POLITECNICO DI TORINO
Repository ISTITUZIONALE

Design Space Exploration of Approximate Computing Techniques with a Reinforcement Learning
Approach

Original

Design Space Exploration of Approximate Computing Technigues with a Reinforcement Learning Approach / Saeedi,
Sepide; Savino, Alessandro; Di Carlo, Stefano. - ELETTRONICO. - (2023), pp. 167-170. (Intervento presentato al
convegno 2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN-W) tenutosi a Porto (PRT) nel 27-30 June 2023) [10.1109/DSN-W58399.2023.00047].

Availability:
This version is available at: 11583/2981399 since: 2023-08-30T11:24:56Z

Publisher:
IEEE

Published
DOI:10.1109/DSN-W58399.2023.00047

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

28 April 2024

Design Space Exploration of Approximate
Computing Techniques with a Reinforcement
Learning Approach

Sepide Saeedi, Alessandro Savino, Stefano Di Carlo
Politecnico di Torino, Control and Computer Eng. Dep., Torino, Italy
emails: {sepide.saeedi, alessandro.savino, stefano.dicarlo} @polito.it

Abstract—Approximate Computing (AxC) techniques have
become increasingly popular in trading off accuracy for per-
formance gains in various applications. Selecting the best AxC
techniques for a given application is challenging. Among pro-
posed approaches for exploring the design space, Machine
Learning approaches such as Reinforcement Learning (RL) show
promising results. In this paper, we proposed an RL-based
multi-objective Design Space Exploration strategy to find the
approximate versions of the application that balance accuracy
degradation and power and computation time reduction. Our
experimental results show a good trade-off between accuracy
degradation and decreased power and computation time for some
benchmarks.

Index Terms—Approximate Computing, Design Space Explo-
ration, Reinforcement Learning.

I. INTRODUCTION

Approximate Computing (AxC) techniques have become
increasingly popular to improve the energy efficiency of
computations, power consumption, and computation time,
degrading the accuracy of the computation. However, the
reduction is possible by sacrificing the computation accuracy
at different parts of the computing chain. Trading off accuracy
for improved power consumption and performance is known
as Approximate Computing (AxC) [1f]. Selecting the most
suitable AxC techniques for an application is challenging and
many publications proposed how to explore the design space
to find the most suitable AxC techniques for an applica-
tion [2]. Among various approaches, such complex Design
Space Exploration (DSE), including genetic algorithms and
simulated annealing [3[], machine learning (ML) ones such
as Reinforcement Learning (RL) showed promising results in
improving the DSE [4], minimizing the number of designs to
evaluate while maximizing the quality of the DSE model and
reducing the exploration time [J5].

RL is a machine learning paradigm in which an agent learns
a desired behavior by interacting with a dynamic environment.
A standard RL setup involves an agent connected to its envi-
ronment via observations and actions. During each interaction

This work has received funding from the APROPOS project in the European
Union’s Horizon 2020 research and innovation program under the Marie
Sktodowska-Curie grant agreement No 956090 and from the project "National
Center for HPC, Big Data and Quantum Computing”, CN00000013 (Bando
M42C - Investimento 1.4 — Avviso Centri Nazionali” — D.D. n. 3138 of
16.12.2021, funded with MUR Decree n. 1031 of 17.06.2022).

with the environment, the agent receives observations about
the current state of the environment and a reward based on
its previous action. Based on this, it must select a new action
to move toward an optimization goal, learning how to do this
over time by systematic trial and error [6].

Wau et al. proposed a DSE framework using RL to optimize
resource allocation and critical path timing [4]. The framework
extracts the data flow graphs from the HLS C/C++, then
the RL-based DSE engine explores the resource allocation
options and finds optimized or Pareto solutions. The results
show that their proposed RL-based engine outperforms genetic
algorithms and simulated annealing. However, the exploration
is limited to the trade-offs of different resources and critical
path timing on an FPGA for a specific approximated version
of an application, not considering the different approximated
versions. A similar ML-based approach to DSE was proposed
in [5]] to reduce the exploration time of the HLS tools for a
certain application.

In [7], the authors propose a new approach for the DSE
of approximate applications to minimize the error rate using
the data lifetime to select the approximation. Though their
experimental results show their approach’s effectiveness, the
paper does not cover multi-objective optimization, i.e., si-
multaneously considering accuracy, power consumption, and
computation time.

This paper proposes an RL-based multi-objective DSE
methodology based on the resource selection process proposed
by [7] able to optimize an application balancing the final
accuracy with the power consumption and the computation
time introduced by the selective activation of approximate
adders [8]] and multipliers [9].

II. METHODOLOGY

This paper considers a CPU running software with ded-
icated instructions to trigger different approximate adders
and multipliers. To generate approximate versions of a target
application, the strategy is to select variables from the target
application and approximate all sums or multiplications on
those variables (as in [[7]). Since several design choices exist
(i.e., different sets of variables and different approximate
adders and multipliers), we exploit an RL agent to explore the
design space automatically. The exploration aims to find the

RL Environment

Action Benchmark
,,,,,,,,,, > Current State
L Ny
. Select
Observations
RL Agent & rewards
Approximated
Version
Calculate Execute
Parameters:
Power, Delay, (A
Accuracy Outputs
——
Fig. 1. RL environment: at each step selects an approximated version of

the benchmark to execute and calculates the parameters to return the new
observations and rewards to the RL agent.

best trade-off, or one of the best possible trade-offs, between
accuracy degradation and power/computation time.

This process is depicted in The environment uses
available approximate operators and a set of variables to create
an approximate application according to agent instructions.
The approximate version’s accuracy, power, and computation
time are evaluated based on pre-characterized approximate
operators. The agent receives observations and rewards from
the environment, enabling them to take the next action to
change the environment state. The RL setup mentioned above
comprises four components: the environment, the agent, the
state, and the action.

The environment formally defined in is the
system in which the agent operates. It models all the aspect
of the optimization. First, the list of variables is modeled
as a boolean vector where variables are indexed and se-
lected if the corresponding index is 1 (variablesgppror =
{ap,a1,...,an—1la; € 0,1}). The approximate adders
(adder € {1,2,...,Nyqq}) and the approximate multipliers
(multiplier € {1,2,..., Ny }) are indexed to be linked to
the set of available ones. Both sets are sorted by increasing
accuracy degradation. Also the outcome of the computation
is modeled as the decrease in accuracy, through an evaluation
function comparing the output of the precise version with the
approximate one (Aacc = ferr (OUtPULprecise, OULPULapproz))-
In the actual implementation, f.,. evaluates the Mean Abso-
lute Error (MAE) as the accuracy metric. MAE is calculated
in [Equation 2| where N is the number of the benchmark
outputs. exactOutput; and approxOutput; are the exact and
approximated values of each output;. Eventually, the power
reduction, expressed as the difference between the power
consumption estimated for the precise execution and the ap-
proximated one (Apower = powerprecise — POWET approg) and
the computational time reduction, expressed as the difference
between the time used by precise execution in sums and
multiplications and the one from the approximated version
(Atime = timeprecise — tiMegpprog) are included.

environment = {adder, multiplier, variablesqpprox,
Aacc, Apower, Atime} (1)

The state represents the environment at a particular time
(i.e., the list of approximated variables and the selected
approximate adder and multiplier). This information is used
to deploy the execution of an approximate application ob-
tained through automatic code instrumentation that enables
collecting observations (i.e., Aacc, Apower, and Atime). For
example, the current state at a random step might look like
(4,5, (1,0,---,0),30,100,200), which, according to
tion 1] states that the configuration includes approximate
adder number 4 and multiplier number 5, and only the first
variable in the list is selected for approximation. The last three
elements represent observations meaning that, i.e., accuracy
was reduced by 30 units, power consumption by 100 units
(e.g., mW), and computation time was reduced by 200 units

(e.g., ns).

N-1
MAFE = %(Z exactOutput; — approxOutput;) (2)
i=0

The agent is the learning algorithm that interacts with the
environment. It observes the current state of the environment
and selects an action to take based on that state. The agent’s
goal is to learn a policy, which is a mapping from states to
actions, that maximizes the expected cumulative reward.

The action is the decision made by the agent at a particular
time step to apply to the environment and change its state. In
our work, three possible actions are: changing the type of the
adder, changing the type of the multiplier, or removing/adding
one variable in the list of approximated variables.

In RL, the reward helps the agent decide which action to
take and learn the optimization policy. Our approach defines
the reward as shown in The reward obtained in
each step is accumulated with previous rewards. If the total
reward reaches a maximum predefined one, the agent stops.

Algorithm |1| analyzes the current state. A further approx-
imation can be introduced if the accuracy loss is below the
tolerable accuracy loss threshold for the benchmark (line 4).
This acceptable threshold is an exploration parameter and
can be adapted to the case. If the most approximated adder
and multiplier are in use and all variables are approximated
maximum reward possible is given, and the “terminate” flag
is set to true (lines 5 to 8). Otherwise (lines 9 to 16), the gain
in power consumption and computation time must be above
a threshold to obtain a positive reward (+1). Otherwise, the
agent gets a negative reward (-1). Line 19 gives the maximum
negative reward if the accuracy loss is above its threshold.
Finally, the cumulative reward is updated (line 21).

We used the Q-learning as a learning algorithm along
with the RL environment. It is a model-free value-based RL
algorithm that lets the agent learn the value of an action in each
state [[10]. Q-Learning finds the optimal action selection policy

Input: R //Maximum cumulative reward ;
Input: Reym // Cumulative reward ;
Input: state := (adder, multiplier, variables, Aacc, Apower, Atime);
if Aace <= accyp, then
if (stateqdder == Nadd and state,, 1 == Ny and variables
contains all ones then
reward = R ;
terminate = True;
end
else
10 if (Apower >= pp) and (Atime >= t}) then
1 | reward = 1;
12 end
13 else

B W N =

e % 9 o

‘ reward = -1;
15 end

16 end

17 end
18 else
v |
20 end
21 Reym += reward;

Algorithm 1: RL Rewards at step i

reward = -R;

TABLE I
SELECTED ADDERS FROM EVOAPPROXLIB

operator Type | MRED | Power | Computation time

(mW) (ns)
8-bit adder | 1HG 0 0.033 0.63
8-bit adder 6PT 0.14 0.029 0.55
8-bit adder 6R6 2.93 0.012 0.27
8-bit adder 0TP 6.16 0.0095 0.24
8-bit adder | 00M 14.58 | 0.0046 0.17
8-bit adder | 02Y 24.87 | 0.0015 0.11
16-bit adder | 1A5 0 0.072 1.28
16-bit adder | OGN | 0.005 0.057 1.04
16-bit adder | OBC 0.018 0.051 0.95
16-bit adder | OHE 0.16 0.036 0.68
16-bit adder | OSL 9.54 0.011 0.27
16-bit adder | 067 22.35 | 0.0041 0.20

using a Q function that returns the expected future reward of
an action at a state. In Q-learning, an accumulated reward
can be defined, and the action selection is based on the state
of the previous step beside the reward. Hence, it is suitable
for maximizing the accumulated reward while considering the
last state. For further details on how Q-function is updated,
the reader may refer to [10].

III. EXPERIMENTAL RESULTS

The RL implementation relies on the Gymnasium [11]
library, a fork of the OpenAl Gym [12] library, to implement
the RL engine. Gymnasium is an open-source toolkit for
developing and comparing RL algorithms. It provides an API
to define environments, or simulated tasks, where agents can
learn and improve their decision-making abilities through trial
and error. We implemented a Q-learning algorithm in which
the maximum number of steps is 10,000. This number is
selected upon trial and error. As an approximate component
database, we exploited the EvoApproxLib [8]], [9] that provides
C models of 8 and 16 bits adders, and 8 and 32 bits multipliers.
Tables [I] and [[T] report all selected operators and their Mean
Relative Error Distance (MRED), power consumption, and
computation time, ordered by MRED.

TABLE II
SELECTED MULTIPLIERS FROM EVOAPPROXLIB

operator Type MRED | Power | Computation time

(W) (ns)
8-bit multiplier 111Q 0 0.391 1.43
8-bit multiplier 4X5 0.033 0.380 1.40
8-bit multiplier GTR 1.23 0.303 1.46
8-bit multiplier L93 4.52 0.178 1.11
8-bit multiplier 18UH 17.98 0.062 0.90
8-bit multiplier 17M] 53.17 | 0.0041 0.11
32-bit multiplier | precise 0 10.76 4.565
32-bit multiplier 000 0.00 10.46 4.470
32-bit multiplier 018 0.01 4.32 3.220
32-bit multiplier 043 1.45 1.63 2.440
32-bit multiplier 053 10.59 1.05 2.030
32-bit multiplier 067 41.25 0.51 1.750

We tested our approach with two applications: Matrix
Multiplication with two different matrices sizes (10 by 10 and
50 by 50) and FIR (with 100 and 200 samples, all white noise
signals with Low Pass Filter functionality). The thresholds
were set after executing the precise versions: the power (p:)
and computation time (¢;,) thresholds were set to 50% of
their value for the precise version. Also, the precise outputs
were averaged, and the accuracy threshold (acc;y) was set as
0.4 times the average output. Based on the rules defined in
the agent stopped after 2,000 and 4,000 steps
for the Matrix Multiplication benchmarks and after 500 and
1,240 for the FIR benchmarks. All the results are reported in

TABLE III
EXPLORATIONS RESULTS FOR POWER, COMPUTATION TIME, AND
ACCURACY
Matrix Mult. FIR
Benchmarks 10x10] 50x50 100 T 200
A Power Consumption (mW)
min 15 0.55 529.515 | 1059.345
solution 415.3 | 753.72 [10850.855| 1237.247
max 418.4 [1552.017|17344.390 | 34699.1
A Computation time (ns)
min 50 -90 563.135 | 1126.605
solution 1780 | 1460.8 | 2664.385 | 3951.525
max 1840 | 5707.6 | 6547.495 | 13098.89
Accuracy degradation
min 0.02 0 1096.03 395.74
solution 19.95 | 0.736 1096.03 |27580.345
max 204.71| 26.7964 | 31671.43 | 27580.35
Configuration

Adder Type 00M 6R6 OGN 067
Multiplier Type | 17MJ L93 043 018

In Table power consumption and computation time
are expressed as the difference (A) between the parameter
obtained from the precise version and the one obtained from
the approximation run of the last step. The min and max
rows correspond to the minimum, and maximum A found in
the exploration. The accuracy degradation shows how much
computation accuracy is reduced for the selected approximate

version, using The Adder and Multiplier types
show which operators were selected for this approximate

version, as named in Tables [[] and [[I]

For all cases, the agent identified approximations respecting
the given constraints confirming the capability of exploring
the space. Comparing the selected solution and the maximum
observed values for the different parameters can indicate how
the agent could push the approximation without violating the
imposed constraints.

To better analyze the results, [Figure 2| and [Figure 3| show
the power and computation time alongside accuracy for all the
exploration steps for the Matrix multiplication, 10 by 10, and
FIR with 100 samples, respectively. The "Power” at each step
represents the difference between the approximate and precise
versions’ power consumption. The same applies to the “Comp.
Time” that shows the computation time. The trend lines help
better visualize the exploration results. The different trends in
the two figures highlight how the algorithm learns properly
and move toward an optimization in the Matrix Multiplication
benchmark, while it struggles in the FIR one.

2500 250

2000

1500

Gain
Accuracy

1000

500 f

0

H RO ANDDOUMNMONT O ANONDWOLMONMN S - 0 Wn
XNOILITMANANONINTN O DRV TN A
ANMITNOONXBNOATNMNITNON XD
[P JRD Rl PRl PSRl g gRiripa b
steps
Power Comp. Time Accuracy

Trend (Power) Trend (Comp. Time) Trend (Accuracy)

Fig. 2. Exploration outcomes evolution through for Matrix Multiplication
(10x10).

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

35000

30000

25000

20000

Gain

15000

Accuracy

10000

5000

0 0
HENOMUOVUAOANWMOEATNOMUOION WM N = T
NN MOOVOMILNOANT OO MmMW X
HEH A A AN ANANNMOMONONN S T
steps
Power Comp. Time Accuracy

Trend (Power) Trend (Comp. Time) Trend (Accuracy)

Fig. 3. Exploration outcomes evolution through for FIR (100 samples).

shows the average reward every 100 steps for the
same Matrix multiplication and FIR benchmark configurations.

For Matrix multiplication, on average, the reward continuously
improves in the first 600 steps, slowing down for a while
and improving again, confirming that the agent learned. On
the contrary, the FIR does not follow such a continuous
improvement, ensuring that the learning strategy is not entirely
effective and that further investigations are required.

0.8
0.7
0.6
0.5
0.4
03
0.2
0.1

100 200 300 400 500 600 700 800 900 1000

Rewards averaged every 100 steps

steps

=== Average Reward for Matrix Multiplication - 10 x 10
Average Reward for FIR - 100 samples

Fig. 4. Average reward evolution for the Matrix multiplication (10x10) and
FIR (100 samples).

IV. CONCLUSION

In this paper, we proposed preliminary results obtained
while developing a DSE strategy based on Reinforcement
Learning to optimize an application, balancing the final accu-
racy with the power consumption and the computation time.
Experimental results show that the agent can find solutions for
a good trade-off between accuracy degradation and power and
computation time reductions on some benchmarks. However,
additional work is required to improve the learning strategy
and make it general enough to work with a larger set of
applications.

REFERENCES

[1] A. Bosio, D. Ménard, and O. Sentieys, Eds., Approximate
Computing Techniques. ~ Springer International Publishing, 2022.
[Online]. Available: https://doi.org/10.1007/978-3-030-94705-7

[2] W. Hu et al., “Exploring the design space of approximate arithmetic
circuits using reinforcement learning,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). 1EEE, 2019, pp.
442-447.

[3] M. Rizakis et al., “Approximate fpga-based lstms under computation
time constraints,” in Applied Reconfigurable Computing. Architectures,
Tools, and Applications, N. Voros et al., Eds. Cham: Springer
International Publishing, 2018, pp. 3-15.

[4] Y. Wu et al., “Tronman: Reinforcement learning based design space ex-
ploration for approximate computing,” in 2021 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2021, pp. 1-8.

[5] Q. Gautier et al., “Sherlock: A multi-objective design space exploration
framework,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 27, no. 4, pp. 1-20, 2022.

[6] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237-285, 1996.

[71 A. Savino et al., “Approximate computing design exploration through
data lifetime metrics,” in 2019 IEEE European Test Symposium (ETS),
2019, pp. 1-7.

[8] V. Mrazek et al., “Evoapprox8b: Library of approximate adders and
multipliers for circuit design and benchmarking of approximation meth-
ods,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, 2017, pp. 258-261.

[9] M. Ceska et al., “Approximating complex arithmetic circuits with formal
error guarantees: 32-bit multipliers accomplished,” in 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2017,
pp. 416-423.

[10] E. S. Melo, “Convergence of g-learning: A simple proof,” Institute Of
Systems and Robotics, Tech. Rep, pp. 1-4, 2001.

[11] S. V. Swaroop et al., “Gymnasium,” https://github.com/s-vineet/
gymnasium, 2021, accessed: 2023-04-07.

[12] G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540,
2016.

https://doi.org/10.1007/978-3-030-94705-7
https://github.com/s-vineet/gymnasium
https://github.com/s-vineet/gymnasium

	Introduction
	Methodology
	Experimental Results
	Conclusion
	References

