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Abstract—Radiation-induced soft errors are one of the most
challenging issues in Safety Critical Real-Time Embedded System
(SACRES) reliability, usually handled using different flavors of
Double Modular Redundancy (DMR) techniques. This solution is
becoming unaffordable due to the complexity of modern micro-
processors in all domains. This paper addresses the promising field
of using Artificial Intelligence (AI) based hardware detectors for
soft errors. To create such cores and make them general enough
to work with different software applications, microarchitectural
attributes are a fascinating option as candidate fault detection
features. Several processors already track these features through
dedicated Performance Monitoring Unit (PMU). However, there
is an open question to understand to what extent they are
enough to detect faulty executions. Exploiting the capability of
gem5 to simulate real computing systems, perform fault injection
experiments, and profile microarchitectural attributes (i.e., gem5
Stats), this paper presents the results of a comprehensive analysis
regarding the potential attributes to detect soft errors and the
associated models that can be trained with these features.

Index Terms—reliability, soft errors, machine learning, artificial
neural networks, soft error analysis

I. INTRODUCTION

Radiation-induced soft errors, which started as a rather exotic
failure mechanism causing satellite anomalies, have become
one of the most challenging issues in all electronic sys-
tems, particularly Safety Critical Real-Time Embedded System
(SACRES) [1]. Many efforts have been spent in the last decades
to measure [2], model [3], and mitigate [4] radiation effects,
implementing cross-layer reliability countermeasures [5]. Pre-
dictability is a crucial SACRES requirement as it helps ensure
the system’s safety and reliability and makes it easier to test and
maintain. Predictability is implemented by static partitioning
and hardware isolation of available computing resources (e.g.,
memory, CPU cores, etc.) among a set of predefined tasks,
making monitoring each task’s behavior in isolation easier.
Resilience to soft errors is then supported through redundancy
at different levels [6]. In particular, Double Modular Redun-
dancy (DMR) implementing lock-step execution is a popular
schema to achieve fault detection, and check-pointing is the
solution to enable recovery from faults [7]. However, with
the increasing complexity of microprocessor cores, DMR is
becoming unaffordable, and designers are increasingly looking
into smaller hardware/software error detectors [8]–[11]. AI is
a fascinating instrument in this domain, bringing to the new

concept of artificial resilience, i.e., systems that can be trained
to detect and possibly recover from faults [12].

AI has been employed for constructing hardware or software
soft error detectors trained on software-specific input/output
features [13]–[16]. Overall, in these approaches, the data used
to determine whether the output of a task is correct or incorrect
(i.e., the feature vector) includes the task input and output.
While effective, having an application-dependent feature vector
makes it challenging to create generic detectors, especially
when looking at hardware implementations that require stan-
dard methods to collect and deliver features to the detector.
Microarchitectural features (i.e., executed instructions, cache
misses, or incorrectly anticipated branching for the active
program) are easier to collect thanks to the availability of
increasingly complex Performance Monitoring Unit (PMU)
tracking and measuring numerous performance-related events
accessible through dedicated Hardware Performance Counter
(HPC). Therefore an important question to investigate is: “are
microarchitectural features able to explain faulty executions
in the presence of soft errors?”. Dutto et al. showed that the
answer to this question is ’yes’ in the case of permanent faults
[17]. However, permanent faults accumulate during software
execution, amplifying anomalies and making detection easier.
Da Rosa et al. [18] confirm a positive answer to this question,
even if a deep analysis of several features is not reported.
Recently Nosrati et al. proposed an AI detector for soft errors in
embedded processors [19]. While results are promising in terms
of fault detection accuracy, the approach relies on monitoring
internal signals of the microprocessor that would require an
invasive hardware redesign.

This paper proposes a preliminary study to understand to
what extent microarchitectural features traced through a PMU
can be exploited to build an AI-powered hardware soft error
detector. For this purpose, a set of fault injection experiments
performed using FIMSIM [20], a fault injector framework based
on gem5 [21] was used to create a dataset of features over
several faulty and correct executions. This dataset was analyzed
to give designers insights into the best options to build their
soft error detection systems. Particular emphasis was devoted
to understanding whether event timing could bring additional
information to the model. This information is crucial to identify
the best AI models to employ in this challenging task. The



paper focuses on assessing the idea’s feasibility. Therefore, the
hardware implementation cost and related inference time are
out of the scope of this study.

II. EXPERIMENTAL SET-UP

Injecting faults directly into real hardware is complex [11],
[22]; virtual simulators simplify the development of fault in-
jection modules and the subsequent data collection task [23]–
[25]. For this reason, simulation-based fault injection was used
to collect data. Figure 1 summarizes the basic building blocks
of the implemented experimental design.
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Fig. 1: Experimental setup based gem5 and FIMSIM.

The gem5 simulator was used to emulate the hardware
substrate [21]. Experiments were performed by simulating the
full-system stack, modeling the hardware through the Atom-
icSimpleCPU model available in gem5 configured to emu-
late the x86 Instruction Set Architecture (ISA). The software
stack included a Linux kernel and a set of target tasks of
different complexity. Six MiBench [26] applications were con-
sidered: qsort, dijkstra, susan, sha, bitcount and
basicmath. The fault injection task was accomplished using
FIMSIM [20]. This preliminary study focused on Single-Bit
Upsets (SBU) in the Integer Register File (intRF). After the
fast-forward cycle required to boot the operating system, faults
were injected at random locations and time intervals during the
execution of the application. gem5 enables monitoring of the
internal microprocessor state using checkpoints (i.e., snapshots
of the hardware architecture containing all the inner values at a
particular clock tick) and stats (i.e., performance counters that
profile the number of internal events, such as cache misses,
jumps, accesses to memory, and so on). To speed up the
experiments, every fault injection run started from a checkpoint
collected at the end of the fast-forward cycle corresponding to
the end of the Linux boot process (CPs). After the boot, faults
were injected at random locations and time intervals during the
execution of the application. Several stats (S1, S2, ..., Sn) were
collected during the simulation to consider the time dimension
when building the final dataset.

The fault effect was classified by comparing the last check-
point of the fault injection run (CPn) with the golden execution
(CPe). Possible outcomes following a fault injection can be
explained in five categories: (i) Crash: the program completely
stops working and exits; (ii) Silent Data Corruption (SDC): the
program reaches the end of the computation, but its outcome
is wrong; (iii) Benign: even if there was a fault, the program’s
outcome is correct (iv) Hangs: the program is stuck within a

loop; (v) Reboots: the operating system reboots. Crashes and
hangs are straightforward to detect by inspecting the program
counter [27], so they are not considered in this study. Reboots
cannot instead be traced with the available simulation setup.
Hence, this study focuses on detectors able to discriminate SDC
and Benign executions.

The HPC in the gem5 stats collected during fault injection
experiments were used to create the dataset analyzed in the next
section. A total amount of about 600 features were monitored.
Data were preprocessed and normalized before carrying out the
analysis. Features with more than 5% non-numerical (NaN)
values and attributes with zero variance across experiments
were removed. Then, simulations containing a single NaN
value were removed. Finally, missing values were set to zero,
and the dataset was normalized. SDC and Benign classes are
not balanced in a fault injection experiment. The dataset was
balanced using downsampling on the Benign (major) class to
enable a fair analysis. Table I summarizes the characteristics of
the final dataset after preprocessing.

TABLE I: Summary of the dataset structure.

Benchmark #Sim #Feat #Ticks % Benign % SDC % crash/
(·109) hang

qsort 25,000 366 86.5 72 .1 25.6 2.3
dijkstra 29,180 378 64.2 79 .2 20.2 0.6
susan 21,440 363 35.1 67.9 26.5 5.6
sha 13,809 359 18.5 72.6 27.2 0.2
bitcount 25,000 360 9.8 81 .2 15.6 3.2
basicmath 25,000 358 6.5 92.7 6.4 0.9

Time series of 10 gem5 stats were collected for each
benchmark at equidistant time instants depending on the total
execution ticks of the benchmark given in Table I.

III. RESULTS

This section reports a comprehensive analysis of the collected
dataset to try to answer the question proposed at the beginning
of this paper, i.e., if microarchitectural features are sufficient
to build machine learning models able to detect soft errors in
microprocessor-based systems.

A. Data analysis

Figure 2 provides a visual representation using Principal
Component Analysis (PCA) of the datasets for the six bench-
marks plotting the first two principal components.

When analyzing the complete datasets (Figures 2(a), 2(b),
2(c), 2(g), 2(h), and 2(i)), benign executions (blue dots) cluster
in a small portion of the plot, while faulty executions (red dots)
instead scatter over it. This suggests that the corruption of a
single bit generates a significant deviation in the microarchitec-
ture’s internal features, resulting in cases that can be detectable
from a reliability standpoint. However, Figures 2(d), 2(e), 2(f),
2(j), 2(k), and 2(l) highlight the presence in all datasets of a
Hard-To-Detect Region (HTDR) of overlapping samples of the
two classes. Since AI models are known to struggle with such
data distributions, these regions must be carefully considered
to avoid a significant loss in accuracy.

Up to now, the analysis considered all the features in the
dataset, which are a considerable number, even after the data



(a) qSort full dataset (b) Dijkstra full dataset (c) Susan full dataset

(d) qSort HTDR (e) Dijkstra HTDR (f) Susan HTDR

(g) Sha full dataset (h) bitcount full dataset (i) basicmath full dataset

(j) Sha HTDR (k) bitcount HTDR (l) basicmath HTDR

Fig. 2: Visual representation of the dataset for the six benchmarks
using PCA. It shows faulty runs (red) and benign runs (blue). Subfig-
ures (a-f) show the full dataset, while (g-l) show the Hard-To-Detect
Region (HTDR)

cleaning. Therefore, analyzing the correlation of each attribute
with the final fault classification can guide through a feature
selection phase. Pearson’s correlation coefficient was used to
perform this analysis due to its minor sensitivity to false
positives. Figure 3 shows the distribution of the correlation
values for the six benchmarks.
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Fig. 3: Statistical distribution of the correlation values between
features and fault classification for all six benchmarks

The analysis highlights different results depending on the
benchmark. In the case of qsort, dijkstra, susan, and
sha, most features correlate more than 0.5 with faulty exe-
cutions. This means that many microarchitectural features can
be used to detect a faulty run. Results for basicmath are

weaker but still acceptable, while bitcount reports a low
correlation. This aspect will be better investigated in the next
section. Moving to the microarchitectural level, following the
gem5 hierarchical organization of features into six main sub-
classes, Figure 4 shows the correlation of each group with faulty
executions.
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Fig. 4: Statistical distribution of the correlation values over the
different gem5 classes for the six benchmarks. All features.

Each of the six main sub-classes of attributes shows dif-
ferences depending on the benchmarks. However, when the
correlation is significant, few features emerge as indicators of
faulty execution, such as the ones related to memory accesses
(mem ctrls and membus) to the input/output bus and the CPU.

By using correlations (Figure 3), a subset of 19 features
(Figure 5) consistently highly correlated in most benchmarks
was identified (the reader may refer to the gem5 documentation
for a detailed description of each feature).

It can be seen that all the features are related to memory
transactions. In particular, the three dominant sub-classes, be-
tween the six reported in Figure 4 are iobus, membus, and cpu.
For this last, accesses to instruction and data caches are the
most affected features. This means that a single bit-flip can
change instruction fetch order and data access consistently.

To summarize, this preliminary analysis allowed us to draw
some initial insights. A reasonably simple model is expected
to provide good fault detection capabilities for the data that
can be separated. At the same time, pure microarchitectural
attributes might prove insufficient due to the presence of the
HTDR region.

B. Machine learning models

Starting from the preliminary analysis proposed in subsec-
tion III-B, this section studies how different machine learning
models can detect soft errors based on the considered attributes,
highlighting strengths and weaknesses. For this analysis, the
datasets were split with 60% for the training set, 15% for the
validation set, and 25% for the test set.

Features in Figure 5 were used to demonstrate that a sub-set
of features can work with several benchmarks. All experiments
used a 19-32-2 network architecture composed of three layers,
including 19, 32, and 2 neurons. These numbers were tuned
using trial and error. The first model considered is the Fully
Connected Feed Forward Neural Network (FC-FFNN), trained
using the cumulative dataset obtained by summing event counts
over the different checkpoints.



0.0 0.2 0.4 0.6

cpu.dtb_walker_cache.tags.
age_task_id_blocks_1024::2

cpu.icache.tags.
age_task_id_blocks_1024::2

membus.pkt_count_system.apicbridge.
master::total

membus.trans_dist::MessageResp

iobus.pkt_size_system.pc.
south_bridge.io_apic.int_master::total

iobus.pkt_count_system.pc.
south_bridge.io_apic.int_master::

system.apicbridge.slave

membus.trans_dist::MessageReq

membus.pkt_size_system.apicbridge.
master::system.cpu.interrupts.int_slave

membus.pkt_count_system.apicbridge.
master::system.cpu.interrupts.int_slave

iobus.pkt_size_system.pc.
south_bridge.io_apic.int_master::

system.apicbridge.slave

iobus.trans_dist::MessageResp

membus.pkt_size_system.apicbridge.
master::total

iobus.pkt_count_system.pc.
south_bridge.io_apic.int_master::total

iobus.trans_dist::MessageReq

membus.pkt_size_system.cpu.dcache.
mem_side::system.cpu.interrupts.pio

membus.pkt_count_system.cpu.dcache.
mem_side::system.cpu.interrupts.pio

cpu.dcache.tags.total_refs

iocache.demand_miss_rate::total

iocache.ReadReq_miss_rate::total

Av
er

ag
e 

co
rre

la
tio

n

Qsort
Dijkstra
Susan
Sha
Bitcount
Basicmath

Fig. 5: Top 19 features.

Table II reports high accuracy, confirming the hypothesis
of soft error detection based on the collected features. Nev-
ertheless, the accuracy alone may be misleading. The F1 score
is lower than the accuracy. This is mainly due to the recall,
which drops due to the HTDR. To confirm the quality of
the model, Figure 6 investigates the performance of different
models trained using an increasing number of features starting
from the top correlated ones.

Regarding accuracy, using just a small subset of features
already enables the detection of 80% of the faults, and adding
more features does not lead to significant improvements. How-
ever, F1 scores remain controversial. By performing a more
detailed analysis, we could directly relate this with the com-
plexity of the benchmark and, in particular, its control flow and
how the HTDR populate the data. As a further confirmation, an
attempt to train a model on a reduced dataset focused on the
HTDR reported deficient performance. This analysis suggests
that microarchitecture-level features can only partially detect
soft errors, contradicting previous works such as da Rosa et al.
[18]. This problem seems less severe in control-flow intensive
benchmarks such as qsort, dijkstra, susan and sha
while exploding in simple linear algorithms like basicmath
and bitcount. This suggests that data-related features are
probably required in addition to the microarchitecture attribute
to cover the gap.

After analyzing the cumulative dataset, the analysis moves
to new models considering the time dimension using data
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Fig. 6: Performance of several models trained on the full dataset
with an increased number of features ordered by decreasing
correlation

collected at different checkpoints.
The first one accounts for a flat dataset composed of

Nfeatures ×Ncheckpoints features and trains the same FC-FFNN
model used before. Table II reports no significant gain in
performance metrics, thus confirming what was observed in
subsection III-A, i.e., the temporal dimension is not improving
the results but allows for earlier detection.

TABLE II: FC-FFNN performance metrics, 10 checkpoints

FF-FC LSTM
cumulative flat dataset

dataset 10 checkpoints 10 checkpoints
Benchmark Acc F1 Acc F1 Acc F1

qsort 91.10 79.91 92.60 83.07 91.62 81.09
dijkstra 92.19 75.67 91.67 59.00 90.25 68.98
susan 88.79 71.92 87.95 69.67 87.83 82.50
sha 87.03 68.45 87.14 68.24 86.85 69.08

bitcount 90.75 56.81 90.19 58.42 90.08 54.74
basicmath 96.22 59.66 96.38 62.29 95.61 53.64

A second temporal model, based on Long-Short Term Mem-
ory (LSTM), was trained on the time-expanded dataset. Table II
reports the performance of the LSTM model, confirming no
gain on the different metrics.



TABLE III: FC-FFNN, model evaluation at each checkpoint

qsort djkstra susan sha basicmath bitcount
Time step Acc. F1 score Acc. F1 score Acc. F1 score Acc. F1 score Acc. F1 score Acc. F1 score

1 80.09 39.26 81.07 13.72 72.62 9.13 73.48 - 83.99 - 92.86 -
2 87.78 69.99 85.96 44.79 75.06 13.36 74.72 9.55 83.68 - 93.67 -
3 87.38 67.13 90.40 67.84 80.56 40.83 74.61 8.61 84.70 10.42 93.36 -
4 90.53 78.02 90.12 60.36 87.08 68.12 75.86 17.38 85.54 21.63 94.31 24.46
5 91.44 80.15 90.70 64.65 87.86 68.93 80.79 34.31 86.93 30.38 94.78 36.54
6 91.08 80,00 91.38 72.14 87.52 67.57 83.27 42.56 88.18 40.20 95.78 51.40
7 91.23 80.13 90.82 70.14 87.08 66.86 87.25 65.92 88.90 45.24 95.93 58.28
8 91.72 81.56 90.44 69.99 87.84 69.86 86.77 62.85 89.73 49.47 96.33 63.91
9 91.80 80.86 90.55 69.46 88.24 69.65 86.94 68.62 91.26 42.27 96.35 60.21

10 91.95 81.39 91.24 73.06 88.07 69.69 86.83 67.66 89.99 57.10 96.36 61.93

Since fault detection latency can be crucial in safety-critical
applications, an FC-FFNN model was then trained on the
cumulative dataset and tested on cumulative data available
at different checkpoints to understand the early detection of
faults. Table III shows the results obtained with ten checkpoints.
The F1 score with no values (-) is due to insufficient data
to evaluate precision and recall. Considering that the fault
injection is uniformly distributed in time, results confirm that
error detection could be achieved without waiting for the end of
the program execution. This is important to minimize the error
detection latency. As expected, the model’s performance drops
during the early checkpoints and rises while data are collected.

IV. CONCLUSIONS

This paper performed a data-driven investigation to answer
the fundamental question of using AI-powered hardware soft
error detectors: are micro-architectural features able to explain
faulty executions? The results of the analysis were controver-
sial. While in terms of accuracy, results suggest a positive
answer, the presence of HTDRs suggests that pure microarchi-
tectural attributes are insufficient, especially for simple tasks.
Additional features are probably required if the corruption is
limited to the data domain. In conclusion, the results in this
paper are preliminary. It is clear that further investigation is
needed, both considering additional benchmarks and investi-
gating a new set of features.
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