
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An embedded low-cost solution for a fog computing device on the Internet of Things / D'Agostino, Pietro; Violante,
Massimo; Macario, Gianpaolo. - (2023), pp. 284-291. (Intervento presentato al convegno The Eighth IEEE International
Conference on Fog and Mobile Edge Computing tenutosi a Tartu (Estonia) nel September 18-20, 2023)
[10.1109/FMEC59375.2023.10306045].

Original

An embedded low-cost solution for a fog computing device on the Internet of Things

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/FMEC59375.2023.10306045

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981389 since: 2023-08-30T08:47:56Z

IEEE

An embedded low-cost solution for a fog computing

device on the Internet of Things

Pietro d’Agostino

Department of Control and Computer

Engineering (DAUIN)

Politecnico di Torino

Torino, Italy

pietro.dagostino@polito.it

Massimo Violante

Department of Control and Computer

Engineering (DAUIN)

Politecnico di Torino

Torino, Italy

massimo.violante@polito.it

Gianpaolo Macario

AROL Closure Systems

Torino, Italy

gianpaolo.macario@arol.com

Abstract— The adaptability of devices can be significant for a

customer that inserts them in an industrial production line. The

ability to modify an object bought along with a machine that can

be personalized with its features can change how they want to

do measurements for different reasons, like predictive

maintenance. Fog computing local centers already exist in the

market, but they are usually on-the-shelf products with no

margin of change for any user. However, with the usage of

Docker and containers, this can change. This paper describes a

fog computing local central called Concentrator, which can not

only execute its essential functions built-in by the producer but

also be customized by the user to add in the elaborations on

other external sensors, expanding its capabilities and usage. We

wanted to improve the device already tested on a Linux PC on a

Raspberry Pi and try its performance and characteristics, seeing

if it could be transformed into an embedded architecture and an

industrial feature.

Keywords— Arduino, container, docker, industrial

automation, IoT, embedded systems

I. INTRODUCTION

Industry 4.0, known as the Fourth Industrial Revolution,

reshapes the manufacturing landscape. It represents the

convergence of digital technologies, automation, and data-

driven processes to create smart, interconnected, and efficient

manufacturing methods. This revolution is characterized by

integrating physical production systems with digital

technologies, enabling cyber-physical systems (CPS)

creation. These use real-time data from sensors, actuators,

and various connectivity for the different stages of the

production process, increasing predictive maintenance and

adaptive manufacturing [1].

At his core is the Internet of Things (IoT), in which machines,

devices, and sensors are interconnected, creating a network

in which data are shared across the production floor. This

integration allows systems to communicate, collaborate, and

make autonomous decisions [2]. New business models can be

created with these properties, which develop into customer

satisfaction, opening new revenue streams and market

opportunities. However, there are some challenges that

manufacturers must address: data security, privacy, and

intellectual property. Also, adapting the workforce to digital

transformation can be a significant hurdle. Standardization

technologies, interoperability, and a profound renovation of

establishments are crucial for adopting the Fourth Industrial

Revolution [3].

In this view of interoperability, new systems have been

created to make the different devices communicate between

them, particularly the Cloud, Edge, and Fog computing.

These are transformative technologies for different

applications that revolutionize how businesses and

individuals access computing resources.

Cloud computing enables organizations to reduce costs,

improve flexibility, and enhance efficiency by providing

scalable, on-demand, virtualized services over the Internet.

Scalability is one of the key characteristics since resources

can easily be scaled up or down depending on the usage and

the organization's needs. This elasticity enables cost savings

and ensures optimal resource optimization [4]. There are

three main models that the industry can develop:

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS). The first provides

virtualized computing resources to build and manage their

applications and environments, the second offers the

development and deployment of a platform without worrying

the user about infrastructure management, and the third

provides complete software applications, eliminating the

need for local installation and maintenance [5]. These models

can be deployed in public clouds, private or hybrid,

combining both to leverage both benefits, maintaining

flexibility and security. This is an important topic for this

kind of system since companies usually rely on third-party

providers and the transfer of sensitive data on the Internet.

Performance and latency issues may occur when accessing

cloud services, requiring consideration of network

connectivity and service level agreements [4].

Edge computing is another system that addresses

computation, storage, and analytics requirements closer to the

data source. It is a distributed paradigm that shifts the

resources from the centralized cloud servers to the network

edge, enabling real-time data processing, reduced latency,

and improved application performance. This proximity to the

sensors also minimizes network congestion, bandwidth

usage, and dependence on cloud connectivity. The

fundamental principle is to reduce time latency by avoiding

the round-trip to cloud servers. It also enables offline

operations and local processing and storage capabilities,

enhancing privacy and reducing exposure to potential cyber

threats [6].

The last paradigm is fog computing, which extends cloud

computing capabilities to the network's edge and enables

localized data processing, real-time analytics, and improved

efficiency. It takes both the benefits of cloud and edge

computing and combines them. Fog computing shifts the

cloud-based resources for data processing and storage toward

the edge but not on the system's limit. It uses a series of local

centers called fog nodes, routers, switches, or similar devices.

This enables real-time operations, minimizes latency, and

enhances overall system performance. Fog computing

addresses the challenges posed by the influx of IoT devices

by distributing resources along the system close to the edge.

For this reason, it improves the efficiency and reliability of

IoT applications, elaborating the data from the nodes and

sending them to the cloud servers, reducing bandwidth usage,

congestion, and potential failures. This localized processing

also enhances privacy and security, as sensitive data can be

processed and stored closer to its source, minimizing the risk

of data breaches and ensuring compliance with data

protection regulations [7].

However, fog computing has challenges. The distributed

nature of fog deployments introduces complexities in

managing and orchestrating resources, ensuring

interoperability between heterogeneous devices, and

handling intermittent connectivity. Additionally, fog nodes'

dynamic and potentially resource-constrained nature requires

efficient resource allocation, load balancing, and fault

tolerance mechanisms [8]. The main actors of a fog

computing system are the local centrals, which must gather

and elaborate the data taken from the edge sensors.

This paper focuses on developing a fog central called

Concentrator, created by the collaboration between

Politecnico di Torino and AROL Closure Systems, a

company producing capping machines. Apart from a default

functioning, which consists of predictive maintenance of the

different devices, the idea is to add a containerized sandbox

in which a general customer can add methods or purposes by

using third-party software or its own without affecting the

basic functionalities. This is done by implementing one or

more containers through a virtualization system like Docker,

in which reports showing the data of interest are produced.

The contribution of this paper is to create this sandbox inside

of an embedded on-the-shelf product, like a Raspberry Pi

board, in which a customizable network can be deployed. The

AROL assets are used to test and evaluate the proposed

solution experimentally, obtaining data and simulating a first

instance of the final implementation.

The presentation is organized as follows. Section II shows

state-of-the-art and a series of papers we used to study and

develop the idea in the fog computing context. Section III

presents the architecture, detailing how the Concentrator has

been developed and which node sensors have been chosen.

Section IV offers the experiment conducted, and finally,

section V draws some conclusions.

II. RELATED WORKS

The usage of containers and virtualization in cloud computing

systems has been discussed since the first decade of the 21st

century [9][10]. Recent topics have shown a significant

improvement in the matter, developing them in fog

computing architectures.

In [11], the authors present a technological review of different

utilization of virtualization depending on the operating

system used and their performances. By explaining what

Docker is and how it can be used for these kinds of

applications, they explained the technological requirements

and architectural principles for developing an edge cloud

computing system. Even though three different methods have

been studied (Windows, Linux, and Cloud Platform-as-a-

Service(PaaS)), the central focus is on Linux systems, which

help the implementation of embedded hardware, creating a

PaaS and an orchestration method to control and manage the

different containers. The techniques used are Docker Swarm

and Kubernetes to have an overview of how the two services

work and how to implement them efficiently.

A similar approach to our architecture has been presented in

[12]. An intelligent fog computing home infrastructure has

been created using low-cost embedded hardware (Arduino,

Raspberry Pi board, and some sensors). The network has been

divided between three houses with different sensors, and a

Raggedpod, a micro data center, represents the central. The

virtualization is applied through Docker Linux individual

containers to cope with production-grade requirements and

integration of various systems.

In [13], a different approach is explained: the authors show

an on-demand fog system created based on the customer’s

need, depending on the nearest available devices that are part

of the network, to have the least initialization cost possible.

Using Docker, managed by Kubeadm, they deployed on-the-

fly services using orchestrators that will enter the network

whenever a request is issued, handling it, and sending the data

to the cloud. The latencies are reduced not only due to the

availability of different devices closest to the requester,

updating fog’s IP to localize it, but also by creating clusters

in advance that can be used directly without waiting for them.

The paper [14] exemplifies how virtualization can be applied

in a dew computing system. They created a network where a

software component communicates with the cloud and stores

data locally composed by a virtual resource. The service

accomplishes the different user requests, saturating itself.

When this happens, a replica is awakened to solve those

attending, giving elasticity to the network on an edge level.

Since they decided not to use central gateways, the device's

risk of being corrupted is relatively high, and it is an issue

that must be solved. For this reason, the system's security has

also been developed, creating a blockchain protocol that

achieves reliability and safety on an edge level.

Paper [15] shows the two main principal frameworks that an

IoT service could have: container-based pair-oriented IoT

service provisioning, where two devices cooperate and are

responsible for the interactions, and container-based edge-

managed clustering mode, where a manager supervises the

operations between the cooperating devices forming a

cluster. The difference between the two is how the creation

of containerization is divided between the different

instruments and how they work the IoT resources in terms of

CPU and energy consumption.

In [16], the authors present a technological review of different

utilization of virtualization depending on the operating

system used and their performances. By explaining what

Docker is and how it can be used for those kinds of

applications, they created a test tool utilizing a program to

evaluate the speed of arithmetic operations, the rate of

working with RAM, and the speed of disk operations. They

used C++ as the language and Clang++ as the compiler,

performing 33 operations in total: 15 arithmetic functions

with 15 assignments, 1 loop condition, 1 increment, and 1

loop variable assignment. The results showed that Linux

systems perform slightly faster regarding arithmetic and

memory operations than Windows.

The last two works we referred to are FogPi [17] and Con-Pi

[18], describing fog computing local centrals exploiting the

containerization principle through Docker for different

purposes. They both chose and showed how the Raspberry Pi

is a good choice for this kind of utilization, describing its

suitability and performance.

FogPi is an embedded, portable, low-cost, and low-power

consumption fog computing infrastructure running Docker,

providing scalability and higher availability than traditional

methods. The containers can be deployed using previously

loaded and configured images, so it does not require an

internet connection. They created this local central to control

some nodes in real-time, and an evaluation of the latency

given from Google Cloud concerning FogPi has been done,

showing how the fog infrastructure can better manage the

amount of data than the cloud method.

Con-Pi is a distributed framework to manage resources in a

fog computing environment. It is based on different Small

single-board computers (SBCs), but they have used some

Raspberry Pis. It uses Docker to have containerization to run

IoT and microservices, managing energy available in

different use cases, for example, smart agriculture.

They used as hardware a Raspberry Pi, some sensors, and

actuators to perceive the external world. Instead, the software

is divided between a Controller, a service, and a

MicroService: the first is used for resource management and

control of the execution of microservices, the second

understands the context information and configurations,

while the third acts as an operator for the controller

instructions. This configuration can lead to resource sharing:

the execution of microservices and their respective containers

are offloaded among RPis, while the sensor data and

actuation interfaces can be accessed remotely. Also, how they

managed the policy integration and their managing of

different containers is very interesting. Information is taken

that can be useful for future works.

These works utilize fog computing systems, Docker, and

Raspberry Pi boards as local fog central, proving the idea's

feasibility. However, none explained how a user could

change the design to insert its paradigm or customize it

depending on someone’s need.

This paper presents the Concentrator, a hardware device that

can be part of a fog computing system. It stores and elaborates

data, sending them to the cloud. The innovation we propose

regards the possibility of adding third-party applications to

the system without interfering with the basic functionalities

of the system, to be customizable for any user that would like

to use it. We decided to use a virtualization system to create

two domains: a native and a host. The native is dedicated to

the producer and must contain the default application for

which the Concentrator exists. The host, instead, can be

modified by the customer to add services that can be useful

for a specific application. The configuration is suggested by

looking at the related work [15] since there are multiple

nodes, and the IoT client must guarantee service continuity in

case of failure. This approach can ensure a fast management

procedure through direct interaction between the cooperating

nodes.

Virtualization is used to create a sandbox where customers

can modify a central device depending on their needs.

Starting from the same operating system, the different

applications will not interfere with each other, offering a

secure implementation inside their production line.

III. METHODOLOGY AND ARCHITECTURE

This section presents the proposed system architecture,

illustrated in Fig. 1. This figure has been retrieved by [19] to

show a generic system in which the Concentrator is

developed. It shows a fog computing system divided into

three main parts: the Wide Area Network (WAN), the Local

Area Network (LAN), and the Personal Area Network

(PAN).

• The Wide Area Network

This layer of the network mainly focuses on the cloud

architecture. It has the database role, storing all the data

processing made by the central fog nodes and sending them

the images requested for the native system virtualization to

develop the basic functionalities they must perform. In this

way, the history of every device is recorded, and these data

can be used to do multiple analyses, understand whether

damages can occur depending on the results taken, and

Fig. 1 - General architecture [16]

provide, if necessary, predictive maintenance services for the

different machines. Since the customer can use its algorithms

and sensors, the host devices' data is not stored in the leading

cloud system. They will be uploaded to the customer cloud

and can only be used by the producer if there is a legal

agreement to share data between the two parties.

• The Local Area Network

The second layer regards the central fog nodes and the

interconnections between the other layers. Those different

Concentrators, one for every machine in the production line,

gather the information from the peripheral fog nodes and

process their data, sending them to the cloud. The producer

and the customer can decide on the elaborations mentioned

since they depend on what they need to perform predictive

maintenance of the machines. They will also exchange

information with local systems in case of error signals or

urgent messages a user must notice. Its presence will allow

to:

1. Reduce bandwidth usage and the number of data

transmitted from the peripheral sensors to the cloud.

2. Delay reduction between when the data are gathered and

when they are elaborated.

3. Better control implementation to solve warnings or other

anomalies in the system.

This improves the system's usability and has better

performance in terms of time since the delay is reduced, not

only for the exchange of data but also for the anomalies and

warnings, which can help make the architecture more secure.

The central fog devices can support different types of

communication, principally ethernet, and wireless. These are

shown in Fig. 2. The Concentrator, from [19], does not

change the kind of information sent to the other components

of the system, just how it is made and configured. The

ethernet is used for registering the system’s performance

(number of pieces produced, machine efficiency, number of

functioning hours, etc.) by other production line components.

It is also linked to a local system (like a PLC on the machine

itself) to set an event-based communication for anomalies,

warnings, or other messages. Instead, wireless protocols,

mainly Bluetooth, are used to exchange data with the

peripheral fog nodes mounted on the machines to measure

different aspects of their functioning. The third kind of

connection is the internet for communication with the cloud.

The virtualization of the two parts of the system, the native

and the host one, will prevent the exchange of unnecessary

information between them, increasing the privacy and

security of the data taken. An example of a program that

provides this security is Docker, which lets the two containers

created not interfere with each other. The Concentrator will

implement a system that will make a sandbox that the

customer can modify depending on its necessities and

perform different measurements using his sensors. Some data

are available through a shared volume, but they are decided

by the native system and protected by default since the

program can keep the creation of containers secure and

controlled.

• The Personal Area Network

The third layer regards the peripheral fog nodes and the data

measured by them. They can be provided by the producer or

the customer that buys the system, adding external

functionalities other than the default ones. The aim of

gathering these data is to perform analyses of the machines to

understand if they are efficient and working correctly and to

offer a service of predictive maintenance in case the system

notices some anomalies. These sensors will be placed in a

critical section of a machine to measure parameters like

temperatures, vibrations, or any other valuable value for

studying its working life. They will use wireless

communication protocols to send their data to the

Concentrator. They will be initialized to save battery power

and register only valuable data when the machine is powered.

IV. EXPERIMENT AND DISCUSSION

This section is dedicated to describing the experiment and the

implemented scenario to prove the efficiency and feasibility

of the proposed system above. It will focus only on the PAN

and LAN parts, leaving the communication with the cloud to

future works. The general idea is to prove the feasibility of

the Concentrator device, and so the fog computing system

inside an industry production line. Without this device, there

would not be a fog computing system but an edge computing

system. For this reason, tests to prove the efficiency of the

sensors without the local center have not been executed.

Fig. 2 - Concentrator data exchange [16]

The experiment aims to demonstrate the usability of a code

that lets the creation of two containers, one called Native,

which the producer of the Concentrator gives, and one called

Host, provided by the customer using the device.

To do so, Docker has been chosen as an instrument for

virtualization, particularly Docker Compose, which permits

the creation of multiple containers and running them

simultaneously. The two containers have a shared volume in

which some data are published to make them communicate

and exchange information. The peripheral fog node chosen

for the experiments is the Nicla Sense ME from Arduino [20].

These sensors have been initialized to perform, one of them

as host and three of them as native sensors, to try to simulate

as best as possible a possible actual implementation.

The Nicla Sense ME is a small, low-cost, low-power device

that combines four state-of-the-art sensors from Bosch

Sensortec. It has the ME acronym, which means “Motion”

and “Environment” since it can measure rotations,

accelerations, temperatures, humidity, pressure, air quality,

and CO2 levels with an industrial grade of precision. This

board is their most minor form yet and can exchange data

through Bluetooth Low Energy connectivity (version 4.2)

through an ANNA-B112 module.

Regarding the Concentrator, we wanted to exploit the system

on embedded hardware, so we chose a Raspberry Pi four

model B. It runs Raspberry Pi OS 64-bit (based on Debian

release 11), where the instances of Docker compose will be

implemented using JavaScript and node-ble. The version of

Docker is 24.0.0, Docker compose is 2.17.2, the BlueZ

library is 5.55, and the Node.js library is 16.20.0.

The experiment is described in Fig. 3. It consists of creating

the two images for the containers and building them.

The first container, called Native, represents the one provided

by the producer, where the default functionalities are

implemented. It must use Bluetooth to find the peripherals,

gather their measurements, and process those data, producing

a report that shows the results and the raw data collected. If

there is an agreement between the manufacturer and the

customer, some data can be shared, writing them inside the

volume where all the data from the host peripheral will be

published. The remaining information is secured inside the

container and cannot be seen by others. The second container,

Host, represents the sandbox a generic customer can use to

add functionalities to the system. In this case, it will only

publish a report with some elaborations given by all the data

from the host peripherals and some from the native ones. The

native and the host reports are printed on a local server and

continuously updated.

The shared volume, called Experiment, is accessed through

both read and write permission from the Native container,

while the Host has only read permissions. This prevents data

corruption and ensures that only the Native container can

manage that information.

Four instances of the Nicla Sense ME have been used to

realize the peripheral sensors: three are considered native,

while only one is viewed as a host. In this way, the Native

container will consider only the devices associated with it for

the report and the data elaborations. At the same time, the

Host will only see what the Native wants to share, and the

single device will be signed as the host. This way, the two

reports will show what the two containers want to measure

without sharing too much information and augmenting the

system's security.

To illustrate the advantage of our proposed architecture, we

have considered the differences between running the solution

with the host Linux system and running it with the Docker

solution using the library node-trace-events [21] to see the

timing of the different actions performed by the system.

The images must be built to implement the solution on

Docker, unlike the native system. However, these times

depend on the internet connection available and so will not

be considered. Once the containers start, the following

actions are examined: time taken to find a peripheral, connect

to it, and retrieve its characteristics and data. A table is made

for all four peripherals, showing the difference between the

experiments done and the two cases studied: the host system

and Docker. The state diagram of the code is presented in Fig.

4. Even though four nodes have been used for the

experiments, only one table is shown for simplicity and space

since the results are very similar from one peripheral to the

other.

Fig. 4 - State diagram of the code

Fig. 3 - Experiment representation

A. Time to find the device

The data are taken in the first step of the code, in which the

code scans the different discoverable devices in the area until

it finds the one specified in an array declared at the beginning.

Once it has found the correct address, it tries to connect to it.

TABLE I. NICLA SENSE ME 09:E5:1E:9A:2A:1B

Experiment
Measurements

Date Average (s) Variance (𝒔𝟐)

Docker 25-04-2023 1.009266 1.506005e-05

Docker 26-04-2023 1.009927 1.891779e-05

Docker 27-04-2023 1.009945 2.035555e-05

Linux system 21-04-2023 1.013111 3.258273e-05

Linux system 25-04-2023 1.019435 1.621683e-05

Linux system 26-04-2023 1.016153 2.751479e -05

It is possible to notice how the measurements are very
similar for both the systems studied. No noticeable differences
are present.

B. Time to connect to the device

Once the device is found, the code connects to it and proceeds

once the connection is established. The second block

represents this action in the state diagram.

TABLE II. NICLA SENSE ME 09:E5:1E:9A:2A:1B

Experiment
Measurements

Date Average (s) Variance (𝒔𝟐)

Docker 25-04-2023 0.002580 2.177253e-06

Docker 26-04-2023 0.002701 7.662908e-07

Docker 27-04-2023 0.002428 6.531932e-07

Linux system 21-04-2023 0.003926 2.396214e-06

Linux system 25-04-2023 0.006169 1.196600e-06

Linux system 26-04-2023 0.004998 1.901245e-06

The connection values for some Nicla Sense ME are better

for the Docker system than the host one. However, this can

be explained by the fact that external noise can affect the time

a sensor takes to connect to the central. Both systems use

BlueZ and have been studied in the presence of numerous

Bluetooth devices. The reason Docker is faster could be the

driver activation, which is almost immediately after the

creation of the container, instead of activating them manually

in the Raspberry OS system.

C. Time to retrieve data

After the Concentrator is connected to the device, it founds

the peripheral’s GATT server, its services, and its

characteristics. It connects once again and records the results

given by the measurements done by the device. There is this

measurement in the last block before the production of the

reports in the state diagram.

TABLE III. NICLA SENSE ME 09:E5:1E:9A:2A:1B

Experiment
Measurements

Date Average (s) Variance (𝒔𝟐)

Docker 25-04-2023 0.000449 2.455680e-08

Docker 26-04-2023 0.000362 5.440180e-08

Docker 27-04-2023 0.000479 1.155385e-07

Linux system 21-04-2023 0.000666 1.850928e-08

Linux system 25-04-2023 0.000621 9.439940e-09

Linux system 26-04-2023 0.000538 6.123639e-09

Regarding the characteristics retrieval, the results vary

among the different Nicla. However, the time spent retrieving

the data offered by the peripheral is acceptable since they

have few differences on the scale of milliseconds. These

results show better functioning in the Docker part, too, since

even though the numbers are different, the timing is lower.

This happens because the drivers for the communication are

already immediately established due to the connection

between the devices.

D. Resources

Regarding the resources used, the Docker system takes 102.6

Mb of space, while the native system is occupied by every

package installation, with all their dependencies. The CPU

usage, studied through the Raspberry CPU Usage Monitor, is

the following:

TABLE IV. RESOURCES USED

Type of system
Measurements

Memory space
CPU

usage

Application running on

Raspberry OS host system
1.23Gb (16.12%) of 7.63Gb

20%

Application running on

Docker – Native container
1.51Gb (19.79%) of 7.63Gb 30%

It is possible to notice that CPU usage increases when the

main application (implemented in the Native container) is

executed. Since it must only produce the report, the Host

container is a little computationally heavy. The Native,

instead, must use Bluetooth to retrieve the data and so takes

more CPU to execute the commands. The difference between

the host system and the Docker solution is that in the second

case, the programs are executed simultaneously, with the

presence of Docker itself creating a safe and secure

environment for the containers. The memory space instead

has been seen through the command “htop” on the terminal.

It is possible to notice how the Docker solution occupies more

memory than the Debian basic system. This is due to the

following three main factors: the usage of containers, the

reinstallation of dependencies and valuable programs, and the

overhead introduced by Docker itself due to the copies of

packages present in different images. We cannot determine

how much memory space the Linux basic system takes since

the installed packages and all their dependencies are very

sparse. To do so, a mint Linux system should be taken and

studied.

E. Security

Security is another main topic of the comparison between the

two systems. It is essential to ensure that the files produced

and the data will not be accessed by those who should not

read their content and that no corruption is done. Docker

allows the creation of multiple environments that share the

same operating system without interfering with each other.

The containers limit access to the different files, avoiding

unwanted actions (like deleting or modifying) and permitting

control of how the data are shared and seen by the system's

actors. They can access only the information inside the

volume created. Depending on the selected permissions given

in the configuration, the files produced can only be read or

written by the chosen container.

On the other hand, the basic Linux system (Debian, in this

case) can be faulty due to the basic privileges that the system

itself provides. Files can be modified without administrator

privileges, causing a program not to work or to have data

modified without the user's consent. Also, the data between

the two containers should not be shared because the producer

may not want the host to see its report or vice versa, so the

system must control them. Docker allows the information to

be private and not accessed by everyone, augmenting the

purpose of secrecy.

To summarize the behavior of the Docker system concerning

the Raspberry OS, the experiments proved the creation of an

instance for the division between a container using the default

implementation (the Native one) and one that can be changed

depending on the customer's needs (the Host one). In our

case, data are principally centralized from the different

sensors, cataloged, and shared depending on the needs of the

Host container. In future work, it would be interesting to

understand how to implement an actual real case of

elaboration to see how much data it can handle and how the

Docker system is affected depending on the resources used.

V. CONCLUSIONS

With the advancement of Industry 4.0, it has become essential

to how data are treated and how to collect them. This paper

presents different methods: cloud, edge, and fog computing.

These permit reduced costs and time, improving efficiency in

real-time measurements and storing helpful information for a

generic industry. However, a device on the shelf usually

cannot be modified, risking introducing in its default

functions bug or unwanted behaviors in the software itself, so

it is not a customizable asset. The new device presented

called Concentrator solves this problem, letting a generic

customer introduce third-party programs without interfering

with its primary performance and adding peripherals or

processing elements beneficial for its system. The solution

can be created by using a Linux system. However, the

experiments conducted showed not only that this architecture

can be done in an embedded solution (like a Raspberry Pi)

but also that it is possible to use a program, like Docker, to

create an environment where everything is safe and secure

since the containers permit the isolation of all the

information, augmenting the privacy.

VI. ACKNOWLEDGMENTS

The authors want to thank AROL Closure System, which
shared its knowledge and assets, without which the project
could not have been realized. Thanks also to our colleagues
who helped us during the development of this paper.

VII. BIBLIOGRAPHY

[1] W. W. a. H. J. Kagermann H., «Securing the Future of German

Manufacturing Industry: Recommandations for Implementing the

Strategic Initiative Industrie 4.0. Final Report of the Industrie 4.0

Working Group,» Acatech, 2013.

[2] R. R. a. T. S. Madakam S., «Internet of Things (IoT): A Literature

Review,» Journal of Computer and Communications, vol. 3, pp. 164-

173, 2015.

[3] E. a. S. A. a. H. S. a. J. U. a. G. M. Sisinni, «Industrial Internet of

Things: Challenges, Opportunities,» IEEE Transactions on Industrial

Informatics, vol. 14, n. 11, pp. 4724-4734, 2018.

[4] R. a. B. J. a. G. A. M. Buyya, Cloud computing: Principles and

paradigms, John Wiley & Sons, 2010.

[5] P. M. a. T. Grance, «The NIST Definition of Cloud Computing,»

2011.

[6] W. a. C. J. a. Z. Q. a. L. Y. a. X. L. Shi, «Edge Computing: Vision and

Challenges,» IEEE Internet of Things Journal, vol. 3, n. 5, pp. 637-

646, 2016.

[7] F. a. M. R. a. Z. J. a. A. S. Bonomi, «Fog Computing and Its Role in

the Internet,» in Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing, 2012.

[8] C. &. L. Q. Yi Shanhe & Li, «A Survey of Fog Computing: Concepts,

Applications, and Issues,» 2015.

[9] R. a. R. A. R. a. K. D. Dua, «Virtualization vs Containerization to

Support PaaS,» in IEEE International Conference on Cloud

Engineering, 2014.

[10] D. a. Z. L. Liu, «The research and implementation of cloud

computing,» in 11th International Computer Conference on Wavelet

Actiev Media Technology and Information Processing(ICCWAMTIP),

2014.

[11] C. P. a. B. Lee, «Containers and Clusters for Edge Cloud Architectures

-- A Technology Review,» in 3rd International Conference on Future

Internet of Things and Cloud, 2015, pp. 379-386, doi:

10.1109/FiCloud.2015.35, 2015.

[12] F. -G. O. a. T. C. L. Letondeur, «A demo of application lifecycle

management for IoT collaborative neighborhood in the Fog: Practical

experiments and lessons learned around docker,» in 2017 IEEE Fog

World Congress (FWC), Santa Clara, CA, USA, 2017.

[13] H. S. a. A. Mourad, «Towards Dynamic On-Demand Fog Computing

Formation Based On Containerization Technology,» in 2018

International Conference on Computational Science and

Computational Intelligence (CSCI), 2018.

[14] C. E. a. R. D. M. Samaniego, «Smart Virtualization for IoT,» in IEEE

International Conference on Smart Cloud (SmartCloud), pp. 125-128,

doi: 10.1109/SmartCloud.2018.00028, 2018.

[15] I. F. A. I. a. T. T. R. Morabito, «Evaluating performance of

containerized IoT services for clustered devices at the network edge,»

IEEE Internet of Things Journal, vol. 4, n. 4, p. 1019–1030, 2017.

[16] A. a. R. E. a. K. A. Sergeev, «Docker Container Performance

Comparison on Windows and Linux Operating Systems,» in 2022

International Conference on Communications, Information,

Electronic and Energy Systems (CIEES), 2022.

[17] C. a. T. D. R. a. D. M. a. R. B. Martín, «FogPi: A Portable Fog

Infrastructure through Raspberry Pis,» in 2020 9th Mediterranean

Conference on Embedded Computing (MECO), 2020.

[18] R. a. T. A. N. Mahmud, «Con-Pi: A Distributed Container-Based Edge

and Fog Computing Framework,» IEEE Internet of Things Journal,

vol. 9, n. 6, pp. 4125-4138, 2022.

[19] M. V. G. M. Pietro d'Agostino, «A user-extensible solution for

deploying fog computing in industrial applications,» in International

Symposium on Industrial Electronics, Helsinki, 2023.

[20] Arduino, «Arduino Nicla Sense ME,» Arduino, [Online]. Available:

https://docs.arduino.cc/hardware/nicla-sense-me.

[21] B. B. Trent Mick, «node-trace-event,» [Online]. Available:

https://github.com/TritonDataCenter/node-trace-event.

