics interactions
between the suspending fluid and the solid particles. To simulate the formation
of a single agglomerate following the shrinkage of a single droplet containing a
suspension of nanoparticles, the so-called free-draining approximation was adopted,
i.e. each particle is assumed to experience the Stokes drag force, as if no other
particle were in the flow. On the other hand, when hydrodynamic forces are more
intense, up to the point the they could lead to a deformation and a breakup of the
structure, the hydrodynamic screening effects taking place in the agglomerate are
known to play a non–negligible role [48]. These can be accurately taken into account
by Stokesian dynamics [56], which, by using a low-order expansion of the exact
solution of the flow field, is able to compute the hydrodynamic forces acting on each
particle, allowing one to predict particle aggregation [105], but also agglomerate
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restructuring, and the breakup of soft and rigid agglomerates in both simple flow
configurations [46, 51–53] and in complex flow fields [64].

In this Chapter, a compact and a hollow agglomerate obtained by Yade simula-
tions are placed in simple flow fields in order to investigate the differences in their
response to the same hydrodynamic stress. To this purpose, the complete formula-
tion of the Stokesian dynamics approach is employed. First, accurate simulation
of the deformable structure of the agglomerates was performed, obtaining precise
and detailed information about their restructuring and breakup. Then, the previous
results were compared with the ones obtained adopting the rigid body approximation
discussed in Section 2.3.5, to verify the suitability of this assumption for conducting
simpler and less time-consuming simulations without an excessive loss in accuracy.

4.1 Complete DEM in extensional flow

Two of the agglomerates produced by spray drying were subject to an elongational
flow of gradually increasing intensity in order to investigate the effect of the hydro-
dynamic stress on the their structure. One of the agglomerates was taken from the
population obtained at Pe = 1, the other one from that obtained for Pe → ∞. The
former is a compact aggregate and the ratio hc/dc is 0.44 ; The latter is a hollow
aggregate and the ratio hc/dc is 0.28 . The radius of the primary particles of both
agglomerates was a = 100 nm. The structural properties of the agglomerates and
contacts (ρp, E, ν , γs) were the same as used in the spray drying simulations and are
reported in Table 3.1. The compact agglomerate was formed by 85 monomers and
initially had 177 interparticles contacts; the hollow agglomerate was made by 115
monomers with 185 initial interparticle contacts.

Contact forces are extremely sensitive to small changes in the relative position
of the particles and even small departures from equilibrium give rise to extremely
strong internal stresses. This is why, before studying the effect of the strength of the
flow on the agglomerates, the two structures were immersed in a stagnant field for 0.1
s and then in a low-strength elongational flow (µγ̇ = 2 Pa) for an additional time of
0.1 s. This procedure allowed the contacting particles to adjust their relative position
by reaching their equilibrium separation, making the breakup simulations more
stable. The effect of the strength of the flow on the agglomerates was investigated by
prescribing an elongational field with strength µγ̇ that was increased linearly at a
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Fig. 4.1 Snapshots of the evolution up to breakup of a compact agglomerate obtained by
spray drying in the low Péclet limit (above) and of a hollow agglomerate obtained in the high
Péclet limit (below). Both are suspended in an elongational flow of increasing strength µγ̇ .

Fig. 4.2 Radius of gyration (black line); size of the largest (red) and smallest (blue) semiaxis
of the equivalent ellipsoid for the compact agglomerate, Pe = 1 (left), and the hollow
agglomerate, Pe → ∞ (right), during the elongation process as a function of the applied fluid
dynamic stress. The dashed line is the radius of gyration after breakup.
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constant rate of 5000 Pa/s from 0 Pa until breakup could be observed. A constant
time step ∆t = 5 · 10−8 s was adopted in the first-order explicit integration of the
translational and rotational equations of motion of all the primary particles.

The response to the fluid dynamic stress and the path to breakup is quite different
for the two agglomerates considered, as made apparent in Figure 4.1, which reports
a series of snapshots of the agglomerates taken at subsequent times and increasing
values of stress. The compact one remained almost completely undeformed until
a few moments before rupture. In the very initial stage (µγ̇ < 1000 Pa) it rigidly
rotated until aligned with the fluid velocity direction. Between 1000 and 4000 Pa
there was no significant movement of the agglomerate or deformation, except for
the small sliding of few monomers on the surface of the structure. At 4020 Pa the
agglomerate began to deform significantly by stretching in the x-direction of the flow;
rupture occurred immediately thereafter, at around 4040 Pa. As shown in Fig. 4.2,
the radius of gyration of the agglomerate did not change from the beginning of the
application of the flow field until a few moments before rupture. In order to better
characterise the geometry change, the agglomerate was also approximated by the
triaxial ellipsoid with the same inertia tensor. The shortest and longest semi-axes of
this ellipsoid, which represent the characteristic sizes of the agglomerate [106, 107]
are also plotted as a function of time in Fig. 4.2. These variables remained constant
during the process, except for a small variation at 3000 Pa due to the partial sliding
of single monomers. This behaviour confirmed that the agglomerate was practically
rigid until breakup, which therefore occurred in a brittle manner. The number of
monomer-monomer contacts was 177 at the beginning of the simulation and remained
constant at this value till 1500 Pa; after that, it increased slowly and steadily because
of the compression in the z-direction until it reached 185 contacts shortly before
breakup. The variation of the average coordination number c̄n was extremely small,
from 4.16 to 4.35, further showing that the structure of the agglomerate remained
almost unchanged till breakup occurred.

In the hollow agglomerate the deformation of the structure before breakup was
more significant (Fig. 4.1, bottom). Here too, there was an initial phase (up to 1000
Pa) of alignment with the flow field, but the structure remained rigid only up to about
600 Pa. At stresses larger than this, it began to flatten in the z-direction and to stretch
in the x-direction. This effect is made quantitatively apparent by the change in the
size of the semi-axes of the triaxial ellipsoid reported in Figure 4.2 (right), where
the largest semiaxis, aligned with x throughout the deformation process, increases,
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whereas the smallest one, aligned with z, decreases. It is worth to notice that the
radius of gyration was unable to reflect this deformation phenomena, because the
simultaneous effect of compression along z and elongation along x balanced each
other, such that the average distance of the primary particles from the centre of
mass of the agglomerate remained almost unchanged. Results also made apparent
that the flattening effect made the structure more rigid and in fact between 1200
and 1800 Pa the agglomerate was not subject to further deformation. Around 1800
Pa restructuring started again further flattening the agglomerate; then the structure
remained stable until rupture, which took place between 2005 and 2010 Pa. It
must be noted that during the entire process the structure did not collapse on itself
completely but the internal cavity was preserved. The variation in the number of
inter-particle contacts was here significant. They remained constant at 183 up to 600
Pa, then increased steadily with the partial flattening of the structure up to 199 at
1400 Pa and finally remained again constant until rupture. The average coordination
number is quite high, but smaller than the previous case, because of the presence
of the cavity; it varied from 3.18 at the beginning of the process to 3.46 just before
breakup.

4.2 Rigid body approximation

In the DEM approach used in Section 4.1, processes acting at very different scales
had to be simulated simultaneously. Hydrodynamic interactions and the large scale
motion of the agglomerate took place on lengths of the order of the size of the
agglomerate, whereas contact forces and local deformations of the contact area act
on distances that could be smaller than 1 nm. As a consequence, the time step had to
be extremely small in comparison to the duration of the process and the simulations
were very slow and required substantial computational resources. However, it was
apparent that, because of the high coordination number and the strength of the
internal bonds, the compact agglomerate behaved almost like a rigid body until
rupture. This behaviour suggested that relevant information on the breakup of the
agglomerate can be obtained by simpler and much less time-consuming simulations.
In the limit of small deformation and brittle fracture we can in fact apply the methods
of the structural mechanics of rigid bodies discussed in Section 2.3.5 to determine
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Fig. 4.3 Distribution of the normal stress at contact as a function of the distance r from the
center of mass for the two agglomerates calculated from DEM under the rigid mody motion
assumption. Red circles: compact agglomerate. Blue squares: hollow agglomerate.

how the hydrodynamic forces are redistributed as contact stresses over the particle
network.

In the rigid body assumption limit, we assumed that breakup occurs when the
normal stress exceeds the pull off force at one intermonomer bond. The distribution
of intermonomer stresses for the compact agglomerate calculated by the rigid DEM is
shown in Figure 4.3 by red circles as a function of the radial distance from the center
of mass. The highest value for the compact agglomerate was Nmax/(6πµγ̇a2) = 2.89,
which should be compared with the pull-off force given by Eq. 2.52. In this way
the critical shear stress for the breakup of the most stressed bond is µγ̇br = 4120
Pa, which compares considerably well with the value of 4040 Pa obtained by the
complete DEM simulation. Most remarkably, and in some way unexpected, is what
happened when the rigid DEM is applied to the hollow agglomerate (blue squares in
Figure 4.3). The largest value of dimensionless normal stress was Nmax/(6πµγ̇a2) =

6.24, which gave rise to a critical shear stress of 1930 Pa. Even in this case the
prediction of the rigid DEM was more than satisfactory when contrasted with the
value given by the rigorous DEM (2010 Pa), although the assumption of stiffness
is not fully valid in this case and the agglomerate underwent some restructuring
before breaking up. However, apparently, the restructuring was not strong enough to
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significantly change the morphological features of the agglomerate, which preserved
the central cavity and the cross-linked network of bonds until breakup. Therefore,
the assumption of rigid agglomerates well predicted the different mechanical stability
of the two classes of agglomerates, and it has been imposed for all the subsequent
simulations.

Rigid DEM simulations based on Stokesian dynamics were conducted on a pop-
ulation of 10 compact agglomerates produced at Pe = 1 and 10 hollow agglomerates
produced at Pe → ∞ placed in a shear flow. As already commented, the physical
deformation process leading to breakup through restructuring and detachment of
fragments is not simulated under the condition of rigid body motion; however, valu-
able insights about the distribution of the contact forces inside the agglomerates can
be obtained and the mechanical stability of the two classes can be compared.

Figure 4.4 shows the instantaneous value of the maximum tensile normal contact
force Nmax acting inside agglomerates suspended in a shear flow with constant shear
rate γ̇ . Both time and maximum tensile stress are made dimensionless, exploiting
the linearity between internal contact forces and applied hydrodynamic stress valid
in the elastic regime. Each line refers to a single agglomerate, and blue lines are
used for hollow agglomerates, red for compact ones. One arbitrary line for each
class is highlighted to show the typical trend followed by Nmax in a shear flow. The
oscillation of Nmax is due to the rotation of the rigid agglomerate in the shear flow,
which exposes periodically different bonds to the orientation of maximum stretching.
The two horizontal lines represent the maximum tensile stress experienced by an
agglomerate along its whole path, averaged over the entire class. The dimensionless
value for hollow and compact agglomerates was around 5.1 and 3.3, respectively.
Such values correspond to a critical fluid dynamic shear stress µγ̇ of 2360 Pa and
3650 Pa, respectively. At such stresses the normal contact force reaches the pull-off
value. Hollow agglomerates experienced higher internal tensile forces, meaning
therefore that are easier to break. Compact agglomerates are more hyperstatic, i.e.
every particle is linked to a higher number of different particles; therefore, mechanical
stress is discharged over neighbouring particles and thus stronger externally imposed
hydrodynamic forces are needed to break their bonds, as observed for the elongational
flow.
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Fig. 4.4 Maximum tensile stress Nmax acting inside a agglomerate in a shear flow. Blue
curves: shell-type agglomerates produced at Pe → ∞. Red curves: compact agglomerates
produced at Pe = 1. Horizontal dotted lines show the average value of the maximum tensile
stress experienced by a agglomerate along its path for the two classes of agglomerates. In
the inset, a qualitative representation of the simulation setup and of the shear flow is given.

4.3 Conclusions

The mechanical response of agglomerates to a simple flow field has been investigated
thanks to DEM simulations based on Stokesian dynamics. Moreover, we have linked
the conditions required for de-agglomeration with the operating conditions of the
spray drying step: compact agglomerates produced at Pe = 1 require high viscous
forces to break, while the breakage of hollow agglomerates obtained at Pe → ∞ is
easier. It has to be noticed that the behaviour of such agglomerates is almost rigid
up to their breakup: therefore, the rigid body approximation can be employed in
following simulations to save computational cost without losing accuracy.

Finally, the behaviour of compact and hollow agglomerates has to be investigated
in the context of the proposed pharmaceutical issue: DEM simulations of rigid
agglomerates have to be conducted in the flow field generated in presence of an
arterial occlusion. To do so, computational fluid dynamics is employed to extract
information about the flow field in an obstructed vessel. The coupling between CFD
and DEM will provide valuable insights about the response of dried aggregates to
the pathological increase of fluiyd-dynamic stress caused by the occlusion.



Chapter 5

Breakup of agglomerates in complex
flows

5.1 Introduction

The chapter is based on the following article written by the candidate: Vasquez
Giuliano, L., Buffo, A., Vanni, M., Lanotte, A. S., Arima, V., Bianco, M., Baldas-
sarre, F., Frungieri, G. , "Response of shear-activated nanotherapeutic particles in a
clot-obstructed blood vessel by CFD-DEM simulations", The Canadian Journal of
Chemical Engineering, 2022 [19].

A microfluidic device representing an obstructed blood vessel was designed for
experimental purposes, and the flow field inside the device was characterized using
CFD. The behaviour of drug carriers that encounter an obstruction was numerically
investigated in the microfluidic device and in obstructed arteries with different mor-
phology. Given their small size and inertia, the agglomerates follow the streamlines
of the fluid very closely and thus can be treated as tracer particles. Hence, by integra-
tion of the fluid velocity, we computed a set of tracer particle trajectories in order
to evaluate the hydrodynamic stress time series clusters are subjected to, which can
in turn be used to evaluate their internal stresses. In other words, information about
the hydrodynamic stress exerted by the fluid obtained from CFD has been coupled
with the DEM method based on Stokesian dynamics to investigate the fragmentation
occurring for drug carriers flowing in this pathological complex flow.



5.2 The microchannel 77

Fig. 5.1 Geometry, minimum cross-section shape and mesh detail for the microchannel. The
minimum cross-section of the microchannel is a rectangle with sizes of 95 µm and 400 µm.

5.2 The microchannel

5.2.1 Setup of the simulation

The microfluidic device is shown in Figure 5.1. It has a rectangular section, and
it is formed by a central stenotic tract (95 µm high x 400 µm wide x 10 mm long)
and by a pre- and post-stenotic tract (each: 495 µm high x 2 mm wide x 5 mm
long), corresponding to a 95% lumen obstruction. The viscosity of the fluid in
the simulations was set to 10−3 Pa·s, and the density to 1000 kg/m3. The flow
travels a distance in the pre-stenotic region that is sufficient to reach the condition
of fully-developed flow at the stenotic region entrance. The boundary condition
that has been prescribed is a pressure difference between the inlet and outlet, to
better reproduce the operative conditions that would be encountered in the actual
experimental apparatus: the fluid is fed to the microchannel through cylindrical tubes
linked to its upper part, thus not achieving a uniform velocity profile at the inlet of
the vessel. Wall boundary conditions were applied on the lateral surfaces. The flow
rate was adjusted according to a trial and error procedure until pathological values of
the shear stress were reached in the restricted region (order of magnitude is 102 Pa).
The simulation domain was subdivided using 98720 hexahedral cells.
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Fig. 5.2 Microchannel flow field. Z-velocity (left) and µγ̇ profile (right) in the symmetry
plane along the coordinate Y at three different coordinates Z. Z = 5 mm is the beginning of
the stenotic tract, Z = 10 mm is its middle point, and Z = 15 mm is its end.

5.2.2 Flow field

First, transient simulations of the flow field in the vessel were conducted. The flow
field was seen to quickly reach a stationary solution, so steady-state simulations
have been used in the following to characterize the fluid dynamic behaviour of
the obstructed vessels. Wall shear stresses greater than 100 Pa are considered
pathological [11]. Two pathological conditions were investigated: the flow rate was
tuned to reach a maximum wall shear stresses of 125 and 183 Pa, obtained for a
volumetric flow-rate of around 1.10 and 1.50 ml/min, respectively.

The profiles of Z-velocity and µγ̇ before, in the middle and after the restricted
section are reported in Figure 5.2. A recirculation pattern can be seen from the
Z-velocity plot at the end of the restricted section. The obstruction, therefore, causes
a recirculation in the post-stenotic region, which is considered to be beneficial for
the action of shear responsive agglomerates [11], as it keeps the fragments generated
upon breakup near the wall of the stenotic region, thus increasing the probability
of adhesion to the clot. In Figure 5.2, the shear stress profiles in the microchannel
are reported on the right. The peak value of wall shear stress is due to the strong
deformation of the flow field at the entrance of the restricted section, and it is reached
at the very beginning of the stenotic region. Figures 5.3A and 5.3B make this feature
more apparent, by showing the profile of wall shear stress along Z on the symmetry
plane of the microchannel, both on the upper and the lower wall, and the strain rate
contour plot on the same plane. The peak value of 183 Pa of the shear stress is



5.2 The microchannel 79

Fig. 5.3 Microchannel flow field characterization for an inlet flow-rate of 1.50 ml/min. (A)
Axial profile of wall shear stress on the upper wall and the lower wall. Contour plot of (B)
strain rate, and (C) mixing index on the symmetry plane

reached at the bottom wall of the device, soon after the beginning of the restricted
section, and then it reaches a plateau value equal to 95 Pa.

In addition to the strain rate, the flow field was locally characterized also by the
mixing index λ , defined and discussed in Section 2.4. As made apparent by the
contour plot of λ reported in Fig. 5.3C, even if the lumen restriction causes a local
increase in the elongational component of the flow, in the regions where the largest
stresses are observed, the value of mixing index is around 0.5, thus indicating that
pure shear flow conditions are present in those regions.

5.2.3 Fragmentation in the microchannel

The mechanical response of the agglomerates to the viscous stress was computed
by running Stokesian dynamics simulations along the trajectories obtained via the
interpolation of the flow field. Given the small size of the clusters, trajectories were
computed using a one-way coupling, neglecting the back reaction of the clusters
on the fluid and the binary interaction between them. Shear rate signals have
been translated into tensile stress acting on each particle–particle bond, thanks
to Stokesian dynamics. As an example, Figure 5.4 illustrates the outcome of the
method for two generic agglomerates when immersed in a pure shear flow. The upper
images show the drag forces acting on each primary particle of the agglomerate,
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Fig. 5.4 Drag forces (above) and normal stresses at intermonomer bonds (below) for two
different agglomerates under a shear flow.
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whereas the lower ones report the normal (i.e., tensile) forces acting at inter-particle
contacts. It is worth remembering that, for rigid agglomerates, breakup takes place
when the tensile normal stress exceeds the cohesive strength at a contact, and,
subsequently, the normal stress is the fundamental variable to predict the occurrence
of breakup. Although subject to the same flow field, the distribution of the normal
stress in two agglomerates can be very different, as made more clear by recalling
Figure 4.3, showing the distribution of the normal stresses at contact in two different
agglomerates. In the compact agglomerate, the strength of the normal force is
small in comparison to what can be observed in the hollow agglomerate, where
the average coordination number is lower and it is harder for particles to discharge
the accumulated stress to neighbouring particles. It is apparent, therefore, that the
stresses acting on the agglomerates depend on both their geometry and the local
strain rate.

In Figure 5.5, we report a sample strain rate signal (Eq. 2.127) and the maximum
instantaneous tensile stress Nmax acting in the agglomerate. The maximum normal
stress is normalized using 6πµa⟨u⟩, where ⟨u⟩ is a representative velocity of the
fluid. In this case, the mean velocity in the stenotic region of the microchannel has
been chosen, ⟨u⟩=1.1 m/s . It is worth noting that there is no time lag between the

Fig. 5.5 Strain rate γ̇ (blue) and normalized maximum tensile stress Nmax inside a compact
agglomerate (red) along the Z-coordinate for a sample trajectory in the microchannel. The
fluctuating behaviour of N is due to changes in the orientation of the cluster with respect to
the flow field.
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Fig. 5.6 Left: cumulative distribution functions (CDF) of the maximum normal stress
inside clusters flowing in the microchannel. Red: compact agglomerates, Blue: hollow
agglomerates. Right: Relative position of the most solicited bond for the two classes of
agglomerates.

two signals. This is due to the fact that agglomerates are supposed to be perfectly
rigid, and hence the transmission of the stress from the flow field to the agglomerate
structure occurs instantaneously.

Finally, we studied the mechanical response of the different classes of clusters
produced via spray drying to the hydrodynamic solicitation. Again, the popula-
tion of 10 compact and 10 hollow agglomerates discussed in previous sections has
been considered. Figure 5.6 (left) reports the cumulative distribution function of
N∗ =max(Nmax), the maximum tensile stress experienced by a cluster along its entire
trajectory in the microchannel. It can be noted that, as expected, compact agglom-
erates emerged as the most resistant class, while hollow agglomerates emerged as
the weakest one. In other words, the maximum tensile stresses observed in compact
clusters is lower than the one observed in hollow clusters.

The effective restructuring and the eventual breakup of agglomerates cannot
be observed using the rigid body approximation: however, the location of the
most stressed bonds is known, and this leads to legitimate considerations about the
breakup mechanism. Figure 5.6 (right) shows the position of the most loaded bond
for every cluster. RN∗ is the distance of the most loaded bond from the center of
mass, normalized over the maximum radius of the agglomerate. Both compact and
hollow agglomerates are hyperstatic, that is, every primary particle is linked to a
large number of particles. Therefore, the mechanical stress generated on the outer
region is discharged over the neighbouring particles, and it is not propagated and
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Fig. 5.7 Geometry, minimum cross-section shape, and mesh detail for the axisymmetric
occlusion (Left) and the asymmetric occlusion (Right). The minimum cross-section of
the axisymmetric occlusion is a circle with a diameter equal to 220 µm. The minimum
cross-section of the asymmetric occlusion is a circular segment and its height is 105 µm.

accumulated toward the inner region of the agglomerate. The highest loaded bonds
are thus located in its outer region. In compact agglomerates, the breakup should
lead to the detachment of small fragments from their outer surface. The distribution
of mechanical forces inside the hollow agglomerates is similar, but the distance over
which stresses are propagated is limited by the shell-shape of the agglomerates. In
this case, therefore, the breakup of outer bonds should be expected to lead to the
opening of the shell structure.

5.3 Other geometries

The microfluidic device has been designed for experimental evaluation of the de-
agglomeration of drug carriers. In order to verify its ability to reproduce the patho-
logical conditions occurring in an obstructed vessel, the hydrodynamic stress exerted
by a fluid flowing in the microchannel has been compared with the one occurring in
different and more realistic representations of an occluded blood vessel. Although
clots in stenotic vessels come in a variety of shapes and sizes, axisymmetric or
asymmetric deformed cylindrical tubes have been frequently employed as model
representations [108–111], and thus these two geometries have been investigated.
The geometries of the two investigated systems are shown in Figure 5.7. The ax-
isymmetric geometry models the artery as a cylinder (diameter Dv=1.12 mm), while
the shape of the stenosis is described by a sinusoidal curve. In the asymmetric
geometry, the pre-stenotic region is equal to the one from the previous case, but
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Fig. 5.8 Axisymmetric occlusion flow field. Z-velocity (left) and µγ̇ profile (right) in the
symmetry plane along the Y-coordinate at three different Z-coordinates. Z/Dv = -2.2 is the
beginning of the stenotic section, Z/Dv = 0 is its middle point, and Z/Dv = +2.2 is its end.

the shape of the clot is instead described by a semi-ellipse, having a major axis
of 2.24 mm and a minor axis of 1.015 mm. The major axis of the semi-ellipse is
aligned with the flow direction, and the obstruction in the blood vessel is obtained
by extruding the semi-ellipse in the orthogonal direction. The lumen obstruction is
again 95%. The flow rate has been adjusted in order to reach the same pathological
shear stress observed in the microchannel. A uniform velocity profile has been set at
the inlet of the axisymmetric and the asymmetric occlusion. Again, wall boundary
conditions were applied on the lateral surfaces, and an outflow boundary conditions
was imposed at the outlet. The simulation domain was subdivided using 139375
hexahedral cells for the axisymmetric vessel, and 157330 tetrahedral cells for the
asymmetric vessel.

5.3.1 Axisymmetric occlusion

The flow rate has been tuned to reproduce the pathological wall shear stresses of 125
and 183 Pa investigated in the microfluidic device. The boundary conditions leading
to pathological wall shear stress are an inlet velocity of 0.075 m/s and 0.10 m/s,
respectively. Figure 5.8 shows velocity and stress profiles at the beginning, center,
and end of the stenotic region for an inlet velocity of 0.10 m/s. It can be seen that
the fluid reaches a peak velocity of 0.20 m/s in the pre-stenotic region and a peak
of 3.62 m/s in the stenotic region. As apparent from the velocity profile after the
restricted section (at Z = +2.2Dv), the fluid generates a slowly decaying central jet
surrounded by two lateral vortices. Therefore, also in this case a recirculation pattern
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Fig. 5.9 Axisymmetric occlusion flow field characterization for an inlet velocity of 0.1 m/s .
(A) Axial profile of the wall shear stress. (B) Contour plot of the strain rate and (C) mixing
index in longitudinal cross-section.

is visible in the post-stenotic region. The shear stress profile of Figure 5.8 (right)
makes it apparent that the largest shear stresses are found in the restricted section,
and they are located in the region closest to the wall.

The effect of the restriction on the shear stress distribution is highlighted also
in Figure 5.9A, where the maximum wall shear stress is plotted as a function of the
longitudinal coordinate. The stress at the wall increases from about 0.4 Pa before the
obstruction to a maximum of 183 Pa on the restricted section. The distribution of
the strain rate is shown in Figure 5.9B. It can be noticed that the region of highest
strain rate is located close to the wall in the converging and central region of the
vessel, and it moves closer to the centre-line in the diverging region, at the transition
between the fluid jet and the recirculation zones, thus suggesting that this region
could contribute, even if to a lesser extent, to the breakup of the suspended drug
carriers. The contour plot of the mixing index on a symmetry plane (Figure 5.9C)
shows that the flow is shear-dominated and elongation is only present in the pre- and
post-stenotic regions, as observed in the microchannel.

5.3.2 Asymmetric occlusion

Similarly to what has been done for the axisymmetric vessel, we ran simulations at
different inlet velocities in the asymmetric vessel in order to determine the conditions
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Fig. 5.10 Asymmetric occlusion flow field characterization for an inlet velocity of 0.067 m/s.
(A) Axial profile of wall shear stress on the upper and lower wall. Contour plot of (B) shear
rate and (C) mixing index in the symmetry plane.

Fig. 5.11 Asymmetric occlusion flow field. Z-velocity (left) and µγ̇ profile (right) in the
symmetry plane along the coordinate Y at three different coordinates Z. Z/Dv = -2.0 is the
beginning of the stenotic tract, Z/Dv = 0 is its middle point, and Z/Dv = +2.0 is its end.
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leading to pathological wall shear stress (125 and 183 Pa). These have been found
for an inlet velocity of 0.051 and 0.067 m/s, respectively. Figure 5.10A shows the
distribution of the wall shear stress for the upper and lower walls of the vessel. It
can be seen that the largest shear stress appears again in the restricted section, with
no remarkable difference between the upper and lower walls. The mixing index and
strain rate distributions reported in Figure 5.10B,C show that the flow field is mostly
shear-dominated in the region of large shear stress, with elongational components of
the flow arising only in the small regions before and after the restriction.

In Figure 5.11, we report the velocity profile and the shear stress profile on three
different sections. In the plot on the left, it can be seen that the fluid reaches a peak
velocity of 0.13 m/s in the pre-stenotic region and a peak of 2.2 m/s in the stenotic
region. The negative values of the velocity at Z/Dv = 2.0 show that, also in this case,
a recirculation pattern establishes in the post-stenotic region. Such a behaviour was
seen to emerge at a Reynolds number greater than 200. The stress profile µγ̇ for
three different Z-coordinates is reported in Figure 5.11 (right). Again, the maximum
shear stress is observed near the walls of the vessel in the restricted region.

5.3.3 Comparison with the microfluidic device

The main properties of the flow field in the three investigated geometries are reported
in Table 5.1 and Table 5.2. The typical Reynolds number in blood vessels spans from
1 to 4000 for small arteries and the aorta, respectively [112]; in our simulations, it
ranges between 50 and 800 and it is comparable with the one obtained in vessels
having similar diameter [113]. It is worth to notice that different flow rates are needed
to reach the same pathological wall shear stress in the three systems: nonetheless,
an adequate tuning of the flow rate in the microfluidic device is sufficient to match
the peak in the hydrodynamic forces exerted by the fluid in an obstructed blood
vessel. The higher the strain rate is, the more intense hydrodynamic forces acting
on clusters are: therefore, the maximum value of strain rate along a trajectory γ̇max

can be used as a parameter to compare the effectiveness of the different vessel
geometries in inducing breakup. A statistical analysis on the maximum shear rate
experienced by agglomerates flowing in the three vessels is presented in Figure 5.12.
The plot shows the cumulative distribution function of the peak value of strain rate
experienced by the agglomerates along trajectories in the three geometries for a
maximum wall shear stress of 125 and 183 Pa, respectively. It can be seen that the
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Fig. 5.12 Cumulative distribution functions (CDF) of the maximum strain rate γ̇max along
trajectories; circles represent the axisymmetric stenosis, triangles represent the asymmetric
stenosis, and squares represent the microchannel. Left: maximum wall shear stress=125 Pa.
Right: maximum wall shear stress = 183 Pa

shear rate statistics acting on the agglomerates in the microchannel well compares
with the one experienced in the obstructed vessels, thus proving our microfluidic
device as a valid representation of an obstructed blood vessel and a valid setup for
running experimental trials. The longer restricted section of the microchannel in
comparison to the stenotic systems has no impact on the distribution of γ̇max, but it is
expected to facilitate the separation of the fragments after breakup.

Stenosis Region Flow-rate (ml/min) Ũmax (m/s) RH (µm) Re

Axisymmetric Pre-stenotic 4.43 0.15 280 168
stenotic 2.84 55 625

Asymmetric Pre-stenotic 3.01 0.10 280 112
stenotic 1.73 35 242

Microchannel Pre-stenotic 1.11 0.07 200 56
stenotic 1.66 40 266

Table 5.1 Principal properties of the flow field for the lowest flow-rate (maximum wall shear
stress = 125 Pa) for the three geometries. Ũmax is the maximum fluid velocity in a vessel, RH

is the hydraulic radius.
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5.4 Conclusions

The characterization of an obstructed vessel through computational fluid dynamics
clearly shows that the presence of the occlusion causes a significative local increase
in the shear stress because of the induced distortion of the flow field. The more
obstructed the lumen is, the more the hydrodynamic stress increases: a severe
occlusion induces a pathological shear stress that is orders of magnitude higher than
the regular condition. The subsequent peak in the mechanical tensions provoked
in bodies flowing in the vessel acts as a trigger for the breakup of drug carriers,
releasing the active agent by breaking up into fragments that are more likely to
adhere to the clot walls and perform the thrombolytic action. Moreover, results from
the microfluidic device and realistic reproductions of an obstructed blood vessel
are comparable: therefore, the de-agglomeration of drug carriers can be simulated
and experimentally observed in the microfluidic device without a significant loss in
accuracy.

Information about the flow field in the microchannel are fed as an input to DEM
simulations based on Stokesian dynamics to track the response of agglomerates
produced via spray drying to the stress induced by hydrodynamic forces. Low
mechanical tensions are found in compact clusters, and highest tensile stresses are
found at the perifery of the agglomerate, suggesting erosion as the prevalent breakup
mechanism. Bonds between nanoparticles in hollow clusters are subject to relatively
high tensile stresses, eventually leading to the collapse of the shell structure.

Stenosis Region Flow-rate (ml/min) Ũmax (m/s) RH (µm) Re

Axisymmetric Pre-stenotic 5.90 0.20 280 223
stenotic 3.62 55 794

Asymmetric Pre-stenotic 3.96 0.14 280 156
stenotic 2.21 35 300

Microchannel Pre-stenotic 1.50 0.09 200 63
stenotic 2.24 40 357

Table 5.2 Principal properties of the flow field for the highest flow-rate (maximum wall shear
stress = 183 Pa) for the three geometries. Ũmax is the maximum fluid velocity in a vessel, RH

is the hydraulic radius.
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Conclusions and open questions

This thesis was devoted to verify the feasibility of shear-responsive drug carriers
as an efficient drug delivery system for the treatment of arterial occlusions, and to
take the first steps to the establishment of a simulation framework able to follow
the lifetime of the carriers from the agglomeration via spray drying to the shear-
inducted de-agglomeration. A discrete element method taking into account capillary
force, Brownian force and adhesive forces was used to track the motion of colloidal
primary particles inside a shrinking droplet. This DEM method was implemented in
the open-source software Yade, and relies on the free–draining approximation, i.e.,
all fluid-mediated particle-particle interactions are neglected. Therefore, the spray
drying process is simulated at the single droplet scale, resulting in the formation
of secondary particles to be treated as drug carriers. The DEM approach was
employed also to simulate the de-agglomeration of the drug carriers when exposed to
notable hydrodynamic forces. However, a refinement of the method was necessary to
effectively track the restructuring and the breakup of agglomerates when exposed to
high shear flow, and it was obtained by resorting to Stokesian dynamics, implemented
in an in-house code. In this way, the viscous forces responsible for rupture are
accurately modelled and predicted, along with the mechanical stress distribution
within the clusters of primary particles. Computational fluid dynamics techniques
were adopted to fully characterize the flow field inside a microfluidic device. The
simulation results were compared with the flow field encountered in more realistic
representations of an obstructed blood vessel, and then the results were fed as an input
to the Stokesian dynamics simulations. The response of drug carriers produced via
spray drying to the pathological flow field encountered in an obstructed blood vessel



91

Fig. 6.1 Microfluidic device manufactured at CNR-NANOTEC in Lecce, devoted to in-vitro
measurements of the activation of shear-responsive agglomerates.

was studied, i.e., the robustness of various classes of agglomerates was tested by
verifying if a critical stress inducing breakup can be reached at any particle-particle
contact.

The production process of agglomerates was investigated, and a qualitative
relationship between the spray drying process conditions (mainly summarized in
the Péclet number) and the morphology of the final product has been identified.
Compact agglomerates are obtained in single-droplet drying simulations for fast
particle diffusivity and long shrinkage time (low Péclet number). On the other hand,
hollow agglomerates are the final product if the system is characterized by slow
particle diffusivity and short shrinkage time (high Péclet number).

CFD simulations demonstrated the presence of a peak in hydrodynamic forces,
caused by the occlusion of the blood vessel itself, that can act as an internal and
non-invasive activation mechanism for the drug carriers. Micrometric agglomerates
of nanoparticles have to be carefully designed in a way that let them free to circulate
undisturbed in normal blood flow conditions but de-agglomerate right onto the lumen
obstruction.

The behaviour of the two principal classes of agglomerates produced via spray
drying flowing in a simple flow field and in an obstructed vessel was investigated
as well: for both classes, maximum internal tensile stress is reached in proximity
of the lumen obstruction, thus proving that the notable increase in hydrodynamic
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stress caused by distortion of the flow field can be effectively used as a trigger
for the breakup of drug carriers; compact agglomerates are more resistant, and
the distribution of the tensile stresses inside the cluster suggests the detachment
of small fragments from the surface as the principal breakup mechanism; hollow
agglomerates are more fragile, and the collapse of the shell structure is expected
to occur after reaching the critical pull-off tension between monomers. Breakup
dynamics of the proposed drug carriers has been therefore directly linked to their
production process.

The principal limitation of the work up to now is the lack of an experimental
validation of the simulation of the processes of agglomeration and de-agglomeration.
A reliable protocol for the production of compact and hollow aggregates via spray
drying has to be defined to validate the strict connection between morphology and
process conditions that has been found using numerical methods. The activation
process of the manufactured agglomerates should then be observed in a real microflu-
idic device. The proposed microchannel has been designed looking forward future
in-vitro experimentations (Fig. 6.1). In this way, parameters of the proposed model
can be tuned to properly match experimental evidences, and CFD-DEM simulations
can in turn act as a valuable guideline for the production process: the choice of the
material and the identification of the proper size and shape are the key steps for an
optimal design of shear-responsive drug carriers able to correctly perform an efficient
thrombolytic action. A parallel route for this investigation field is the simulation
of blood flow along accurate vessel morphologies. Although it could be difficult
to replicate a similar system in-vitro, such simulations would provide meaningful
insights about the final scope of the drug carriers. In this case, approaches like
Dissipative Particle Dynamics or Boundary Element Method would be more suitable
than a CFD-SD method for the investigation of non-Newtonian fluids.
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Appendix A

Yade code for single droplet spay
drying

1 ### DESCRIPTION ###
2 # Spray d r y i n g p r o c e s s o f a d r o p l e t w i th r a d i u s ’R ’ , c o n t a i n i n g a

d i s p e r s i o n o f ’ np ’ p a r t i c l e s o f mean r a d i u s ’ a ’
3 # Rad ius d i s t r i b u t i o n can be un i fo rm between aMin=a *(1− f u z z ) and

aMax=a *(1+ f u z z ) [ BimodalBool= F a l s e ]
4 # or b imoda l w i th s p h e r e s o f r a d i u s aMin and aMax [ BimodalBool=

True ]
5 # P ha se s i n t h e s c r i p t :
6 # − From t =0 t o t = t a u C r u s t : d r y i n g phase a t c o n s t a n t t e m p e r a t u r e

( Twetbulb ) ;
7 # − From t = t a u C r u s t t o t = t a u : d r y i n g phase wi th l i n e a r l y

i n c r e a s i n g t e m p e r a t u r e from Twetbulb t o T b o i l ;
8 # − From t = t a u t o t = t a u *(1+ expFrac ) : t h e r m a l e x p a n s i o n phase (

o p t i o n a l )
9 # P a r t i c l e s a r e c o h e s i v e . The bond s t r e n g t h i s r e l a t e d t o t h e i r

s u p e r f i c i a l e n e r gy ’ s igma ’
10 # I f [ EnableBrownian =True ] , b rownian mot ion i s t a k e n i n t o a c c o u n t
11 # Times tep can be m o d i f i e d by ’ i t e r P e r i o d ’ and ’ TimeStepFrac ’
12 # ##################
13

14 ### INPUT ###
15 # I n p u t d a t a e x p r e s s e d i n so−c a l l e d DEM program u n i t s ( s e e

c o n v e r s i o n s below ) , can a l s o be c o n v e r t e d
16 # i n SI u n i t s a t t h e b e g i n n i n g and r e c o n v e r t e d i n DEM u n i t s f o r

t h e f i n a l o u t p u t .
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17 # ############
18

19 ### OUTPUT ###
20 # − geomet ry f i l e d e s c r i b i n g p o s i t i o n o f n a n o p a r t i c l e s a t

i n t e r m e d i a t e a d i m e n s i o n a l t i m e s ’ t h e t a ’
21 # − geomet ry f i l e o f t h e a g g r e g a t e a t t h e end of d r y i n g phase

" F i n a l G e o m e t r y _ t a u . geo " ;
22 # − geomet ry f i l e o f t h e a g g r e g a t e a t t h e end of therm . exp . phase

" F ina lGeome t ry_ t auExp . geo " ;
23 # − F i l e wi th t h e v a r i a t i o n o f R and T ove r t ime " d r o p l e t . d a t " [

EnableVTK=True ] ;
24 # − VTK f i l e s f o r p o s t p r o c e s s i n paraView [ EnableVTK=True ]
25 # #############
26

27 ### POSTPROCESS ###
28 # use t h e yade s c r i p t ’ f i n a l A g g r e g a t e . py ’ on t h e f i n a l geometry ,

u s i n g t h e f o l l o w i n g command l i n e :
29 # $ yade f i n a l A g g r e g a t e . py F ina lGeome t ry_ * * * . geo
30 #
31 # The py thon s c r i p t ’ p o s t . py ’ compares f i n a l g e o m e t r i e s i n t e r m s

of hc , dc , r e l a t i v e p o s i t i o n o f monomers i n s i d e t h e a g g l o m e r a t e
32 # ##################
33

34 ### BATCH MODE ###
35 # Th i s s c r i p t can be run i n b a t c h mode , i . e . v a r i o u s j o b s wi th

v a r i a t i o n o f p a r a m e t e r s a s d e f i n e d i n f i l e ’ params . t x t ’
36 # For b a t c h mode , use command l i n e : $ yade−b a t c h params . t x t

s c r i p t . py
37 # For non−b a t c h mode , use command l i n e : $ yade s c r i p t . py
38 #
39 # − P a r a l l e l i z a t i o n
40 # I f a l l j o b s s h a l l use t h e same number o f t h r e a d s , ’−− job−

t h r e a d s =2 ’ means t h a t each j o b w i l l g e t 2 t h r e a d s .
41 # The number o f j o b s t h a t run s i m u l t a n e o u s l y i s d e f i n e d by t h e

t o t a l number o f t h r e a d s t h a t you a l l o w by − j o p t i o n .
42 # Th i s p a r a m e t e r s do n o t a f f e c t t h e t o t a l number o f j o b s /

s i m u l a t i o n s t h a t can be s e t up i n t h e p a r a m e t e r s t a b l e ,
43 # i f t h e c o r e s a r e n o t enough some s i m u l a t i o n s w i l l b e g i n as

soon as t h e o t h e r s come t o an end .
44 #
45 # ’− j ** ’ d e f i n e s t o t a l number o f t h r e a d s ( example : −j 1 0

e s t a b l i s h e s t h a t 10 t h r e a d s w i l l be used d u r i n g b a t c h
s i m u l a t i o n )



105

46 # ’−− job−t h r e a d s =** ’ d e f i n e s t h r e a d s p e r j o b ( example : −−job−
t h r e a d s =2 e s t a b l i s h e s t h a t 2 t h r e a d s p e r j o b w i l l be used )

47 #
48 # add ’ nohup ’ a t t h e b e g i n n i n g and ’&’ a t t h e end f o r remote

background e x e c u t i o n :
49 # $ nohup yade−b a t c h −jN −−job−t h r e a d s =n params . t x t s c r i p t . py &
50 # ###################
51

52

53

54 # DEM u n i t s
55 L = 1e−7 # [m]
56 M = 1e−6 # [ kg ]
57 T = 1 . 0 # [ s ]
58 F = L*M/ ( T**2) # [N]
59 P = F / ( L**2) # [N/m^2]
60 # Packages r e q u i r e d
61 i m p o r t math
62 i m p o r t random
63 from yade i m p o r t pack
64

65

66

67 # −−− INPUT −−− #
68

69 # Run a u t o m a t i c a l l y
70 runAuto = True # S e t t o ’ F a l s e ’ f o r non−b a t c h e x e c u t i o n and debug
71 # I n i t i a l geomet ry
72 BimodalBool = F a l s e # i f ’ F a l s e ’ , r a d i i o f t h e monomers f o l l o w s a

un i fo rm d i s t r i b u t i o n .
73 # E n a b l i n g t h e r m a l e x p a n s i o n phase
74 EnableThermExp = F a l s e
75

76 # V a r i a b l e s i m p o r t e d from t a b l e . A s t d . v a l u e f o r non−b a t c h mode
i s d e f i n e d

77 readParamsFromTable (
78 np = 100 , # I n i t i a l number o f p a r t i c l e s
79 a = 5 . 0 , # Mean monomer r a d i u s i n DEM u n i t
80 f u z z = 0 . 0 , # R e l a t i v e f u z z ( d i s p e r s i o n ) o f r a d i u s ’ a ’
81 R0 = 1 0 0 . , # I n i t i a l d r o p l e t r a d i u s i n DEM u n i t
82 t a u = 5 . 0 e−3,# [ s ] # Drying t ime
83 t a u C r u s t = 1 . 0 e−3,# [ s ] # Time a t wich c r u s t i s supposed t o be

formed ( i t has t o be t r u e t h a t t a u C r u s t < t a u )
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84 ExpFrac = 0 . 1 , # t a u * ExpFrac i s ’ tauExp ’ , t ime f o r t h e t h e r m a l
e x p a n s i o n phase

85 i t e r P e r i o d = 1 , # P r i n c i p a l f u n c t i o n s a r e c a l l e d a f t e r ’
i t e r P e r i o d ’ s t e p s

86 TimeStepFrac = 1 . , # O. d t =PWaveTimestep * TimeStepFrac
87 s igma = 0 .073 e−3,# [N/m]# Water S u r f a c e t e n s i o n
88 e t a R o l l = 1 . 8 , # D i m e n s i o n l e s s r o l l i n g s t r e n g t h .
89 Twetbulb = 100 , # [C] # Wet bu lb t e m p e r a t u r e o f t h e d r o p l e t i n

C e l s i u s
90 T b o i l = 100 , # [C] # B o i l i n g t e m p e r a t u r e o f t h e d r o p l e t i n

C e l s i u s
91 EnableBrownian = True , # i f ’ True ’ , t h e brownian mot ion i s t a k e n

i n t o a c c o u n t
92 omega = 1 . 0 , # Cn p r o p o r t i o n a l t o Fadh *omega
93 )
94 # make a l l t a b l e v a r i a b l e s a c c e s s i b l e d i r e c t l y as v a r i a b l e s l a t e r
95 from yade . params . t a b l e i m p o r t *
96

97 a = a *L # [m] # Mean monomer r a d i u s
98 R0 = R0*L # [m] # I n i t i a l d r o p l e t r a d i u s
99

100 aMax = a + a * f u z z # max monomer r a d i u s
101 aMin = a − a * f u z z # min monomer r a d i u s
102

103 t auExp = t a u * ExpFrac # Time f o r t h e r m a l e x p a n s i o n
104

105 # P r o p e r t i e s o f t h e m a t e r i a l
106 rho = 1300 # [ kg /m^3] # PLGA D e n s i t y
107 E = 3 . 4 e9 # [ Pa ] # PLGA Young modulus
108 nu = 0 . 5 # PLGA P o i s s o n c o e f f i c i e n t
109 eps = 1 0 . 0 e−3 # [N/m] # PLGA s u r f a c e e ne rg y
110

111 # G r a v i t y
112 g_x = 0 .
113 g_y = 0 . #−9.81
114 g_z = 0 .
115

116 # Othe r p a r a m e t e r s
117 hamak = 0 .966 e−20 # Hamaker c o n s t a n t
118 z 0 d i s t = 0 .165 e−9 # [m] # d i s t a n c e z0
119 r _ i n t = 1 . 0 # i n t e r a c t i o n r a d i u s needed f o r c o h e s i o n ( 1 . 0 => no

i n t e r a c t i o n u n t i l c o n t a c t )
120
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121 # P r o p e r t i e s o f t h e f l u i d . Hp : no i n t e r a c t i o n between p a r t i c l e s
b e f o r e c o n t a c t , s t a g n a n t f l u i d

122 r h o _ l = 1000 # [ kg /m^3] # w a t e r d e n s i t y
123 e t a _ l = 1e−3 # [ Pa s ] # w a t e r v i s c o s i t y
124 u_ lx = 0 . 0 # [m/ s ] # w a t e r v e l o c i t y a l o n g x
125 u_ ly = 0 . 0 # [m/ s ] # w a t e r v e l o c i t y a l o n g y
126 u _ l z = 0 . 0 # [m/ s ] # w a t e r v e l o c i t y a l o n g z
127 w_lx = 0 . 0 # [ r a d / s ] # w a t e r ang . v e l . a l o n g x
128 w_ly = 0 . 0 # [ r a d / s ] # w a t e r ang . v e l . a l o n g y
129 w_lz = 0 . 0 # [ r a d / s ] # w a t e r ang . v e l . a l o n g z
130 Kb = 1.38064852 e−23 # [m^2* kg / s ^ 2 /K] # Boltzmann ’ s c o n s t a n t
131

132 # VTK f o r p o s t p r o c e s s i n g
133 EnableVTK = True # i f ’ True ’ , f i l e s f o r p o s t p r o c e s s i n ParaView

a r e p roduced
134 f r a me s = 250 # number o f d e s i r e d f r a m es
135

136 # Three a d i m e n s i o n a l t i m e s a t wich geomet ry has t o be p r i n t e d (
t h e t a =0 . b e g i n n i n g of t h e s h r i n k a g e , t a u =1 . end )

137 t h e t a _ 0 = 0 . 0
138 t h e t a _ 1 = 0 . 2
139 t h e t a _ 2 = 0 . 4
140 # −−− #
141

142

143 # Pa th f o r s i m u l a t i o n s
144 # C r e a t e a f o l d e r f o r each s i m u l a t i o n .
145 # use O. t a g s [ ’ d . i d ’ ] t o d i s t i n g u i s h i n d i v i d u a l r u n s o f t h e same

s i m u l a t i o n
146 t i t l e = O. t a g s [ ’ d . i d ’ ]
147 f o l d e r = os . p a t h . d i rname ( s y s . a rgv [ 0 ] ) + s t r ( t i t l e ) +" / "
148 i f os . p a t h . e x i s t s ( f o l d e r ) == F a l s e :
149 os . mkdir ( f o l d e r )
150

151

152

153 ### SETTING UP THE SIMULATION
154 p r i n t ( " \ n " )
155

156 ### Adhes ive f o r c e and c o h e s i o n f a c t o r s Cn / Cs
157 # Use t h e g e n e r a l JKR model . S e l e c t t h e most s u i t a b l e

a p p r o x i m a t i o n based on t h e v a l u e o f ’ f u z z ’
158 i f fuzz < 0 . 5 : # c a l c u l a t e Cn u s i n g aMin=a *(1− f u z z )
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159 Fadh = 3 /2* math . p i * eps *aMin # Adhes ive f o r c e
160 Cn = Fadh / ( aMin **2) *omega # Normal c o h e s i o n f a c t o r
161 Cs = Cn / omega # Shea r c o h e s i o n f a c t o r
162 p r i n t ( " Adhes ion f o r c e from JKR u s i n g aMin : Fadh = %5.3 e N"

%Fadh )
163 p r i n t ( " Cohes ion f a c t o r from JKR u s i n g aMin : Cn = %5.3 e N/m^2 "

%Cn )
164 p r i n t ( " \ t \ t \ tCs = %5.3 e N/m^2 " %Cs )
165 e l s e : # c a l c u l a t e Cn u s i n g aMean=a
166 Fadh = 3 /2* math . p i * eps * a # Adhes ive f o r c e
167 Cn = Fadh / ( a **2) *omega # Normal c o h e s i o n f a c t o r
168 Cs = Cn / omega # Shea r c o h e s i o n f a c t o r
169 p r i n t ( " Adhes ion f o r c e from JKR u s i n g aMean : Fadh = %5.3 e N"

%Fadh )
170 p r i n t ( " Cohes ion f a c t o r from JKR u s i n g aMean : Cn = %5.3 e N/m^2 "

%Cn )
171 p r i n t ( " \ t \ t \ tCs = %5.3 e N/m^2 " %Cs )
172

173 # De f i ne c o h e s i v e m a t e r i a l and append i t t o t h e s i m u l a t i o n
174 sampleMat= CohFr ic tMat (
175 young=E ,
176 p o i s s o n =nu ,
177 f r i c t i o n A n g l e = r a d i a n s ( 1 7 ) ,
178 i s C o h e s i v e =True ,
179 a lphaKr = 1 . 8 , # D i m e n s i o n l e s s r o l l i n g s t i f f n e s s
180 alphaKtw =0 , # D i m e n s i o n l e s s t w i s t s t i f f n e s s
181 e t a R o l l = e t a R o l l , # D i m e n s i o n l e s s r o l l i n g s t r e n g t h
182 normalCohes ion =Cn , # Kn − T e n s i l e s t r e n g t h , homogeneous t o a

p r e s s u r e
183 s h e a r C o h e s i o n =Cs , # Ks − Shea r s t r e n g t h , homogeneous t o a

p r e s s u r e
184 momentRotationLaw=True ,
185 d e n s i t y =rho ,
186 l a b e l = ’PLGA ’ ,
187 )
188 O. m a t e r i a l s . append ( sampleMat )
189

190

191 ### I n i t i a l geomet ry
192 # G e n e r a t e a b imoda l d i s t r i b u t i o n o f np monomers i n a d r o p l e t w i th

r a d i u s R0 .
193 d e f B i m o d a l D i s t r i b u t i o n ( np , a1 , a2 , R0 ) :
194
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195 # C r e a t e a r r a y s c o n t a i n i n g x , y , z c o o r d i n a t e s and r a d i u s o f e v e r y
p a r t i c l e

196 xArray =numpy . a r r a y ( [ ] )
197 yArray =numpy . a r r a y ( [ ] )
198 zArray =numpy . a r r a y ( [ ] )
199 r a d i u s A r r a y =numpy . a r r a y ( [ ] )
200 m a t e r i a l A r r a y =numpy . a r r a y ( [ ] )
201 VolumeRatio= i n t ( max ( a1 , a2 ) **3 / min ( a1 , a2 ) **3 )
202 f o r i i i n r a n g e ( np ) : # For e v e r y p a r t i c l e t h a t needs t o be added

:
203

204 # A l t e r n a t e t h e two r a d i i a c c o r d i n g t o volume r a t i o
205 i f i i %(VolumeRatio +1) ==0:
206 r a d i u s =max ( a1 , a2 ) ; m a t e r i a l = ’PLGA_BimodMax ’
207 e l s e :
208 r a d i u s =min ( a1 , a2 ) ; m a t e r i a l = ’PLGA_BimodMin ’
209

210

211 # G e n e r a t e x , y , z and r a d i u s o f t h e f i r s t p a r t i c l e
212 x = random . random ( ) *2*R0 − R0
213 y = random . random ( ) *2*R0 − R0
214 z = random . random ( ) *2*R0 − R0
215 i t e r c o u n t e r =0
216 w h i l e math . s q r t ( x**2+y**2+ z **2) >(R0−max ( a1 , a2 ) ) :
217 x = random . random ( ) *2*R0 − R0
218 y = random . random ( ) *2*R0 − R0
219 z = random . random ( ) *2*R0 − R0
220 i t e r c o u n t e r = i t e r c o u n t e r +1
221 i f i t e r c o u n t e r > 1000 :
222 p r i n t ( "ERROR" )
223 e x i t ( )
224

225 # G e n e r a t e x , y , z and r a d i u s o f t h e o t h e r p a r t i c l e s , w i th t h e
c o n d i t i o n o f no−o v e r l a p p i n g

226 f o r j j i n r a n g e ( l e n ( xArray ) ) :
227 i t e r c o u n t e r =0
228 w h i l e math . s q r t ( ( x−xArray [ j j ] ) **2+( y−yArray [ j j ] ) **2+( z−

zArray [ j j ] ) **2) <( r a d i u s + r a d i u s A r r a y [ j j ] ) \
229 or math . s q r t ( x**2+y**2+ z **2) >(R0−max ( a1 , a2 ) ) :
230 x = random . random ( ) *2*R0 − R0
231 y = random . random ( ) *2*R0 − R0
232 z = random . random ( ) *2*R0 − R0
233 i t e r c o u n t e r = i t e r c o u n t e r +1
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234 i f i t e r c o u n t e r > 1000 :
235 p r i n t ( "ERROR" )
236 e x i t ( )
237

238 xArray = numpy . append ( xArray , x )
239 yArray = numpy . append ( yArray , y )
240 zArray = numpy . append ( zArray , z )
241 r a d i u s A r r a y = numpy . append ( r a d i u s A r r a y , r a d i u s )
242 m a t e r i a l A r r a y = numpy . append ( m a t e r i a l A r r a y , m a t e r i a l )
243 r e t u r n xArray , yArray , zArray , r a d i u s A r r a y , m a t e r i a l A r r a y
244

245 i f BimodalBool :
246 ### De f i n e two m a t e r i a l s w i th d i f f e r e n t Cn f o r t h e two c l a s s e s

o f monomers :
247 ## − r a d i u s aMin
248 Fadh_BimodMin =3/2* math . p i * eps *aMin ; Cn_BimodMin=Fadh_BimodMin / (

aMin **2) ; Cs_BimodMin=Cn_BimodMin
249 sampleMat_BimodMin= CohFr ic tMat (
250 young=E ,
251 p o i s s o n =nu ,
252 f r i c t i o n A n g l e = r a d i a n s ( 1 7 ) ,
253 i s C o h e s i v e =True ,
254 a lphaKr = 1 . 8 ,
255 alphaKtw =0 ,
256 e t a R o l l = e t a R o l l ,
257 normalCohes ion =Cn_BimodMin ,
258 s h e a r C o h e s i o n =Cs_BimodMin ,
259 momentRotat ionLaw=True ,
260 d e n s i t y =rho ,
261 l a b e l = ’PLGA_BimodMin ’ , )
262 O. m a t e r i a l s . append ( sampleMat_BimodMin )
263 ## − r a d i u s aMax ( BimodMax )
264 Fadh_BimodMax =3/2* math . p i * eps *aMax ; Cn_BimodMax=Fadh_BimodMax / (

aMax **2) ; Cs_BimodMax=Cn_BimodMax
265 sampleMat_BimodMax= CohFr ic tMat (
266 young=E ,
267 p o i s s o n =nu ,
268 f r i c t i o n A n g l e = r a d i a n s ( 1 7 ) ,
269 i s C o h e s i v e =True ,
270 a lphaKr = 1 . 8 ,
271 alphaKtw =0 ,
272 e t a R o l l = e t a R o l l ,
273 normalCohes ion =Cn_BimodMax ,
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274 s h e a r C o h e s i o n =Cs_BimodMax ,
275 momentRotat ionLaw=True ,
276 d e n s i t y =rho ,
277 l a b e l = ’PLGA_BimodMax ’ , )
278 O. m a t e r i a l s . append ( sampleMat_BimodMax )
279 # G e n e r a t e a p o p u l a t i o n o f monomers wi th BIMODAL r a d i u s

d i s t r i b u t i o n
280 xBimod , yBimod , zBimod , rad iusBimod , m a t e r i a l B i m o d =

B i m o d a l D i s t r i b u t i o n ( np , aMin , aMax , R0 )
281 # Add monomers t o t h e s i m u l a t i o n
282 f o r i i i n r a n g e ( np ) :
283 O. b o d i e s . append ( s p h e r e (
284 c e n t e r =( xBimod [ i i ] , yBimod [ i i ] , zBimod [ i i ] ) ,
285 r a d i u s = rad iusBimod [ i i ] ,
286 m a t e r i a l = m a t e r i a l B i m o d [ i i ] ,
287 ) )
288 e l s e :
289 # G e n e r a t e a p o p u l a t i o n o f monomers wi th un i fo rm r a d i u s

d i s t r i b u t i o n
290 # Cloud of p c l e s i n a d e f i n e d box , add t o t h e s i m u l a t i o n on ly

t h e ones e n c l o s e d i n t h e d r o p l e t
291 sp=pack . SpherePack ( )
292 sp . makeCloud (
293 # c o r n e r s o f t h e box t h a t e n c l o s e s a s p h e r e wi th r a d i u s R0
294 minCorner =(−R0,−R0,−R0 ) ,
295 maxCorner =(+R0 , + R0 , + R0 ) ,
296 num=2*np ,
297 rMean=a , # mean r a d i u s o f p c l e s
298 r R e l F u z z = fuzz , # s p h e r e s w i l l have r a d i i rMean +− ( rMean*

r R e l F u z z )
299 )
300 # P r e d i c a t e t h a t d e f i n e s t h e d r o p l e t a t t h e b e g i n n i n g of t h e

s i m u l a t i o n
301 p red = pack . i n S p h e r e ( c e n t e r = ( 0 , 0 , 0 ) , r a d i u s =R0 )
302 f o r c , r i n sp :
303 i f p r ed ( c , r ) : # i f a s p h e r e wi th c e n t e r ’ c ’ and r a d i u s ’ r ’ i s

i n s i d e p r e d i c a t e , append i t t o t h e s i m u l a t i o n
304 O. b o d i e s . append ( s p h e r e ( c e n t e r =c , r a d i u s =r , m a t e r i a l = ’PLGA ’ ) )
305 # then , u p d a t e t h e v a l u e o f np wi th t h e e f f e c t i v e number o f

p a r t i c l e s i n t h e d r o p l e t
306 np = l e n (O. b o d i e s )
307

308
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309 # Q u a d r a t i c law f o r s h r i n k a g e : R( t ) **2 = R0**2 − k* t . C a l c u l a t e k
from c o n d i t i o n R( t a u ) =0 .0

310 k = R0**2 / t a u
311

312 # Q u a d r a t i c law f o r therm . exp . : R( t ) **2 = kExp* t . C a l c u l a t e kExp
from c o n d i t i o n R( tauExp ) =R0

313 kExp = R0**2 / tauExp
314

315 # I n i z i a l i z a t i o n o f t h e t e m p e r a t u r e and c o n v e r s i o n i n Ke lv in
316 Twetbulb = Twetbulb + 273 .15
317 T b o i l = T b o i l + 273 .15
318 t e m p e r a t u r e = Twetbulb
319

320 # D i f f u s i v i t y e s t i m a t i o n based on mean r a d i u s ’ a ’ and on i n i t i a l
t e m p e r a t u r e

321 D = Kb* t e m p e r a t u r e / (6* math . p i * e t a _ l * a ) # [m^ 2 / s ]
322

323 # P e c l e t number e s t i m a t i o n
324 Pe = R0**2 / ( t a u *D)
325

326 # Array i d e n t i f y i n g p a r t i c l e s on t h e s u r f a c e by a s s i g n i n g a ’1 ’ t o
t h e i r i n d e x . At t h e b e g i n n i n g , no p c l e s on t h e s u r f a c e ( ’ 0 ’ ) .

327 s u r f _ p c l e s =numpy . z e r o s ( np )
328

329 # L i s t o f f o r c e s and t o r q u e s t o be a p p l i e d by PyRunner
330 Fdrag = numpy . z e r o s ( ( np , 3 ) ) # Drag f o r c e
331 Tdrag = numpy . z e r o s ( ( np , 3 ) ) # Drag t o r q u e
332 Fbrown = numpy . z e r o s ( ( np , 3 ) ) # Brown f o r c e
333 Tbrown = numpy . z e r o s ( ( np , 3 ) ) # Brown t o r q u e
334 F s u r f = numpy . z e r o s ( ( np , 3 ) ) # C a p i l l a r f o r c e
335

336

337

338 ### SIMULATION LOOP
339 O. e n g i n e s =[
340 F o r c e R e s e t t e r ( ) ,
341 I n s e r t i o n S o r t C o l l i d e r ( [ Bo1_Sphere_Aabb ( a a b b E n l a r g e F a c t o r = r _ i n t ,

l a b e l = ’ bo1s ’ ) ] ) ,
342 I n t e r a c t i o n L o o p (
343 [ Ig2_Sphere_Sphere_ScGeom6D ( i n t e r a c t i o n D e t e c t i o n F a c t o r = r _ i n t ,

l a b e l = ’ i g 2 s s ’ ) ] ,
344 [ I p 2 _ C o h F r i c t M a t _ C o h F r i c t M a t _ C o h F r i c t P h y s (
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345 se tCohesionNow=True , se tCohes ionOnNewContac t s =True , l a b e l ="
c o h e s i v e I p " ) ] ,

346 [ Law2_ScGeom6D_CohFrictPhys_CohesionMoment ( u s e I n c r e m e n t a l F o r m =True
, l a b e l =" cohes iveLaw " ) ]

347 ) ,
348 N e w t o n I n t e g r a t o r ( g r a v i t y =( g_x , g_y , g_z ) , damping = 0 . 2 ) ,
349 # Spray d r y i n g f u n c t i o n s ( use r−d e f i n e d )
350 PyRunner ( i t e r P e r i o d =1 , dead= F a l s e , command= ’ check ( ) ’ , l a b e l = ’

l a b e l C h e c k ’ ) ,
351 PyRunner ( i t e r P e r i o d = i t e r P e r i o d , dead= F a l s e , command= ’ u p d a t e ( ) ’ ,

l a b e l = ’ l a b e l U p d a t e ’ ) ,
352 PyRunner ( i t e r P e r i o d = i t e r P e r i o d , dead= F a l s e , command= ’ temp ( ) ’ , l a b e l =

’ labe lTemp ’ ) ,
353 PyRunner ( i t e r P e r i o d = i t e r P e r i o d , dead= F a l s e , command= ’ a p p l y s u r f ( ) ’ ,

l a b e l = ’ l a b e l A p p l y s u r f ’ ) ,
354 PyRunner ( i t e r P e r i o d = i t e r P e r i o d , dead= F a l s e , command= ’ d rag ( ) ’ , l a b e l =

’ l a b e l D r a g ’ ) ,
355 ]
356

357 ### Brownian Force ###
358 i f ( EnableBrownian ) :
359 O. e n g i n e s =O. e n g i n e s +[
360 PyRunner ( i t e r P e r i o d = i t e r P e r i o d , dead= F a l s e , command= ’ brownian ( ) ’

, l a b e l = ’ l a b e l B r o w n i a n ’ ) ,
361 ]
362

363 ### Thermal Expans ion Phase ###
364 i f ( EnableThermExp ) :
365 O. e n g i n e s =O. e n g i n e s +[
366 PyRunner ( i t e r P e r i o d = i t e r P e r i o d , dead=True , command= ’ upda teExp ( ) ’

, l a b e l = ’ l a b e l U p d a t e E x p ’ ) ,
367 PyRunner ( i t e r P e r i o d = i t e r P e r i o d , dead=True , command= ’ a p p l y s u r f E x p

( ) ’ , l a b e l = ’ l a b e l A p p l y s u r f E x p ’ ) ,
368 ]
369

370 ### At t h e end of t h e loop , add e n g i n e s f o r summation of f o r c e s
and o u t p u t message ###

371 O. e n g i n e s =O. e n g i n e s +[
372 PyRunner ( i t e r P e r i o d = i t e r P e r i o d , dead= F a l s e , command= ’sum ( ) ’ , l a b e l

= ’ labe lSum ’ ) ,
373 PyRunner ( i t e r P e r i o d = i t e r P e r i o d *10000 , dead= F a l s e , command= ’ o u t p u t

( ) ’ , l a b e l = ’ l a b e l O u t p u t ’ ) ,
374 ]
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375

376

377

378

379 # C r i t i c a l t i m e s t e p
380 O. d t = TimeStepFrac * u t i l s . PWaveTimeStep ( )
381

382 # I t e r a t i o n s r e q u i r e d t o c o m p l e t e t h e s h r i n k a g e o f t h e drop
383 i t e r T a u = i n t ( t a u /O. d t )
384 # I t e r a t i o n s r e q u i r e d t o c o m p l e t e t h e t h e r m a l e x p a n s i o n phase
385 i t e r T a u E x p = i n t ( tauExp /O. d t )
386

387 # C h a r a c t e r i s t i c f o r c e s e s t i m a t i o n : c a p i l l a r y f o r c e , d r ag f o r c e ,
b rownian mot ion

388 # NB: R0 / t a u i s a r e f e r e n c e v e l o c i t y f o r p c l e s f o l l o w i n g t h e
d r o p l e t s u r f a c e

389 F s u r f _ c h a r = 2* math . p i * a * sigma
390 F d r a g _ c h a r = 6* math . p i * e t a _ l * a * ( R0 / tau−u_ lx )
391 Fbrown_char = (24*Kb* t e m p e r a t u r e *6* math . p i * e t a _ l * a / ( O. d t *

i t e r P e r i o d ) ) * * ( 3 / 2 )
392

393 # S o l i d Volume F r a c t i o n ’ p h i ’
394 VolumeDrople t = ( 4 / 3 ) * math . p i * ( R0**3)
395 VolumeSol id = numpy . sum ( [ 4 / 3 * math . p i *b . shape . r a d i u s **3 f o r b i n

O. b o d i e s i f i s i n s t a n c e ( b . shape , Sphere ) ] )
396 p h i = VolumeSol id / VolumeDrople t
397

398 # I n i z i a l i z a t i o n
399 R = R0
400 R _ i n i t i a l = R0
401 R _ f i n a l = R0
402 dR = 0 . 0
403

404 # T e r m i n a l o u t p u t f o r t h e u s e r
405 p r i n t ( " \nMESSAGE: " )
406 p r i n t ( "NP ( monomers ) = %i " %np )
407 i f BimodalBool :
408 p r i n t ( " Bimodal d i s t r i b u t i o n o f monomers : aMin=%5.2 e " %aMin )
409 p r i n t ( " \ t \ t \ taMax =%5.2 e " %aMax )
410 e l s e :
411 p r i n t ( " Uniform d i s t r i b u t i o n o f monomers : a =(%8.2 e +/−%5.2 e ) m" %(

a , a * f u z z ) )
412 p r i n t ( " D r o p l e t r a d i u s = %8.2 e m " %R0 )
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413 p r i n t ( " S o l i d f r a c t i o n = %8.2 e " %p h i )
414 p r i n t ( " Drying t ime = %8.2 e s " %t a u )
415 p r i n t ( " S h r i n k a g e v e l . k = %8.2 e m^ 2 / s " %k )
416 p r i n t ( " T imes tep = %8.2 e s " %O. d t )
417 p r i n t ( " Cohes . F a c t o r Cn = %8.2 e N/m^2 " %Cn )
418 p r i n t ( " Cohes . F a c t o r Cs = %8.2 e N/m^2 " %Cs )
419 i f ( EnableBrownian ) :
420 p r i n t ( " Brownian mot ion : ENABLED" )
421 p r i n t ( " Tempera tu r e = %5.2 f K" %t e m p e r a t u r e )
422 p r i n t ( " D i f f u s i v i t y = %5.2 e m^ 2 / s " %D)
423 p r i n t ( " P e c l e t Pe = R0 * * 2 / (D* t a u ) = %5.2 f " %Pe )
424 p r i n t ( " \ tPe_v = v0*R0 /D = k /D = %5.2 f \ n " %(k /D) )
425 p r i n t ( " C h a r a c t e r i s t i c s u r f a c e f o r c e = %8.3 e " %F s u r f _ c h a r )
426 p r i n t ( " C h a r a c t e r i s t i c d r ag f o r c e = %8.3 e " %F d r a g _ c h a r )
427 p r i n t ( " C h a r a c t e r i s t i c brownian f o r c e = %8.3 e " %Fbrown_char )
428 p r i n t ( " F s u r f / Fdrag = %8.3 e " %( F s u r f _ c h a r / F d r a g _ c h a r ) )
429 p r i n t ( " Fbrown / Fdrag = %8.3 e " %(Fbrown_char / F d r a g _ c h a r ) )
430 p r i n t ( " Fbrown / F s u r f = %8.3 e \ n " %(Fbrown_char / F s u r f _ c h a r ) )
431 e l s e :
432 p r i n t ( " Brownian mot ion : DISABLED" )
433 i f ( EnableThermExp ) :
434 p r i n t ( " Thermal Expans ion Phase : ENABLED" )
435 p r i n t ( " Therm . Exp . t ime tauExp = %8.2 e s " %tauExp )
436 p r i n t ( " Expans ion v e l . kExp = %8.2 e m^ 2 / s " %kExp )
437 p r i n t ( " To c o m p l e t e t h e d r y i n g p r o c e s s , %i i t e r a t i o n s a r e needed

. " %( i t e r T a u + i t e r T a u E x p ) )
438 p r i n t ( " Execu te t h e command l i n e ’O. run (% i ) ’ o r ’O. run (

i t e r T a u E x p ) ’ . " %( i t e r T a u + i t e r T a u E x p ) )
439 p r i n t ( " Execu te ’O. run ( i t e r T a u ) ’ t o s i m u l a t e t h e s h r i n k a g e o f t h e

d r o p l e t up t o R=0 . " )
440 p r i n t ( " Execu te ’O. run ( i t e r T a u + i t e r T a u E x p ) ’ t o o b s e r v e t h e

b e h a v i o u r o f t h e c l u s t e r a l s o i n t h e t h e r m a l e x p a n s i o n phase . " )
441 e l s e :
442 p r i n t ( " Thermal Expans ion Phase : DISABLED" )
443 p r i n t ( " To c o m p l e t e t h e d r y i n g p r o c e s s , %i i t e r a t i o n s a r e needed

. " %i t e r T a u )
444 p r i n t ( " Execu te t h e command l i n e ’O. run (% i ) ’ o r ’O. run ( i t e r T a u )

’ . " %i t e r T a u )
445 p r i n t ( " Execu te ’O. run ( i t e r T a u ) ’ t o s i m u l a t e t h e s h r i n k a g e o f t h e

d r o p l e t up t o R=0 . " )
446

447

448 ### V e r i f y t h e brownian mot ion c o n d i t i o n
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449 i f ( EnableBrownian ) :
450 p r i n t ( " \ n " )
451 R _ i n i t i a l = R0
452 R _ f i n a l = R0
453 dR = 0 . 0
454 i t e r V e r i f y B r o w n i a n = i n t ( t a u / ( O. d t * i t e r P e r i o d ) )
455 f o r i i i i n r a n g e ( i t e r V e r i f y B r o w n i a n ) :
456 R _ f i n a l = math . s q r t ( R0**2 − k*O. d t * i t e r P e r i o d * i i i )
457 dR = R _ i n i t i a l −R _ f i n a l
458 i f dR>a / 5 0 :
459 p r i n t ( " ### ERROR: dR t o o high , r e d u c e t i m e s t e p o r ’

i t e r P e r i o d ’ ! \ n " )
460 e x i t ( )
461 R _ i n i t i a l = R _ f i n a l
462

463

464 ### V e r i f y t h a t t a u C r u s t i s lower t h a n t a u
465 i f t a u C r u s t >= t a u :
466 p r i n t ( " ### ERROR: t a u C r u s t t o o high , r e d u c e i t ! " )
467 e x i t ( )
468

469

470

471

472 ### LIST OF FUNCTIONS
473

474 # ’ check ’ f u n c t i o n : I d e n t i f y t h e end of t h e d r y i n g p r o c e s s . When
t h e p r o c e s s i s done :

475 # 1 . P r i n t a message on t e r m i n a l f o r t h e u s e r ;
476 # 2 . Impose R = 0 . 0 ;
477 # 3 . P r i n t f i n a l p o s i t i o n o f monomers on an o u t p u t f i l e ;
478 # 4 . S t a r t t h e t h e r m a l e x p a n s i o n phase
479 d e f check ( ) :
480 g l o b a l R
481 i f O. i t e r ==( i t e r T a u −1) :
482 # 1 .
483 p r i n t ( " \ n \ n S h r i n k a g e o f t h e drop i s f i n i s h e d . Beg inn ing t h e

t h e r m a l e x p a n s i o n phase . \ n " )
484 # 2 .
485 p r i n t ( " P e r c e n t a g e o f r a d i u s r e d u c t i o n : %5.3 f " %(1.−R / R0 ) )
486 R=0.0
487 # 3 .
488 a _ o u t p u t =a / L ; r_max =0 .0
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489 # use O. t a g s [ ’ d . i d ’ ] t o d i s t i n g u i s h i n d i v i d u a l r u n s o f t h e
same s i m u l a t i o n

490 f i l e G e o O u t = open ( f o l d e r +" / F i n a l G e o m e t r y _ t a u "+" . geo " , "w" )
491 f i l e G e o O u t . w r i t e ( " # monomer mean r a d i u s a \ n " )
492 f i l e G e o O u t . w r i t e ( " %5.2 f \ n " %a _ o u t p u t )
493 f i l e G e o O u t . w r i t e ( " # number o f monomers np \ n " )
494 f i l e G e o O u t . w r i t e ( " %5i \ n " %np )
495 f i l e G e o O u t . w r i t e ( " # \ t i d \ t \ t x \ t \ t y \ t \ t z \ t \ t r \ t \ t a \ n " )
496 f o r i i n r a n g e ( np ) :
497 sph = O. b o d i e s [ i ]
498 x = sph . s t a t e . pos [ 0 ] / L
499 y = sph . s t a t e . pos [ 1 ] / L
500 z = sph . s t a t e . pos [ 2 ] / L
501 a i = sph . shape . r a d i u s / L
502 d i s t F r o m O r i g i n = math . s q r t ( x**2+y**2+ z **2 )
503 r _ e x t = math . s q r t ( x**2 + y **2 + z **2)
504 i f r _ e x t >r_max : r_max= r _ e x t
505 f i l e G e o O u t . w r i t e ( "%8i \ t %8.4 f \ t %8.4 f \ t %8.4 f \ t %8.4 f \ t %8.3 f \ n "
506 %( i +1 , x , y , z , d i s t F r o m O r i g i n , a i ) )
507 f i l e G e o O u t . w r i t e ( " \ n " )
508 f i l e G e o O u t . c l o s e ( )
509

510 # 4 .
511 i f O. i t e r > ( i t e r T a u ) :
512 l a b e l U p d a t e . dead = True
513 l a b e l A p p l y s u r f . dead = True
514 i f ( EnableThermExp ) :
515 l a b e l U p d a t e E x p . dead = F a l s e
516 l a b e l A p p l y s u r f E x p . dead = F a l s e
517

518

519 i f O. i t e r ==( i t e r T a u + i t e rTau Exp −1) :
520 a _ o u t p u t =a / L
521 f i l e G e o O u t = open ( f o l d e r +" / F ina lGeome t ry_ t auExp "+" . geo " , "w" )
522 f i l e G e o O u t . w r i t e ( " # monomer mean r a d i u s a \ n " )
523 f i l e G e o O u t . w r i t e ( " %5.2 f \ n " %a _ o u t p u t )
524 f i l e G e o O u t . w r i t e ( " # number o f monomers np \ n " )
525 f i l e G e o O u t . w r i t e ( " %5i \ n " %np )
526 f i l e G e o O u t . w r i t e ( " # \ t i d \ t \ t x \ t \ t y \ t \ t z \ t \ t r \ t \ t a \ n " )
527 f o r i i n r a n g e ( np ) :
528 sph = O. b o d i e s [ i ]
529 x = sph . s t a t e . pos [ 0 ] / L
530 y = sph . s t a t e . pos [ 1 ] / L
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531 z = sph . s t a t e . pos [ 2 ] / L
532 a i = sph . shape . r a d i u s / L
533 d i s t F r o m O r i g i n = math . s q r t ( x**2+y**2+ z **2 )
534 f i l e G e o O u t . w r i t e ( "%8i \ t %8.4 f \ t %8.4 f \ t %8.4 f \ t %8.4 f \ t %8.3 f \ n "
535 %( i +1 , x , y , z , d i s t F r o m O r i g i n , a i ) )
536 f i l e G e o O u t . w r i t e ( " \ n " )
537 f i l e G e o O u t . c l o s e ( )
538

539 # INTERMEDIATE GEOMETRIES
540 # a d i m e n s i o n a l t ime t h e t a =k* t / ( R0**2) ; g e o m e t r i e s f o r a round

t h e t a = t h e t a _ 0 , t h e t a = t h e t a _ 1 , t h e t a = t h e t a _ 2
541 i f O. i t e r == i n t ( i t e r T a u * t h e t a _ 0 ) +1 or O. i t e r == i n t ( i t e r T a u * t h e t a _ 1

) +1 or O. i t e r == i n t ( i t e r T a u * t h e t a _ 2 ) +1 :
542 a _ o u t p u t =a / L
543 f i l e n a m e =( " / t h e t a %5.2 fR %5.3 e . geo " %( k*O. t ime / ( R0**2) , R ) )
544 f i l e G e o O u t = open ( f o l d e r + f i l e n a m e , "w" )
545 f i l e G e o O u t . w r i t e ( " # monomer mean r a d i u s a \ n " )
546 f i l e G e o O u t . w r i t e ( " %5.2 f \ n " %a _ o u t p u t )
547 f i l e G e o O u t . w r i t e ( " # number o f monomers np \ n " )
548 f i l e G e o O u t . w r i t e ( " %5i \ n " %np )
549 f i l e G e o O u t . w r i t e ( " # \ t i d \ t \ t x \ t \ t y \ t \ t z \ t \ t r \ t \ t a \ n " )
550 f o r i i n r a n g e ( np ) :
551 sph = O. b o d i e s [ i ]
552 x = sph . s t a t e . pos [ 0 ] / L
553 y = sph . s t a t e . pos [ 1 ] / L
554 z = sph . s t a t e . pos [ 2 ] / L
555 a i = sph . shape . r a d i u s / L
556 d i s t F r o m O r i g i n = math . s q r t ( x**2+y**2+ z **2 )
557 f i l e G e o O u t . w r i t e ( "%8i \ t %8.4 f \ t %8.4 f \ t %8.4 f \ t %8.4 f \ t %8.3 f \ n "
558 %( i +1 , x , y , z , d i s t F r o m O r i g i n , a i ) )
559 f i l e G e o O u t . w r i t e ( " \ n " )
560 f i l e G e o O u t . c l o s e ( )
561

562 # ’ u p d a t e ’ f u n c t i o n : u p d a t e t h e v a l u e o f R d u r i n g t h e s h r i n k a g e
563 d e f u p d a t e ( ) :
564 g l o b a l R
565 R = math . s q r t ( R0**2 − k*O. t ime )
566

567 # ’ upda teExp ’ f u n c t i o n : u p d a t e t h e v a l u e o f R d u r i n g t h e t h e r m a l
e x p a n s i o n

568 d e f upda teExp ( ) :
569 g l o b a l R
570 R = math . s q r t ( kExp *(O. t ime−t a u ) )
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571

572 # ’ temp ’ f u n c t i o n : u p d a t e t h e v a l u e o f T from Twetbulb t o T b o i l
when t h e c r u s t i s formed

573 d e f temp ( ) :
574 g l o b a l t e m p e r a t u r e
575 i f (O. t ime > t a u C r u s t ) and (O. t ime <= t a u ) :
576 t e m p e r a t u r e = Twetbulb + ( Tbo i l−Twetbulb ) * (O. t ime−t a u C r u s t ) / (

t au−t a u C r u s t )
577

578 # ’ a p p l y s u r f ’ f u n c t i o n : c a l c u l a t e t h e c e n t r i p e t a l f o r c e f o r p c l e s
l y i n g on t h e s u r f a c e o f t h e drop i n t h e s h r i n k a g e phase

579 d e f a p p l y s u r f ( ) :
580 g l o b a l s u r f _ p c l e s
581 g l o b a l F s u r f
582 f o r i i n r a n g e ( np ) : # loop f o r e v e r y p a r t i c l e ;
583 s u r f _ p c l e s [ i ]=0 # i n i t i a l i z a t i o n ;
584 sph = O. b o d i e s [ i ] # i n d e x of p a r t i c l e i ;
585 x = sph . s t a t e . pos [ 0 ] # x p o s i t i o n o f p a r t i c l e i ;
586 y = sph . s t a t e . pos [ 1 ] # y p o s i t i o n o f p a r t i c l e i ;
587 z = sph . s t a t e . pos [ 2 ] # z p o s i t i o n o f p a r t i c l e i ;
588 a i = sph . shape . r a d i u s # r a d i u s o f p a r t i c l e i ;
589 pos = math . s q r t ( x**2+y**2+ z **2) # d i s t a n c e from o r i g i n o f

p a r t i c l e i ;
590 i f pos <R+ a i and pos >R−a i : # i f p a r t i c l e i i s on s u r f a c e :
591 Fc = 2* math . p i * sigma * math . s q r t ( a i **2−( pos−R) **2)
592 s u r f _ p c l e s [ i ]=1 # d e f i n e i a s a " s u r f a c e " p a r t i c l e ;
593 F s u r f [ i ] [ 0 ] = −Fc*x / pos # x component o f c e n t r i p e t a l f o r c e ;
594 F s u r f [ i ] [ 1 ] = −Fc*y / pos # y component o f c e n t r i p e t a l f o r c e ;
595 F s u r f [ i ] [ 2 ] = −Fc* z / pos # z component o f c e n t r i p e t a l f o r c e ;
596 e l s e :
597 F s u r f [ i ] [ 0 ] = 0 . 0
598 F s u r f [ i ] [ 1 ] = 0 . 0
599 F s u r f [ i ] [ 2 ] = 0 . 0
600

601 # ’ a p p l y s u r f E x p ’ f u n c t i o n : c a l c u l a t e t h e c e n t r i p e t a l f o r c e f o r
p c l e s l y i n g on t h e s u r f a c e o f t h e drop i n t h e therm . exp . phase

602 d e f a p p l y s u r f E x p ( ) :
603 g l o b a l s u r f _ p c l e s
604 g l o b a l F s u r f
605 f o r i i n r a n g e ( np ) : # loop f o r e v e r y p a r t i c l e ;
606 s u r f _ p c l e s [ i ]=0 # i n i t i a l i z a t i o n ;
607 sph = O. b o d i e s [ i ] # i n d e x of p a r t i c l e i ;
608 x = sph . s t a t e . pos [ 0 ] # x p o s i t i o n o f p a r t i c l e i ;
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609 y = sph . s t a t e . pos [ 1 ] # y p o s i t i o n o f p a r t i c l e i ;
610 z = sph . s t a t e . pos [ 2 ] # z p o s i t i o n o f p a r t i c l e i ;
611 a i = sph . shape . r a d i u s # r a d i u s o f p a r t i c l e i ;
612 pos = math . s q r t ( x**2+y**2+ z **2) # d i s t a n c e from o r i g i n o f

p a r t i c l e i ;
613 i f pos <R+ a i and pos >R−a i : # i f p a r t i c l e i i s on s u r f a c e :
614 Fc = 2* math . p i * sigma * math . s q r t ( a i **2−( pos−R) **2)
615 s u r f _ p c l e s [ i ]=1 # d e f i n e i a s a " s u r f a c e " p a r t i c l e ;
616 F s u r f [ i ] [ 0 ] = +Fc*x / pos # x component o f c e n t r i p e t a l f o r c e ;
617 F s u r f [ i ] [ 1 ] = +Fc*y / pos # y component o f c e n t r i p e t a l f o r c e ;
618 F s u r f [ i ] [ 2 ] = +Fc* z / pos # z component o f c e n t r i p e t a l f o r c e ;
619 e l s e :
620 F s u r f [ i ] [ 0 ] = 0 . 0
621 F s u r f [ i ] [ 1 ] = 0 . 0
622 F s u r f [ i ] [ 2 ] = 0 . 0
623

624 # ’ d rag ’ f u n c t i o n : a p p l y d rag f o r c e and t o r q u e on a l l t h e
p a r t i c l e s

625 d e f d rag ( ) :
626 f o r i i n r a n g e ( np ) : # loop f o r e v e r y p a r t i c l e ;
627 sph = O. b o d i e s [ i ] # i n d e x of p a r t i c l e i ;
628 x = sph . s t a t e . pos [ 0 ] # x p o s i t i o n o f p a r t i c l e i ;
629 y = sph . s t a t e . pos [ 1 ] # y p o s i t i o n o f p a r t i c l e i ;
630 z = sph . s t a t e . pos [ 2 ] # z p o s i t i o n o f p a r t i c l e i ;
631 pos = math . s q r t ( x**2+y**2+ z **2) # d i s t a n c e from o r i g i n o f

p a r t i c l e i ;
632 a i = sph . shape . r a d i u s # r a d i u s o f p a r t i c l e i ;
633

634 i f pos <R : # i f p a r t i c l e i i s i n s i d e t h e drop :
635 # Force
636 u_px = sph . s t a t e . v e l [ 0 ] # x v e l o c i t y o f p a r t i c l e i ;
637 u_py = sph . s t a t e . v e l [ 1 ] # y v e l o c i t y o f p a r t i c l e i ;
638 u_pz = sph . s t a t e . v e l [ 2 ] # z v e l o c i t y o f p a r t i c l e i ;
639

640 Fdrag [ i ] [ 0 ] = −6*math . p i * e t a _ l * a i * ( u_px−u_ lx ) # Drag f o r c e
a l o n g x ;

641 Fdrag [ i ] [ 1 ] = −6*math . p i * e t a _ l * a i * ( u_py−u_ ly ) # Drag f o r c e
a l o n g y ;

642 Fdrag [ i ] [ 2 ] = −6*math . p i * e t a _ l * a i * ( u_pz−u _ l z ) # Drag f o r c e
a l o n g z ;

643

644 # Torque
645 w_px = sph . s t a t e . angVel [ 0 ] # x ang . v e l . o f p a r t i c l e i ;
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646 w_py = sph . s t a t e . angVel [ 1 ] # y ang . v e l . o f p a r t i c l e i ;
647 w_pz = sph . s t a t e . angVel [ 2 ] # z ang . v e l . o f p a r t i c l e i ;
648

649 Tdrag [ i ] [ 0 ] = −8*math . p i * e t a _ l * ( a i **3) * ( w_px−w_lx ) # Drag
t o r q u e a l o n g x ;

650 Tdrag [ i ] [ 1 ] = −8*math . p i * e t a _ l * ( a i **3) * ( w_py−w_ly ) # Drag
t o r q u e a l o n g y ;

651 Tdrag [ i ] [ 2 ] = −8*math . p i * e t a _ l * ( a i **3) * ( w_pz−w_lz ) # Drag
t o r q u e a l o n g z ;

652

653 e l s e : # p c l e n o t i n t h e l i q u i d , no d rag or brownian f o r c e s
654 Fdrag [ i ] [ 0 ] = 0 . 0 ; Tdrag [ i ] [ 0 ] = 0 . 0
655 Fdrag [ i ] [ 1 ] = 0 . 0 ; Tdrag [ i ] [ 1 ] = 0 . 0
656 Fdrag [ i ] [ 2 ] = 0 . 0 ; Tdrag [ i ] [ 2 ] = 0 . 0
657

658 # ’ brownian ’ f u n c t i o n : a p p l y brownian f o r c e and t o r q u e on a l l t h e
p a r t i c l e s

659 d e f brownian ( ) :
660 f o r i i n r a n g e ( np ) : # loop f o r e v e r y p a r t i c l e ;
661 sph = O. b o d i e s [ i ] # i n d e x of p a r t i c l e i ;
662 x = sph . s t a t e . pos [ 0 ] # x p o s i t i o n o f p a r t i c l e i ;
663 y = sph . s t a t e . pos [ 1 ] # y p o s i t i o n o f p a r t i c l e i ;
664 z = sph . s t a t e . pos [ 2 ] # z p o s i t i o n o f p a r t i c l e i ;
665 a i = sph . shape . r a d i u s # r a d i u s o f p a r t i c l e i ;
666 pos = math . s q r t ( x**2+y**2+ z **2) # d i s t a n c e from o r i g i n o f

p a r t i c l e i ;
667

668 i f pos <R : # i f p a r t i c l e i i s i n s i d e t h e drop :
669 # Force
670 c h i _ x = random . random ( ) − 0 . 5 # x random number between −0.5

and +0 .5
671 c h i _ y = random . random ( ) − 0 . 5 # y random number between −0.5

and +0 .5
672 c h i _ z = random . random ( ) − 0 . 5 # z random number between −0.5

and +0 .5
673 # Brownian f o r c e a l o n g x , y , z
674 Fbrown [ i ] [ 0 ] = math . s q r t ( 24*Kb* t e m p e r a t u r e *6* math . p i * e t a _ l *

a i / ( O. d t * i t e r P e r i o d ) ) * c h i _ x
675 Fbrown [ i ] [ 1 ] = math . s q r t ( 24*Kb* t e m p e r a t u r e *6* math . p i * e t a _ l *

a i / ( O. d t * i t e r P e r i o d ) ) * c h i _ y
676 Fbrown [ i ] [ 2 ] = math . s q r t ( 24*Kb* t e m p e r a t u r e *6* math . p i * e t a _ l *

a i / ( O. d t * i t e r P e r i o d ) ) * c h i _ z
677
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678 # Torque
679 c h i _ x = random . random ( ) − 0 . 5 # x random number between −0.5

and +0 .5
680 c h i _ y = random . random ( ) − 0 . 5 # y random number between −0.5

and +0 .5
681 c h i _ z = random . random ( ) − 0 . 5 # z random number between −0.5

and +0 .5
682 # Brownian t o r q u e a l o n g x , y , z
683 Tbrown [ i ] [ 0 ] = math . s q r t ( 24*Kb* t e m p e r a t u r e *8* math . p i * e t a _ l

* ( a i **3) / ( O. d t * i t e r P e r i o d ) ) * c h i _ x
684 Tbrown [ i ] [ 1 ] = math . s q r t ( 24*Kb* t e m p e r a t u r e *8* math . p i * e t a _ l

* ( a i **3) / ( O. d t * i t e r P e r i o d ) ) * c h i _ y
685 Tbrown [ i ] [ 2 ] = math . s q r t ( 24*Kb* t e m p e r a t u r e *8* math . p i * e t a _ l

* ( a i **3) / ( O. d t * i t e r P e r i o d ) ) * c h i _ z
686

687 e l s e : # p c l e n o t i n t h e l i q u i d , no d rag or brownian f o r c e s
688 Fbrown [ i ] [ 0 ] = 0 . 0 ; Tbrown [ i ] [ 0 ] = 0 . 0
689 Fbrown [ i ] [ 1 ] = 0 . 0 ; Tbrown [ i ] [ 1 ] = 0 . 0
690 Fbrown [ i ] [ 2 ] = 0 . 0 ; Tbrown [ i ] [ 2 ] = 0 . 0
691

692 # ’ sum ’ f u n c t i o n : sum a l l t h e f o r c e s and t o r q u e s a c t i n g on a l l t h e
s i n g l e p a r t i c l e s and a p p l y them

693 d e f sum ( ) :
694 O. f o r c e s . r e s e t ( r e s e t A l l =True ) # i n i t i a l i z a t i o n o f a p p l i e d f o r c e s

;
695 f o r i i n r a n g e ( np ) :
696 F t o t _ x = Fdrag [ i ] [ 0 ] + Fbrown [ i ] [ 0 ] + F s u r f [ i ] [ 0 ]
697 F t o t _ y = Fdrag [ i ] [ 1 ] + Fbrown [ i ] [ 1 ] + F s u r f [ i ] [ 1 ]
698 F t o t _ z = Fdrag [ i ] [ 2 ] + Fbrown [ i ] [ 2 ] + F s u r f [ i ] [ 2 ]
699 T t o t _ x = Tdrag [ i ] [ 0 ] + Tbrown [ i ] [ 0 ]
700 T t o t _ y = Tdrag [ i ] [ 1 ] + Tbrown [ i ] [ 1 ]
701 T t o t _ z = Tdrag [ i ] [ 2 ] + Tbrown [ i ] [ 2 ]
702 O. f o r c e s . se tPermF ( i , ( F to t_x , F to t_y , F t o t _ z ) ) # a p p l y t o t a l

f o r c e
703 O. f o r c e s . se tPermT ( i , ( T to t_x , T to t_y , T t o t _ z ) ) # a p p l y t o t a l

t o r q u e
704

705 # ’ o u t p u t ’ f u n c t i o n : p r i n t t e r m i n a l o u t p u t d u r i n g t h e s i m u l a t i o n
706 d e f o u t p u t ( ) :
707 p r i n t ( " I t e r : %i " %O. i t e r )
708 p r i n t ( " Time : %8.4 e " %O. t ime )
709 p r i n t ( "R : %8.4 e " %R)
710 p r i n t ( "Temp . : %8.4 e " %t e m p e r a t u r e )
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711 i f O. i t e r > i t e r T a u :
712 p r i n t ( " phase : Thermal Expans ion " )
713 p r i n t ( " kExp : %8.2 e " %kExp )
714 e l s e :
715 p r i n t ( " phase : Drying " )
716 p r i n t ( " k : %8.2 e " %k )
717

718 p r i n t ( " P a r t i c l e s on s u r f a c e : %i \ n " %numpy . sum ( s u r f _ p c l e s ) )
719 # #####################
720

721

722 ### OTHER COMMANDS ###
723 # Save i n i t i a l s t a t e o f s i m u l a t i o n ( needed t o r e s t a r t )
724 O. saveTmp ( )
725 # #####################
726

727

728 ### VTK f o r ParaView ###
729 i f ( EnableVTK ) :
730 # De f i ne t h e i t e r p e r i o d f o r t h e VTKRecorder e n g i n e t o o b t a i n t h e

d e s i r e d number o f f r a me s
731 s n a p P e r i o d = i n t ( ( i t e r T a u + i t e r T a u E x p ) / f r am es )
732 # Add t h e VTKRecorder t o t h e e n g i n e s . Save d a t a o f t h e s p h e r e s
733 O. e n g i n e s =O. e n g i n e s +[
734 VTKRecorder ( i t e r P e r i o d = s n a p P e r i o d , r e c o r d e r s =[ ’ s p h e r e s ’ ] , f i l eName

= f o l d e r + ’ / v t k f r a m e _ ’ ) ,
735 ]
736 # Add a f u n c t i o n t h a t s a v e s p o s i t i o n and r a d i u s o f t h e d r o p l e t

a t e v e r y f rame
737 O. e n g i n e s =O. e n g i n e s +[
738 PyRunner ( i t e r P e r i o d = s n a p P e r i o d , dead= F a l s e , command= ’ d r o p l e t ( ) ’ ,

l a b e l = ’ l a b e l D r o p l e t ’ ) ,
739 ]
740 # open t h e f i l e
741 f i l e D r o p l e t = open ( f o l d e r +" / d r o p l e t "+" . d a t " , "w" )
742 f i l e D r o p l e t . w r i t e ( " f rame \ tTime \ t \ t R d r o p l e t \ t T e m p e r a t u r e \ n " )
743 f r a m e _ c n t r = 0
744 # ’ d r o p l e t ’ f u n c t i o n : g e n e r a t e a f i l e c o n t a i n i n g i n f o on t h e

d r o p l e t
745 d e f d r o p l e t ( ) :
746 g l o b a l f r a m e _ c n t r
747 f r a m e _ c n t r = f r a m e _ c n t r +1
748 f i l e D r o p l e t . w r i t e ( "%6i \ t %5.2 e \ t %8.3 e \ t %8.3 e \ n "
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749 %( f r a m e _ c n t r ,O. t ime , R , t e m p e r a t u r e ) )
750 # #######################
751

752

753 ### LAUNCH THE SIMULATION ###
754 # a t t h e end of t h e s c r i p t , run t h e s i m u l a t i o n f o r t h e d e s i r e d

number o f i t e r a t i o n s .
755 i f ( runAuto ) :
756 i f ( EnableThermExp ) :
757 O. run ( i t e r T a u + i t e r T a u E x p )
758 e l s e :
759 O. run ( i t e r T a u )
760 # when r u n n i n g wi th yade−ba tch , t h e s c r i p t must n o t f i n i s h u n t i l

t h e s i m u l a t i o n i s done f u l l y .
761 # t h i s command w i l l w a i t f o r t h a t ( has no i n f l u e n c e i n t h e non−

b a t c h mode )
762 w a i t I f B a t c h ( )
763 # ############################



Appendix B

Law for droplet vaporization

The radius reduction over time for an evaporating droplet follows a r2-law, extracted
using a coupling between mass balance and energy balance. Let’s imagine a uniform,
spherical droplet in air: r is the radial coordinate, R is the droplet radius, YF,s and Ts

are the fluid mass fraction and the temperature at the interface, respectively. YF,∞ and
T∞ are the water mass fraction in the surrounding gas and the ambient temperature
(Figure B.1).

Other assumptions are:

• Uniform temperature in the droplet;

• Single component liquid, in which gas is not soluble;

• The gas surrounding the droplet is quiescent;

• Quasi-steady state;

Fig. B.1 Evaporation of a droplet: radius of the droplet, fluid mass fraction and temperature
at interface and in the external medium.
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• Fick’s law for diffusion is valid;

• Constant thermophysical properties, such as diffusivity D, specific heat capac-
ity cp, thermal conductivity λ and diffusivity α;

• Lewis number Le = α/D = 1 .

Under these hypoteses, the evaporating mass flow-rate can be determined. In quasi-
steady state, Eq. B.1 can be written. The gas flow rate is zero and the mass flow-rate
can be expressed in terms of mass flux ṁ′′ (Eq. B.2).

ṁ(r) = const.= ṁgas + ṁF (B.1)

ṁ(r) = ṁF = 4πr2ṁ′′ = const. (B.2)

From the conservation of species F:

ṁ′′
F = YFṁ′′−ρD∇YF

ṁ
4πr2 = YF

ṁ
4πr2 −ρD∇YF

ṁ =−4πr2 ρD
1−YF

dYF

dr

(B.3)

Finally, the flow-rate can be defined in terms of a quantity called r∗y .

dYF

1−YF
=− ṁ

4πρD
dr
r2 = r∗y

dr
r2 (B.4)

ṁ =−4πρDr∗y (B.5)

Integrating Eq. B.4 between R and a generic r, Eq. B.6 is obtained. If r → ∞, a
mass transfer number By can be defined (Eq.B.7). Coupling Eq. B.5 and B.7, a new
definition for the mass flow-rate is obtained (Eq. B.8).

YF(r) = 1−
(1−YF,s)e−r∗y/r

e−r∗y/R
(B.6)

r∗y
R

= ln
(

1−YF,∞

1−YF,s

)
; By ≡

YF,s −YF,∞

1−YF,s
(B.7)

ṁ =−4πρDR ln(1+By) (B.8)
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At this point, ṁ and YF,s are unknown. To close the problem, energy balance is
employed (Eq. B.9). Also in this case, the equation can be re-arranged in order to
define a term r∗h (Eq. B.10) and it can be integrated.

ṁcp
dT
dr

=
d
dr

(
λ4πr2 dT

dr

)
(B.9)

r∗h =
ṁcp

4πλ
(B.10)

r∗h
dT
dr

=
d
dr

(
r2 dT

dr

)
r∗hT + const = r2 dT

dr

(B.11)

At the surface, it has to be true that:

R2
[

dT
dr

]
s
=

ṁ
4πλ

h f g (B.12)

From this condition, it can be derived that const = r∗h
(
hfg/cp −Ts

)
and therefore:

r2 dT
dr

= r∗h
(
T −Ts +h f g/cp

)
(B.13)

Integrating similarly to the species conservation equation, we can define the mass
flow-rate in terms of a heat transfer number Bh.

Bh ≡
cp (T∞ −Ts)

h f g
(B.14)

ṁ =−4πραR ln(1+Bh) (B.15)

Now a comparison between Eq. B.8 and B.15 can be done. If the Lewis number Le
is equal to 1, then α = D and therefore By = Bh.

YF,s −YF,∞

1−YF,s
=

cp (T∞ −Ts)

h f g
(B.16)

To close the problem, a relation between YF,s and Ts is needed. This relation is
provided by the Clausius-Clapeyron equation, if phase equilibrium between liquid
and vapor at droplet surface is assumed. Eq. B.8 and B.15 can be re-arranged in the



128 Law for droplet vaporization

following way:

ṁ
R
=−4πρDR ln(1+By) =−4πραR ln(1+Bh) (B.17)

If ρD, ρα , By and Bh are constant, also ṁ/R is constant. It is now possible to extract
the droplet radius shrinking law. Up to now, the symbol ρ has referred to the gas
density ρg. The relation between mass flow-rate and droplet radius can be expressed
as:

ṁ
R
=−4πρgα R ln(1+Bh) (B.18)

The mass of the droplet is m = 4/3πρl R3, from which it can be written:

ṁ =
4
3

πρl 3R2 Ṙ

ṁ = 4πρl R2 Ṙ
ṁ
R
= 4πρl RṘ

(B.19)

ṁ
R
= 2πρl

d(R2)

dt
(B.20)

Putting together Eq. B.18 and B.20, the evaporation constant k can be defined and,
knowing that R(t = 0) is equal to R0, the droplet radius shrinking law is obtained.

d(R2)

dt
=−

2ρgα ln(1+Bh)

ρl
= k (B.21)

R2 = R2
0 − k · t (B.22)
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