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Abstract

In an increasingly rich world of complex systems (e.g., in physics, biology, eco-
nomics, and social sciences), the general trend is to analyze and predict certain
phenomena using accurate models (e.g., neural networks) that are also complex. For
this reason, apart from the basic structure, such models are neither easy to build nor
to understand in all details, as they often require many functions and a large number
of coefficients, mathematically speaking, even significant computational resources.
Instead, this work attempts to restore simplicity by defining compact models that are
easy to use, considering energy as the application area of this research. In particular,
the models described in this document concern battery consumption, efficiency in
the use of a network of electric vehicle charging stations, and solar energy analysis.

Regardless of whether the initial modeling approach is purely mathematical or
programming-based, the real goal is always to obtain simple analytical expressions
that can satisfactorily describe the characteristics of the processes and systems under
test. Although it cannot be assumed that there is a compact model or a general
solution for every complex system, the research results confirm that in several cases
it is possible to create compact models that are more practical to use. In this way, a
larger number of people can access the basic analysis of the available data in a given
scenario. The creation and sharing of such models allow a better understanding of
the phenomena under consideration, in particular the identification of the parameters
that most influence the overall behavior of a given system and the degree of their
correlation with it.

Before describing the applications, general guidance is given on the compact
modeling method used here. Then, the accuracy of the proposed models is analyzed
by comparing the results with those obtained with more sophisticated methods and
tools or directly with experimental data.
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Chapter 1

Introduction

1.1 Emergent complex systems

Complex systems can be divided into systems of disorganized complexity and
organized complexity [2]. In the first case, statistical methods are commonly used to
determine the probability of certain events, for example in the case of systems when
the number of variables is very large and each variable exhibits an erratic behavior.
In the second case, there is an interrelationship between the elements, which indeed
operate as a whole.

This world is full of complex systems, both natural and artificial, in which many
elements, also called agents, interact with each other in collaborative ways and with
their own dynamics, such as ecosystems in ecology, stock markets, and the traffic of
vehicles among others [3]. One of the most important properties we find in most such
systems is self-organization, i.e., the property of elements to coordinate themselves
to achieve a stable state of the system [4]. Nowadays, correspondences between such
systems with a self-organizing property and quantum dynamics are even reported in
the literature [5].

As a definition, Nino Boccara has written that a system that “consists of large
populations of connected agents... is said to be complex if there exists an emergent
global dynamics resulting from the actions of its parts rather than being imposed
by a central controller” [6]. On the other hand, if the elements of a system (e.g.,
computer) work together for a certain known function, then this system is in fact
only complicated [7].
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In this scenario, the term emergent refers to the properties of the behavior of a
collective agent when it differs from the behavior of a single agent [6]. Accordingly,
it is possible to find complex systems in many domains, as shown in Figure 1.1.

Fig. 1.1 Major areas of interest for complex system analysis.

In general, there was a barrier in the past that seemed to prevent the creation
of accurate models of the complex systems that were being created. For example,
in [8] the authors claimed the following: “Emergent complex systems... cannot be
fully explained mechanistically and functionally”. Furthermore, in [9], the author
stated: “Emergent behavior is not sufficient to characterize a complex system”.
Nowadays, however, characterizing emergent behaviors through novel modeling
techniques can lead to the ability to simulate and predict with the greatest accuracy
possible situations that arise from such systems. Indeed, both mathematical and
computational models have recently been developed in this area [6, 10]. Neural
networks, for example, have improved the accuracy of forecasts (e.g., for weather).
However, they usually have many coefficients, even hundreds, depending on the
number of inputs, nodes, and connections [11]. On the other hand, Hiroki Sayama
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affirmed that a “good model is simple, valid, and robust” [12]. Consequently, studies
on compact models for emergent complex systems are still ongoing, especially in
terms of developing a common methodology for developing these models in different
scientific fields.

1.2 Modeling complex systems

Although there are detailed descriptions of model building processes in the literature
[13, 14], this thesis focuses on some simple techniques that can potentially be used
to compactly model the emergent behavior of these systems. In general, there are
two different approaches to building models:

• developing new models

• modifying and adapting existing models.

The latter also includes the adoption of models from different application areas.
Certainly, developing new models is a very challenging task for a researcher trying to
describe or predict phenomena and processes. The goal of creating a compact model
adds to this challenge. For this reason, the most common modeling approach is to
extend or reduce existing models. Indeed, it is certainly easier to improve existing
models than to create entirely new models that differ from those described in the
literature. Finally, adopting models from different application domains, sometimes
with some tricks or precautions, is another solution for modeling [15]. In addition to
these general approaches, modeling can be based on two different methods:

• theoretical modeling

• empirical modeling

The first method considers the physical/chemical laws for building models based
on the theory (i.e., the “first principles”) of these laws and the associated parameters,
while the second is based on data analysis and therefore generally follows a purely
statistical approach, which nowadays includes machine learning techniques (ML). In
the latter case, the analysis of time series data is one of the most common approaches
to develop predictive models (e.g., for energy consumption forecasting) [16, 17].



4 Introduction

Hybrid methods involving a combination of “first principles” and ML techniques are
also commonly used in modeling [18, 19].

To understand the fundamental causes of certain behaviors of a system, good
questions are essential to finding the answers that lead to the phenomena that charac-
terize a complex system [20, 21]. For example, “Why were certain results obtained
in the tests/simulations?” or “What boundary conditions or states of the system
parameters lead to different behavior than expected?”

1.2.1 Mathematical modeling

Since the interactions between elements in a complex system generally have non-
linear features, these interactions are usually described by a set of equations, in
particular ordinary and partial differential equations (ODE and PDE, respectively)
[6, 22]. Reduced-order models can be useful, but they are generally less accurate
[23]. Principles and guidelines for mathematical modeling can be found in [20].

Nowadays, a statistical approach is usually used for feature extraction in the
context of data series and databases. Among the best-known methods are those
of regression and those based on Bayesian statistics [24]. The approach taken
in this document is somewhat different. For example, although the construction
of regression models is still based on physical parameters and coefficients, the
proposed approach may involve not only a purely statistical preliminary analysis of
the collected data (e.g., analysis of covariance), but also consider theoretical aspects
to generate the interaction terms of a mathematical model. Results will show that
such an approach can lead to better accuracy.

Although a description of emergent behavior in complex systems could have
been questioned in the past as a comprehensive account of these systems, Yaneer
Bar-Yam “argue[s] conceptually and then demonstrate mathematically that it is
possible to define a scientifically meaningful notion of strong emergence” [25]. This
thesis tends to confirm this assumption by presenting models that describe such
behaviors analytically, rather than being limited to describing individual properties
and interactions of elements. Moreover, the attempt to create compact models is
essential for a wider audience to understand and analyze the global behavior of
certain phenomena.
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1.2.2 Computational modeling

Currently, there are several tools to model complex systems computationally. For
system dynamics, which is a more general description of the interactions of elements,
some of the best-known are Vensim® [26], Powersim Studio [27], and Stella® [28].
These tools generally do not require the user to write any program code. In contrast,
agent-based modeling tools allow a description of the specific behavior of each
element in a system; however, these tools generally require program code. In this
case, some of the most common tools are NetLogo [29] and AnyLogic [30] which
allow both system dynamics simulation and agent-based simulation. Although some
of the existing modeling software tools are freely available in an educational version,
it is also common today to develop agent-based models using open-source software
such as FAME (open Framework for distributed Agent-based Modeling of Energy
systems) [31], Repast [32], and MESA [33], among others.

System dynamics is based on the description of the behavior of a population
of elements, or agents, as a whole [34]. The definition of these models is usually
based on the general rules that regulate the dynamics under consideration. For
this reason, system dynamics models are expected to be simpler than agent-based
models (ABMs). However, they often become so extensive with many variables
and functions that they do not analyze complex systems as compact as would be
desirable.

This is only a general overview of the state of the art in software tools for
modeling complex systems, as a more comprehensive analysis is beyond the scope
of this document.

1.2.3 Developing compact models

At the beginning of this century, in [35] it was claimed that a general model for
complex systems is not possible. Today, however, machine learning techniques,
especially neural networks, can enable the creation of accurate models [36, 37],
especially for identifying the parameters (e.g., descriptors) that mainly influence the
behavior of systems and processes [38]. In addition, identifying the dependence of
the different states in a complex system can also lead to building a more compact
model [39].
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In [40] the author divided complexity into three distinct branches: algorithmic
complexity, deterministic complexity, and aggregate complexity. Algorithmic com-
plexity deals with system properties from a mathematical and information-theoretic
perspective. Deterministic complexity deals with chaos theory and catastrophe the-
ory, while aggregate complexity deals with the agents of a system, their behavior, and
their interactions with each other. Accordingly, the method for modeling complex
systems, as presented in this thesis, includes the first and last domains of analysis.

In this thesis, the basic approach to building new compact models is mostly
based on a correct understanding of the emergent behavior of the complex system
under consideration and the correlation analysis of the system variables affecting this
behavior. This analysis can generally be performed by considering (i) a multivariate
domain in which the variables that best describe the expected system response
are selected, or (ii) the overall function describing the general outcome from the
simulation of an extensive model (e.g., ABM).

For the first case, Figure 1.2 shows the adopted logical flow in selecting the
variables and the loop for the generation of a new compact model with an expected
accuracy. In this case, the preparatory step is based on the correlation analysis to
select n predictor variables to be included in the model, from a set of m variables
[41]. In this context, the selection of variables is done by analyzing the coefficients
ρ of the Pearson correlation matrix, which includes the coefficients of the correlation
between the input variables X and the output variable Y (i.e., the response variable),
and those related to each pair of the input variables. The variables that have a high
correlation coefficient are then selected from the entire data set. More specifically,
the selection is made based on whether the output ρxi,y (with i ranging from 1 to
m) is greater than a threshold ρt1, or the correlation coefficient with another input
variable ρxi,x j (for i̸=j) is greater than a threshold ρt2. The two thresholds ρt1 and
ρt2 can be set differently since the criterion for selecting the variables for the two
cases of correlation (i.e., with the output variable and with the other possible input
variables) can thus be distinguished. Starting from all the selected variables, models
with different interaction terms are built one after the other. The definition of these
terms is the most challenging part of this modeling approach. Indeed, the interaction
terms may consist of a single variable or joint variables, and each term and each
variable may have a different degree and include different functions (e.g., exponential,
trigonometric, etc.).
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Fig. 1.2 Flow chart of the methodology for the predictor variables and model selection.
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Each model is then tested with the cross-validation method. If the error E( f )
of the model function under test is less than the lowest error E

¯
found during all the

previous tests for other models, then the current model is saved. Furthermore, if
the error is such as to guarantee the desired accuracy δ , then the model could be
considered the definitively approved one. However, in case such accuracy is not
obtained from the models with all the variables selected at the beginning, the variable
with the weakest ρxi,y is discarded from the set of variables. So on until eventually
generating models with only one variable. In any case, the total number of variables
selected (i.e., generally n≤4), as well as the number of coefficients, must be limited
so that a model can still be considered a compact model. The above procedure can
be adapted, depending on the data considered for modeling, by using nonparametric
rather than parametric tests such as the Pearson correlation test.

On the other hand, the simulation results of an ABM for a given system should
be collected and analyzed in terms of the appearance or behavior to focus on. In
this case, the attention in advance must be mainly on the aspects of the system to be
analyzed or optimized and not on the model, which instead should be considered in
detail only in a second step.

The models described in this document are generally of the polynomial or rational
type. They can be adapted, simplified, or new models compared to those described
in the literature.

1.3 Energy analysis and optimization

Due to technological change and development in most countries, energy is now one
of the most important concerns worldwide. In particular, the need to reduce pollution
is directing research towards the use of energy resources that are alternatives to those
based on petroleum products and coal, as well as reducing consumption. In addition,
rising and fluctuating energy prices have also become a serious problem worldwide.
For this reason, energy system modeling is particularly important for predicting
available energy and consumption [42, 43], especially for management decisions at
the local level and for potential investments. In this scenario, microgrids, renewables,
and related facilities are currently considered [10, 23, 44]. Although there are more
and more techniques and methods to predict and optimize energy consumption both
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in the short and long term, most focus on the use of complex solutions instead of
compact models.

For several years, various approaches have been proposed in the literature for
modeling electronic components, devices, and systems that are considered complex,
especially for thermal processes [45]. In this context, the basic approach for the
development of compact models in the case of multiscale modeling is to consider
the behavior at the system level and thus holistically [46].

Hoping to make energy analysis more understandable to the end user, the work
described in the following chapters addresses (i) the modeling of batteries, whose
production continues to increase with modern devices and systems (e.g., wireless
sensors and smartphones), (ii) a network of charging stations for electric vehicles,
and (iii) solar energy for photovoltaic applications.



Chapter 2

Battery Performance Analysis

Some of the work described in this chapter was also previously published in [47–49].

2.1 Adapting Peukert’s law

2.1.1 Background and related work

In the energy sector, one of the most populated areas by researchers is that of batteries.
This is a consequence of the recent impressive increase in the global production and
sales of mobile devices and systems (e.g. smartphones and electric vehicles). As
a result, battery performance modeling has also received much attention in recent
decades [50, 51]. In addition to conventional electrochemical, mathematical, and
equivalent circuit modeling, nowadays machine learning techniques even enable
data-driven modeling for battery health and cycle life analysis [52, 53].

Despite the many proposed models found in the literature, one of the best-known
mathematical models is Peukert’s law, published in the late nineteenth century. The
Peukert equation describes the nonlinear characteristic between the discharge current
and the service time of a battery as follows:

CP = Ik · t (2.1)

where: CP is the Peukert or nominal capacity (i.e., energy) of the battery discharged
at 1 A, I is the discharge current, t is the battery runtime, and k is the Peukert
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number. This exponential coefficient, which is generally slightly above 1, describes
the variation in the energy performance of a given battery concerning that at I =1 A;
the larger the value of k, the greater the difference in the capacity of the battery at
currents different from 1 A. Although this mathematical expression was originally
proposed for lead-acid batteries, it is now useful for batteries of other chemistries,
even for electrochemical double-layer capacitors after the original equation was
extended for the case of very high discharge currents [54]. However, the more
general application of this equation requires some precautions [55].

In the literature, there are some revised definitions of Peukert’s law. For example,
it is reformulated in [56] as follows:

Cn1 =Cn ·
(︃

In

In1

)︃k−1

(2.2)

In (2.2), Cn is the nominal capacity of a battery discharged at nominal current
In, as defined by the manufacturer, whereas Cn1 is the capacity when the battery is
discharged at current In1. Although the original name of the Peukert coefficient in
[56] is different, it is always called k in this document, for the sake of clarity and
consistency.

So far, only continuous currents have been considered for the application of the
aforementioned equations to batteries working at a constant temperature. However,
as the performance of batteries generally depends on temperature, this parameter is
considered in [57], through a mathematical model that extends the original equation
by including an additional term with a coefficient (i.e., an exponential factor) to
describe the relationship between battery performance and temperature, as follows:

∆C = γ ·
(︃

It
Ire f

)︃α(︃Tre f

Tt

)︃β

(2.3)

In (2.3), ∆C is the discharged capacity, γ is the reference or nominal capacity [Ah],
It and Tt are the current and temperature at time t, respectively, whereas Ire f and Tre f

are the reference values; α and β are the exponential coefficients.

The previous limitation in applying Peukert’s original law is that the analysis of
operating time refers to discharge currents that are constant in time. Instead, there is
now a need to analyze the performance of batteries discharged with pulse currents
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in most modern devices (e.g., wireless sensors) and systems (e.g., battery electric
vehicles), where the current and duration of the pulses can vary depending on the
application and use. For this reason, an adaptation of the Peukert equation to pulse
currents is needed. Nonetheless, for a better understanding of the principle on which
the generalization of Peukert’s law is based, two main effects are described hereafter:
the rate capacity effect and the recovery effect.

Rate capacity effect

The “rate capacity effect” describes the difference in a battery’s total capacity when
depleted at different discharge currents [50]. It is a nonlinear characteristic of
electrochemical batteries [58]. Indeed, today some cells minimize the rate capacity
effect to ensure greater reliability and stable performance regardless of discharge
current, especially at low and medium currents. This improvement in the energy
performance quality of batteries is significant, for example, for the range estimation
of uncrewed aerial vehicles (UAVs) and electric ground vehicles [59].

Although this effect is usually shown in battery manufacturers’ datasheets for
constant discharge currents, this effect can also apply to pulse currents to some
extent. In this case, the rate capacity effect may have different characteristics.

Recovery effect

The “recovery effect” or “relaxation effect” is the property of certain batteries to
recover part of the discharged energy during the rest phases after a current pulse.
[60–62]. This is a fundamental characteristic as most of today’s smart sensors work
at intermittent power, as in the case of Internet of Things (IoT) applications [63].
Although alkaline cells appear to be very sensitive to energy recovery [47], lithium-
based cells can also have this property. For example, the authors in [64] report the
recovery effect for rechargeable lithium-sulfur batteries in automotive applications.

The recovery effect mainly depends on the magnitude of the current pulse,
recovery period, and depth of discharge [64, 65]. In general, the impact of this
property on battery performance depends on the chemistry of the cell. For this
reason, the choice of the best battery for various applications should also consider
the analysis of possible energy recovery. In fact, the consequent additional capacity,
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due to the recovered energy, may improve the battery service time. For example, in
the case of wireless sensors where data are collected and then transmitted at certain
time intervals [66–68], or in electric vehicles where the discharge time of battery
energy is followed by long rest periods [69].

In the literature, battery models including recovery effect analysis are uncommon.
Only a few models have included this characteristic. For example, a stochastic model,
in which the battery behavior is based on a Markov process, is proposed in [70],
whereas an equivalent circuit model including the recovery effect is proposed in [71].

Generally, the difference in the energy performance of a battery discharged at
various continuous currents primarily highlights the rate capacity effect. On the
other hand, the comparison of the energy performance of the battery discharged at
pulse currents with that at continuous currents makes the evaluation of the recovery
effect possible.

2.1.2 Analysis of the recovered energy from datasheets

First, to adapt Peukert’s analytical model to pulsed currents, it is necessary to
quantify the energy recovered in the batteries during this discharge mode. The
method described here to analyze directly from manufacturer’s data is simply based
on the following steps:

1. Extraction of the total capacity of a battery discharged at various pulse currents
but similar long rest periods.

2. Extraction of the total capacity of a battery discharged at the continuous
currents of the same magnitude as the pulse currents analyzed previously.

3. Computing the difference in battery capacity between pulse and continuous
currents.

4. Finding the proper function of the additional capacity of the battery when
discharged at pulse currents.

As an example, for the Energizer E91 alkaline cells (zinc-manganese dioxide,
Zn/MnO2), it is possible to extract the total service time from the datasheet [72]
for the following pulse currents: 50, 100, and 250 mA, as reported in Table 2.1,
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in which the last column reports the pulse “on” time and the rest time after each
current pulse. Indeed, from the datasheet, it is possible to extract the capacity for a
pulsed current of 750 mA. Since battery performance generally varies greatly when
considering medium-high current rates, this current is not included here to prevent it
from affecting other results inconsistently.

Table 2.1 Total capacity of the Energizer E91 cell, as extracted from the datasheet for various
continuous and pulse currents.

Current [mA]
Capacity [mAh]

Note
@ continuous @ pulsed

50 2816 2856 1 hour ON / 7 hours OFF

100 2600 2712 1 hour ON / 23 hours OFF

250 1900 2450 1 hour ON / 23 hours OFF

The resulting plot of the additional capacity of this battery, when discharged at
pulse current instead of continuous current, is shown in Fig. 2.1.
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Fig. 2.1 Additional capacity when depleting the E91 battery by pulse currents instead of
continuous currents.

The analytical expression of the fitting function is given in (2.4); it refers to the
additional capacity for very long rest times only. It is assumed that the shorter the
rest time, the less the recovered energy will generally be. However, this characteristic
is expected to be different for high current rates, so the gain margin in using pulsed
currents instead of continuous currents will no longer exactly follow this function.
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Cadd = 4 ·10−06 · Ip
3 +0.0058 · Ip

2 +0.5 · Ip (2.4)

Generally, the recovery of the maximum recoverable energy between two consec-
utive pulses depends primarily on the battery chemistry and rest time. So, the shorter
the pause time between pulses, the less energy will be recovered, even though not
linearly. For this reason, the original Peukert equation cannot be directly applied to
pulse currents. Or in other terms, this mathematical model needs to be adapted to
the phenomenon of the recovery effect when this is present in batteries.

2.1.3 Generalization of the Peukert model

For batteries discharged at pulse rather than continuous currents, a new reference
capacity and exponential factor must be defined to generalize Peukert’s law. There-
fore, the original equation reported in (2.1) is revised and adapted for the analysis of
battery service time as follows:

tsx =
Cre f x

Ix
kx

(2.5)

In (2.5), x is a generic subscript that stands for c or p, depending on whether
the discharge current is continuous or pulsed, respectively, whereas ts is net service
time, which considers the battery runtime and, in the case of intermittent discharging,
not the rest time. To extend the application of the Peukert model, the original CP is
changed to Cre f , as the reference capacity can be different from the Peukert capacity,
depending on the battery use. Furthermore, although the reference current in the
original Peukert equation is always 1 A, many battery cells have a different reference
current, as for the case of wireless sensors operating in the order of milli- or sub-
milliampere. In this case, both the reference capacity and battery current should be
normalized to the reference current Ire f , regardless of the discharge mode, and the
adapted Peukert model is therefore defined as follows:

tsx =
Cre f x

Ire f
·
(︃

Ix

Ire f

)︃−kx

(2.6)

To find the parameter values leading to the best model accuracy, an algorithm is
proposed hereafter.
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Model parameters

For a given battery, after collecting some values of the total capacity for various
currents in the same discharge mode, as obtained from the manufacturer’s data or
direct measurements, it is possible to extract the values of Cre f x and kx in (2.5), or
(2.6) in the case of normalization, to characterize the battery performance in terms
of maximum service time at different currents. The search algorithm implemented
for determining the parameter values that minimize the model error for the actual
data is described by Algorithm 1.

Algorithm 1 Search for the values of Cre f x and kx in (2.5)

1: BestMaxErr← ∞.
2: for all Cx =Cnom/2 . . .Cnom ·2 do
3: for all k = 1.000 . . .1.500 do
4: MaxErr← 0.
5: for all given Ix ∈ [Imin, Imax] do
6: if Ire f ! = 1 A then
7: Cx←Cx/Ire f
8: Ix← Ix/Ire f
9: end if

10: Compute ts by (2.5)
11: Err[Ix]← Error (model vs. data)
12: end for
13: MaxErr← argmax(Err)
14: if MaxErr < BestMaxErr then
15: BestMaxErr←MaxErr
16: Cre f x ←Cx
17: kx← k
18: end if
19: end for
20: end for

In the beginning, except for the initialization of the two variables for storing the
errors (Lines 1 and 4), the algorithm defines two nested iterations for exploring the
service time of the battery under test (Line 10) by applying (2.5) to each pair of the
model parameters Cx and k (Lines 2–3). For such values, the service time is extracted
for each given current Ix (Line 5). In the case of Ire f different from 1 A, Cx and Ix

are then normalized (Lines 6–9) according to (2.6).
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For each ts, the model error is reported in the vector Err having the same number
of elements of the given currents (Lines 10–11). If the maximum value (MaxErr) in
Err is less than the best maximum error (BestMaxErr), then the latter is updated,
and the values of Cx and k are saved (Lines 13–17).

Application example

The algorithm described above is then applied to the Energizer E91 battery. The
model parameters are extracted when considering the continuous and pulsed dis-
charge currents shown in Table 2.2, which reports the capacity and service time as
extracted from the product data. The E91 battery is usually considered for consumer
electronics where the load current is generally between 25 and 750 mA; in this case,
Ire f is set to 100 mA.

Table 2.2 Total capacity and service time extracted from the Energizer E91 battery datasheet.
© 2022 IEEE

Current [mA]
Capacity [mAh] Service time [h]

@ continuous @ pulsed @ continuous @ pulsed
25 3045 - 121.80 -
50 - 2858 - 57.16

100 2534 2713 25.34 27.13
250 1991 2471 7.96 9.88
500 1520 - 3.04 -
750 - 2253 - 3.00

It is important to emphasize that, in intermittent discharge applications, the rest
interval between current pulses is of the order of hours. This condition makes it
possible to consider the maximum energy recovery during each rest interval. It
should be noted that the list of the currents, for which the datasheet provides some
information, is different when considering constant and pulse currents. The document
reports the total capacity in the case of continuous currents and the service time (i.e.,
from full charge to cut-off voltage) in the applications of pulse currents. Nonetheless,
in the latter case, the value of the total capacity for a given current can be obtained
directly from C = Ip · ts.
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The values of the model parameters obtained from the algorithm, which was
implemented in Python (see Appendix A), are the following: Cre f c and kc are 2359
mAh and 1.232. respectively, for continuous currents, whereas Cre f p and kp are
2698 mAh and 1.090, respectively, for pulse currents. The maximum error of such
models, after comparing the results with the manufacturer’s data, is 6.9% and 0.55%,
respectively. This first result confirms that Peukert’s law can also be considered for
batteries discharged with pulse currents by generalizing and adapting the original
equation as previously described. Figure 2.2 shows the service time of the E91
battery for both discharge modes, as extracted from the datasheet and defined by the
model.

0 100 200 300 400 500 600 700 800

Current [mA]

0

20

40

60

80

100

120

T
o
ta

l 
s
e
rv

ic
e
 t
im

e
 [
h
]

E91 continuous current
E91 pulse current
E91 function for continuous currents
E91 function for pulse currents

23.59 (0.01  x)-1.232

26.98 (0.01  x)-1.090

Fig. 2.2 Total service time of the E91 battery: model functions vs. datasheet. © 2022 IEEE

2.1.4 Results

As a further validation of the adapted Peukert model and the proposed parameter
extraction method, an application to the Energizer L91 lithium battery (lithium/iron
disulfide, Li/FeS2) [73] is considered. In addition, some laboratory experiments have
been carried out as a preliminary step to compare the results obtained with those of
the manufacturer’s data.
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Laboratory Measurements

In six different experimental groups, fresh Energizer L91 batteries were discharged
at three currents: 100 mA, 250 mA, and 750 mA, respectively. Three groups concern
continuous currents, whereas three groups concern pulse currents. In the latter, each
battery was discharged at the same capacity of 333.3 mAh during each pulse until the
cut-off voltage of 0.8 V was reached. The rest period between two consecutive pulses
was always 7 hours to ensure the greatest possible energy recovery. In addition, all
the experiments were performed at room temperature. In any case, the performance
of this battery is not affected by temperatures in the range of about 15 to about 25
◦C [74].

The laboratory equipment includes a RIGOL DL3021 electronic load to discharge
the batteries under test and an HP 34401A digital multimeter to measure the battery
voltage. Table 2.3 reports the total service time of the twelve batteries tested.

Table 2.3 Experimental data for the Energizer L91 battery. © 2022 IEEE

Discharge current [mA]
Total service time [h]

@ continuous @ pulsed

100
33.82 34.03

34.24 34.11

250
13.27 13.36

13.59 13.54

750
4.33 4.41

4.46 4.46

For immediate understanding and analysis, Fig. 2.3 plots of the data obtained
from direct measurements. It is worth noting that the performance of this battery is
mostly constant when discharged with a continuous or pulsed current of the same
magnitude. This characteristic is significant when considering this type of cell for
various load applications. Furthermore, the total capacity obtained at a pulsed current
is always within the range of the capacity obtained at a constant current of the same
magnitude. One possible explanation for this result is that the temperature of a
battery tends to be more constant when testing a pulse current. At the same time,
it varies more with constant currents, leading to greater results differences due to
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process and performance variations. Consequently, the higher the discharge current,
the greater the uncertainty in the battery’s total capacity.
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Fig. 2.3 Total capacity of the L91 battery as obtained from direct measurements.

The most important feature that can be deduced from the data is the largely stable
performance of the L91 battery when discharged with a continuous current or a pulse
current of the same magnitude at small and medium currents (up to 750 mA). In
fact, after applying the methodology described in 2.1.3 to the mean values of the
experimental data, for each current type and magnitude, the parameter values for the
adapted Peukert equation are very similar, as given in Table 2.4. In this case, the
maximum absolute errors of the model are truly negligible.

Table 2.4 Parameter values of the adapted Peukert equation for the Energizer L91 batteries
under test. © 2022 IEEE

Current (mA)
@ continuous Error @ pulsed Error

Cre f c kc (%) Cre f p kp (%)

100 ÷ 750 3405 1.016 0.1 3404 1.012 0.1
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Manufacturer’s Data

As a further validation and for a comparative analysis with the experimentally
obtained results, the model parameters are also extracted from the manufacturer’s
data.

First, the total capacity of the L91 battery for various discharge currents is taken
from the datasheet and the application manual [73, 74]. Figure 2.4 shows the results.
They are grouped in pairs by current magnitude to provide an initial comparison of
the battery’s energy performance with respect to the discharge mode. The application
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Fig. 2.4 Total capacity of the L91 battery as extracted from the manufacturer’s data. © 2022
IEEE

tests with the pulse currents of 50, 100, and 250 mA include a cycle of one hour of
discharge followed by a rest period of at least seven hours. In contrast, the industry
standard test at 750 mA pulse current involves a discharge cycle of two minutes
per hour and eight hours per day. Therefore, this application guarantees an energy
recovery sufficient for a proper comparison with the other data since the rest time is
always very long compared to the pulse time (i.e., a very small duty cycle). Also, the
battery is not in use most of the day.

The first observation that emerges from the analysis of Fig. 2.4 is that, unlike the
E91 battery, the total capacity of the L91 battery discharged with pulse currents is
not greater than that obtained at low and medium continuous currents, as generally
confirmed by the experimental data previously reported. In fact, for this battery,
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the recovery effect is only evident at high currents (i.e., 1000 and 1500 mA). This
leads to a second observation: the L91 battery shows two different behaviors when
considering low and high discharge currents, respectively. This is shown in Fig.2.5,
where the total capacity at low currents (i.e., from 50 to 250 mA) is shown in the
upper graph and at high currents (i.e., from 750 to 1500 mA) in the lower graph. It is
worth noting that the total capacity decreases sharply at high continuous currents,
whereas it is not overly affected by pulse currents.
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Fig. 2.5 A comparison of the total capacity of the L91 battery, as extracted from the product
data, for low and high currents.

The adapted Peukert model is then applied to each of these two groups of dis-
charge currents, with the 750 mA current also included in the low and medium
current group, to ensure the continuity of this functional analysis of battery perfor-
mance. Table 2.5 reports the parameter values of the model for this application. It
is worth noting that Cre f c is greater than Cre f p at low and medium currents, while
it is the opposite at high currents. Moreover, Cre f c is very close to the nominal
capacity of the L91 battery, namely 3500 mAh [73]. On the other hand, the values
of the coefficients kc and kp are very similar and close to 1, except for the case of
high continuous currents. They are also very close to the values obtained from the
measurements: kc and kp are 1.012 and 1.010, respectively, as extracted from the
datasheet for low and medium currents, while in the model obtained from direct
measurements, they are 1.016 and 1.012 (see Table 2.4).
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Table 2.5 Parameter values of the adapted Peukert equation for the Energizer L91 battery.
© 2022 IEEE

Current (mA)
@ continuous Error @ pulsed Error

Cre f c kc (%) Cre f p kp (%)

50 ÷ 750 3496 1.012 1.0 3403 1.010 1.5

750 ÷ 1500 3123 1.233 1.1 3262 1.010 0.4

In addition, the original Peukert’s law is applied to (i) the entire range of current
values (i.e., from 50 to 1500 mA) and (ii) medium and high currents only (i.e.,
from 750 to 1500 mA). For this purpose, the original Peukert capacity CP must be
extracted from the application manual published by the manufacturer [74]. It is
3090 mAh in the case of a continuous current of 1 A. Moreover, the original Peukert
equation is exceptionally applied to pulse currents to allow a thorough analysis. In
this case, the total capacity extracted from the same manual is 3248 mAh. Table
2.6 reports the results, including the Peukert number for both applications and the
model’s relative maximum absolute percent errors with respect to the product data.
It is worth noting that the accuracy of the original Peukert model degrades when
the full range of currents is considered. This result confirms the chosen approach of
considering the adapted analytical model separately for the two ranges of discharge
currents.

Table 2.6 Parameter values of the original Peukert equation for the Energizer L91 battery.
© 2022 IEEE

Current (mA)
@ continuous Error @ pulsed Error

CP k (%) CP k (%)

50 ÷ 1500 3090 1.063 6.9 3248 1.021 2.5

750 ÷ 1500 3090 1.233 2.1 3248 1.010 0.9

In Table 2.5 and Table 2.6, it can be seen that the exponential coefficient is
the same at high currents and in both discharge modes (i.e., 1.233 and 1.010).
Nevertheless, the error is always smaller in the case of the adapted model.
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Discussion

First of all, there is remarkable stability in the energy performance of the battery,
especially at small and medium current levels and at both continuous and pulse
currents. This stability is also observed during pulsed discharge with medium-high
currents, which only partially affect the energy performance. Instead, there is a
gradual decrease in the total usable capacity of the battery when discharging with
medium-high continuous currents. One of the reasons for this inconvenience is that
high continuous currents lead to greater stress on the battery, for example, in terms
of temperature.

Figure 2.6 contains two plots showing the service time of the L91 battery when
discharged at low and medium currents (upper plot) and at high currents (lower plot).
The values of model parameters Cre f c , kc, Cre f p and kp are given in Table 2.5. It is
worth noting that Cre f c is greater than Cre f p at low and medium currents, while it
is lower at high currents. On the other hand, the exponential coefficient kc is very
close to kp (1.012 and 1.010, respectively) at low and medium currents, while it is
very different (i.e., 1.233) at high currents. Conversely, kp is 1.010 in both model
functions; this confirms the stability of the energy performance of the L91 battery at
pulse currents.
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Fig. 2.6 Total service time of the L91 battery: model functions vs. datasheet. © 2022 IEEE

The application manual for the L91 battery specifies a duty cycle of 10% for high
pulse currents [74]. Although this differs from the datasheet, which includes only
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some applications at pulse currents from 50 to 750 mA, it is possible to include all
the manufacturer’s data in this work because they refer to pulse currents with a very
low duty cycle. As a result, the applications considered may guarantee the maximum
recoverable energy after each current pulse, and thus a condition opposite to that of
continuous current from an energy point of view.

On the other hand, the model function that best describes the battery behavior
requires the definition of two parameters and not only the exponential coefficient, as
in the original Peukert model. This modeling approach leads to a higher accuracy
than the one obtained by always considering the same reference capacity at the same
reference current, as in the case of Peukert’s law. In fact, the error of the proposed
adapted model for the L91 battery is always less than 2%.

2.2 Comparison of batteries in IoT applications

2.2.1 Background and related work

The proliferation of battery-powered sensors and wireless device applications has led
to the development of techniques and algorithms to reduce the energy consumption of
conventional batteries and energy harvesters [75, 76]. Moreover, the interconnection
of such devices in IoT networks requires an even more dedicated approach to the
technical and economic analysis of these applications, where the reduction and
control of energy costs have become key requirements. As a result, publications on
battery cost models have also increased in the literature [77]. These models generally
vary from material and manufacturing costs to performance and warranty costs [78].

Today, a comparison of the performance of different batteries is a standard
measure in the development of new battery-powered devices and systems. This
comparison is often based simply on analysis of rated capacity and battery life, the
latter indirectly influencing device life and vice versa [79]. The total energy and
aging of a battery usually vary under different working and operating conditions
(i.e., load currents and temperatures). Therefore, a comprehensive investigation of
battery performance is required, whether based only on manufacturer’s claims or
direct experimental data. To reduce this time-consuming activity, such a comparison
is often limited to a few working and operating conditions or the analysis of a
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summary table containing only the most essential characteristics of the batteries
under consideration [80].

In the case of battery-powered devices, several works aim to extend the life of
batteries to reduce the number of replacements and the associated costs. In this
context, batteries for low-power sensing and IoT devices are mainly primary batteries
due to their low cost and self-discharge. This is the case, for example, of IoT devices
with multiple sensors to monitor energy efficiency in buildings or damage to civil
structures [81, 82].

In general, alkaline and lithium-ion (Li-ion) batteries are preferred to other batter-
ies with different chemistry because they have high energy density (kWh/kg) and do
not require maintenance [83]. However, these batteries differ in their characteristics
and, consequently, in their cost. In addition, lithium is widely available on Earth [84].
For this reason, they are currently preferred for most modern devices and systems,
although current research studies are focusing on batteries based on new chemistries
[85].

The method for selecting the best battery varies greatly depending on the ap-
plication. For example, the selection of cells for the construction of battery packs
requires a very extensive preliminary analysis ranging from the mechanical (e.g.,
pressure) to the thermal performance of such cells. In this context, some tools have
been developed, such as BaTPac, developed by Argonne National Laboratory for
the complete analysis of battery manufacturing costs, especially for the automo-
tive industry [78], and the cost-benefit analysis tool proposed by Hitachi for the
application of battery storage systems in electric power grids [86]. However, these
tools are usually designed for large battery packs and are, therefore, too complex for
battery cell selection for IoT applications. For this reason, this work proposes a more
straightforward and intuitive cost model for selecting batteries from the perspective
of their purchase price versus their performance, although the analysis for selecting
batteries in IoT sensors from a cost-benefit perspective is indeed non-trivial, since
battery performance generally does not have linear characteristics. This section
describes a workload-based methodology and cost model for comparing primary bat-
teries of different chemistries. This study explains how the nonlinear characteristics
of different batteries can be comprehensively analyzed from the user’s perspective to
select the most suitable battery for a given application from an economic point of
view.
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2.2.2 Cost model

For a given set of battery-powered sensors, the replacement of the batteries is usually
not synchronized because these batteries do not usually reach their end of life (EOL)
simultaneously. For this reason, the total cost of battery replacement for a given set
of IoT devices over a given period is defined as follows:

ctot =
n

∑
i=1

(Nbi · cbi + cri) (2.7)

where ctot is the total cost of the battery after n replacements of the discharged
batteries, and for each ith replacement:

Nb is the total number of replaced batteries in the devices,

cb is the cost of one battery,

cr is the labor-related replacement cost.

For a comparison of two batteries, BH and BL, with the former having a capital
cost cBH

higher than the capital cost cBL
of the other battery, the cost index (J) is

defined as the ratio cBH
/cBL

. In this context, the capital cost is the purchase price.

On the other hand, the break-even cost index (Jε ) based on the performances of
such batteries is defined as follows:

Jε(ts) =
tsBH

tsBL

(2.8)

where tsBH
and tsBL

indicate the service time of BH and BL at a given current and
discharge mode (i.e., continuous or pulsed), as computed by (2.6). As the service time
generally differs for batteries discharged at various continuous and pulse currents, Jε

is commonly a non-linear function; this will be demonstrated in Section 2.2.3.

Now one can compare J with Jε to evaluate whether the ratio of the purchase
prices of BH and BL can be justified by the better performance of BH over that of
BL. However, to extract the value of Jε for the operating point of the batteries, it is
always necessary to consider a specific application. In practice, Jε shows the actual
cost ratio of BH compared to BL when evaluating the performance of these batteries.
For example, if the purchase price of BH is twice that of BL, the performance of BH

should be at least twice as high for a given application. However, the comparison
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between J and Jε does not take into account the labor-related replacement cost cr.
For this reason, the total break-even cost index, including cr is defined as follows:

Jε
tot = Jε +

cr

cBL

· (Jε −1), Jε ≥ 1 (2.9)

In (2.9), cr is normalized to the cost of BL, and the relationship between Jε and
Cr is linear. For example, Jε = 2 means that exactly two batteries BL are needed to
achieve the same service time as one battery BH . This means that the first BL, when
exhausted, must be replaced by a new one to achieve the same service time as BH .
Finally, both the second BL and the original BH are replaced at the same time (the
net replacement time of the battery is neglected here).

For rechargeable batteries, the replacement cost is generally replaced by the
charging cost, except for the case of EOL. For this reason, the difference in capacity
fading (i.e., the irreversible capacity loss) of two different secondary batteries should
always be considered to provide a valid comparison of their performances. Also,
maintenance costs should be considered for large-scale storage systems or energy
harvesters. The latter sometimes used with electrochemical batteries for wireless
devices [75].

2.2.3 Results

As an application example, the comparison in the performance of the Energizer E91
alkaline cell (zinc-manganese dioxide, Zn/MnO2) [72] and the Energizer L91 lithium
cells (lithium/iron disulfide, Li/FeS2) [73] is made through the proposed cost model.
Although cylindrical primary batteries are involved, the method can be applied to
other types of batteries (e.g., button cells), even rechargeable batteries, but with some
precautions, as mentioned before.

This section first describes the battery performance analysis based only on battery
datasheets. Then, direct experimental data are given for validation. Finally, another
point of analysis is reported on the performance of the batteries at various operating
temperatures.
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Manufacturer’s data

Often, the preliminary selection of batteries for IoT sensors is based on information
provided by manufacturers rather than direct laboratory experiments, which usually
take a lot of time. For this reason, an initial analysis is performed here using only
the manufacturer’s published product data for the E91 and L91 batteries [72, 73].
Although data for only a few discharge currents were mainly published in the
datasheets, the power functions of these batteries can be extracted using the adapted
Peukert model defined in (2.6), where Ire f is 100 mA for both battery types. Table
2.7 gives the parameter values of the models for continuous and pulse discharge
currents, respectively, and the nominal capacity specified by the manufacturer.

Table 2.7 Parameter values of the adapted Peukert equation for the Energizer E91 and L91
batteries discharged at low and medium currents.

Battery
Cnom [mAh] @ continuous @ pulsed

@100 mA Cre f c kc Cre f p kp

E91 2500 2359 1.232 2698 1.090

L91 3500 3496 1.012 3403 1.010

For a visual analysis of such performance-related functions, Fig. 2.7 and Fig. 2.8
report the plots of the original data and the model functions regarding the service
time of the E91 and L91 batteries discharged with continuous and pulsed currents,
respectively.

The maximum error of the models to the product data is always less than 2.0%,
except for the continuous current discharge model of the E91 battery, where the
maximum error is 6.9%. When comparing different batteries, the range of values
in which the characteristics are available also differs from one datasheet to another.
For example, the E91 battery datasheet gives the total capacity, from which the total
service time can be derived only up to a continuous current of 500 mA. On the other
hand, the total capacity of the L91 battery is also given for higher currents in the
datasheet.

Figure 2.9 shows the break-even cost index, as defined in (2.8) and referred to
here as time index, of the L91 battery compared to the E91 battery. For example, it
can be seen, that the operating time of the L91 at a continuous current of 400 mA is
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Fig. 2.7 Total service time of the E91 and L91 batteries at continuous currents.
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Fig. 2.8 Total service time of the E91 and L91 batteries at pulse currents.

slightly more than twice that of the E91 (i.e., Jε ≈ 2), while at 50 mA it is only 30%
higher (i.e., Jε ≈ 1.3).

Because the manufacturer’s specifications for battery capacity or service time
apply to battery currents from 50 to 500 mA for both batteries and each discharge
mode (i.e., continuous and pulsed), Fig. 2.9 reports Jε in the same range.
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Fig. 2.9 Time index of the L91 battery vs. E91 battery for continuous and pulse currents.

Experimental data

For validation, various experiments were performed on discharging Energizer E91
and L91 batteries at 100 mA and 250 mA. The laboratory instruments consisted
mainly of one RIGOL DL3021 programmable electronic load and one HP 34401A
digital multimeter. In the case of pulse discharge, the rest time between two consec-
utive pulses was at least 1 hour, and in some experiments, several hours to ensure
possible energy recovery in the tested batteries. This approach is consistent with
the datasheets that give standard tests with similar rest periods. In addition, all
experiments were conducted at room temperature, as were the tests specified by
the manufacturer. Minor differences in room temperature around 20◦C should not
affect the performance of the batteries considered here, especially the L91 battery, as
indicated in the handbook and application manual [74]. Table 2.8 reports the total
service time obtained during the experiments. Since different batteries were tested
under the same working conditions, the mean value of the service time is given here.

Figure 2.10 shows a comparison of the experimental data with the manufacturer’s
data. The total capacity of the batteries is almost the same in most cases, except for
the discharge state of the E91 battery at a current of 250 mA, whether continuous
or pulsed. In this case, the difference is about 15%. This difference is expected
for alkaline batteries, as they generally have less stable performance than lithium
batteries. In all other scenarios, the difference is limited, and this may be due to
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Table 2.8 Experimental data of the tested Energizer E91 and L91 batteries.

Current [mA]

Service time [h]

E91 L91

@ continuous @ pulsed @ continuous @ pulsed

100 25.31 27.37 34.03 34.07

250 6.77 8.23 13.43 13.45
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Fig. 2.10 A comparison of the total capacity obtained from the experimental results with the
manufacturer’s data for the E91 and L91 batteries discharged at 100 and 250 mA.

several reasons, such as process variation during manufacturing and calendar aging
due to the time the batteries were stored before being used for the experiments.

Temperature-dependent capacity

So far, the comparison has been based on the cost of batteries versus their per-
formance service time at a reference temperature. However, for a comprehensive
analysis, two other parameters must be considered: (i) the temperature effect on
battery capacity and (ii) shelf life. For example, the datasheets of E91 and L91
batteries state their shelf life as 10 and 20 years, respectively. On the other hand,
battery performance in terms of capacity as a function of operating temperature is
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only sometimes specified in many battery datasheets, except in other documents
published by manufacturers. For example, the handbook of the alkaline batteries [87],
which includes the E91, reports that temperature greatly effects the total capacity
of this battery, even in a non-linear way with respect to currents. For this reason,
temperature cannot be neglected, as many IoT applications today are designed for
outdoor use and thus for a wide operating temperature range. It should be noted,
however, that the characteristics C vs. T given by the manufacturers generally only
refer to continuous currents.

For a thorough cost-benefit analysis, the capacity index is defined as the ratio
of L91 and E91 battery capacity, i.e., CL91/CE91, where both CL91 and CE91 are
temperature-dependent functions for different currents. Figure 2.11 shows the
capacity index for 25 mA, in the case of low-power applications, and 250 mA,
which is a medium current for these batteries.
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Fig. 2.11 Capacity index of the L91 battery vs. E91 battery as a function of temperature.

All these data were extracted from the application manuals of the batteries
[74, 87] except for battery L91, which is discharged with a continuous current of 25
mA. In this case, the datasheet gives the total capacity only for temperatures lower
than 21 ◦C. Nevertheless, it is possible to estimate this function for temperatures
above 21 ◦C (see the dotted line in Fig. 2.11) using the data for the current of 50
mA, as given in the application manual. Indeed, the total capacity of the L91 at
temperatures above 21 ◦C appears to be generally independent of the small and
medium discharge currents, although slightly decreasing.
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The most crucial information that can be gleaned from the plots in Fig. 2.11 is
that the capacity of the E91 alkaline battery almost reaches the capacity of the L91
battery at high operating temperatures, at most 55 ◦C, and low discharge currents.
This is because the total capacity of the L91 battery decreases slightly at operating
temperatures above 21 ◦C, while the E91 battery increases its energy capacity
rapidly at such temperatures. Conversely, this capacity decreases dramatically
at temperatures below the reference temperature so that the capacity of the L91 is
significantly greater than that of the E91, even several times at very cold temperatures.



Chapter 3

Energy Optimization for Electric
Vehicles

Some of the work described in this chapter was also previously published in [88, 89].
Compared to [88], some sentences and paragraphs have been changed and adapted
to this thesis other than (i) removing the graph related to battery price over the years
and (ii) updating the original plot battery energy vs. travel distance for the plug-in
hybrid electric vehicle under observation.

3.1 Battery cost in EVs

3.1.1 Introduction

The recent, remarkable increase in the production and utilization of electric vehicles
(EVs) is decreasing the use of petroleum products, and gradually accomplishing
the challenge of decarbonizing road transport to reach the goal of reducing CO2

emissions [90]. For instance, the number of electric light-duty vehicles in the world,
including full-battery electric vehicles (BEVs) and plug-in hybrid electric vehicles
(PHEVs), practically tripled in a few years, so continuing an exponential trend during
the last decade [91]. However, the fluctuations in EV sales are constantly evolving,
even in terms of the EV type [92], depending on the geographic area considered. For
example, in 2021 about half of the sales were in China, where BEVs are largely the
majority, while electric car registrations and sales increased in the United States, but
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after two years of decline. In Europe, where the number of BEVs and that of PHEVs
are generally closer to each other when compared with those in the U.S. and China,
the increase continues very remarkably [91]. Nevertheless, the transformation of the
existing very large, global fleet of conventional internal combustion engine (ICE)
vehicles will take several more years [93].

This notable increase in the EV market is one of the reasons for the rapidly
decreasing price per kilowatt-hour of battery packs [94] and the significant increase
in research and development for new batteries of various chemistries with ever-
improving performance [85]. Nonetheless, the cost of batteries still weighs heavily
on the total cost of electric cars, especially in the case of BEVs. In fact, car makers
may take advantage of the lowered cost of battery cells to increase the total capacity of
battery packs by adding a greater number of cells, in order to increase the maximum
mileage or driving range of their BEVs before charging. This solution reduces the
so-called range anxiety in EV drivers [95].

The analysis of the degradation in rechargeable (i.e., secondary) batteries gener-
ally considers the maximum number of equivalent cycles before reaching the state
of health of a battery equal to 80%, that is, an irreversible loss of 20% of its nomi-
nal capacity [96]. However, part of this capacity fading is also due to irreversible
degradation over time, also known as calendar aging, which should be investigated
in applications where rest time far exceeds that of active operation, such as in the
case of EVs [97, 98]. Therefore, the real cost of a car battery strictly depends on the
time interval for a pack to reach its end of life and its consequent replacement with a
fresh one [88].

The proposed cost analysis model includes the degradation trend of battery life
over time for PHEVs and BEVs, in which the size and actual use of their batteries
differ. As the stress and aging of these batteries also depend on mobility characteris-
tics (i.e., urban, highway, etc.), the model is applied to various scenarios according
to the Vehicle Chassis Dynamometer Driving Schedules defined by United States
Environmental Protection Agency [99]. The cost model allows for the following:

• Analysis of the battery usage of BEV and PHEV depending on mobility
characteristics

• Analysis of the optimal usage cost of batteries in order to maximize the benefit-
cost ratio
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• Analysis of the battery degradation based on battery usage, warranty and
capacity.

3.1.2 Background and related work

Most EVs can be classified into two large groups: battery electric vehicles and hybrid
electric vehicles, the latter still retaining the traditional internal combustion engine as
the main power source. Both of these groups can be further divided into subgroups.
The first group can be subdivided into full-battery (BEV) and range-extended battery
(BEVx or REEV) electric vehicles, and the second group can be subdivided into full-
hybrid (FHEV or HEV) , plug-in hybrid (PHEV) and mild-hybrid (MHEV) electric
vehicles, as shown in Figure 3.1 (green-based and blue-based colors, respectively).

As reported in [92], the current global demand for BEVs, FHEVs and MHEVs is
generally evenly split, while the demand for PHEVs is about half of that for BEVs
or MHEVs. However, this distribution could easily change due to the impressive
year-over-year growth in EV production and sales, making market share prediction
more uncertain.

Fig. 3.1 The main electric and hybrid vehicle types in the market.
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Indeed, a BEVx has a fuel auxiliary power unit (APU) to extend the maximum
mileage. However, a BEVx is still considered a full-battery electric vehicle, as the use
of the auxiliary unit is a fallback option to charge the battery when mostly depleted,
and not a normal operating condition [100]. For this reason, the market share of this
EV type is usually included with that of the BEVs. Although micro-hybrid electric
vehicles are sometimes included among EVs, in this analysis they are not considered
as they are basically traditional ICE vehicles with electric start-stop systems.

For light-duty vehicles, such as passenger cars, the energy size of the battery
packs in EVs generally differs greatly depending on the type of vehicle: (i) usually
less than one kilowatt-hour for MHEVs, (ii) up to about 20 kWh for FHEVs and
PHEVs, and (iii) in general several tens of kilowatt-hours for BEVs, even up to or
greater than 100 kWh [101]. However, the size of battery packs tends to increase
with later-model EVs in order to achieve an ever-greater autonomy of distance that
more closely approaches that of traditional vehicles. This impressive use of batteries
in EVs, has also led to the search for ways to repurpose these batteries after their
use in electric vehicles. This research activity has been ongoing during the last
decade to reduce the total life cycle costs of these batteries [102]. Most battery packs
consist of lithium-based cells due to their high specific energy [Wh/kg] and the large
availability of lithium on the Earth [103].

The analysis of the performance, aging and cost of battery cells has captured the
attention of both car manufacturers and researchers [94, 85, 77]. For example, many
battery simulation models have been proposed in the literature, from electrochemical
and mathematical models to equivalent electrical circuits [104]. They are populated
by using direct experimental data and/or manufacturer’s data. In the latter case, the
model accuracy depends on the amount and quality of information reported in public
datasheets [105]. However, these models are directly concerned with performance
only. Conversely, cost models are obviously more concerned with the economic,
rather than the technical aspects. An overall analysis of the costs related to battery
wear is indeed very important from an owner’s perspective.

At system level, the models of the capacity fade in batteries (i.e., the reduction
of the maximum available energy) due to cycle life generally consider average state
of charge (SOC), temperature, depth of discharge (DOD), and C-rate (i.e., battery
current normalized to nominal capacity) [106–108]. Accurate models also include
the analysis of calendar aging.



3.1 Battery cost in EVs 39

The Urban Dynamometer Driving Schedule (UDDS) is a test defined by the EPA
for analyzing the performance, especially the CO2 emissions of vehicles in urban
mobility, which usually includes many start-and-stop phases [109]. In this context,
the authors in [110] and [111] analyzed the energy performance of some BEVs and
PHEVs in real-world driving, but they did not consider battery aging. Similarly,
electrical energy and fuel consumption for these vehicle types were analyzed in
[112], resulting in some interesting conclusions regarding the optimal size of the
battery packs from an energy perspective, especially in the case of PHEVs.

An annualized total cost of ownership of electric passenger cars was analyzed
in [113]. The proposed model also includes investment cost, maintenance cost, and
insurance cost. However, battery cost is changing considerably in EVs during these
recent years and, therefore, it truly affects the fluctuating cost of ownership. In
general, the cost of depreciation of a battery pack over time is commonly included in
maintenance costs [114].

3.1.3 Cost model

The basic equations of the proposed cost model for battery usage are defined hereafter.
The minimal or optimal daily cost of battery usage is given by:

cdmin =
ctot

Ndmax

. (3.1)

where ctot is the total cost of a fresh battery pack and Ndmax is the estimated maximum
number of days of service. Then, the minimal cost of battery usage after Nd days of
service is given by:

cmin = cdmin ·Nd. (3.2)

Then, the actual cost of battery use is defined as follows:

ca = ctot ·
C f

C fmax

. (3.3)

where C f and C fmax are the actual capacity fade and maximum capacity fade of a
battery, respectively.
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Battery usage index, or cost index, after Nd days of service is given by:

α =
ca

cmin
. (3.4)

Therefore, this index has three main results:

α =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 1 : battery is underused

= 1 : battery is used optimally

> 1 : battery is overused

Therefore, if α < 1 then the replacement of the battery will take place as a con-
sequence of the expiry of the warranty rather than the achievement of the maximum
number of equivalent cycles, and vice versa in the case of α >1. Although this basic
usage cost analysis is the same for all-electric vehicles, the total cost for the energy
consumption in BEVs and PHEVs differs as reported below.

Battery Electric Vehicle

In BEVs, the energy cost is defined as follows:

cBEV =
Nd

∑
i=1

Ee(i) · pe(i)+ ca. (3.5)

where Ee and pe are the energy and unit price of electricity, respectively, for each
day of use i.

Plug-In Hybrid Vehicle

PHEVs use two different energy sources: electricity and gasoline. Therefore, the
degradation of battery life over time tends to differ from that in BEVs. Furthermore,
the energy cost is also affected by fuel price as follows:

cPHEV =
Nd

∑
i=1

(Ee(i) · pe(i)+Eg(i) · pg(i))+ ca. (3.6)
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where Eg and pg are the energy (in this case, “amount”) and unit price of gasoline,
respectively, for each day of use i.

3.1.4 Simulation setup

There are several vehicle simulators, in both academia and industry, for the analysis
of the energy consumption and/or gas emission of vehicles. Among them, the chosen
tool is ADVISOR (ADvanced VehIcle SimulatOR), a MATLAB/Simulink based
open-source simulator. It is widely used for research studies in academia because of
several merits [115]. First, ADVISOR is free and supports various frameworks for
ICE vehicles, PHEVs, and BEVs that are sold successfully in the market. Second,
it also allows access to detailed simulation codes and vehicle simulator updates in
an easy way. In this context, the simulation of the overall energy flow of EVs is
carried out by considering the vehicle powertrain model, drivetrain model including
power transmission system, and battery SOC estimator. ADVISOR includes detailed
model coefficients of engines, electric traction motors, controllers, converters, energy
storage systems, shapes of chassis, etc. The specification and efficiency of the
components were scaled and tuned carefully in order to simulate the following
vehicles: Tesla Model 3 and Toyota Prius Prime. These car models has been selected
because they were the best-selling BEV and PHEV, respectively, in the United States
in 2019 [116]. Furthermore, Model 3 is the first plug-in electric car to reach one
million sales in June 2021 [117]. The specifications for these EVs are then reported
hereafter.

1. BEV: The curb weight of Tesla Model 3 is 1611 kg, and the drag coefficient is
0.23 [118]. Model 3 is a rear-wheel-drive car and includes a maximum 211
kW AC permanent magnet motor and a 50-kWh lithium-ion battery pack.

2. PHEV: Toyota Prius Prime is based on the XW50 model (the fourth-generation
Prius) [119]. It is a front-wheel-drive car, the curb weight is 1,526 kg, the
drag coefficient is 0.24, and the powertrain is 1.8 L (1,798 cc) Atkinson cycle
engine with an electric motor. The maximum power and torque of the motor
are 53 kW and 163 Nm at 4000 RPM, respectively. This car includes an 8.8
kWh lithium-ion battery pack. It is assumed that it consists of lithium-ion cells
of the same type used in Model 3, in order to coherently compare the battery
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SOC and battery aging of the selected PHEV and BEV under the same battery
characteristics.

Indeed, the degradation of the battery of a PHEV operating in charge-depleting
mode is comparable to that of a BEV, as the traction energy is provided exclusively
by the battery in both cases. Conversely, the degradation of the battery of a PHEV
changes in the case of a traditional ICE also providing energy for the vehicle. For this
reason, the comparison of battery costs here is based on the analysis of the selected
BEV and PHEV in charge-depleting mode and hybrid mode, respectively.

3.1.5 Results

Analysis of Driving Simulation Results

Initially, the driving simulation test is carried out on a typical city driving condition
with the Urban Dynamometer Driving Schedule (UDDS) defined by EPA and ana-
lyzed the operation and related energy consumption of the electric cars considered in
this work. Figure 3.2 shows the simulation results for the BEV and PHEV under the
UDDS cycle, whose overall driving time is about 22.8 minutes to drive 12 km, so
that the average speed is 31.5 km/h during 17 stops and goes. The maximum speed
is 91.2 km/h.

Figure 3.2(a) shows the power consumption by the electric motor of the BEV
under test. All the power consumption is directly related to battery SOC. It is worth
noting that the electric motor in the BEV regenerates electricity during deceleration
through regenerative braking; this is identified by negative power in the figure. On
the other hand, Figure 3.2(b) shows the power consumption by the engine and electric
motor of the PHEV under the same driving profile. Most of the power for PHEV
accelerations comes from the engine, whereas the electric motor only assists as a
sidekick. Although energy recovery from regenerative braking is possible in PHEVs,
the amount of such energy is generally less than that obtained in BEVs because of
the smaller size of the motor.

Figure 3.3 enlarges the time period from 250 s to 500 s of the simulation test
depicted in Fig. 3.2. Figure 3.3(a) refers to the speed profile. Figure 3.3(b) shows the
power of the BEV motor and the battery SOC, which decreases when the power is
positive (energy consumption) and increases when the power is negative (recovered
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Fig. 3.2 Simulation results of the UDDS test cycle.

energy) during regenerative breaking; these braking periods are highlighted in light
blue color. Figure 3.3(c) shows the engine power, motor power and battery SOC
of the PHEV. In this case, the battery is charged by (i) the electricity generation
from the engine, and (ii) the electricity generation from the electric motor through
regenerative braking. The charging periods are highlighted in magenta color and
marked from 1 to 5. The first, third and fifth period (i.e., 1, 3 and 5) resulted from
the electricity generation of the engine, whereas the second and fourth periods (i.e.,
2 and 4) resulted from the regenerative braking.

Table 3.1 shows the overall energy consumption and related costs by electricity
and gasoline for the BEV and PHEV under the UDDS driving test. In this analysis,
the electricity price pe is 0.375 $ per 1 kWh, whereas the gasoline price pg is 1.472 $
per 1 kg [120, 121]. In general, PHEV owners spend much more money on gasoline
than electricity. One of the reasons is that a part of the electrical energy is generated
by the engine in addition to regenerative braking. On the other hand, BEV uses only
the electrical energy, and part of this energy is recovered by regenerative braking
with a relatively large motor. Therefore, the total energy cost for a PHEV is higher
than the total energy cost for a BEV.
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Fig. 3.3 Battery charging by (b) regenerative braking by a motor and (c) regenerative braking
by a motor and electricity generation by an engine.

Battery usage analysis

The battery SOC of the BEV and PHEV is discharged or charged during the test
driving because of energy consumption for accelerating or continuing vehicle speed
and energy regeneration as shown in Figure 3. Because the degradation of the battery
pack is strongly dependent to the charging and discharging cycles, battery usage is
defined as the total number of absolute ampere-hours Ah during service time, as set
forth in the following equation:

Ah =
∫︂ T

0
|I(t)|dt (3.7)

where I is battery current, and T is driving/charging time. Accordingly, the maximum
number of ampere-hours in battery life is Ahmax. The ratio of battery fade C f and
C fmax in (3.3) is assumed to be approximated as the ratio of battery usage Ah and
Ahmax .
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Table 3.1 Energy consumption and cost

PHEV BEV

Electrical energy, Ee (Wh) 128.3 1972.4

Gasoline energy*, Eg (g) 645.3 0.0

Cost by electricity, Ee · pe ($) 0.048 0.740

Cost by gasoline, Eg · pg ($) 0.950 0.0

Total cost 0.998 0.740

* the quantity of gasoline is given in grams

In addition, Ahindex is defined as the ratio of the total ampere-hours Ah in a certain
period of service time to the nominal capacity Ahb of battery pack:

Ahindex =
Ah
Ahb

(3.8)

The consumption and generation for the driving test and battery usage during
the driving test is summarized in Table 3.2. The BEV consumes nearly four times
more electrical energy than the PHEV, which also uses gasoline energy. However,
the PHEV shows a higher battery usage than the BEV, although the total variation in
SOC is smaller due to the frequent charging phases and the lower discharged energy
of the PHEV battery.

Table 3.2 Battery usage analysis

PHEV BEV

Discharged energy (Wh) 544.0 2261

Charged energy (Wh) 415.7 288

Total energy (Wh) 959.8 2549

Ahindex (%) 10.9 5.1

Total SOC variation 1.5 3.9
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Battery cost analysis

In this subsection, the battery costs are analyzed and discussed for a sake of com-
parison based on the battery usage data reported in Table 3.2 for the UDDS test
cycle. Battery prices are steadily falling due to mass production and advance in
lithium-ion manufacturing technology. The battery price including cell price and
cell-to-pack price becomes 132 $ in 2021. So, it is assumed that the replacement cost
of a whole battery pack of Model 3, which consists of four battery modules, is 6,600
$. Conversely, the replacement cost for the PHEV battery (8.8 kWh) is assumed
to be 1,162 $ by scaling down. The battery warranty period is 8 years for Model 3
[122]. The minimal daily cost cdmin is obtained by dividing the total battery cost by
the warranty period. To obtain the actual cost per day, two driving tests a day are
considered. Results are summarized in Table 3.3.

Table 3.3 Battery price and warranty

PHEV BEV

Total battery price ($) 1,162 6,600

Battery energy (kWh) 8.8 50

Warranty (year) 8 8

Optimal daily usage cost ($) 0.398 2.260

Actual daily usage cost ($) 0.633 1.683

Figure 3.4 shows a comparison between cmin and ca for BEV and PHEV, respec-
tively. Indeed, ca is always lower than cmin in the case of the BEV as shown in Figure
3.4(a); this means that the BEV battery is underused in this test case. An additional
daily driving time of about 15.7 minutes, at those test conditions, is required to
achieve the optimal daily cost from a warranty perspective for the BEV under test.
Conversely, the PHEV battery is overused, as shown in Figure 3.4(b). In fact, ca

is higher than cmin because of the more frequent charging and discharging cycles,
which accelerate battery degradation. For this reason, the replacement of the PHEV
battery is expected before the warranty expiration period.
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Fig. 3.4 Battery cost comparison between ca and cmin in (a) BEV and (b) PHEV.

Battery aging analysis by driving profiles

In this section, the battery usage cost have been evaluated on six driving cycles, in
addition to the UDDS cycle, as listed in Table 3.4. These cycles are also defined by
the EPA Vehicle Chassis Dynamometer Driving Schedules [99] to test a vehicle in
the following scenarios:

1. Inspection & Maintenance (IM240), which is commonly used for roadside
testing.

2. Federal Test Procedure (FTP) also known as EPA75. This test is based on the
UDDS test, with the final part (t =505 s) being the same as the initial one.

3. Highway Fuel Economy Test (HWFET), for testing highway driving conditions
with a speed limit of 60 mph.

4. New York City Cycle (NYCC), for low speed and stop-and-go driving.

5. High acceleration, deceleration and speed driving (US06), as supplemental
FTP driving schedule.

6. Air Conditioning supplemental FTP driving schedule (SC03).

Table 3.4 reports the total distance, driving time and average speed of each test.
In this case, the distance and average speed are reported in miles and miles per hour
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(mph), respectively, in order to maintain the original units of measurement and avoid
any approximation from converting miles to kilometers.

Table 3.4 List of driving cycles

Name Distance (miles) Driving time (s) Avg. speed (mph)

UDDS 7.45 1369 19.59

IM240 1.96 240 29.38

FTP 11.04 1874 21.2

HWFET 10.26 765 48.3

NYCC 1.18 598 7.1

US06 8.01 596 48.37

SC03 3.58 596 21.55

Similar to the UDDS test, for the battery usage cost analysis it is assumed two
driving tests for each daily driving cycle. Figure 3.5(a) shows the battery energy
consumption by the BEV, which corresponds to the energy for driving. The battery
usage for the US06 test is higher than the dashed line because the battery consumes
energy with acceleration, deceleration and high-speed driving on highway. Figure
3.5(b) shows the relationship among the driving cycles with respect to the driving
distance and PHEV battery usage. The dashed line refers to a baseline passing
UDDS, which is a typical city driving. Most driving cycles are on or near the dashed
line, except US06 and HWFET. The latter requires less battery energy because of the
long driving time without high acceleration/deceleration. So, in this case, there is
less battery charging by regenerative braking and battery discharging due to vehicle
acceleration. US06 is between the dashed line and HWFET because this driving
cycle is a mix of highway driving and city driving.

Figure 3.6 shows the battery cost comparison only for the following driving
cycles: FTP, HWFET, NYCC and US06. The reason is that the IM240 test is the
“Inspection & Maintenance Driving Schedule”, whereas SC03 is the Air Conditioning
supplemental FTP driving schedule, that is “Speed Correction Driving Schedule”.
Accordingly, the details of these two tests are not included in Figure 3.6, although
the main results are reported in Figure 3.5.



3.1 Battery cost in EVs 49

Table 2

Total distance 
(km)

Battery usage 
(PHEV, kWh)

1 11.796090408449 0.959756563064197

2 3.12401025455225 0.158160619149281

3 17.4949466257898 1.29739420068288

4 16.4926774077702 0.436507613986148

5 1.82710406927797 0.26372917848063

6 12.4438015168326 0.751309784791592

7 5.64662803456401 0.384468782516631
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Total distance 
(km)

Battery usage (EV, 
kWh)

1 11.796090408449 2.54939737228578

2 3.12401025455225 0.757214689084146

3 17.4949466257898 3.74654939853517

4 16.4926774077702 2.49234157326834

5 1.82710406927797 0.71611528206213

6 12.4438015168326 3.31555639714655

7 5.64662803456401 1.3275668121796
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Fig. 3.5 Driving cycle comparison by battery energy vs. travel distance.

The FTP is a 31-minute light-duty vehicle driving test. In this case, the usage of
the BEV battery is just slightly higher than the optimal one. Therefore, the battery
warranty is almost adequate. Conversely, the PHEV battery is extremely overused,
so that a replacement will be required twice during the warranty period. In fact, the
acceleration and deceleration phases are even more frequent than in the UDDS test.

HWFET is a short (less than 13 minutes) highway vehicle driving test. In this
case, because the usage of PHEV and BEV batteries is less than optimal the related
costs are also less than optimal. For the PHEV, the battery usage cost is lower than
optimal because there are fewer acceleration and deceleration phases during highway
driving than during city driving.

NYCC is a 10-minute driving test under low speed and stop-and-go traffic
conditions. Due to the short driving time, the degradation of PHEV and BEV
batteries is less than optimal. However, the use of these batteries is relatively high
because of the frequent stop-and-go driving patterns.

US06 is also a 10-minute driving cycle but, compared to NYCC, US06 consists
of greater acceleration, deceleration and, in general, speed. In this case, the use of
the BEV battery is close to optimal from a cost perspective. This is true also for the
PHEV battery, but as a consequence of the short driving time.

In summary, the usage cost of a PHEV battery is greater than optimal in all situa-
tions in which frequent stops and acceleration/deceleration phases occur. Conversely,
the usage cost of a BEV battery pack is close to optimal in all driving conditions.
However, this result depends on daily travel distance, whose optimal value depends
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Fig. 3.6 Battery cost comparison between ca and cmin for four different driving cycles.

on driving condition and scenario. Accordingly, a further step is required to evaluate
the best use of these batteries. Figures 3.7(a) and 3.7(b) show the optimal number of
cycles and travel distance in a day in order to use the battery optimally for the BEV
and PHEV, respectively, under test conditions.
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Fig. 3.7 Optimal number of cycles and travel distance.

In general, the optimal number of cycles of a driving test is inversely proportional
to its driving distance: if this distance is too short, it is necessary to drive more to
consume the battery optimally. The optimal number of cycles for PHEVs is generally
less than that for BEVs, even about half in the case of UDDS and NYCC, except for
HWFET.
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3.2 Efficient use of charging stations for EVs

3.2.1 Introduction

The impressive growth in the production of EVs and the accompanying installation
of new electric charging stations are attracting the attention of electric utilities and
researchers. This new dynamic scenario presents us with unprecedented challenges.
Therefore, optimization algorithms and methods have been developed, especially
in the last decade, to take into account power consumption in distribution networks
as well as power costs and charging time of EVs. Solving the problems that arise
with EV mobility, such as excessive time spent at public stations and equitable
distribution of charging requests over time, can be addressed using real-world data
[123]. However, some situations can only be analyzed through accurate simulations.
For example, analyzing all possible traffic conditions, the impact of some power
outages on smart grids, and planning new stations to meet excessive demand for
charging services in a distribution network require predictive methods. In addition,
the study of general driver behavior also requires a virtual simulation environment.
In this context, range anxiety is one of the most common attitudes of drivers toward
EVs [124]. It concerns the driver’s uncertainty about being able to complete the
expected trip with the battery as the only energy source. Indeed, BEVs generally
have limited range compared to conventional vehicles with gasoline or diesel engines
[95]. And although the number and spatial distribution of charging stations are
constantly being optimized to meet the ever-increasing demand for electricity for
EVs, the infrastructure sometimes still falls short of expectations. Figure 3.8 shows
the current prominent locations for charging points, with most charging typically
taking place in residential installations.

This work reports some results on the impact of EV charging demand variations
on the instantaneous performance of a power grid in accordance with the different
behaviors of electric vehicle drivers based on range anxiety. The simulations were
performed using an agent-based model (ABM). This model allows the characteriza-
tion of different scenarios to analyze the impact of infrastructure and driver attitudes
on EV charging.
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Fig. 3.8 Prominent locations for EV charging installations. © 2021 IEEE.

3.2.2 Background and related work

Today’s two most significant barriers to adopting electric vehicles, especially electric
cars, are still (i) the maximum distance an electric car can travel on battery power
alone and (ii) recharging time, which is usually on the order of a few hours. Although
great strides are being made in fast charging, efficiently recharging batteries in just a
few minutes remains one of the most critical goals in the automotive sector. These
long electrical recharges over a prolonged period can easily lead to overlapping
requests for charging stations, thus the possibility of momentary power peaks from
the grid [125]. Generally, this scenario has two different objectives: (i) optimal power
distribution in a smart grid and (ii) optimal charging of EVs from an operational cost
perspective.

Optimal power distribution

First, policies are needed that favor flexibility and distribution of electricity demand
from charging stations, which should be as uniform as possible over time [126, 127].
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To this end, possible scenarios for integrating EVs into electricity grids can be
simulated and analyzed in advance using models. These can help in choosing load
forecasting strategies based on charging behavior [128] and then optimization [129].
They are generally based on mathematical methods [130, 131] and computational
methods [132]. Among the latter, agent-based models are of great use for the
study and simulation of complex systems. This is the case, for example, with
the mobility of an EV fleet [133–135] and the associated impact on a power grid
[136]. In this context, an ABM developed using NetLogo [137], an open-source
tool from Northwestern University, has recently been proposed [138]. It focuses
on implementing an optimal infrastructure only to predict the charging demand of
a 24-hour EV mobility. The present work differs from this study in its long-term
analysis, i.e., a 300-day simulation of mobility for each assumed scenario, where
each EV is generally independent from the others in terms of energy consumption
and daily mileage. In addition, this work focuses on optimizing the energy demand
of an existing charging infrastructure connected to a network rather than optimizing
the location of new stations.

Another multi-agent model that incorporates customer behavior was also recently
proposed [139]. It simulates a one-year time interval, including weather conditions
and customer satisfaction with charging service over time. Although the model
defines a threshold for the battery SOC (i.e., SOCLimit , a constraint on the decision
to charge the battery), there is no description of the possible decisions for different
values of this variable and the resulting outcomes.

Therefore, in the literature, many algorithms and methods exist to optimize power
consumption in power networks with charging stations. They consider different
situations according to different constraints [131, 140], in particular, battery capacity
and charging rates [141, 142], and also the location of newly planned stations [123].
Generally, these techniques are based on the analysis of real data collected from
charging stations and/or each electric vehicle. The latter data source seems to
be better suited for faster prediction but has the disadvantage that the habits of
charging service users are less confidential [143]. Other techniques also analyze EV
mobility and parking patterns as optimization keys to flatten the load profile of a
grid [134, 127] and the use of auxiliary energy storage to balance demand flexibility
[144].
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Optimal EV charging

Methods for optimal charging from the point of view of the cost of owning an
electric vehicle usually take into account the battery SOC, the time-of-use (TOU)
price [145], charging current [141], minimizing battery aging [146], and quality
of service [147] as critical factors. In general, the predictive models and decision-
making methods for these optimizations are based on well-known techniques such
as dynamic programming [130], Markov chain [142], fuzzy theory [129], neural
networks [148], and ABMs as mentioned previously.

3.2.3 Model

The model was developed in NetLogo [137], a tool that allows the simulation of
multi-agent systems by developing program code in an agile way. It includes special
libraries for describing the behavior of individual agents and their interactions and
defining a graphical user interface.

Figure 3.9 shows the interface of the proposed ABM. It contains four sliders to
set the following variables: the number of charging stations, the charging power, the
number of EVs, and the maximum SOC of a battery at initial charging. The latter
is the threshold that defines the maximum SOC of the battery of an EV before it is
parked at any station for recharging. In other words, this variable is a constraint that
obliges an EV to use the recharging service only when the SOC of its battery is less
than or equal to this threshold.

The interface also includes nine data monitors, particularly for real-time display
of key simulation values such as the maximum instantaneous power of the grid, the
number of occupied stations, and the number of stations supplying power to any
EV. Indeed, a station may be occupied by a vehicle that is no longer charging (i.e.,
overstay) since its battery pack has already reached 100% SOC. In this case, the
station is occupied but is not supplying power. At the bottom of the interface, there
is a window for two different plots. These graphs concern the instantaneous power
of the EV grid in the simulation test and the average SOC of all EVs that are not
parked at a charging station so that a comparison of the trend of these two quantities
is possible.
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Fig. 3.9 The NetLogo interface developed for the proposed model.

The 24 hours are divided into two time windows: during the day from 7:00 a.m.
to 7:00 p.m. and at night from 7:00 p.m. to 7:00 a.m. the next day. When an electric
car is parked at a charging station during the night, after its battery is fully charged,
it remains there until the next morning. Moreover, mobility at night is minimal
compared to daytime, but not completely absent. So all the restrictions serve only to
create the typical conditions for EV use.
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3.2.4 Results

An ABM was developed using NetLogo 6.1.1, allowing user-defined variables
to configure various simulation scenarios. Table 3.5 shows the main settings of
the model. In this case, the number of charging stations and EVs are 20 and 40,
respectively. These values were set to ensure the broadest possible coverage of
possible scenarios and to avoid saturation during the simulation. The total energy of
the battery pack of each EV is a preset variable defined in the program code; it is
40 kWh. The charging power is set at 6.6 kW and corresponds to the power of the
charger on board each vehicle. Nevertheless, the actual charging power is lower than
this value due to the efficiency, so a full charge (from 0 to 100% SOC) of a 40-kWh
battery pack takes about 7.5 hours.

Table 3.5 Model parameter setting. © 2021 IEEE.

Parameter Value
Charging stations 20
Electric vehicles 40

Battery pack 40 kWh
On board charger 6.6 kW

SOC threshold from 10% to 60% (step 10%)

The possible scenarios are indicated by the maximum SOC threshold ranging
from 10% to 60% with a step size of 10%. For each scenario, 10 simulations of 30
days each were performed. In each simulation, each vehicle’s initial battery SOC
setting and the battery depletion over time are primarily random. In this way, the
behavior of each vehicle is independent of another, allowing this model to generate all
the situations required for a comprehensive analysis through a stochastic approach.

Peak power

Figure 3.10 summarizes the results regarding the range of maximum peak power
during all simulations for each scenario. A larger value of the battery SOC at the
beginning of a charging phase generally leads to a higher maximum achievable
power. In addition, the range (see the vertical segments) and the mean (see the
horizontal markers) of the maximum peak power tend to increase. Nevertheless,
the mean is almost constant at two different levels, considering the low and high
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values of the SOC threshold (i.e., ≤ 30% and ≥ 40%, respectively). In any case, the
attitude of drivers of electric vehicles to recharge their vehicles when the batteries
have a medium or high SOC leads to a greater number of service requests, albeit
for a shorter time compared to the recharge time of the batteries at a low SOC level.
This situation leads to greater instability and, thus, uncertainty in a power grid.
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Fig. 3.10 Peak power for different thresholds of battery SOC. © 2021 IEEE.

For clarity, Fig. 3.11 gives all the results regarding the maximum peak power
for each simulation run. Indeed, it is also important to analyze the probability of
high peak power based on the number of events during the simulations. Although
relatively low power peaks are possible in each scenario, this map shows that the
probability of higher values of peak power increases as the threshold value of SOC
increases.

Charging stations

As for the impact of EV drivers’ attitudes toward charging, Fig. 3.12 shows (i) the
mean of the maximum number of stations simultaneously charging EVs and (ii) the
mean of the maximum number of occupied stations, which include the stations with
EVs in the process of recharging and the stations with parked EVs after the end of
charging. In the first case, the trend is similar to the mean of the maximum peak
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Fig. 3.11 Maximum peak power [kW] during each simulation. © 2021 IEEE.

power. These results (blue dots) are primarily grouped in two different value levels,
considering low and high values of the SOC threshold, respectively.
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Fig. 3.12 Mean maximum number of stations for different SOC thresholds. © 2021 IEEE.

On the other hand, a monotonically increasing function is more evident when
analyzing the busy stations (orange dots). In this case, the trend is almost quadratic,
according to the following relation:

Nb = 0.7321e−3 · x2 +0.4761e−1 · x+9.79 (3.9)
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In (3.9), Nb is the mean of the maximum number of occupied stations simulta-
neously for each scenario, and x is the maximum SOC of EV batteries at the first
recharge. This function concerns the analysis of occupied stations only for the range
of battery SOC from 10% to 60%. It is generally rare for an EV with an initial battery
SOC charge outside this range, especially considering that drivers’ range anxiety can
reach higher stress levels when the battery is nearly depleted and that battery aging
generally increases at high SOC values [146]. In addition, the distance between
the two graphs in Fig. 3.12 tends to increase as the SOC threshold increases. This
means that, in general, a larger value of the initial SOC in EV charging leads to a
larger probability of station unavailability, so more stations are needed to efficiently
meet the energy demand of the same fleet from a quality of service perspective. This
drawback should be addressed by better analyzing the causes that lead EVs to remain
parked beyond charging hours. However, this is beyond the scope of this work.

In this context, η is defined as the efficiency in the use of stations as follows:

η =
max(Sp)

max(Sb)
(3.10)

In (3.10), Sp is the number of stations simultaneously supplying power to EVs,
while Sb is the number of stations utilized. These parameters were evaluated during
all scenarios’ simulations, with a sampling time of 1 minute. Accordingly, η=1 if
each occupied station charges a vehicle. Otherwise, it is less than 1 in the case of
overstay of any EV. Figure 3.13 shows the values of η for each of the ten simulation
runs considered in each scenario and uses different shades of blue for quick visual
analysis. Table 3.6 gives in summary form only the minimum and maximum value
of η for each scenario. It is worth noting that both values tend to decrease with an
increase in the SOC value at the first recharge. In this case, 40% is the maximum
threshold value of SOC to reach an efficiency of 1 or close to 1 with a high probability.
Conversely, η could be less than 0.7 for SOC thresholds of 50% and 60%. This
effect can be explained by the fact that the larger the SOC value of an EV battery at
the beginning of each charging session, the higher the frequency of service requests
at charging stations. Therefore, the SOC threshold value may also represent the level
of range anxiety in this context.
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Fig. 3.13 Efficiency η obtained from each simulation. © 2021 IEEE.

Table 3.6 Efficiency in the use of stations. © 2021 IEEE.

SOC threshold [%]
η

min. max.
10 0.8000 1.000
20 0.7500 1.000
30 0.6923 1.000
40 0.7500 1.000
50 0.6923 0.8750
60 0.6250 0.8571

Discussion

First, the results suggest that the attitude of EV drivers to charge their vehicles
with an initial SOC value of the battery pack higher than 30% may lead to greater
uncertainty in predicting electricity demand and that a value greater than 40% could
drastically degrade optimized infrastructure use. This result shows that the impact is
generally different when considering the probability of high peak power and that of
station utilization, although the trend is generally very similar.

Figure 3.14 shows two snapshots of two simulations at different SOC thresholds:
one at 20% and the other at 60%. The plots are of the instantaneous power of the
EV grid and the average SOC of all vehicles not parked at a charging station. One
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Fig. 3.14 Grid instant power and SOCavg of the EV fleet in two 30-day simulations: max.
SOC threshold at 20% (a) and 60% (b). © 2021 IEEE.

observation is that high power peaks tend to follow the longer downward phase of
the fleet’s average SOC value, as in the example in the circled area of Fig. 3.14(a).
Moreover, a larger fluctuation of the average SOC value over time leads to a larger
probability of very different peak power values. On the other hand, a stable or flat
trend of SOC, as shown in Fig. 3.14(b), significantly improves the stability of peak
grid power values.



Chapter 4

Solar Energy Analysis

Some of the work described in this chapter was also previously published in [149].

4.1 Spatial analysis of solar irradiation

4.1.1 Introduction

In an increasingly global world where energy has become the subject of much
research, there is still much room for improvement in predicting both energy con-
sumption and the actual contribution of renewables to the overall energy budget. For
example, the rapid development of smart grids and the continuous growth of services
(e.g., charging stations for electric vehicles) make planning new installations and
accurate prediction of energy consumption at regional and national levels difficult,
especially for long-term forecasts [150]. In addition, rapid technological change
makes it increasingly challenging to perform accurate and rapid analyses for future
investments, especially for people who are more economically than technically savvy.
In this context, quantifying communities’ and nations’ solar photovoltaic (PV) po-
tential is becoming increasingly important for their energy self-sufficiency [151].
In particular, the goal of zero energy buildings (ZEBs) engages both researchers
and investors to analyze new renewable source installations and develop models
to predict electricity load, in addition to analyzing energy efficiency in existing
residential and commercial buildings [152, 153].
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In this scenario, machine learning, a branch of artificial intelligence (AI), has
attracted the attention of many researchers looking for more accurate predictive
models in various application areas such as physics, medicine, and economics. Thus,
intelligent computational correlation analysis of experimental data is a common task,
particularly through the use of regression models that best fit such data [154, 155].
Building these models depends primarily on selecting the most influential parameters
(i.e., descriptors) for particular processes.

This chapter describes a nonlinear compact regression model for the geospatial
analysis of solar radiation based on only two predictor variables: latitude and mean
monthly temperature. Finally, the results are presented with the full data sets in
Appendix B.

4.1.2 Background and related work

In the era of Big Data analytics, more accurate and complex methods based on
statistical data, such as machine learning techniques, are being proposed in the
literature. Among the supervised learning methods, regression-based techniques
are the most commonly used [156]. Typical models include linear regression (LR),
support vector machine (SVM), commonly referred to in this context as support
vector regression (SVR), and Gaussian process regression (GPR) [153, 157, 158]. A
comparative study of different machine learning techniques is reported in [159].

Nowadays, artificial neural networks (ANNs) are used in many application areas,
even for energy prediction [159, 160]. ANNs are generally used in applications where
a large amount of data is available to determine the function that best characterizes
the trend of that data; this scenario usually occurs in time series analysis [150, 161].
Unfortunately, there are cases where the number of available data is limited, and
these models can easily lead to a lack of accuracy. Nevertheless, polynomials are
often used in ANNs. For example, [162] has proposed the modeling of cyber systems
by multilayer networks of nonlinear function blocks (i.e., nodes), each having only
two inputs for a second-order polynomial function with 6 coefficients or weights
(i.e., ai, i from 0 to 5), as follows:

y = a0 +a1x1 +a2x2 +a3x2
1 +a4x2

2 +a5x1x2 (4.1)
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In this case, two or more cascaded nodes of different layers form higher-order
polynomials. However, simpler and more compact models are usually preferred
when the estimation accuracy is comparable to that of ANNs, especially in the case
of scattered data.

Linear regressions are first-order polynomials. They can be bilinear or trilinear,
depending on the number of input arguments (i.e., 2 or 3, respectively) [163]. For
example, a linear regression model was proposed in [164] for the monthly mean
value of solar radiation Hm as follows:

Hm = α +β1 ·T +β2 ·φ +β3 ·λ (4.2)

In (4.2), T is the monthly mean air temperature, φ and λ are the latitude and longitude,
respectively, of a given location, α is the regression constant, while β1, β2, and β3

are coefficients. In general, longitude is a geodata considered for solar radiation
analysis in a limited geographical area, such as in the research study reported in
[164].

More generally, the combinatorial algorithm considers different versions of the
initial first-order equation by adjusting the linear model, i.e., by setting one or more
coefficients to zero [37]. The different polynomials obtained in this way can then be
included in ANN structures, one for each node in a single layer.

According to [165], the models for solar radiation can be classified as follows:

• Sunshine-based models

• Temperature-based models

• Cloud-based models

• Hybrid-parameter-based models

The Ångström-Prescott equation is the most known sunshine-based model as follows:

H
H0

= a+b ·

(︄
S
S0

)︄
(4.3)

In (4.3), H is the monthly average of daily solar radiation, H0 is daily extraterrestrial
radiation, both on a horizontal plane, S is the monthly average of daily sunshine
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duration, and S0 is the average day length; a and b are coefficients [166]. Recently,
hybrid models for solar radiation forecasting have also been developed; a review is
given in [167]. However, these models are generally for time-domain analysis and
spatial-domain forecasting on a regional/national scale.

For the spatial analysis of the yearly solar irradiation Hy [kWh/m2] in a given
location and at the optimal tilt angle of crystalline silicon (c-Si) PV panels [168]
proposed a second-order polynomial with three input arguments and five coefficients
as follows:

Hy = a1 · |φ |+a2 ·h+a3 ·T 2
24 +a4 · |φ | ·T 2

24 +a5 (4.4)

In (4.4), φ , h, and T24 are, respectively, the latitude, altitude, and average daily
temperature of a given location. Although this model has a higher number of
parameters and coefficients than the proposed one, it is still used to compare the
accuracy of the results.

4.1.3 Model

Although modeling methods nowadays are primarily based on statistical data, the
approach used here differs in that the correlation of solar radiation with the geophys-
ical aspects of the sites is mainly considered in the modeling. In addition, due to the
general preference for compact models, the number of parameters and coefficients
was a constraint in the development. The proposed model for estimating the yearly
solar irradiation Hy at an optimal tilt angle of the c-Si PV panels at a given site is as
follows:

Hy = a1 +
a2

Tm
+a3 · |φ | ·T 2

m +a4 ·φ 2 (4.5)

In (4.5), Tm is the mean temperature over the year at a given location, φ is the
latitude, and ai are the model’s coefficients. In practice, this is a second-order
polynomial for both variables φ and Tm, where a3 · |φ | ·T 2

m reflects the relationship
between temperature and latitude. Regarding the last term, it is important to note
that the coefficient a4 is negative since solar radiation generally tends to decrease
for higher and higher latitudes, especially in the areas between the tropics and the
Earth’s poles.
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4.1.4 Results

The proposed model is tested for two very different geographic areas: Europe
and Africa. For each of these continents, the data relating to the temperature and
solar irradiation of 40 locations were extracted from the Photovoltaic Geograph-
ical Information System (PVGIS) by the Joint Research Centre of the European
Commission [1]. PVGIS is an online tool for analyzing the solar photovoltaic po-
tential in Europe, Africa, and large parts of Asia and America (PVGIS© European
Communities, 2001-2021) [169, 170].

Fig. 4.1 Map with the selected locations in Europe and Africa. © 2022 IEEE.

The selected locations are generally very different from each other, and they span
a total latitude of about 90◦ (from -29.74 to 59.98) and a total longitude of over 60◦

(from -16.70 to 47.32). Monthly average temperature and in-plane solar irradiation
at the optimal slope (i.e., tilt angle) of PV panels were extracted by directly accessing
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the PVGIS database through the application programming interface (API) of the tool
[171]; the program code is provided in Appendix A.

Figure 4.1 shows the locations (blue dots) on the map of the continents, whereas
the specific location names and geodata are reported in Appendix B.

Table 4.1 reports the Pearson correlation matrix (i.e., normalized covariance
matrix) of the full data set, which also includes longitude (λ ) and altitude (h) in
addition to the model parameters φ and Tm, and also Hy by PVGIS for all 80 locations.
It should be noted that the selection of the temperature and latitude for the model
is in accordance with their absolute correlation value with the solar irradiation (i.e.,
0.8937 and 0.6900, respectively) and between themselves (i.e., 0.7054).

Table 4.1 Correlation matrix for the geodata of all the 80 locations.

φ λ h Tm Hy

φ 1.0000 -0.2942 -0.6477 -0.7054 -0.6900
λ -0.2942 1.0000 0.4899 0.0162 0.1193
h -0.6477 0.4899 1.0000 0.1410 0.3146
Tm -0.7054 0.0162 0.1410 1.0000 0.8937
Hy -0.6900 0.1193 0.3146 0.8937 1.0000

For the validation of the model, all the locations are divided into two data
sets according to their respective continents: k1 for Europe and k2 for Africa. In
this way, one data set is used as a training set while the other is used as a test or
validation data set for k-fold cross-validation with k=2. Figure 4.2 shows Hy as
extracted from the PVGIS database, the estimates of the model, and the two fitting
functions of the PVGIS data for Europe (upper graph) and Africa (lower graph),
respectively. The analysis of these functions for the feature Hy vs. latitude shows
the large difference in the data distribution between these two continents. Indeed, the
fit function for the sites in Europe is quadratic, while the data distribution in Africa
resembles a 6th-order polynomial function. This remarkable dissimilarity further
strengthens the validation since the training set is always very different from the test
set. Another observation is that the two maxima of the fitting function in the bottom
graph practically coincide with the tropics at latitude -23.4◦ and +23.4◦, which is
a consequence of the inclination of the Earth’s rotation axis. Nevertheless, these
values differ for the data set considered here.
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Fig. 4.2 A comparison of the PVGIS data and the results obtained with the proposed model
in Europe (upper graph) and Africa (lower graph). © 2022 IEEE.

Table 4.2 gives the coefficients of (4.5) that minimize the root mean square
error (RMSE) for the training set, that is, for the data from Europe during the first
simulation run and those from Africa during the second simulation run. Just as
the distributions of the data are different in the two continents, so are generally the
coefficients. The algorithm used to determine the coefficient values is based on the
least squares method, but with the condition that at a given search step, the maximum
error of the training set is also less than that determined in the previous steps.

The RMSE of the model is 102.75. For comparison, Table 4.3 reports the mean
absolute percentage error (MAPE) and RMSE of the proposed two-parameter model
and the three-parameter model from (4.4), for which the coefficients are given in
[168]. It should be noted that the model proposed here improves accuracy by using
only two parameters instead of three, that is, by excluding the altitude of the locations
and with only four coefficients instead of five. Nevertheless, these models include
the same relationship between φ and T (i.e., |φ | ·T 2).

Conventional regression models are applied to the same data sets through the
same cross-validation procedure to validate the model further. Two different sim-
ulations were performed: the first with only two predictor variables (i.e., latitude
and temperature), similar to the validation of the proposed model in (4.5), and the
second additionally included the altitude of each location as a third predictor variable.
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Table 4.2 The coefficients of (4.5) for the 2-fold validation. © 2022 IEEE.

Coeff.
Value

Unit
k1 (Europe) k2 (Africa)

a1 1900 1845 kWh·m−2

a2 2103 2300 kWh·m−2·◦C
a3 0.046 0.049 kWh·m−2·◦C−2 per degree of |φ |

a4 -0.400 -0.400 kWh·m−2 per degree of φ squared

Table 4.3 Comparison of the model errors. © 2022 IEEE.

proposed model [168]
MAPE [%] RMSE [kWh/m2] MAPE [%] RMSE [kWh/m2]

4.1 102.75 5.7 129.30

Results obtained by such models using the Regression Learner App by Mathworks
[172] are reported in Table 4.4, where 2p and 3p denote the number of predictor
variables in the data set, 2 and 3, respectively.

Again, the errors are higher than the error yielded by the proposed model. It is
important to note that principal component analysis (PCA) was not applied because it
worsened the estimates. In addition, the results obtained with regression trees are not
reported since the errors associated with them were generally very high compared to
those of the other regression models.

Figure 4.3 shows the characteristic Temperature vs. Latitude for all the locations
in the data sets. The colors of the dots refer to the solar irradiation extracted from the
PVGIS database. Although the trend of feature T vs. φ generally follows the trend
of feature Hy vs. φ , the graph shows an outlier (Tm=14.5 at φ=8.84) for the location
in Ethiopia as a result of altitude (above 2,000 m a.s.l.). Although the proposed
model does not include altitude as a predictor, this outlier is not present in the results;
in fact, the absolute error of estimate for this site is 2.9%. This result is another
confirmation of the goodness of the model.
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Table 4.4 Results obtained by conventional regression models. © 2022 IEEE.

Regression model
RMSE

2p 3p
Linear 194.52 167.51

Interactions Linear 136.45 136.47
Robust linear 192.94 167.90

Stepwise Linear 136.45 132.30
Linear SVM 191.38 166.83

Quadratic SVM 146.29 159.33
Cubic SVM 138.13 182.45

Fine Gaussian SVM 212.07 200.77
Medium Gaussian SVM 132.60 123.95
Coarse Gaussian SVM 183.06 187.55

Optimizable SVM 123.45 406.67
Squared Exponential GPR 127.46 127.65

Matern 5/2 GPR 122.48 120.38
Exponential GPR 129.65 111.10

Rational Quadratic GPR 127.44 118.64
Optimizable GPR 120.97 113.51
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Fig. 4.3 Tm vs. φ characteristic for all the locations. © 2022 IEEE.



Chapter 5

Conclusion and Future Directions

To make the analysis and possible optimization of energy resources more accessible
to end users, it is necessary to provide compact models with limited parameters
and coefficients that allow immediate results. This thesis highlights the opportunity
to provide easy-to-use models and tools and confirms the possibility of creating
compact models with reasonable accuracy for complex systems.

Since developing new compact models for such systems is not just a matter of
model reduction or complexity minimization, a preliminary method is proposed,
albeit based on a slight variation of existing data analysis techniques. In particular,
the selection of predictor variables that best contribute to the definition of the model
function describing the characteristics of the response variable is based on the use of
parametric and/or nonparametric correlation methods. This procedure was applied
to solar energy analysis in the field of photovoltaics through the use of Pearson
correlation analysis.

Furthermore, the proposed compact modeling approach considers existing mod-
els’ adaptation and/or extension. In this case, the well-known Peukert’s law for
analyzing the performance of batteries discharged at constant currents, proposed at
the end of the 19th century for lead-acid batteries, has been adapted for the analysis
of the performance of alkaline and lithium-based primary batteries also discharged
at pulse currents.

In addition, some cost analysis models have been further proposed due to users’
attention regarding energy costs. In particular, some simple models have been
reported for the analysis and possible optimization of the costs for the use of batteries



72 Conclusion and Future Directions

in devices (e.g., single cells for sensors) and systems (e.g., battery packs in electric
vehicles). Since the performance of the batteries depends on the operating (e.g.,
temperature) and working (e.g., current) conditions, in addition to the cost models, a
method has been provided for comparing the properties of different batteries from
their datasheets, in order to choose for a specific application the one which has the
lowest total cost. On the other hand, a basic metric for the cost analysis of the wear
of battery packs in electric vehicles was proposed; this is based on the characteristics
of road route and travel distance.

In future work, the methodology for defining compact mathematical functions
should be further outlined, especially for the nonlinear descriptions of the emergent
properties in complex systems. Furthermore, from an implementation point of view,
analytical models should be included in user-friendly tools or apps for their practical
use.
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Appendix A

MATLAB code for the PVGIS data extraction

clear all
close all
clc
path = ’saved_2/’;

% Coordinates of the locations in Europe
E_coord = [59.98 30.46; 55.94 -3.30; 54.64 25.27; 52.54 13.52; 52.20 21.00; 52.06 4.36; 51.48 0.00; 50.86 4.37; 50.45 30.46;
50.13 8.70; 50.12 14.62; 48.91 2.37; 48.80 9.20; 48.17 16.39; 48.11 17.06; 47.47 19.15; 47.14 9.50; 46.99 28.84; 46.96 7.43;
46.47 11.32; 46.08 14.48; 45.81 15.97; 45.11 7.73; 44.80 20.38; 44.79 -0.53; 44.43 26.00; 43.83 18.34; 42.63 23.41; 42.42
19.26; 41.97 12.53; 41.36 19.80; 41.07 28.77; 40.35 -3.73; 40.16 44.52; 38.75 -9.15; 37.98 23.70; 37.38 -5.95; 37.20 14.95;
36.15 -5.35; 35.14 33.38];

% Coordinates of the locations in Africa
A_coord = [36.74 10.24; 36.70 3.10; 33.96 -6.87; 32.76 13.17; 29.74 31.38; 23.31 32.33; 18.48 -15.21; 15.27 39.17; 15.27
32.50; 15.27 -4.17; 13.66 -15.69; 13.39 -16.70; 12.05 42.74; 12.05 -1.64; 10.45 41.73; 10.45 7.36; 8.84 38.11; 8.84 15.41; 7.97
-11.76; 7.23 -5.68; 5.63 0.00; 4.31 18.52; 4.02 31.34; 4.02 10.45; 2.41 45.80; 0.80 32.95; 0.52 25.20; -2.14 30.56; -4.02 39.38;
-4.20 15.23; -8.84 33.24; -13.66 33.85; -13.66 15.69; -15.11 39.31; -15.27 27.50; -18.48 47.32; -18.48 30.42; -23.31 16.60;
-24.58 25.83; -29.74 25.85];

nE = size(E_coord,1);
nA = size(A_coord,1);

% Setting the pause time between queries
pause(’on’);
t = 1;

% Database queries
for i=1:nE

url=strcat(’https://re.jrc.ec.europa.eu/api/PVcalc?lat=’,num2str(E_coord(i,1)),’&lon=’,num2str(E_coord(i,2)),...
’&peakpower=176&loss=16&optimalinclination=1&mountingplace=free&outputformat=csv&browser=1’);

data_FS_PV = webread(url);

filename = strcat(’./saved_2/coord_’,num2str(E_coord(i,1)),’_’,num2str(E_coord(i,2)),’_FS_PV.mat’);

save(filename,’data_FS_PV’);

pause(t);
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url = strcat(’https://re.jrc.ec.europa.eu/api/PVcalc?lat=’,num2str(E_coord(i,1)),’&lon=’,num2str(E_coord(i,2)),...
’&peakpower=176&loss=16&optimalinclination=1&mountingplace=building&outputformat=csv&browser=1’);

data_BI_PV = webread(url);

filename = strcat(’./saved_2/coord_’,num2str(E_coord(i,1)),’_’,num2str(E_coord(i,2)),’_BI_PV.mat’);

save(filename,’data_BI_PV’);

pause(t);

% Monthly radiation and daily temperature (average per month)

url = strcat(’https://re.jrc.ec.europa.eu/api/MRcalc?lat=’,num2str(E_coord(i,1)),’&lon=’,num2str(E_coord(i,2)),...
’&usehorizon=1&optrad=1&mr_dni=1&avtemp=1&startyear=2010&endyear=2016&outputformat=csv&browser=1’);

data_MR = webread(url);

filename = strcat(’./saved_2/coord_’,num2str(E_coord(i,1)),’_’,num2str(E_coord(i,2)),’_MR.mat’);

save(filename,’data_MR’);

pause(t);
end
for i=1:nA

url=strcat(’https://re.jrc.ec.europa.eu/api/PVcalc?lat=’,num2str(A_coord(i,1)),’&lon=’,num2str(A_coord(i,2)),...
’&peakpower=176&loss=16&optimalinclination=1&mountingplace=free&outputformat=csv&browser=1’);

data_FS_PV = webread(url);

filename = strcat(’./saved_2/coord_’,num2str(A_coord(i,1)),’_’,num2str(A_coord(i,2)),’_FS_PV.mat’);

save(filename,’data_FS_PV’);

pause(t);

url = strcat(’https://re.jrc.ec.europa.eu/api/PVcalc?lat=’,num2str(A_coord(i,1)),’&lon=’,num2str(A_coord(i,2)),...
’&peakpower=176&loss=16&optimalinclination=1&mountingplace=building&outputformat=csv&browser=1’);

data_BI_PV = webread(url);

filename = strcat(’./saved_2/coord_’,num2str(A_coord(i,1)),’_’,num2str(A_coord(i,2)),’_BI_PV.mat’);

save(filename,’data_BI_PV’);

pause(t);

% Monthly radiation and daily temperature (average per month)

url = strcat(’https://re.jrc.ec.europa.eu/api/MRcalc?lat=’,num2str(A_coord(i,1)),’&lon=’,num2str(A_coord(i,2)),...
’&usehorizon=1&optrad=1&mr_dni=1&avtemp=1&startyear=2010&endyear=2016&outputformat=csv&browser=1’);

data_MR = webread(url);

filename = strcat(’./saved_2/coord_’,num2str(A_coord(i,1)),’_’,num2str(A_coord(i,2)),’_MR.mat’);

save(filename,’data_MR’);

pause(t);
end

% Generating the data tables: five columns (i.e., lat, long, alt, Hy, T)
A = zeros(nE,5);
B = zeros(nA,5);
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for i=1:nE

filename_PV = strcat(path,’coord_’,num2str(E_coord(i,1)),’_’,num2str(E_coord(i,2)),’_FS_PV.mat’);

filename_MR = strcat(path,’coord_’,num2str(E_coord(i,1)),’_’,num2str(E_coord(i,2)),’_MR.mat’);

A(i,1) = E_coord(i,1); % latitude

A(i,2) = E_coord(i,2); % longitude

A(i,3) = E_obs(i,3); % altitude

load(filename_MR);

A(i,4) = sum(data_MR.T2m(73:84))/12; % monthly mean temperature

load(filename_PV);

A(i,5) = sum(data_FS_PV.H_i__m(1:12)); % Hy[kWh/m2]: yearly irradiation
end

for i=1:nA

filename_PV = strcat(path,’coord_’,num2str(A_coord(i,1)),’_’,num2str(A_coord(i,2)),’_FS_PV.mat’);

filename_MR = strcat(path,’coord_’,num2str(A_coord(i,1)),’_’,num2str(A_coord(i,2)),’_MR.mat’);

B(i,1) = A_coord(i,1); % latitude

B(i,2) = A_coord(i,2); % longitude

B(i,3) = A_obs(i,3); % altitude

load(filename_MR);

B(i,4) = sum(data_MR.T2m(73:84))/12; % monthly mean temperature

load(filename_PV);

B(i,5) = sum(data_FS_PV.H_i__m(1:12)); % Hy[kWh/m2]: yearly irradiation

end

M = [A; B];

M_reg_Hy_2p = [M(:,1) M(:,4) M(:,5)]; % matrix for the Regression Learner

M_reg_Hy_3p = [M(:,1) M(:,3) M(:,4) M(:,5)]; % matrix for the Regression Learner

nM = size(M,1);



Appendix B

Table 5.1 and Table 5.2 report the full data sets of the locations in Europe and Africa,
respectively.

The locations in Europe were selected from 33 different countries, in the latitude
range from 33.38◦ to 59.98◦, in the altitude range from 0 to 1011 m a.s.l., and the
mean temperature range from 6.1 to 20.9 ◦C.

The locations in Africa were selected from 38 different countries, in the latitude
range from -29.74◦ to 36.74◦, in the altitude range from 0 to 2379 m a.s.l., and the
mean temperature range from 14.5 to 30.6 ◦C.
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Table 5.1 Locations in Europe with related geodata and the yearly solar irradiation Hy as
obtained from the PVGIS tool [1] and the proposed model in (4.5). Each pair of coordinates
refers to a place in a region where the mentioned location is generally the most representative.
© 2022 IEEE.

Location Nation
φ λ h Tm Hy [kWh/m2] ∆

[◦] [◦] [m asl] [◦C] PV GIS model [%]

St. Petersburg Russia 59.98 30.46 18 6.1 994 893 -10.2
Edinburgh Scotland 55.94 -3.30 44 9.3 1025 1078 5.1
Vilnius Lithuania 54.64 25.27 186 7.9 1153 1109 -3.9
Berlin Germany 52.54 13.52 55 10.6 1261 1248 -1.0
Warsaw Poland 52.20 21.00 110 9.5 1273 1228 -3.6
The Hague Netherlands 52.06 4.36 0 11.6 1270 1302 2.5
London England 51.48 0.00 28 11.2 1231 1308 6.2
Brussels Belgium 50.86 4.37 54 11.1 1262 1325 5.0
Kiev Ukraine 50.45 30.46 165 9.3 1356 1288 -5.0
Frankfurt Germany 50.13 8.70 133 11.4 1304 1360 4.3
Prague Czech Rep. 50.12 14.62 280 9.9 1319 1313 -0.4
Paris France 48.91 2.37 38 11.0 1370 1388 1.3
Stuttgart Germany 48.80 9.20 242 11.4 1368 1404 2.6
Vienna Austria 48.17 16.39 223 11.0 1426 1412 -0.9
Bratislava Slovakia 48.11 17.06 134 12.0 1466 1451 -1.0
Budapest Hungary 47.47 19.15 123 11.3 1526 1443 -5.4
Vaduz Liechtenstein 47.14 9.50 454 11.2 1352 1452 7.4
Chişinău Moldova 46.99 28.84 123 11.5 1499 1466 -2.2
Bern Switzerland 46.96 7.43 571 9.7 1480 1416 -4.4
Bolzano Italy 46.47 11.32 238 12.7 1736 1530 -11.8
Ljubljana Slovenia 46.08 14.48 311 12.0 1462 1512 3.4
Zagreb Croatia 45.81 15.97 127 12.4 1513 1536 1.5
Turin Italy 45.11 7.73 210 13.2 1725 1592 -7.7
Belgrade Serbia 44.80 20.38 80 13.0 1568 1591 1.5
Bordeaux France 44.79 -0.53 4 14.2 1594 1649 3.5
Bucharest Romania 44.43 26.00 90 12.2 1613 1568 -2.8
Sarajevo Bosnia-Herzeg. 43.83 18.34 514 11.3 1455 1553 6.8
Sofia Bulgaria 42.63 23.41 575 11.6 1584 1597 0.8
Podgorica Montenegro 42.42 19.26 48 17.2 1854 1872 0.9
Rome Italy 41.97 12.53 54 17.7 1912 1916 0.2
Tirana Albania 41.36 19.80 111 16.3 1870 1843 -1.5
Istanbul Turkey 41.07 28.77 90 15.1 1718 1781 3.6
Madrid Spain 40.35 -3.73 615 15.8 2111 1834 -13.1
Yerevan Armenia 40.16 44.52 1011 11.1 1820 1648 -9.4
Lisbon Portugal 38.75 -9.15 89 16.9 1994 1920 -3.7
Athens Greece 37.98 23.70 30 18.7 2057 2043 -0.6
Seville Spain 37.38 -5.95 14 18.7 2189 2046 -6.5
Syracuse Italy 37.20 14.95 348 18.6 1937 2046 5.6
Gibraltar Gibraltar 36.15 -5.35 4 18.8 2018 2069 2.6
Nicosia Cyprus 35.14 33.38 171 20.9 2161 2214 2.4
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Table 5.2 Locations in Africa with related geodata and the yearly solar irradiation Hy as
obtained from the PVGIS tool [1] and the proposed model in (4.5). Each pair of coordinates
refers to a place in a region where the mentioned location is generally the most representative.
© 2022 IEEE.

Location Nation
φ λ h Tm Hy [kWh/m2] ∆

[◦] [◦] [m asl] [◦C] PV GIS model [%]

Tunisi Tunisia 36.74 10.24 16 19.5 2031 2111 3.9
Algiers Algeria 36.70 3.10 12 19.5 2058 2113 2.7
Rabat Morocco 33.96 -6.87 75 18.7 2177 2099 -3.6
Tripoli Lybia 32.76 13.17 51 22.6 2258 2331 3.2
Cairo Egypt 29.74 31.38 96 22.6 2487 2337 -6.0
Aswan Egypt 23.31 32.33 240 27.5 2675 2567 -4.0
Nouakchott Mauritania 18.48 -15.21 12 28.6 2463 2533 2.8
Asmara Eritrea 15.27 39.17 1337 23.5 2226 2283 2.5
Karthoum Sudan 15.27 32.50 379 30.6 2554 2532 -0.9
Mopti Mali 15.27 -4.17 261 28.8 2428 2462 1.4
Kaolack Senegal 13.66 -15.69 0 27.5 2337 2376 1.7
Banjul Gambia 13.39 -16.70 21 25.1 2285 2300 0.6
Djibuti Rep. of Djibuti 12.05 42.74 942 26.9 2394 2322 -3.0
Ouagadougou Burkina Faso 12.05 -1.64 319 28.0 2345 2351 0.3
Dire Dawa Ethiopia 10.45 41.73 677 28.8 2464 2328 -5.5
Kaduna Nigeria 10.45 7.36 589 25.2 2258 2246 -0.5
Addis Ababa Ethiopia 8.84 38.11 2379 14.5 2163 2099 -2.9
Moundou Chad 8.84 15.41 420 27.4 2274 2251 -1.0
Bo Sierra Leone 7.97 -11.76 86 24.8 1993 2185 9.6
Bouaflé Côte d’Ivoire 7.23 -5.68 185 25.3 2028 2176 7.3
Accra Ghana 5.63 0.00 9 26.4 2159 2147 -0.5
Bangui Central Afr. Rep. 4.31 18,52 383 24.6 2035 2098 3.1
Juba South Sudan 4.02 31.34 803 25.1 2135 2094 -2.0
Douala Cameroon 4.02 10.45 327 24.6 1832 2091 14.1
Mogadishu Somalia 2.41 45.80 32 27.2 2417 2057 -14.9
Kampala Uganda 0.80 32.95 1075 22.1 2071 2013 -2.8
Kisangani D.R. of the Congo 0.52 25.20 399 24.0 1876 2001 6.7
Kibungo Rwanda -2.14 30.56 1585 19.8 1858 2043 10.0
Mombasa Kenya -4.02 39.38 219 24.0 2082 2088 0.3
Brazzaville Rep. of the Congo -4.20 15.23 377 24.1 1843 2092 13.5
Mbeya Tanzania -8.84 33.24 1261 21.0 2150 2148 -0.1
Lilongwe Malawi -13.66 33.85 1438 18.7 2106 2157 2.4
Huambo Angola -13.66 15.69 1562 20.3 2169 2188 0.9
Nampula Mozambique -15.11 39.31 388 23.6 2086 2285 9.5
Lusaka Zambia -15.27 27.50 1030 22.1 2191 2245 2.5
Antananarivo Madagascar -18.48 47.32 1392 17.4 2113 2143 1.4
Harare Zimbabwe -18.48 30.42 1281 21.0 2194 2238 2.0
Windhoek Namibia -23.31 16.60 1794 20.1 2301 2220 -3.5
Gaborone Botswana -24.58 25.83 1015 22.1 2147 2304 7.3
Bloemfontein South Africa -29.74 25.85 1411 17.1 2103 2068 -1.7
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