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Abstract—Approximate Computing (AxC) techniques have
become increasingly popular in trading off accuracy for per-
formance gains in various applications. Selecting the best AxC
techniques for a given application is challenging. Among pro-
posed approaches for exploring the design space, Machine
Learning approaches such as Reinforcement Learning (RL) show
promising results. In this paper, we proposed an RL-based
multi-objective Design Space Exploration strategy to find the
approximate versions of the application that balance accuracy
degradation and power and computation time reduction. Our
experimental results show a good trade-off between accuracy
degradation and decreased power and computation time for some
benchmarks.

Index Terms—Approximate Computing, Design Space Explo-
ration, Reinforcement Learning.

I. INTRODUCTION

Approximate Computing (AxC) techniques have become
increasingly popular to improve the energy efficiency of
computations, power consumption, and computation time,
degrading the accuracy of the computation. However, the
reduction is possible by sacrificing the computation accuracy
at different parts of the computing chain. Trading off accuracy
for improved power consumption and performance is known
as Approximate Computing (AxC) [1]. Selecting the most
suitable AxC techniques for an application is challenging and
many publications proposed how to explore the design space
to find the most suitable AxC techniques for an applica-
tion [2]. Among various approaches, such complex Design
Space Exploration (DSE), including genetic algorithms and
simulated annealing [3], machine learning (ML) ones such
as Reinforcement Learning (RL) showed promising results in
improving the DSE [4], minimizing the number of designs to
evaluate while maximizing the quality of the DSE model and
reducing the exploration time [5].

RL is a machine learning paradigm in which an agent learns
a desired behavior by interacting with a dynamic environment.
A standard RL setup involves an agent connected to its envi-
ronment via observations and actions. During each interaction
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with the environment, the agent receives observations about
the current state of the environment and a reward based on
its previous action. Based on this, it must select a new action
to move toward an optimization goal, learning how to do this
over time by systematic trial and error [6].

Wu et al. proposed a DSE framework using RL to optimize
resource allocation and critical path timing [4]. The framework
extracts the data flow graphs from the HLS C/C++, then
the RL-based DSE engine explores the resource allocation
options and finds optimized or Pareto solutions. The results
show that their proposed RL-based engine outperforms genetic
algorithms and simulated annealing. However, the exploration
is limited to the trade-offs of different resources and critical
path timing on an FPGA for a specific approximated version
of an application, not considering the different approximated
versions. A similar ML-based approach to DSE was proposed
in [5] to reduce the exploration time of the HLS tools for a
certain application.

In [7], the authors propose a new approach for the DSE
of approximate applications to minimize the error rate using
the data lifetime to select the approximation. Though their
experimental results show their approach’s effectiveness, the
paper does not cover multi-objective optimization, i.e., si-
multaneously considering accuracy, power consumption, and
computation time.

This paper proposes an RL-based multi-objective DSE
methodology based on the resource selection process proposed
by [7] able to optimize an application balancing the final
accuracy with the power consumption and the computation
time introduced by the selective activation of approximate
adders [8] and multipliers [9].

II. METHODOLOGY

This paper considers a CPU running software with ded-
icated instructions to trigger different approximate adders
and multipliers. To generate approximate versions of a target
application, the strategy is to select variables from the target
application and approximate all sums or multiplications on
those variables (as in [7]). Since several design choices exist
(i.e., different sets of variables and different approximate
adders and multipliers), we exploit an RL agent to explore the
design space automatically. The exploration aims to find the
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Fig. 1. RL environment: at each step selects an approximated version of
the benchmark to execute and calculates the parameters to return the new
observations and rewards to the RL agent.

best trade-off, or one of the best possible trade-offs, between
accuracy degradation and power/computation time.

This process is depicted in Figure 1. The environment uses
available approximate operators and a set of variables to create
an approximate application according to agent instructions.
The approximate version’s accuracy, power, and computation
time are evaluated based on pre-characterized approximate
operators. The agent receives observations and rewards from
the environment, enabling them to take the next action to
change the environment state. The RL setup mentioned above
comprises four components: the environment, the agent, the
state, and the action.

The environment formally defined in Equation 1 is the
system in which the agent operates. It models all the aspect
of the optimization. First, the list of variables is modeled
as a boolean vector where variables are indexed and se-
lected if the corresponding index is 1 (variablesapprox =
{a0, a1, ..., aN−1|ai ∈ 0, 1}). The approximate adders
(adder ∈ {1, 2, ..., Nadd}) and the approximate multipliers
(multiplier ∈ {1, 2, ..., Nmul}) are indexed to be linked to
the set of available ones. Both sets are sorted by increasing
accuracy degradation. Also the outcome of the computation
is modeled as the decrease in accuracy, through an evaluation
function comparing the output of the precise version with the
approximate one (∆acc = ferr(outputprecise, outputapprox)).
In the actual implementation, ferr evaluates the Mean Abso-
lute Error (MAE) as the accuracy metric. MAE is calculated
in Equation 2, where N is the number of the benchmark
outputs. exactOutputi and approxOutputi are the exact and
approximated values of each outputi. Eventually, the power
reduction, expressed as the difference between the power
consumption estimated for the precise execution and the ap-
proximated one (∆power = powerprecise−powerapprox) and
the computational time reduction, expressed as the difference
between the time used by precise execution in sums and
multiplications and the one from the approximated version
(∆time = timeprecise − timeapprox) are included.

environment = {adder,multiplier, variablesapprox,

∆acc,∆power,∆time} (1)

The state represents the environment at a particular time
(i.e., the list of approximated variables and the selected
approximate adder and multiplier). This information is used
to deploy the execution of an approximate application ob-
tained through automatic code instrumentation that enables
collecting observations (i.e., ∆acc, ∆power, and ∆time). For
example, the current state at a random step might look like
(4, 5, (1, 0, · · · , 0), 30, 100, 200), which, according to Equa-
tion 1, states that the configuration includes approximate
adder number 4 and multiplier number 5, and only the first
variable in the list is selected for approximation. The last three
elements represent observations meaning that, i.e., accuracy
was reduced by 30 units, power consumption by 100 units
(e.g., mW), and computation time was reduced by 200 units
(e.g., ns).

MAE =
1

N
(

N−1∑
i=0

exactOutputi − approxOutputi) (2)

The agent is the learning algorithm that interacts with the
environment. It observes the current state of the environment
and selects an action to take based on that state. The agent’s
goal is to learn a policy, which is a mapping from states to
actions, that maximizes the expected cumulative reward.

The action is the decision made by the agent at a particular
time step to apply to the environment and change its state. In
our work, three possible actions are: changing the type of the
adder, changing the type of the multiplier, or removing/adding
one variable in the list of approximated variables.

In RL, the reward helps the agent decide which action to
take and learn the optimization policy. Our approach defines
the reward as shown in algorithm 1. The reward obtained in
each step is accumulated with previous rewards. If the total
reward reaches a maximum predefined one, the agent stops.

Algorithm 1 analyzes the current state. A further approx-
imation can be introduced if the accuracy loss is below the
tolerable accuracy loss threshold for the benchmark (line 4).
This acceptable threshold is an exploration parameter and
can be adapted to the case. If the most approximated adder
and multiplier are in use and all variables are approximated
maximum reward possible is given, and the ”terminate” flag
is set to true (lines 5 to 8). Otherwise (lines 9 to 16), the gain
in power consumption and computation time must be above
a threshold to obtain a positive reward (+1). Otherwise, the
agent gets a negative reward (-1). Line 19 gives the maximum
negative reward if the accuracy loss is above its threshold.
Finally, the cumulative reward is updated (line 21).

We used the Q-learning as a learning algorithm along
with the RL environment. It is a model-free value-based RL
algorithm that lets the agent learn the value of an action in each
state [10]. Q-Learning finds the optimal action selection policy



1 Input: R //Maximum cumulative reward ;
2 Input: Rcum // Cumulative reward ;
3 Input: state := (adder, multiplier, variables, ∆acc, ∆power, ∆time);
4 if ∆acc <= accth then
5 if (stateadder == Nadd and statemul == Nmul and variables

contains all ones then
6 reward = R ;
7 terminate = True;
8 end
9 else

10 if (∆power >= pth) and (∆time >= tth) then
11 reward = 1;
12 end
13 else
14 reward = -1;
15 end
16 end
17 end
18 else
19 reward = -R;
20 end
21 Rcum += reward;

Algorithm 1: RL Rewards at step i

TABLE I
SELECTED ADDERS FROM EVOAPPROXLIB

operator Type MRED Power Computation time
(mW) (ns)

8-bit adder 1HG 0 0.033 0.63
8-bit adder 6PT 0.14 0.029 0.55
8-bit adder 6R6 2.93 0.012 0.27
8-bit adder 0TP 6.16 0.0095 0.24
8-bit adder 00M 14.58 0.0046 0.17
8-bit adder 02Y 24.87 0.0015 0.11

16-bit adder 1A5 0 0.072 1.28
16-bit adder 0GN 0.005 0.057 1.04
16-bit adder 0BC 0.018 0.051 0.95
16-bit adder 0HE 0.16 0.036 0.68
16-bit adder 0SL 9.54 0.011 0.27
16-bit adder 067 22.35 0.0041 0.20

using a Q function that returns the expected future reward of
an action at a state. In Q-learning, an accumulated reward
can be defined, and the action selection is based on the state
of the previous step beside the reward. Hence, it is suitable
for maximizing the accumulated reward while considering the
last state. For further details on how Q-function is updated,
the reader may refer to [10].

III. EXPERIMENTAL RESULTS

The RL implementation relies on the Gymnasium [11]
library, a fork of the OpenAI Gym [12] library, to implement
the RL engine. Gymnasium is an open-source toolkit for
developing and comparing RL algorithms. It provides an API
to define environments, or simulated tasks, where agents can
learn and improve their decision-making abilities through trial
and error. We implemented a Q-learning algorithm in which
the maximum number of steps is 10,000. This number is
selected upon trial and error. As an approximate component
database, we exploited the EvoApproxLib [8], [9] that provides
C models of 8 and 16 bits adders, and 8 and 32 bits multipliers.
Tables I and II report all selected operators and their Mean
Relative Error Distance (MRED), power consumption, and
computation time, ordered by MRED.

TABLE II
SELECTED MULTIPLIERS FROM EVOAPPROXLIB

operator Type MRED Power Computation time
(mW) (ns)

8-bit multiplier 1JJQ 0 0.391 1.43
8-bit multiplier 4X5 0.033 0.380 1.40
8-bit multiplier GTR 1.23 0.303 1.46
8-bit multiplier L93 4.52 0.178 1.11
8-bit multiplier 18UH 17.98 0.062 0.90
8-bit multiplier 17MJ 53.17 0.0041 0.11
32-bit multiplier precise 0 10.76 4.565
32-bit multiplier 000 0.00 10.46 4.470
32-bit multiplier 018 0.01 4.32 3.220
32-bit multiplier 043 1.45 1.63 2.440
32-bit multiplier 053 10.59 1.05 2.030
32-bit multiplier 067 41.25 0.51 1.750

We tested our approach with two applications: Matrix
Multiplication with two different matrices sizes (10 by 10 and
50 by 50) and FIR (with 100 and 200 samples, all white noise
signals with Low Pass Filter functionality). The thresholds
were set after executing the precise versions: the power (pth)
and computation time (tth) thresholds were set to 50% of
their value for the precise version. Also, the precise outputs
were averaged, and the accuracy threshold (accth) was set as
0.4 times the average output. Based on the rules defined in
algorithm 1, the agent stopped after 2,000 and 4,000 steps
for the Matrix Multiplication benchmarks and after 500 and
1,240 for the FIR benchmarks. All the results are reported in
Table III.

TABLE III
EXPLORATIONS RESULTS FOR POWER, COMPUTATION TIME, AND

ACCURACY

Matrix Mult. FIR
Benchmarks 10x10 50x50 100 200

∆ Power Consumption (mW)
min 15 0.55 529.515 1059.345
solution 415.3 753.72 10850.855 1237.247
max 418.4 1552.017 17344.390 34699.1

∆ Computation time (ns)
min 50 -90 563.135 1126.605
solution 1780 1460.8 2664.385 3951.525
max 1840 5707.6 6547.495 13098.89

Accuracy degradation
min 0.02 0 1096.03 395.74
solution 19.95 0.736 1096.03 27580.345
max 204.71 26.7964 31671.43 27580.35

Configuration
Adder Type 00M 6R6 0GN 067
Multiplier Type 17MJ L93 043 018

In Table III, power consumption and computation time
are expressed as the difference (∆) between the parameter
obtained from the precise version and the one obtained from
the approximation run of the last step. The min and max
rows correspond to the minimum, and maximum ∆ found in
the exploration. The accuracy degradation shows how much
computation accuracy is reduced for the selected approximate
version, using Equation 2. The Adder and Multiplier types
show which operators were selected for this approximate



version, as named in Tables I and II.
For all cases, the agent identified approximations respecting

the given constraints confirming the capability of exploring
the space. Comparing the selected solution and the maximum
observed values for the different parameters can indicate how
the agent could push the approximation without violating the
imposed constraints.

To better analyze the results, Figure 2 and Figure 3 show
the power and computation time alongside accuracy for all the
exploration steps for the Matrix multiplication, 10 by 10, and
FIR with 100 samples, respectively. The ”Power” at each step
represents the difference between the approximate and precise
versions’ power consumption. The same applies to the ”Comp.
Time” that shows the computation time. The trend lines help
better visualize the exploration results. The different trends in
the two figures highlight how the algorithm learns properly
and move toward an optimization in the Matrix Multiplication
benchmark, while it struggles in the FIR one.

 

Fig. 2. Exploration outcomes evolution through for Matrix Multiplication
(10x10).

 

Fig. 3. Exploration outcomes evolution through for FIR (100 samples).

Figure 4 shows the average reward every 100 steps for the
same Matrix multiplication and FIR benchmark configurations.
For Matrix multiplication, on average, the reward continuously
improves in the first 600 steps, slowing down for a while
and improving again, confirming that the agent learned. On
the contrary, the FIR does not follow such a continuous
improvement, ensuring that the learning strategy is not entirely
effective and that further investigations are required.

 

Fig. 4. Average reward evolution for the Matrix multiplication (10x10) and
FIR (100 samples).

IV. CONCLUSION

In this paper, we proposed preliminary results obtained
while developing a DSE strategy based on Reinforcement
Learning to optimize an application, balancing the final accu-
racy with the power consumption and the computation time.
Experimental results show that the agent can find solutions for
a good trade-off between accuracy degradation and power and
computation time reductions on some benchmarks. However,
additional work is required to improve the learning strategy
and make it general enough to work with a larger set of
applications.
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