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Abstract— The adaptability of devices can be significant for a 

customer that inserts them in an industrial production line. The 

ability to modify an object bought along with a machine that can 

be personalized with its features can change how they want to 

do measurements for different reasons, like predictive 

maintenance. Fog computing local centers already exist in the 

market, but they are usually on-the-shelf products with no 

margin of change for any user. However, with the usage of 

Docker and containers, this can change. This paper describes a 

fog computing local central called Concentrator, which can not 

only execute its essential functions built-in by the producer but 

also be customized by the user to add in the elaborations on 

other external sensors, expanding its capabilities and usage. We 

wanted to improve the device already tested on a Linux PC on a 

Raspberry Pi and try its performance and characteristics, seeing 

if it could be transformed into an embedded architecture and an 

industrial feature. 

Keywords— Arduino, container, docker, industrial 

automation, IoT, embedded systems 

 

I. INTRODUCTION 

Industry 4.0, known as the Fourth Industrial Revolution, 

reshapes the manufacturing landscape. It represents the 

convergence of digital technologies, automation, and data-

driven processes to create smart, interconnected, and efficient 

manufacturing methods. This revolution is characterized by 

integrating physical production systems with digital 

technologies, enabling cyber-physical systems (CPS) 

creation. These use real-time data from sensors, actuators, 

and various connectivity for the different stages of the 

production process, increasing predictive maintenance and 

adaptive manufacturing [1]. 

 

At his core is the Internet of Things (IoT), in which machines, 

devices, and sensors are interconnected, creating a network 

in which data are shared across the production floor. This 

integration allows systems to communicate, collaborate, and 

make autonomous decisions [2]. New business models can be 

created with these properties, which develop into customer 

satisfaction, opening new revenue streams and market 

opportunities. However, there are some challenges that 

manufacturers must address: data security, privacy, and 

intellectual property. Also, adapting the workforce to digital 

transformation can be a significant hurdle. Standardization 

technologies, interoperability, and a profound renovation of 

establishments are crucial for adopting the Fourth Industrial 

Revolution [3]. 

 

 

In this view of interoperability, new systems have been 

created to make the different devices communicate between 

them, particularly the Cloud, Edge, and Fog computing. 

These are transformative technologies for different 

applications that revolutionize how businesses and 

individuals access computing resources. 

 

Cloud computing enables organizations to reduce costs, 

improve flexibility, and enhance efficiency by providing 

scalable, on-demand, virtualized services over the Internet. 

Scalability is one of the key characteristics since resources 

can easily be scaled up or down depending on the usage and 

the organization's needs. This elasticity enables cost savings 

and ensures optimal resource optimization [4]. There are 

three main models that the industry can develop: 

Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS). The first provides 

virtualized computing resources to build and manage their 

applications and environments, the second offers the 

development and deployment of a platform without worrying 

the user about infrastructure management, and the third 

provides complete software applications, eliminating the 

need for local installation and maintenance [5]. These models 

can be deployed in public clouds, private or hybrid, 

combining both to leverage both benefits, maintaining 

flexibility and security. This is an important topic for this 

kind of system since companies usually rely on third-party 

providers and the transfer of sensitive data on the Internet. 

Performance and latency issues may occur when accessing 

cloud services, requiring consideration of network 

connectivity and service level agreements [4]. 

 

Edge computing is another system that addresses 

computation, storage, and analytics requirements closer to the 

data source. It is a distributed paradigm that shifts the 

resources from the centralized cloud servers to the network 

edge, enabling real-time data processing, reduced latency, 

and improved application performance. This proximity to the 

sensors also minimizes network congestion, bandwidth 

usage, and dependence on cloud connectivity. The 

fundamental principle is to reduce time latency by avoiding 

the round-trip to cloud servers. It also enables offline 

operations and local processing and storage capabilities, 

enhancing privacy and reducing exposure to potential cyber 

threats [6]. 

 

The last paradigm is fog computing, which extends cloud 

computing capabilities to the network's edge and enables 

localized data processing, real-time analytics, and improved 



efficiency. It takes both the benefits of cloud and edge 

computing and combines them. Fog computing shifts the 

cloud-based resources for data processing and storage toward 

the edge but not on the system's limit. It uses a series of local 

centers called fog nodes, routers, switches, or similar devices. 

This enables real-time operations, minimizes latency, and 

enhances overall system performance. Fog computing 

addresses the challenges posed by the influx of IoT devices 

by distributing resources along the system close to the edge. 

For this reason, it improves the efficiency and reliability of 

IoT applications, elaborating the data from the nodes and 

sending them to the cloud servers, reducing bandwidth usage, 

congestion, and potential failures. This localized processing 

also enhances privacy and security, as sensitive data can be 

processed and stored closer to its source, minimizing the risk 

of data breaches and ensuring compliance with data 

protection regulations [7]. 

However, fog computing has challenges. The distributed 

nature of fog deployments introduces complexities in 

managing and orchestrating resources, ensuring 

interoperability between heterogeneous devices, and 

handling intermittent connectivity. Additionally, fog nodes' 

dynamic and potentially resource-constrained nature requires 

efficient resource allocation, load balancing, and fault 

tolerance mechanisms [8]. The main actors of a fog 

computing system are the local centrals, which must gather 

and elaborate the data taken from the edge sensors. 

 

This paper focuses on developing a fog central called 

Concentrator, created by the collaboration between 

Politecnico di Torino and AROL Closure Systems, a 

company producing capping machines. Apart from a default 

functioning, which consists of predictive maintenance of the 

different devices, the idea is to add a containerized sandbox 

in which a general customer can add methods or purposes by 

using third-party software or its own without affecting the 

basic functionalities. This is done by implementing one or 

more containers through a virtualization system like Docker, 

in which reports showing the data of interest are produced. 

 

The contribution of this paper is to create this sandbox inside 

of an embedded on-the-shelf product, like a Raspberry Pi 

board, in which a customizable network can be deployed. The 

AROL assets are used to test and evaluate the proposed 

solution experimentally, obtaining data and simulating a first 

instance of the final implementation. 

 

The presentation is organized as follows. Section II shows 

state-of-the-art and a series of papers we used to study and 

develop the idea in the fog computing context. Section III 

presents the architecture, detailing how the Concentrator has 

been developed and which node sensors have been chosen. 

Section IV offers the experiment conducted, and finally, 

section V draws some conclusions. 

II. RELATED WORKS 

 

The usage of containers and virtualization in cloud computing 

systems has been discussed since the first decade of the 21st 

century [9][10]. Recent topics have shown a significant 

improvement in the matter, developing them in fog 

computing architectures. 

In [11], the authors present a technological review of different 

utilization of virtualization depending on the operating 

system used and their performances. By explaining what 

Docker is and how it can be used for these kinds of 

applications, they explained the technological requirements 

and architectural principles for developing an edge cloud 

computing system. Even though three different methods have 

been studied (Windows, Linux, and Cloud Platform-as-a-

Service(PaaS)), the central focus is on Linux systems, which 

help the implementation of embedded hardware, creating a 

PaaS and an orchestration method to control and manage the 

different containers. The techniques used are Docker Swarm 

and Kubernetes to have an overview of how the two services 

work and how to implement them efficiently.  

 

A similar approach to our architecture has been presented in 

[12]. An intelligent fog computing home infrastructure has 

been created using low-cost embedded hardware (Arduino, 

Raspberry Pi board, and some sensors). The network has been 

divided between three houses with different sensors, and a 

Raggedpod, a micro data center, represents the central. The 

virtualization is applied through Docker Linux individual 

containers to cope with production-grade requirements and 

integration of various systems. 

 

In [13], a different approach is explained: the authors show 

an on-demand fog system created based on the customer’s 

need, depending on the nearest available devices that are part 

of the network, to have the least initialization cost possible. 

Using Docker, managed by Kubeadm, they deployed on-the-

fly services using orchestrators that will enter the network 

whenever a request is issued, handling it, and sending the data 

to the cloud. The latencies are reduced not only due to the 

availability of different devices closest to the requester, 

updating fog’s IP to localize it, but also by creating clusters 

in advance that can be used directly without waiting for them. 

 

The paper [14] exemplifies how virtualization can be applied 

in a dew computing system. They created a network where a 

software component communicates with the cloud and stores 

data locally composed by a virtual resource. The service 

accomplishes the different user requests, saturating itself. 

When this happens, a replica is awakened to solve those 

attending, giving elasticity to the network on an edge level. 

Since they decided not to use central gateways, the device's 

risk of being corrupted is relatively high, and it is an issue 

that must be solved. For this reason, the system's security has 

also been developed, creating a blockchain protocol that 

achieves reliability and safety on an edge level. 

 

Paper [15] shows the two main principal frameworks that an 

IoT service could have: container-based pair-oriented IoT 

service provisioning, where two devices cooperate and are 

responsible for the interactions, and container-based edge-

managed clustering mode, where a manager supervises the 

operations between the cooperating devices forming a 

cluster. The difference between the two is how the creation 

of containerization is divided between the different 

instruments and how they work the IoT resources in terms of 

CPU and energy consumption. 

 



In [16], the authors present a technological review of different 

utilization of virtualization depending on the operating 

system used and their performances. By explaining what 

Docker is and how it can be used for those kinds of 

applications, they created a test tool utilizing a program to 

evaluate the speed of arithmetic operations, the rate of 

working with RAM, and the speed of disk operations. They 

used C++ as the language and Clang++ as the compiler, 

performing 33 operations in total: 15 arithmetic functions 

with 15 assignments, 1 loop condition, 1 increment, and 1 

loop variable assignment. The results showed that Linux 

systems perform slightly faster regarding arithmetic and 

memory operations than Windows. 

 

The last two works we referred to are FogPi [17] and Con-Pi 

[18], describing fog computing local centrals exploiting the 

containerization principle through Docker for different 

purposes. They both chose and showed how the Raspberry Pi 

is a good choice for this kind of utilization, describing its 

suitability and performance. 

 

FogPi is an embedded, portable, low-cost, and low-power 

consumption fog computing infrastructure running Docker, 

providing scalability and higher availability than traditional 

methods. The containers can be deployed using previously 

loaded and configured images, so it does not require an 

internet connection. They created this local central to control 

some nodes in real-time, and an evaluation of the latency 

given from Google Cloud concerning FogPi has been done, 

showing how the fog infrastructure can better manage the 

amount of data than the cloud method. 

 

Con-Pi is a distributed framework to manage resources in a 

fog computing environment. It is based on different Small 

single-board computers (SBCs), but they have used some 

Raspberry Pis. It uses Docker to have containerization to run 

IoT and microservices, managing energy available in 

different use cases, for example, smart agriculture. 

They used as hardware a Raspberry Pi, some sensors, and 

actuators to perceive the external world. Instead, the software 

is divided between a Controller, a service, and a 

MicroService: the first is used for resource management and 

control of the execution of microservices, the second 

understands the context information and configurations, 

while the third acts as an operator for the controller 

instructions. This configuration can lead to resource sharing: 

the execution of microservices and their respective containers 

are offloaded among RPis, while the sensor data and 

actuation interfaces can be accessed remotely. Also, how they 

managed the policy integration and their managing of 

different containers is very interesting. Information is taken 

that can be useful for future works. 

 

These works utilize fog computing systems, Docker, and 

Raspberry Pi boards as local fog central, proving the idea's 

feasibility. However, none explained how a user could 

change the design to insert its paradigm or customize it 

depending on someone’s need. 

 

This paper presents the Concentrator, a hardware device that 

can be part of a fog computing system. It stores and elaborates 

data, sending them to the cloud. The innovation we propose 

regards the possibility of adding third-party applications to 

the system without interfering with the basic functionalities 

of the system, to be customizable for any user that would like 

to use it. We decided to use a virtualization system to create 

two domains: a native and a host. The native is dedicated to 

the producer and must contain the default application for 

which the Concentrator exists. The host, instead, can be 

modified by the customer to add services that can be useful 

for a specific application. The configuration is suggested by 

looking at the related work [15] since there are multiple 

nodes, and the IoT client must guarantee service continuity in 

case of failure. This approach can ensure a fast management 

procedure through direct interaction between the cooperating 

nodes.  

 

Virtualization is used to create a sandbox where customers 

can modify a central device depending on their needs. 

Starting from the same operating system, the different 

applications will not interfere with each other, offering a 

secure implementation inside their production line. 

III. METHODOLOGY AND ARCHITECTURE 

This section presents the proposed system architecture, 

illustrated in Fig. 1. This figure has been retrieved by  [19] to 

show a generic system in which the Concentrator is 

developed.  It shows a fog computing system divided into 

three main parts: the Wide Area Network (WAN), the Local 

Area Network (LAN), and the Personal Area Network 

(PAN). 

 

 

• The Wide Area Network 

 

This layer of the network mainly focuses on the cloud 

architecture. It has the database role, storing all the data 

processing made by the central fog nodes and sending them 

the images requested for the native system virtualization to 

develop the basic functionalities they must perform. In this 

way, the history of every device is recorded, and these data 

can be used to do multiple analyses, understand whether 

damages can occur depending on the results taken, and 

Fig. 1 - General architecture [16] 



provide, if necessary, predictive maintenance services for the 

different machines. Since the customer can use its algorithms 

and sensors, the host devices' data is not stored in the leading 

cloud system. They will be uploaded to the customer cloud 

and can only be used by the producer if there is a legal 

agreement to share data between the two parties.  

 

• The Local Area Network 

 

The second layer regards the central fog nodes and the 

interconnections between the other layers. Those different 

Concentrators, one for every machine in the production line, 

gather the information from the peripheral fog nodes and 

process their data, sending them to the cloud. The producer 

and the customer can decide on the elaborations mentioned 

since they depend on what they need to perform predictive 

maintenance of the machines. They will also exchange 

information with local systems in case of error signals or 

urgent messages a user must notice. Its presence will allow 

to: 

 

1. Reduce bandwidth usage and the number of data 

transmitted from the peripheral sensors to the cloud. 

2. Delay reduction between when the data are gathered and 

when they are elaborated. 

3. Better control implementation to solve warnings or other 

anomalies in the system. 

 

This improves the system's usability and has better 

performance in terms of time since the delay is reduced, not 

only for the exchange of data but also for the anomalies and 

warnings, which can help make the architecture more secure. 

 

The central fog devices can support different types of 

communication, principally ethernet, and wireless. These are 

shown in Fig. 2. The Concentrator, from [19], does not 

change the kind of information sent to the other components 

of the system, just how it is made and configured. The 

ethernet is used for registering the system’s performance 

(number of pieces produced, machine efficiency, number of 

functioning hours, etc.) by other production line components. 

It is also linked to a local system (like a PLC on the machine 

itself) to set an event-based communication for anomalies, 

warnings, or other messages. Instead, wireless protocols, 

mainly Bluetooth, are used to exchange data with the 

peripheral fog nodes mounted on the machines to measure 

different aspects of their functioning. The third kind of 

connection is the internet for communication with the cloud. 

The virtualization of the two parts of the system, the native 

and the host one, will prevent the exchange of unnecessary 

information between them, increasing the privacy and 

security of the data taken. An example of a program that 

provides this security is Docker, which lets the two containers 

created not interfere with each other. The Concentrator will 

implement a system that will make a sandbox that the 

customer can modify depending on its necessities and 

perform different measurements using his sensors. Some data 

are available through a shared volume, but they are decided 

by the native system and protected by default since the 

program can keep the creation of containers secure and 

controlled. 

 

• The Personal Area Network 

 

The third layer regards the peripheral fog nodes and the data 

measured by them. They can be provided by the producer or 

the customer that buys the system, adding external 

functionalities other than the default ones. The aim of 

gathering these data is to perform analyses of the machines to 

understand if they are efficient and working correctly and to 

offer a service of predictive maintenance in case the system 

notices some anomalies. These sensors will be placed in a 

critical section of a machine to measure parameters like 

temperatures, vibrations, or any other valuable value for 

studying its working life. They will use wireless 

communication protocols to send their data to the 

Concentrator. They will be initialized to save battery power 

and register only valuable data when the machine is powered. 

 

IV. EXPERIMENT AND DISCUSSION 

This section is dedicated to describing the experiment and the 

implemented scenario to prove the efficiency and feasibility 

of the proposed system above. It will focus only on the PAN 

and LAN parts, leaving the communication with the cloud to 

future works. The general idea is to prove the feasibility of 

the Concentrator device, and so the fog computing system 

inside an industry production line. Without this device, there 

would not be a fog computing system but an edge computing 

system. For this reason, tests to prove the efficiency of the 

sensors without the local center have not been executed. 

 

Fig. 2 - Concentrator data exchange [16] 



The experiment aims to demonstrate the usability of a code 

that lets the creation of two containers, one called Native, 

which the producer of the Concentrator gives, and one called 

Host, provided by the customer using the device. 

To do so, Docker has been chosen as an instrument for 

virtualization, particularly Docker Compose, which permits 

the creation of multiple containers and running them 

simultaneously. The two containers have a shared volume in 

which some data are published to make them communicate 

and exchange information. The peripheral fog node chosen 

for the experiments is the Nicla Sense ME from Arduino [20]. 

These sensors have been initialized to perform, one of them 

as host and three of them as native sensors, to try to simulate 

as best as possible a possible actual implementation. 

 

The Nicla Sense ME is a small, low-cost, low-power device 

that combines four state-of-the-art sensors from Bosch 

Sensortec. It has the ME acronym, which means “Motion” 

and “Environment” since it can measure rotations, 

accelerations, temperatures, humidity, pressure, air quality, 

and CO2 levels with an industrial grade of precision.  This 

board is their most minor form yet and can exchange data 

through Bluetooth Low Energy connectivity (version 4.2) 

through an ANNA-B112 module. 

 

Regarding the Concentrator, we wanted to exploit the system 

on embedded hardware, so we chose a Raspberry Pi four 

model B. It runs Raspberry Pi OS 64-bit (based on Debian 

release 11), where the instances of Docker compose will be 

implemented using JavaScript and node-ble. The version of 

Docker is 24.0.0, Docker compose is 2.17.2, the BlueZ 

library is 5.55, and the Node.js library is 16.20.0. 

The experiment is described in Fig. 3. It consists of creating 

the two images for the containers and building them.  

 

The first container, called Native, represents the one provided 

by the producer, where the default functionalities are 

implemented. It must use Bluetooth to find the peripherals, 

gather their measurements, and process those data, producing 

a report that shows the results and the raw data collected. If 

there is an agreement between the manufacturer and the 

customer, some data can be shared, writing them inside the 

volume where all the data from the host peripheral will be 

published. The remaining information is secured inside the 

container and cannot be seen by others. The second container, 

Host, represents the sandbox a generic customer can use to 

add functionalities to the system. In this case, it will only 

publish a report with some elaborations given by all the data 

from the host peripherals and some from the native ones. The 

native and the host reports are printed on a local server and 

continuously updated. 

 

The shared volume, called Experiment, is accessed through 

both read and write permission from the Native container, 

while the Host has only read permissions. This prevents data 

corruption and ensures that only the Native container can 

manage that information. 

 

Four instances of the Nicla Sense ME have been used to 

realize the peripheral sensors: three are considered native, 

while only one is viewed as a host. In this way, the Native 

container will consider only the devices associated with it for 

the report and the data elaborations. At the same time, the 

Host will only see what the Native wants to share, and the 

single device will be signed as the host. This way, the two 

reports will show what the two containers want to measure 

without sharing too much information and augmenting the 

system's security. 

 

To illustrate the advantage of our proposed architecture, we 

have considered the differences between running the solution 

with the host Linux system and running it with the Docker 

solution using the library node-trace-events [21] to see the 

timing of the different actions performed by the system.  

 

The images must be built to implement the solution on 

Docker, unlike the native system. However, these times 

depend on the internet connection available and so will not 

be considered. Once the containers start, the following 

actions are examined: time taken to find a peripheral, connect 

to it, and retrieve its characteristics and data. A table is made 

for all four peripherals, showing the difference between the 

experiments done and the two cases studied: the host system 

and Docker. The state diagram of the code is presented in Fig. 

4. Even though four nodes have been used for the 

experiments, only one table is shown for simplicity and space 

since the results are very similar from one peripheral to the 

other. 

 

 

Fig. 4 - State diagram of the code 

Fig. 3 - Experiment representation 



 

A. Time to find the device 

The data are taken in the first step of the code, in which the 

code scans the different discoverable devices in the area until 

it finds the one specified in an array declared at the beginning. 

Once it has found the correct address, it tries to connect to it. 

TABLE I.  NICLA SENSE ME 09:E5:1E:9A:2A:1B 

Experiment 
Measurements 

Date Average (s) Variance (𝒔𝟐) 

Docker 25-04-2023 1.009266 1.506005e-05 

Docker 26-04-2023 1.009927 1.891779e-05 

Docker 27-04-2023 1.009945 2.035555e-05 

Linux system 21-04-2023 1.013111 3.258273e-05 

Linux system 25-04-2023 1.019435 1.621683e-05 

Linux system 26-04-2023 1.016153 2.751479e -05 

 

It is possible to notice how the measurements are very 
similar for both the systems studied. No noticeable differences 
are present. 

 

B. Time to connect to the device 

Once the device is found, the code connects to it and proceeds 

once the connection is established. The second block 

represents this action in the state diagram. 

 

TABLE II.  NICLA SENSE ME 09:E5:1E:9A:2A:1B 

Experiment 
Measurements 

Date Average (s) Variance (𝒔𝟐) 

Docker 25-04-2023 0.002580 2.177253e-06 

Docker 26-04-2023 0.002701 7.662908e-07 

Docker 27-04-2023 0.002428 6.531932e-07 

Linux system 21-04-2023 0.003926 2.396214e-06 

Linux system 25-04-2023 0.006169 1.196600e-06 

Linux system 26-04-2023 0.004998 1.901245e-06 

 

The connection values for some Nicla Sense ME are better 

for the Docker system than the host one. However, this can 

be explained by the fact that external noise can affect the time 

a sensor takes to connect to the central. Both systems use 

BlueZ and have been studied in the presence of numerous 

Bluetooth devices. The reason Docker is faster could be the 

driver activation, which is almost immediately after the 

creation of the container, instead of activating them manually 

in the Raspberry OS system.  

C. Time to retrieve data 

After the Concentrator is connected to the device, it founds 

the peripheral’s GATT server, its services, and its 

characteristics. It connects once again and records the results 

given by the measurements done by the device. There is this 

measurement in the last block before the production of the 

reports in the state diagram. 

 

TABLE III.  NICLA SENSE ME 09:E5:1E:9A:2A:1B 

Experiment 
Measurements 

Date Average (s) Variance (𝒔𝟐) 

Docker 25-04-2023 0.000449 2.455680e-08 

Docker 26-04-2023 0.000362 5.440180e-08 

Docker 27-04-2023 0.000479 1.155385e-07 

Linux system 21-04-2023 0.000666 1.850928e-08 

Linux system 25-04-2023 0.000621 9.439940e-09 

Linux system 26-04-2023 0.000538 6.123639e-09 

 

Regarding the characteristics retrieval, the results vary 

among the different Nicla. However, the time spent retrieving 

the data offered by the peripheral is acceptable since they 

have few differences on the scale of milliseconds. These 

results show better functioning in the Docker part, too, since 

even though the numbers are different, the timing is lower. 

This happens because the drivers for the communication are 

already immediately established due to the connection 

between the devices. 

 

D. Resources 

Regarding the resources used, the Docker system takes 102.6 

Mb of space, while the native system is occupied by every 

package installation, with all their dependencies. The CPU 

usage, studied through the Raspberry CPU Usage Monitor, is 

the following: 

TABLE IV.  RESOURCES USED 

Type of system 
Measurements 

Memory space 
CPU 

usage 

Application running on 

Raspberry OS host system 
1.23Gb (16.12%) of 7.63Gb 

20% 

 

Application running on 

Docker – Native container 
1.51Gb (19.79%) of 7.63Gb 30% 

 

It is possible to notice that CPU usage increases when the 

main application (implemented in the Native container) is 

executed. Since it must only produce the report, the Host 

container is a little computationally heavy. The Native, 

instead, must use Bluetooth to retrieve the data and so takes 

more CPU to execute the commands. The difference between 

the host system and the Docker solution is that in the second 

case, the programs are executed simultaneously, with the 

presence of Docker itself creating a safe and secure 

environment for the containers. The memory space instead 

has been seen through the command “htop” on the terminal. 

It is possible to notice how the Docker solution occupies more 

memory than the Debian basic system. This is due to the 

following three main factors: the usage of containers, the 

reinstallation of dependencies and valuable programs, and the 

overhead introduced by Docker itself due to the copies of 

packages present in different images. We cannot determine 

how much memory space the Linux basic system takes since 



the installed packages and all their dependencies are very 

sparse. To do so, a mint Linux system should be taken and 

studied. 

E. Security 

Security is another main topic of the comparison between the 

two systems. It is essential to ensure that the files produced 

and the data will not be accessed by those who should not 

read their content and that no corruption is done. Docker 

allows the creation of multiple environments that share the 

same operating system without interfering with each other. 

The containers limit access to the different files, avoiding 

unwanted actions (like deleting or modifying) and permitting 

control of how the data are shared and seen by the system's 

actors. They can access only the information inside the 

volume created. Depending on the selected permissions given 

in the configuration, the files produced can only be read or 

written by the chosen container. 

On the other hand, the basic Linux system (Debian, in this 

case) can be faulty due to the basic privileges that the system 

itself provides. Files can be modified without administrator 

privileges, causing a program not to work or to have data 

modified without the user's consent. Also, the data between 

the two containers should not be shared because the producer 

may not want the host to see its report or vice versa, so the 

system must control them. Docker allows the information to 

be private and not accessed by everyone, augmenting the 

purpose of secrecy. 

 

To summarize the behavior of the Docker system concerning 

the Raspberry OS, the experiments proved the creation of an 

instance for the division between a container using the default 

implementation (the Native one) and one that can be changed 

depending on the customer's needs (the Host one). In our 

case, data are principally centralized from the different 

sensors, cataloged, and shared depending on the needs of the 

Host container. In future work, it would be interesting to 

understand how to implement an actual real case of 

elaboration to see how much data it can handle and how the 

Docker system is affected depending on the resources used. 

V. CONCLUSIONS 

With the advancement of Industry 4.0, it has become essential 

to how data are treated and how to collect them. This paper 

presents different methods: cloud, edge, and fog computing. 

These permit reduced costs and time, improving efficiency in 

real-time measurements and storing helpful information for a 

generic industry. However, a device on the shelf usually 

cannot be modified, risking introducing in its default 

functions bug or unwanted behaviors in the software itself, so 

it is not a customizable asset.  The new device presented 

called Concentrator solves this problem, letting a generic 

customer introduce third-party programs without interfering 

with its primary performance and adding peripherals or 

processing elements beneficial for its system. The solution 

can be created by using a Linux system. However, the 

experiments conducted showed not only that this architecture 

can be done in an embedded solution (like a Raspberry Pi) 

but also that it is possible to use a program, like Docker, to 

create an environment where everything is safe and secure 

since the containers permit the isolation of all the 

information, augmenting the privacy. 
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