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Delay Robustness of Consensus Algorithms:
Continuous-Time Theory

Anton V. Proskurnikov, Senior Member, IEEE, and Giuseppe Carlo Calafiore, Fellow, IEEE,

Abstract—Consensus among autonomous agents is a key prob-
lem in multi-agent control. In this paper, we consider averaging
consensus policies over time-varying graphs in presence of
unknown but bounded communication delays. It is known that
consensus is established (no matter how large the delays are) if
the graph is periodically, or uniformly quasi-strongly connected
(UQSC). The UQSC condition is often believed to be the weakest
sufficient condition under which consensus can be proved. We
show that the UQSC condition can actually be substantially
relaxed and replaced by a condition that we call aperiodic quasi-
strong connectivity (AQSC), which, in some sense, proves to
be very close to the necessary condition (the so-called integral
connectivity). Under the assumption of reciprocity of interactions
(e.g., for undirected or type-symmetric graphs), a necessary
and sufficient condition for consensus in presence of bounded
communication delays is established; the relevant results have
been previously proved only in the undelayed case.

I. INTRODUCTION

Consensus policies are prototypic distributed algorithms for
multi-agent coordination [1], [2] inspired by regular “intelli-
gent” behaviors of biological and physical systems [3]–[5].
The most studied first-order consensus algorithms are based
on the principle of iterative averaging. Averaging algorithms
were first proposed in sociological literature [6], [7] and have
found numerous applications in distributed computing [8]–
[11]. Some consensus algorithms for general agents are
squarely based on first-order averaging protocols [12], [13].

Consider a finite team of agents V , each of which is
associated with some value of interest xi ∈ R, i ∈ V . In
the discrete-time case, the agents simultaneously update their
values to the average of their own value and the others’ values:

xi(t+ 1) =
∑

j∈V
aij(t)xj(t) ∀i ∈ V, t = 0, 1, . . . (1)

where (aij(t)) ∈ RV×V is a stochastic matrix. The continuous-
time counterpart of the algorithm (1) is

ẋi(t) =
∑

j∈V
aij(t)(xj(t)− xi(t)) ∀i ∈ V, t ≥ 0 (2)

where the matrix (aij(t)) ∈ RV×V is nonnegative. In both
cases, the entry aij(t) is interpreted as the weight of influence
of agent j on agent i at time t: the larger weight is, the stronger
is attraction of agent i’s value to agent j’s value.

The central question regarding dynamics (1) and (2) is
establishing eventual (global) consensus, that is, convergence
of all values xi(t) to the same value x̄ = limt→∞ xi(t)∀i
(which depends on the initial condition). In the case of
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constant weights aij(t) ≡ aij , the consensus criterion is
well-known [1], [14], [15]. Consensus in the continuous-time
case (2) established if and only if the graph associated to
matrix A

∆
= (aij) is quasi-strongly connected, that is, some

node of the graph is connected (directly or indirectly) to all
other nodes. In the discrete-time case (1), some aperiodicity
conditions also arise [15], [16]. A more general behavior is a
“partial” (group, cluster) consensus [17]–[19], i.e., splitting of
the agents into several groups converging to different values.

Finding criteria ensuring consensus in the case of a general
time-varying matrix A(t)

∆
= (aij(t)) is a difficult problem

whose complete solution is still elusive. A well-known neces-
sary condition for consensus is the so-called integral (essential,
persistent) connectivity [20]–[22]: the arcs (j, i) such that∑∞

t=0
aij(t) = ∞ or

∫ ∞

0

aij(t)dt = ∞ (3)

should constitute a quasi-strongly connected graph. This con-
dition, however, is far from being sufficient. Simple counter-
examples [23], [24] show that the agents may fail to reach
consensus (the solution may even fail to converge) even if
the persistent graph is complete; necessary and sufficient
consensus conditions are still elusive. In the discrete-time case,
consensus is equivalent to ergodicity of the backward infinite
products A(t) . . . A(0) [25]–[27]. Necessary consensus con-
ditions inspired by theory of inhomogeneous Markov chains
were proposed in [28], [29] (the infinite flow, absolute infinite
flow and jet infinite flow conditions); the verification of these
properties is, however, a self-standing non-trivial problem.

Sufficient criteria for consensus can be divided into several
groups. Conditions of the first type require the periodic, or
uniform quasi-strong connectivity (UQSC) [1], [30], [31]: two
numbers T, ε > 0 should exist such that the unions of the
interacting graphs over each interval [t, t+T ], t ≥ 0 are quasi-
strongly connected, and this connectivity property persists
if one removes “light” arcs whose weights are less than ε.
The uniform connectivity is however only sufficient yet not
necessary for consensus and implies, in fact, much stronger
properties of consensus with uniform convergence [31], [32].

Consensus criteria of the second kind ensure consensus
in presence of the integral connectivity and some conditions
ensuring some balance of couplings. The simplest condition
of this type is the coupling symmetry aij(t) = aji(t) [33],
which condition can be in fact relaxed to weight-balance,
type-symmetry or cut-balance conditions [20]. All of these
conditions guarantee reciprocity of interactions: if some group
of agents S ⊂ {1, . . . , n} influences the remaining agents from
Sc = {1, . . . , n}\S, then agents from Sc also influence agents
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from S, moreover, the mutual influences of groups S and Sc

are commensurate. The most general criteria for consensus
over reciprocal graphs were obtained in [24], [34]. Criteria of
the third type impose the condition of arc-balance [22], [35],
requiring that the weights of persistent arcs are commensurate.

An important question regarding consensus algorithms is
robustness against communication delays. Such delays nat-
urally arise in the situation where the agents have direct
access to their own values, whereas the neighbors’ values are
subject to non-negligible time lags. Delays of this type are
inevitable in networks spread over large distances (e.g., where
the agents communicate via Internet), but also arise in many
physical models [36], [37]. The UQSC property in fact ensures
consensus robustness against arbitrary bounded delays [30],
[36], [38], [39]. However, delay robustness without uniform
connectivity of the graph has remained an open problem; the
existing results are mostly limited to the discrete-time case
and impose restrictive conditions on the matrix A(t), e.g., the
uniform positivity of its non-zero entries [40], [41]. There is
a judgement that, dealing with delayed consensus algorithms,
the “uniform quasi-strong connectivity is in fact the weakest
assumption on the graph connectivity such that consensus is
guaranteed for arbitrary initial conditions” [39]. As will be
shown, this judgement is not actually correct, and the UQSC
can be reduced to a much weaker condition, which we call
aperiodic quasi-strong connectivity (AQSC); in the case of
reciprocal interactions, the AQSC can be further relaxed.

We focus on delay robustness of linear continuous-time
consensus algorithms (2) As shown in the extended version
of this paper [42], the theory for discrete-time algorithms is
similar. The main results of this paper are as follows.

First, we obtain a novel consensus criterion in the case of
a general time-varying directed graph, extending the UQSC
condition to a much weaker condition termed AQSC (Theo-
rem 1). This result, in fact, is of interest even for the undelayed
case and, as it will be shown, generalizes many consensus
criteria available in the literature [22], [35], [39]. Second,
we extend the reciprocity-based consensus criteria established
in [20], [21], [24] to the case of communication delays.
Third, we prove consensus robustness against some classes
of unknown disturbances. Along with global consensus, we
consider criteria for partial consensus between some agents.

The paper is organized as follows. Section II introduces
preliminary concepts and notation. Section III provides the
problem setup (delay-robust consensus in averaging algo-
rithms). In Section IV, we discuss known necessary condi-
tion of consensus (persistent connectivity). Section V offers
the first sufficient condition for consensus, applicable to a
general directed graph and generalizing the commonly used
UQSC condition. Another sufficient condition of consensus,
applicable to non-instantaneously type-symmetric graphs, is
introduced in Section VI. Section VII collects the technical
proofs of the main results. Section VIII gives a numerical
example, illustrating the main results.

II. PRELIMINARIES

Throughout the text, symbol ∆
= should be read as “defined

as”. For integers m ≤ n, let [m : n]
∆
= {m,m+ 1, . . . , n}.

Given a finite set of indices V , we use RV to denote the set
of vectors x = (xi)i∈V , where xi ∈ R. For such a vector,
minx

∆
= mini∈V xi and maxx

∆
= maxi∈V xi. As usual,

∥x∥∞
∆
= maxi∈V |xi|. For two vectors x, y ∈ RV , we write

x ≤ y if xi ≤ yi ∀i. Similarly, we use RV×V to denote the set
of matrices A = (aij)i,j∈V , where aij ∈ R ∀i, j ∈ V .

The vectors of standard coordinate basis in RV are denoted
by ei

∆
= (δij)j∈V , where δii

∆
= 1 ∀i and δij

∆
= 0 ∀j ̸= i. Let

1V
∆
=

∑
i∈V ei denote the vector of ones and IV

∆
= (δij)i,j∈V

be the identity matrix; the subscript V will be omitted when
this does not lead to confusion.

A (directed) graph is a pair G = (V, E), where V is a finite
set of nodes and E ⊆ V × V is the set of arcs. A walk from
node i ∈ V to node j ∈ V is a sequence of arcs (v0, v1),
(v1, v2),. . . ,(vn−1, vn) starting at i0 = i and ending at in = j.
A graph is strongly connected if every two nodes are connected
by a walk and quasi-strongly connected1 if some node (a root)
is connected to all other nodes by walks.

A weighted graph, determined by a weight matrix A ∈
RV×V , is a triple G[A] ∆

= (V, E , A), where A ∈ RV×V is a
nonnegative matrix that is compatible with graph (V, E), that
is2, E ∆

= {(j, i) ∈ V × V : aij > 0}. Given ε > 0, denote

A[ε] ∆
= (a

[ε]
ij ), a

[ε]
ij =

{
aij , aij ≥ ε,

0, aij < ε.

Graph G[A[ε]] is thus obtained from G[A] by removing
“lightweight” arcs of weight < ε; we call graph G[A] (quasi)-
strongly ε-connected if G[A[ε]] is (quasi-)strongly connected.

III. PROBLEM SETUP

Consider the delayed counterpart of system (2) as follows

ẋi(t) =
∑

j ̸=i
aij(t)(x̂

i
j(t)− xi(t)), i ∈ V, (4)

Unlike the algorithm (4), at time agent i receives a retarded
value of agent j ̸= i denoted by x̂ij(t)

∆
= xj(t − hij(t)).

Here aij(t) ≥ 0 and locally L1-summable and hij(t) ≥ 0 are
measurable on [0,∞), satisfying the following assumption.

Assumption 1: The delays are bounded: a constant h̄ ≥ 0
exists such that hij(t) ∈ [0, h̄]∀t ≥ 0. Furthermore,

µ
∆
= sup

t≥0
i ̸=j

∫ t+h̄

t

aij(s) ds <∞. (5)

Obviously (5) holds for undelayed systems (4), where
h̄ = 0. Generally, the knowledge of h̄ > 0 is not needed
to verify (5): if the supremum in (5) is finite for some value
h̄ > 0, then it is automatically finite for all h̄ > 0.

As will be shown in Appendix, none of the two conditions
from Assumption 1 can be completely discarded. The first
condition in Assumption 1 (delay boundedness) is standard
for consensus literature; without this assumption, consensus
can be proved only for special types of delays and special

1A quasi-strongly connected graph is also called a graph with a directed
spanning tree [1] and a rooted graph [43].

2Note that in multi-agent control [1] the influence of agent j on agent i
corresponds to arc (j, i), not (i, j).
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graphs [44], [45]. The condition (5) holds, in particular,
when the coefficients aij(t) are uniformly bounded (such
assumptions are typical in the literature [22], [46]).

Under the condition (5), the solution of (4) is uniquely
determined [47] by the initial condition

x(t∗) = x∗ ∈ Rn, x(t∗ + s) = φ(s) ∀s ∈ [−h̄, 0), (6)

with t∗ ≥ 0, φ ∈ L∞([−h̄, 0] → RV). Without loss of
generality, we assume that x(·) is right-continuous at t = t∗.

Problem setup: global and partial consensus

We start with the definition of consensus.
Definition 1: Algorithm (4) establishes consensus among

agents i and j if for any initial condition (t∗, x∗, φ) in (6)

x̄i
∆
= lim

t→∞
xi(t) = x̄j

∆
= lim

t→∞
xj(t) (7)

(in particular, both limits exist3). The algorithm establishes
consensus in the group of agents V ′ ⊆ V if it establishes
consensus between each two agents from V ′. If (7) holds for
all i, j ∈ V , we say that the global consensus is established.

The global consensus can also be defined as the relation

Λ(t)− λ(t) −−−→
t→∞

0, (8)

where λ(t),Λ(t) are the maximal and minimal values of the
agents over the time window [t− h̄, t]:

λ(t)
∆
= inf

t−h̄≤s≤t
minx(s), Λ(t)

∆
= sup

t−h̄≤s≤t

maxx(s). (9)

It can easily shown (see e.g. [36], [39] and Lemma 8 be-
low) that λ and Λ are, respectively, non-decreasing and non-
increasing. Hence, all solutions of (4) are bounded.

Problem 1: Find the conditions on A(·) ensuring that
the algorithm (4) establishes global consensus (8) or, more
generally, consensus between some pairs of agents i and j.

We conclude this section with two important remarks.
Remark 1: Notice that we formally confine ourselves to

linear consensus algorithms with scalar values xi(t) ∈ R; the
extension to vectors xi(t) ∈ Rd is straightforward.

Remark 2: The sufficient consensus conditions derived
below are also applicable to state-dependent coefficients aij ,
provided that the solution of such a nonlinear system is well-
defined. The criteria from Theorems 1 and 2 presented below
can be generalized, e.g., to algorithms examined in [39]

ẋi(t) =
∑

j ̸=i
aij(t)φij(x̂

i
j(t), xi(t)) ∈ Rd, (10)

where continuous nonlinear couplings φij are such that
φij(y, z) = ψij(y, z)(y − z), where ψij(y, z) ∈ R ∀y, z ∈ Rd

is uniformly positive and bounded on each compact in R2m.
Indeed, a solution of (10) also satisfies (4) with new weights
âij(t)

∆
= aij(t)ψij(x̂

i
j(t), xi(t)). The matrix function Â(·), as

can be shown [42], inherits all properties of the original matrix
A(·) that ensure consensus. Theorems 1 and 2 allow to extend
the result of [39], relaxing the UQSC assumption on the graph
and discarding the uniform positivity of nonlinearities ψij .

3Observe that due to time-varying weights and delays, the existence of
limits (7) in the time-varying system is a non-trivial self-standing problem.

IV. NECESSARY CONSENSUS CONDITIONS

Necessary conditions for consensus (global or between
some pairs of agents) are closely related to the following
criterion of robustness against L1-summable disturbances,
which has been obtained for undelayed algorithms in [46] .
Along with system (4), consider the “disturbed” dynamics

ẋi(t) =
∑

j∈V
aij(t)(x̂

i
j(t)− xi(t)) + fi(t), i ∈ V. (11)

If the functions fi are locally L1-summable, then the solution
is determined by specifying initial condition (6).

Lemma 1: If the undisturbed algorithm (4) establishes
consensus between two agents i and j, the same holds for (11)
with an L1-summable disturbance:

∫∞
0

|fm(t)| dt <∞∀m.
In view of Lemma 1, one can expect that the “non-

essential” interactions between the agents, corresponding to
L1-summable functions akm(x̂m − xk), should not have any
effect on consensus, that is, consensus (global or partial)
depends only on persistently interacting pairs of agents.

Definition 2: Agent j persistently interacts with agent i if
the second relations in (3) holds. Denoting the set of such pairs
(j, i) by E∞, graph G∞ = (V, E∞) is said to be the graph of
persistent interactions, or the persistent graph of algorithm (4).

Consider now a counter-part of algorithm (4) that is
“cleaned” from non-persistent interactions

ẋi(t) =
∑

j ̸=i
ãij(t)(x̂

i
j(t)− xi(t)), i ∈ V,

ãij(t) =

{
aij(t), (j, i) ∈ E∞
0, (j, i) ̸∈ E∞.

(12)

Corollary 1: Consensus between two agents (7) is estab-
lished by (4) if and only if this consensus is ensured by (12).

Corollary 1 often simplifies analysis of consensus algo-
rithms, because, in many situations, system (12) decomposes
into several independent subsystems. This corollary implies,
in particular, the following necessary consensus condition.4

Lemma 2: If algorithm (4) establishes consensus between
two agents k and m, then at least one of the following
statements is valid: a) (k,m) ∈ E∞; b) (m, k) ∈ E∞; c) there
exists some agent r ̸= k,m such that k,m can be reached from
r in the graph G∞. If the global consensus is established, then
G∞ is quasi-strongly connected.

A gap between necessary and sufficient conditions

It is well-known that the necessary condition from Lemma 5
is not sufficient for consensus: a simple counterexample with
n = 3 agents in [23, Section IV-C] demonstrates5 that even
the complete persistent graph G∞ does not guarantee global or
partial consensus (furthermore, limits in (7) may fail to exist).
This simple yet instructive example, however, may be called
“pathological” for several reasons. First, there are arbitrarily
long periods of time when only one arc (either (1, 2) or

4In the undelayed case, Lemma 2 was proved in [22].
5The example from [23] is for the discrete-time system (1), which, as shown

in [42], may be considered as a special case of (4) with “sawtooth” delays.
Also, one can construct a continuous-time system (2) with the same properties.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3218606

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



(3, 2)) is active. Second, due to the first effect, some persistent
couplings are much stronger than others, e.g.,

lim sup
T→∞

∫ T

0
a12(t) dt∫ T

0
a31(t) dt

= ∞. (13)

Third, the interactions are non-reciprocal: agent 2 is con-
stantly influenced by one of agents 1 and 3 yet does not
influence them, except for very rare time instants. All consen-
sus criteria, existing in the literature, somehow remove one of
these “anomalies” and can thus be divided into three groups.

The first “pathology” is excluded by the classical UQSC
assumption (see Definition 5 below): the union of graphs
over each interval [t, t + T ], where t ≥ 0, has to be quasi-
strongly ε-connected (here ε, T > 0 are some constants). This
assumption prohibits, e.g., too long periods of time when only
two agents interact. The second effect (13) is excluded by the
arc-balance condition [35], [46]. These two groups of criteria
are generalized by Theorem 1 as reported in Table I.

Finally, there are consensus conditions that forbid the third
pathological effect and assume the reciprocity of interactions:
if some group of agents V0 ⊆ V influences the remaining
agents from Vc

0
∆
= V \ V0, then group Vc

0 influences on
V0. Examples of such conditions are type-symmetry and
cut-balance [24], [35]. For reciprocal graphs, the necessary
consensus conditions from Lemma 2 become also sufficient. A
novel consensus criterion of this type is offered by Theorem 2.

V. CONSENSUS OVER GENERAL DIRECTED GRAPHS:
THE APERIODIC QUASI-STRONG CONNECTIVITY

In this section, we establish a sufficient condition for
delay-robust consensus, based on the aperiodic quasi-strong
connectivity (AQSC). We start with definitions and notation.

Definition 3: The union of graphs G[A(t)] over interval
[t1, t2] ⊂ [0,∞) is the graph G[At2

t1 ] associated with the matrix

At2
t1

∆
=

∫ t2

t1

A(s) ds. (14)

For an increasing sequence t = (tp)
∞
p=0 ⊆ [0,∞), denote

ℓ = ℓ(A(·), t) ∆
= sup

p=0,1,...
i,j

∫ tp+1

tp

aij(s) ds. (15)

Definition 4: The matrix function A(·) is aperiodically
quasi-strongly connected (AQSC) if there exist ε > 0 and
an increasing sequence tp → ∞ satisfying the two conditions:

(i) the unions of graphs G[Atp+1

tp ] are quasi-strongly ε-
connected for all p = 0, 1, . . .

(ii) the supremum in (15) is finite: ℓ(A(·), t) <∞.
The term “aperiodically” in Definition 4 emphasizes the

difference with classical uniform (periodic) quasi-strong con-
nectivity (see Definition 5 below).

Furthermore, it will be convenient to suppose that

tp+1 − tp ≥ h̄, (16)

which condition, as shown by the next lemma, can always be
provided by passing to a subsequence (tpk) with some k ≥ 1.

Lemma 3: Assume that the matrix function A(·) is AQSC
with some sequence (tp) and obeys Assumption 1. Then, there
exists an integer k ≥ 1 such that tp+k − tp ≥ h̄∀p.

A. Robust consensus under the AQSC condition

We are now ready to formulate our first consensus criterion.
Theorem 1: Suppose that algorithm (4) satisfies Assump-

tion 1, the matrix-valued function A(·) is AQSC. Then, the
algorithm establishes global consensus. Furthermore, if the
corresponding sequence (tp) satisfies (16) (which does not
reduce generality), then a number θ ∈ (0, 1) exists such that

∥x(t)− x̄∥∞ ≤ maxx(t)−minx(t) ≤ θk(Λ(t∗)− λ(t∗)),

∀k ≥ 0 ∀t : tr+2k(n−1) ≤ t ≤ tr+2(k+1)(n−1).
(17)

Here r is an index such that tr ≥ t∗ and n = |V|.
Remark 3: Analysis of the proof shows that θ depends, in

fact, on parameters ε (Definition 4), ℓ from (15), and n = |V|,
being independent of A(·), hij(·) and (tp) (provided that the
assumptions of Theorem 1 hold). Its explicit computation6

(i.e., the estimation of the convergence speed of a consensus
algorithm) is a very hard problem, which has been solved
only in the undelayed case [22], [32], [34], [46], [48]. In
some situations [49], the convergence rate of the delayed
algorithm (4) can be estimated via the convergence rate of
its undelayed counterpart (2). The result of [49], however,
imposes many restrictive assumptions on the weights aij(t).

Under the assumptions of Theorem 1, the robustness prop-
erty from Lemma 1 admits the following generalization.

Lemma 4: Suppose that the assumptions of Theorem 1 hold,
including (16). Then, for any solution to (11), one has

lim
t→∞

(Λ(t)− λ(t)) ≤ C lim sup
p→∞

∫ tp+1

tp

∥f(t)∥∞dt, (18)

where C = C(θ) is a constant determined by θ from (17). In
particular, algorithm (11) establishes global consensus when∫ tp+1

tp

|fi(t)| dt −−−→
p→∞

0 ∀i ∈ V. (19)

Although Theorem 1 primarily deals with global consensus,
it can also be used to prove partial consensus in some
situations, as illustrated by the following corollary.

Corollary 2: Assume that the set of agents V0 ⊆ V is
“closed” in the persistent graph, that is, no arc (j, i) ∈ E∞
exists connecting agent j ∈ V \ V0 to agent i ∈ V0. If the
submatrix A0 = (aij)i,j∈V0 satisfies the AQSC condition, then
algorithm (4) establishes consensus in the group V0.

B. AQSC vs. the necessary consensus condition

A natural question arises on how close are the sufficient
condition from Theorem 1 and the necessary condition of
global consensus from Lemma 2. The following lemma shows
that the condition (i) in Definition 4 is in fact equivalent to
the necessary condition. Hence, the gap between necessity and
sufficiency is caused by the additional condition ℓ <∞.

6Note that θ could be found explicitly if one had a closed-form represen-
tation of function ρ, which is currently elusive.
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Lemma 5: The following statements are equivalent:
a) the persistent graph G∞ is quasi-strongly connected;
b) there exist a sequence tp → ∞ and a constant ε > 0

satisfying the condition (i) from Definition 4;
c) for every ε > 0 there exists a sequence tp → ∞ that

satisfies the condition (i) from Definition 4.

C. Discussion: alternative consensus conditions

The relation between our results and the previously pub-
lished criteria for continuous-time consensus algorithms over
time-varying directed graphs are summarized in Table I. Theo-
rem 1 generalizes two groups of criteria that are based on the
UQSC condition and on the arc-balance condition. We give
the formal definitions for the reader’s convenience.

In this subsection, we discuss the relations between Theo-
rem 1 and some previously published consensus criteria.

1) AQSC vs. UQSC: As has been already mentioned, delay
consensus algorithms have been examined only under the
property of uniform quasi-strong connectivity (UQSC).

Definition 5: We call the graph UQSC if the conditions (i),
(ii) from Definition 4 hold7 for the periodic sequence tp = pT .

Remark 4: The condition (17) ensures exponentially fast
convergence to the ultimate vector x̄; as shown in [46], in fact,
the UQSC condition is necessary for this type of consensus.

Remark 5: In the special case where the stronger uniform
quasi-strong connectivity holds (tp = pT ), condition (19)
holds e.g. when the disturbance is vanishing f(t) −−−→

t→∞
0.

The latter result in the undelayed case (h̄ = 0) was first
established in [46]; it was also shown that the UQSC condition
is necessary for this type of robustness.

2) Intermittent communication: The difference between
AQSC and UQSC properties is prominently illustrated by
networks with intermittent communication [50]:

aij(t) = α(t)āij , ∀i ̸= j ∀t ≥ 0. (20)

where āij ≥ 0 are constant and α(t) ≥ 0.
Lemma 6: For the matrix A(·) from (20), the statements are

equivalent:
(a) the AQSC condition holds;
(b) the persistent graph G∞ is quasi-strongly connected;
(c)

∫∞
0
α(t)dt = ∞ and G[Ā] is quasi-strongly connected.

Notice that the condition from Lemma 6 allows arbitrarily
long periods of “silence” when the network is unavailable
(α(t) = 0), which is incompatible with the UQSC.

3) The arc-balance condition: The network from Lemma 6
is a particular case of an arc-balanced8 network [22].

Definition 6: The weighted graph G[A(·)] is said to be arc-
balanced if such a constant K ≥ 1 exists that for all t ≥ 0

K−1akm(t) ≤ aij(t) ≤ Kakm(t) ∀(m, k), (j, i) ∈ E∞. (21)

Lemma 7: Under the arc-balance condition (21), the AQSC
holds if and only if G∞ is quasi-strongly connected.

7Note that condition (ii) in this situation follows from Assumption 1 except
for the undelayed case (h̄ = 0). Also, it holds when aij(t) are bounded, which
condition is typical in most works on consensus [30], [39], [46].

8For simplicity, we consider only the “anytime” arc-balance from [22];
Lemma 7 below remains valid for the “non-instantaneous” arc-balance [35].

VI. CONSENSUS OVER TYPE-SYMMETRIC GRAPHS

Lemma 7 implies that Theorem 1 gives a necessary and
sufficient consensus condition for arc-balanced graphs. An-
other situation where the gap between necessary and sufficient
conditions is absence is the situation where interactions be-
tween the agents are reciprocal; the most general condition of
reciprocity available in the literature is the non-instantaneous
cut-balance [24], [34], [35], however, the relevant conditions
cannot be easily verified. We confine ourselves to a stronger
requirement of the non-instantaneously type-symmetry (NITS),
which, unlike the cut-balance, can be efficiently tested [24].

Definition 7: Matrix function A(·) : [0,∞) → RV×V with
entries aij ≥ 0 is type-symmetric if K ≥ 1 exists such that

K−1aji(t) ≤ aij(t) ≤ Kaji(t) ∀i, j ∈ V ∀t ≥ 0. (22)

Obviously, symmetric matrix (A(t) = A(t)⊤ ∀t ≥ 0) is
type-symmetric (with K = 1). A generalization of (22) is the
non-instantaneous type-symmetry introduced in [24].

Definition 8: The matrix function A(·) : [0,∞) →
RV×V with nonnegative entries aij ≥ 0 possess the non-
instantaneous type-symmetry (NITS) property if there exist an
increasing sequence tp −−−→

p→∞
∞ (where p = 0, 1, . . .) and a

constant K ≥ 1 such that the following two conditions hold:
1) for any i, j = 1, . . . , n one has∫ tp+1

tp

aij(t) dt ≤ K

∫ tp+1

tp

aji(t) dt; (23)

2) the supremum in (15) is finite: ℓ <∞.
Verification of the NITS condition may seem a non-trivial

problem, however this condition can be efficiently tested if
the weights aij are uniformly bounded (which also entails
Assumption 1), see the proof of [24, Theorem 2] and the
example in [24]. The NITS condition also holds in the case
of type-symmetric graph, as shown by the following remark.

Remark 6: The NITS condition follows from (22) and
Assumption 1 (it suffices to choose tp = p).

Remark 7: The condition (23) implies, obviously, that the
persistent graph G∞ is undirected, that is, (i, j) ∈ E∞ if
and only if (j, i) ∈ E∞. In particular, G∞ is quasi-strongly
connected if and only if it is strongly connected; otherwise,
the graph G∞ consists of several connected components.

We now formulate the main result of this section ensuring
the delay robustness for NITS networks.

Theorem 2: Assume that the matrix-valued function A(·)
with nonnegative entries aij(t) ≥ 0 possess the NITS prop-
erty and satisfies Assumption 1. Then, every solution to (4)
converges: the limits (7) exist for all i ∈ V . The algorithm
establishes consensus between agents i and j if and only if i
and j are connected by a walk in G∞. The algorithm global
consensus is established if and only if G∞ is connected.

Remark 8: As illustrated by [24, Proposition 3], the condi-
tion ℓ <∞ cannot be discarded even in the undelayed case.

The result of Theorem 2 extends the results of [20], [21],
[24], [33] on consensus over undirected and type-symmetric
graphs to the delayed case. Notice however that, unlike those
results, it does not guarantee that ẋi ∈ L1[0,∞)∀i ∈ V; the
validity of the latter statement remains in fact an open problem.
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Ref. Graph properties Extra assumptions Remarks

[30]
A stronger form of the UQSC condi-
tion: graphs G[At+T

t ] are quasi-strongly ε-
connected and share a common root node;

A(·) is bounded and piecewise-continuous,
equal and constant hij

Exponential convergence is claimed (but formally,
the proof is available only for the undelayed case).

[36]
The UQSC condition A(t) = Aσ(t), where the switching signal

σ(t) is piecewise-constant and attains val-
ues in a finite set

Formally, the algorithms are nonlinear, but satisfy the
conditions of our Remark 2. Asymptotic convergence
is guaranteed without convergence rate estimates.

[39]
The UQSC condition Same as [36], but σ(t) also enjoys the

positive dwell-time property
Same remarks as for [36]

[46]
The UQSC condition aij continuous almost everywhere and uni-

formly bounded, no delay h̄ = 0
Exponential convergence was proved; the main re-
sults of [46] are robustness criteria similar to
Lemma 4.

[50]
The intermittent communication (20), graph
G[Ā] is strongly connected

α(t) switches between 0 and a constant
ᾱ > 0 with some restrictions on the switch-
ing policy, no delay (h̄ = 0)

In some situations, convergence rate can be esti-
mated. The results of [50] are applicable to agents
with high-order nonlinear dynamics.

[22]
The arc-balance condition (21) A(·) is continuous almost everywhere, no

delay (h̄ = 0)
Convergence rate is estimated explicitly.

TABLE I: Special cases of Theorem 1, available in the literature.

Reciprocity vs. repeated connectivity

Theorem 2 substantially differs from Theorem 1 and other
results on delay-robust consensus over repeatedly quasi-
strongly connected graphs. As can be seen from its proof
(Section VII, see also [51]), it retains its validity for an
arbitrary set of bounded functions x1(t), . . . , xn(t) that obey
the following system of differential averaging inequalities

ẋi(t) ≤
∑

j∈V
aij(t)(x̂

i
j(t)− xi(t)), ∀i ∈ V, t ≥ 0. (24)

As shown in our previous works [41], [52], the averaging
inequalities, have numerous applications in multi-agent control
and social dynamics modeling. Whereas the consensus dynam-
ics has some well-known contraction properties (in particular,
the function Λ(t) − λ(t) is non-increasing and can serve as
a Lyapunov function), inequality (24) does not possess such
properties: whereas Λ(t) is non-increasing [51], λ(t) need not
be monotone. Theorem 1 is not valid for the inequalities, and
estimates like (17) cannot be established for them. Theorem 2
thus requires some tools that are principally different from
usual contraction analysis [22], [39], [46]; its proof is actually
based on the seminal idea of a sorting permutation [20], [21].

VII. TECHNICAL PROOFS

We start with several technical lemmas that will be used
in the proof of main results and are concerned with the
evolutionary matrices [47], [53] of system (4).

A. Evolutionary matrices and their properties

The evolutionary matrix U(t, t∗) ∈ RV×V , where t ≥ t∗ ≥
0, is the matrix whose j-th column (for all j ∈ V) is the
solution of (4) determined by the initial condition x(t∗) = ej
and x(t) ≡ 0 ∀t ∈ [t∗ − h̄, t∗). Obviously, the solution with
x(t∗) = x∗ and x(t) ≡ 0 ∀t < t∗ is then given by U(t, t∗)x∗.
The “variation of constants” formula retains its validity, which
allows to compute the solution of the general system (11), (6):

x(t) = U(t, t∗)x∗ +

∫ t

t∗

U(t, ξ)[f(ξ) + g(ξ)] dξ,

gi(t)
∆
=

∑
j ̸=i

aij(t)φj(t− hij(t)− t∗) ∀i ∈ V.
(25)

Here, to simplify notation, the function φ from (6) is extended
from [−h̄, 0) to [−h̄,∞), denoting φ(τ) ∆

= 0∀τ ≥ 0.
Lemma 8: For any solution of (4), (6), the inequalities hold

xi(t) ≤ xi(s)e
−

∫ t
s
αi(ξ)dξ + Λ(s)

[
1− e−

∫ t
s
αi(ξ)dξ

]
,

xi(t) ≥ xi(s)e
−

∫ t
s
αi(ξ)dξ + λ(s)

[
1− e−

∫ t
s
αi(ξ)dξ

]
,

αi(t)
∆
=

∑
j ̸=i

aij(t) ∀i ∈ V ∀t ≥ s ≥ t∗.

(26)

and λ,Λ are, respectively, non-decreasing and non-increasing.
Proof: We prove only the statements involving Λ(t) (as

can be noticed, the proof works also for the inequalities (24)).
The statement related to λ(t) are trivially derived from them
by considering the solution (−x(t)), which also obeys (4).

To prove that Λ(t) is non-increasing, choose an instant s ≥
t∗ and a constant Λ′ > Λ(t∗). We are going to show that
maxx(t) < Λ′ for any t ≥ s. Obviously, the latter inequality
holds when t is close to s; let t′ be the first instant t > s when
the inequality is violated, that is,

maxx(t) < Λ′ ∀t ∈ [s− h̄, t′), xi(t
′) = Λ′ for some i.

One arrives at a contradiction with (4), because

ẋi(t) ≤ αi(t)[Λ
′ − xi(t)] ∀t ∈ [s, t′) =⇒

xi(t
′) ≤ e−

∫ t′
s

αi(ξ)dξxi(s) + Λ′
(
1− e−

∫ t′
s

αi(ξ)dξ
)
< Λ′

(αi is defined in (26)). The contradiction proves that Λ(t) <
Λ′ ∀t ≥ s. Since Λ′ > Λ(s) can be arbitrary, Λ(t) ≤ Λ(s)
whenever t ≥ s, which proves the monotonicity.

The first inequality in (26) is proved similarly. Indeed, when
t ≥ s, we have x̂ij(t) ≤ Λ(t) ≤ Λ(s)∀j ̸= i. and hence

ẋi(t) ≤ αi(t)[Λ(s)− xi(t)] ∀t ≥ s ≥ t∗,

which finishes the proof.
In the subsequent, the following corollary will be used.
Corollary 3: Let Assumption 1 hold and tp → ∞ be a

sequence such that the supremum ℓ in (15) is finite. Let s ∈
(tq−1 − h̄, tq − h̄], where q ≥ 1 is some index. Then

xi(t) ≥ θ0xi(s) + (1− θ0)λ(t)∀t ∈ [s, tq]∀i ∈ V,
xi(t) ≤ θ0xi(s) + (1− θ0)Λ(t)∀t ∈ [s, tq]∀i ∈ V,

(27)
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where θ0
∆
= e−(µ+ℓ)(n−1). Similarly, if s ∈ (tq−1, tq], then

xi(t) ≥ θ1xi(s) + (1− θ1)λ(t)∀t ∈ [s, tq]∀i,
xi(t) ≤ θ1xi(s) + (1− θ1)Λ(t)∀t ∈ [s, tq]∀i.

(28)

where θ1
∆
= e−ℓ(n−1).

Proof: To prove the first inequality (28), one may easily
notice that

∫ tq
s
aij(ξ)dξ ≤ ℓ for each index j ̸= i, and thus∫ t

s
αi(ξ)dξ ≤ (n−1)(µ+ℓ) for all t ∈ [s, tq]. The statement is

now obvious from (26). The proof of the first inequality (27)
is similar and uses the inequality∫ tq

s

aij(ξ)dξ =

∫ s+h̄

s

aij(s)ds+

∫ tq

s+h̄

aij(s)ds ≤ µ+ ℓ,

which holds for all j ̸= i due to (5) and (15). The symmetric
inequalities are proved by replacing x(t) by (−x(t)).

Lemma 8 implies the following important property of the
evolutionary matrices.

Lemma 9: Matrix U(t, s) is substochastic9 for all t ≥ s ≥ 0.
For any solution of (11) defined for t ≥ t∗, one has

λ(t∗)[1− U(t, t∗)1] ≤

x(t)− U(t, t∗)x(t∗)−
∫ t

t∗

U(t, ξ)f(ξ)dξ ≤

≤ Λ(t∗)[1− U(t, t∗)1].

(29)

If Assumption 1 holds, then a constant ψ > 0 exists such that
U(t, s)1 ≥ ψ1 whenever t ≥ s ≥ 0.

Proof: By construction of U(t, t∗), the solution x(t) =
U(t, t∗)ei corresponds to λ(t∗) = 0 and hence xi(t) ≥
0 ∀i ∈ V ∀t ≥ t∗. Therefore, U(t, t∗) is a nonnegative
matrix. Similarly, the solution x(t) = U(t, t∗)1 corresponds
to Λ(t∗) = 1, and hence U(t, t∗)1 ≤ 1∀t ≥ t∗, so U(t, t∗) is
substochastic whenever t ≥ t∗ ≥ 0.

Consider now the solution x(t) ≡ 1∀t ≥ t∗, which
corresponds to the initial condition (6) with x∗ = 1 and

φ(s) = 1[−∞,0)(s)
∆
=

{
1, s < 0

0, s ≥ 0.

φ(s) = 1∀s ∈ [−h̄, 0). Using (25) with f = 0, one has

1 = U(t, t∗)1+

∫ t

t∗

U(t, ξ)g0(ξ) dξ,

g0i (t)
∆
=

∑
j ̸=i

aij(t)1[−∞,0)(t− hij(t)− t∗) ∀i ∈ V.

For a general solution to (11), we have xi(t) ≤ Λ(t∗) for all
t ∈ [t∗− h̄, t∗], and thus the functions gi(t) introduced in (25)
obey the inequalities gi(t) ≤ Λ(t∗)g

0
i (t). For this reason,

x(t)− U(t, t∗)x(t∗)−
∫ t

t∗

U(t, ξ)f(ξ)dξ ≤

≤ Λ(t∗)

∫ t

t∗

U(t, ξ)g0(ξ) dξ = Λ(t∗) (1− U(t, t∗)1) ,

9In the case undelayed case (h̄ = 0), the evolutionary matrix is known to be
stochastic [1], [29]. This is the principal difference between the delayed and
undelayed consensus dynamics, which makes it impossible to reduce delayed
equations (4) to ergodicity of Markov chains and stochastic matrix products.

which proves the second inequality in (29). The first one is
proved similarly, replacing ≤ by ≥ and Λ(t∗) by λ(t∗).

To prove the final statement, the second inequality from (26)
can be applied to the solution x(t) = U(t, s)1. By construc-
tion, for this solution one has λ(s) = 0 and x(s) = 1. Hence

for any t ∈ [s, s+ h̄] one has xi(t)
(5)
≥ ψ

∆
= e−(n−1)µ ∀i ∈ V .

In particular, λ(s + h̄) ≥ ψ, and thus (Lemma 8) x(t) =
U(t, s)1 ≥ ψ1 also for t ≥ s+ h̄. This finishes the proof.

Remark 9: Non-negativity of matrices U(t, t∗) implies, in
view of (25), in particular, the monotonicity of dynamics (4). If
x, x̃ are two solutions such that x(t) ≤ x̃(t) for t ∈ [t∗−h̄, t∗],
then x(t) ≤ x̃(t) for t ≥ t∗.

Consensus, similar to the undelayed case [1], admits a
simple interpretation in terms of the evolutionary matrix.

Lemma 10: The algorithm (4) establishes consensus among
agents i and j if and only if the limits exist and coincide:

lim
t→∞

e⊤i U(t, t∗) = lim
t→∞

e⊤j U(t, t∗) ∀t∗ ≥ 0. (30)

Global consensus is established if and only if the limit exists

Ūt∗
∆
= lim

t→∞
U(t, t∗) = 1p⊤t∗ , pt∗ ∈ RV (31)

(that is, Ūt∗ has equal rows) for any t∗ ≥ 0.
Proof: It suffices to prove the first statement. The “only

if” part in the first statement is straightforward, because
U(t, t∗)x∗ is a solution to (4) for each vector x∗ ∈ RV .
Consensus between agents i, j implies that the limits exist
limt→∞ e⊤i U(t, t∗)x∗ = limt→∞ e⊤j U(t, t∗)x∗ for all x∗,
which is equivalent to (30). To prove the “if” part, recall that
an arbitrary solution to (4) can be found from (25), where
f ≡ 0 and g(t) = 0 for t > t∗ + h̄. Hence, we have

x(t) = U(t, t∗)x(t∗) +

∫ h̄

t∗

U(t, ξ)g(ξ)dt ∀t > t∗ + h̄.

Using the Lebesgue dominated convergence theorem, it can
be easily shown that (30) entails

x̄i = lim
t→∞

e⊤i x(t) = lim
t→∞

e⊤i U(t, t∗)x(t∗)+

+

∫ h̄

t∗

lim
ξ→∞

e⊤i U(t, ξ)g(ξ) dξ =

= lim
t→∞

e⊤j U(t, t∗)x(t∗) +

∫ h̄

t∗

lim
ξ→∞

e⊤j U(t, ξ)g(ξ) dξ

= lim
t→∞

e⊤j x(t) = x̄j ,

(where all limits exist), proving consensus among i and j.
1) Evolutionary matrices under the AQSC condition: In

the proof of Theorem 1, we will use an additional statement.
Lemma 11: Let the AQSC condition hold with ε > 0 and a

sequence (tp), which obeys (16). Then, matrices U(tp+2, tp)

have uniformly positive diagonal entries U(tp+2, tp)ii ≥ η̃
∆
=

e−2(n−1)ℓ and their graphs are quasi-strongly ε̃-connected with
ε̃

∆
= εe−3(n−1)ℓ. Here n = |V| and ℓ is from (15).

Proof: For a fixed j ∈ V , consider the solution x(t) =
U(tp+2, tp)ej of (4), which corresponds to initial condi-
tions (6) with t∗ = tp, x∗ = ej , φ(s) ≡ 0∀s < 0. Using
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the second inequality (26) (where s = tp, λ(s) = 0) and (15),
one proves that for each t ∈ [tp, tp+2]

xj(t) = U(t, tp)jj ≥ e
−

∫ t
tp

αi(ξ)dξ
(15)
≥ η̃. (32)

Applying this for t = tp+2, one proves the first statement.
For t ∈ [tp+1, tp+2], one has t − hij(t) ≥ tp+1 − h̄ ≥ tp.

Recalling that x(t) ≥ 0, for each j ̸= i we thus have

xi(t) ≥ −αi(t)xi(t) + aij(t)x̂
i
j(t)

(32)
≥ −αi(t)xi(t) + aij(t)η̃,

xi(tp+2) ≥
∫ tp+2

tp+1

e
−

∫ s
tp+1

αi(ξ)dξ
aij(s)x̂

i
j(s)ds ≥

≥ e−(n−1)ℓη̃

∫ tp+2

tp+1

aij(s)ds.

In particular, if (Atp+2

tp+1
)ij ≥ ε, then one has

xi(tp+2) = U(tp+2, tp)ij ≥ e−(n−1)ℓη̃ε = e−3(n−1)ℓε = ε̃.

Thanks to the AQSC condition, there exists a spanning tree in
the graph G[U(tp+2, tp)] whose arcs have weights ≥ ε̃.

2) Evolutionary matrices under the NITS condition:
The proof of Theorem 2 is based on another property of the
evolutionary matrices, specific for type-symmetric graphs.

Lemma 12: If the continuous-time matrix A(·) obeys the
NITS property and Assumption 1, then matrices U(t, t∗) have
uniformly positive diagonal elements, that is,

U(t, t∗)ii ≥ ϱ > 0 ∀t ≥ t∗ ≥ 0 ∀i ∈ V. (33)

The constant ϱ = ϱ(n, ℓ, µ,K) depends on n = |V| and the
constants K from (23), ℓ from (15) and µ from (5).

Proof: Throughout the proof, the sequence (tp) is same as
in Definition 8. Without loss of generality, assume that t0 = 0.

Step 1. Notice that (33) is entailed by the following:
(A) A constant ϱ̃ = ϱ̃(n, ℓ, µ,K) ∈ (0, 1) exists featured by

the following property. If x(t) is a solution of (4) such that
λ(tq) ≥ 0 and xi(t) ≥ 1 for t ∈ [tq − h̄, tq] for some agent
i ∈ V and some index q, then one has the inequality holds

xi(t) ≥ ϱ̃ ∀t ≥ tq. (34)

Indeed, let (A) be valid. Consider solution x(t) =
U(t, t∗)ei, where i ∈ V and t∗ ≥ 0. Thanks to Corollary 3
(applied to s = t∗, xi(s) = 1 and λ(s) = 0), an index q
exists such that xi(t) ≥ θ0 for all t ∈ [t∗, tq]; also, λ(tq) ≥ 0.
Applying (A) to the solution x̃(t) = θ−1

0 x(t), one shows that

xi(t) = U(t, t∗)ii ≥ ϱ
∆
= θ0ϱ̃ = e−(µ+ℓ)(n−1)ϱ̃ ∀t ≥ t∗.

Step 2. We will show that statement (A), in turn, is implied
by another condition (B) presented below. Given a solution to
system (4), V0 ⊆ V and t ≥ 0, denote

λV0(t)
∆
= inf

s∈[t−h̄,t]
min
i∈V0

xi(s).

(B) A constant γ = γ(n, ℓ, µ,K) ∈ (0, 1/2) exists featured
by the following property. If x(t) is a solution of (4) such that
λ(tq) ≥ 0 and λV0

(tq) ≥ 1∀i ∈ V0 ⊆ V for some q ≥ 0, then
one of the following statements (i) and (ii) hold

(i) λV0
(t) > 1/2 ∀t ≥ tq;

(ii) a set V1 ⊋ V0 and index r = r(q) > q exist such that
λV0(t) ≥ γ ∀j ∈ V0 when t ∈ [tq, tr] and λV1(tr) ≥ γ.

Indeed, assume that (B) holds and consider a solution
satisfying the assumptions of statement (A). Applying (B) to
this solution and set V0 = {j : xj(tq) ≥ 1} ∋ {i}, one of
statements (i) and (ii) should hold.

If (i) holds, then xi(t) ≥ β0
∆
= 1/2 for all t ≥ tq .

Assume that (ii) holds and let q1 = r(q1) > q, V1 ⊋ V0 be
the corresponding integer index and set of agents. Applying
(B) to the solution x̃(t) = γ−1x(t), q̃ = q1 and Ṽ0 = V1, one
shows that either condition (i) holds, and then λV1(t) ≥ β1

∆
=

β0γ for t ≥ tq1 or the scenario from (ii) is realized, and there
exist such a set V2 ⊋ V1 and an index q2 = r(q1) > q1 that
λV1

(t) ≥ γ2 when t ∈ [tq1 , tq2 ] and λV2
(tq2) ≥ γ2.

In the latter situation, we repeat the procedure and apply
(B) to the solution x̂(t) = γ−2x(t), q̂ = q2 and V̂0 = V2,
showing that either λV2

(t) ≥ β2
∆
= β0γ

2 for t ≥ tq2 or there
exist a set V3 ⊋ V2 and index q3 > q2 such that λV2

(t) ≥ γ3

when t ∈ [tq2 , tq3 ] and λV3
(tq3) ≥ γ3, in which situation we

can again apply statement (B), and so on.
Since n = |V| is finite, this procedure terminates after m ≤

n−1 steps, after which scenario (i) is realized and the set Vm

cannot be constructed. By construction, i ∈ V0 ⊂ . . . ⊂ Vm−1,
and hence xi(t) ≥ βm−1 = β0(γ)

m−1 ≥ β0(γ)
n−2 = γn−2/2

for all t ≥ tq . Hence, (B) implies (A) with ϱ̃ = γn−2/2.
Step 3. We are now going to prove statement (B) via

induction on n = |V|. The induction base n = 1 is trivial,
in this situation the only agent obeys the equation ẋ = 0, so
if x(tp) ≥ 1, then condition (i) holds automatically.

Suppose that (B) (and thus also statement of Lemma 12)
has been proved for groups of ≤ n − 1 agents and |V| = n.
Notice that for any subgroup Ṽ ⊊ V , the corresponding matrix
Ã = (aij)i,j∈Ṽ obeys the NITS conditions and (5) with the
same constant K, sequence (tp) and constants ℓ, µ as A. We
thus know that Lemma 12 is valid for each reduced system

ẋi =
∑

j∈Ṽ\{i}
aij(t)(x̂

i
j(t)− xi(t)), i ∈ Ṽ. (35)

Introducing the corresponding evolutionary matrix Ũ(t, t∗),
we have Ũ(t, t∗)ii ≥ ϱ(|V ′|, ℓ, µ,K). We define

ϱ′ = ρ′(ℓ, µ,K)
∆
= min

k≤n−1
ϱ(k, ℓ, µ,K) > 0.

Step 3a. Notice that the validity of one of the statements (i),
(ii) needs to be proved only for the special solution x(t), t ≥ tq
that is determined by the initial condition

xi(t) ≡ 1 ∀t ∈ [tq − h̄, tq]∀i ∈ V0

xi(t) ≡ 0∀t ∈ [tq − h̄, tq]∀i ̸∈ V0.
(36)

Indeed, if x̃(t), t ≥ tq is some other solution with λ̃V0(tq) ≥ 1
and λ̃(tq) ≥ 0, then one has x̃(t) ≥ x(t)∀t ≥ tq in accordance
with Remark 9. Obviously, if (i) holds for x(t), then it also
holds for x̃(t), and the validity of (ii) for x(t) entails the
validity of (ii) for x̃(t) (with same V1, r, γ).
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Step 3b. Consider now the solution that satisfies (36) and
assume that (i) does not hold. We are going to show that (ii)
holds with V1

∆
= V0 ∪ {j}, where j ̸∈ V0 and

γ
∆
= c2e

−(n−1)(ℓ+µ), c2
∆
=
e−(n−1)ℓϱ′C

2(ϱ′C + 1)
, C

∆
=

2

Kn2
. (37)

Note that the constant γ > 0 is determined by n, ℓ, µ,K and
does not depend on V0. Since (i) is not valid, the minimal
t′ > tq exists such that mini∈V0 xi(t

′) = 1/2. Let s ≥ q + 1
be such an index that ts−1 < t′ ≤ ts. For each i ∈ V0 one has
xi(t) ≥ 1

2 when t ∈ [tq, t
′]. Now (28) entails the inequality

xi(t) ≥ c1
∆
= 1

2e
−(n−1)ℓ > c2 ∀t ∈ [tq, ts]∀i ∈ V0, (38)

(which, e.g., is valid at t = t′′). To prove (ii), it suffices to
find an index j ̸∈ V0 such that xj(t′′) ≥ c2 a some instant
t′′ ∈ [tq, ts]: choosing index r in such a way that tr−1 < t′′+
h̄ ≤ tr, (27) entails the inequality λV0∪{j}(tq) ≥ c2θ0 = γ.

The existence of the desired index j and the instant t′′

will be proved by contradiction. Assume, on the contrary, that
xj(t) < c2 on [tq, ts] for all j ̸∈ V0.

Denote Vc
0

∆
= V \ V0 and consider the functions

fi(t)
∆
=

{∑
j∈Vc

0
aij(t)[x̂

i
j(t)− xi(t)], i ∈ V0∑

j∈V0
aij(t)[x̂

i
j(t)− xi(t)], i ∈ Vc

0 .
(39)

Due to (4), the function x(t) obeys the system of equations

ẋi =
∑

j∈V0

aij(t)(x̂
i
j(t)− xi(t)) + fi(t), i ∈ V0, (40)

ẋi =
∑

j∈Vc
0

aij(t)(x̂
i
j(t)− xi(t)) + fi(t), i ∈ Vc

0 . (41)

In view of (38) and our assumption, the inequalities hold

0 ≤ xj(t) < c2 < c1 ≤ xi(t) ≤ Λ(tq) = 1.

for any j ∈ Vc
0 , m ∈ V0 and t ∈ [tq, ts]. Hence,

0 ≥ fi(t) ≥ −
∑

j∈Vc
0

aij(t) ∀i ∈ V0 ∀t ∈ [tq, ts]

fj(t) ≥ (c1 − c2)
∑

j∈V0

aji(t) ∀j ∈ Vc
0 ∀t ∈ [tq, ts].

(42)

We now introduce the subvectors x+ = (xi)i∈V0
and x† =

(xi)i∈Vc
0

corresponding to the subvectors f+, f† of vector f .
Denoting the evolutionary matrix of (40) by U+ and applying
the inequality in (29) to t∗ = tq , x = x+, f = f+, one has

x+(t′) ≥ λV0
(tq)1V0

+

∫ t′

tp

U+(t′, t)f+(t)dt =⇒

xi(t
′) ≥ 1−

∑
k∈V0,j∈Vc

0

∫ tq

tp

akj(t)dt ∀i ∈ V0.

By assumption, xi(t′) = 1/2 for some i. Taking into account
that |V0| |Vc

0 | ≤ n2/4, there exist k ∈ V0 and j ∈ Vc
0 such that∫ tq

tp

akj(t)dt ≥
1/2

n2/4
=

2

n2
(23)
=⇒

∫ tq

tp

ajk(t)dt ≥
2

Kn2
= C.

Denoting the evolutionary matrix of (41) by U† and apply-
ing (29) to t∗ = tq , x = x+, f = f+, one has

x†(tq) ≥ λVc
0
(tq)︸ ︷︷ ︸

=0

1Vc
0
+

∫ tq

tp

U†(tq, t)f
†(t)dt.

Recalling that U†(t, s)jj ≥ ϱ′ because |Vc
0 | < n, one has

xj(tq) ≥ ϱ′
∫ tq

tp

fj(t)dt
(42)
≥ ϱ′(c1 − c2)

∫ tq

tp

ajk(t)dt ≥

≥ ϱ′(c1 − c2)C
(37),(38)
= c2,

leading thus to a contradiction with the assumption that
xj(t) < c2 for all t ∈ [tq, ts]. The induction step is proved.

B. Proofs of Lemma 1, Corollary 1 and Lemma 2

1) Proof of Lemma 1: Assume that the algorithm (4)
establishes consensus (7) between two agents i and j. In view
of (25), every solution of (11) (starting at t∗ ≥ 0) is the sum
of a solution of (4) and the “forced” solution

xf (t) =

∫ t

t∗

U(t, ξ)f(ξ) dξ =

∫ ∞

t∗

Û(t, ξ)f(ξ) dξ, (43)

where Û(t, ξ) = 0 if ξ > t and Û(t, ξ) = U(t, ξ) for ξ ≤ t.
To prove that consensus between i and j is preserved when

f ∈ L1([0,∞) → RV), it thus suffices to show that

lim
t→∞

xfi (t) = lim
t→∞

xfj (t)

(and both limits exist). To prove this, notice that (30) can be
rewritten as follows: for each instant t∗ ≥ 0, the vector u⊤t∗
exists such that limt→∞ e⊤i Û(t, t∗) = limt→∞ e⊤j Û(t, t∗) =

u⊤t∗ . Recalling that matrices Û(t, ξ) are uniformly bounded
(Lemma 9) and f is L1-summable, the Lebesgue dominated
convergence theorem entails the existence of coincident limits

lim
t→∞

xfi (t) = lim
t→∞

∫ ∞

t∗

e⊤i Û(t, t∗)f(ξ) dξ =

∫ ∞

t∗

u⊤t∗f(ξ)dξ,

lim
t→∞

xfj (t) = lim
t→∞

∫ ∞

t∗

e⊤j Û(t, t∗)f(ξ) dξ =

∫ ∞

t∗

u⊤t∗f(ξ)dξ,

which finishes the proof of Lemma 1. ■
2) Proof of Corollary 1: If x(t) is a solution of (12), then

x(t) is bounded (Lemma 8) and obeys (11), where fi(t)
∆
=

−
∑

j:(j,i)̸∈E∞
aij(t)(x̂

i
j(t)−xi(t)) is L1-summable. Similarly,

every solution of (4) is bounded and obeys the equation

ẋi(t) =
∑

j∈V
ãij(t)(x̂

i
j(t)− xi(t)) + f̃i(t), i ∈ V, (44)

where f̃i =
∑

j:(j,i)̸∈E∞
aij(t)(x̂

i
j(t)−xi(t)) is L1-summable.

The statement is now obvious from Lemma 1. ■
3) Proof of Lemma 2: In view of Corollary 1, it suffices to

prove the statement for the algorithm (12). For i ∈ V , let set
Vi consist of i and all nodes r ∈ V that are connected to i in
the graph G∞ by walks. Lemma 2 can be restated as follows:
consensus between k and m implies that Vk ∩ Vm ̸= ∅.

Each set Vi is “closed” in the graph G∞: if r ̸∈ Vi, then
(r, j) ̸∈ E∞ ∀j ∈ Vi; equivalently, ãjr(t) ≡ 0 ∀j ∈ Vi, r ̸∈ Vi.
Thus the algorithm (12) cannot establish consensus between
k and m such that Vk ∩ Vm = ∅, because the dynamics of
subvectors (xi)i∈Vk

and (xi)i∈Vm
are fully decoupled. ■
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C. Proof of Lemma 3

Using notation introduced in (14) and (5), all entries of the
matrices At+h̄

t do not exceed µ, and their sum does not exceed
n(n− 1)µ. On the other hand, each graph G[Atp+1

tp ] contains
a spanning tree that has n− 1 arcs (n = |V|) of weight ≥ ε,
and hence the total weight of its arcs is not less than ε(n−1).
The union of graphs over [tp, tp+k], where k ≥ 1, has the total
weight of arcs ≥ kε(n−1). Choosing k so large that kε > µn,
the interval [tp, tp+k] should thus have length tp+k − tp ≥ h̄.

D. Proof of Lemma 5

We are going to prove the implications c) =⇒ b) =⇒
a) =⇒ c). The first implication c) =⇒ b) is straightforward.

Suppose that b) holds and let Ap
∆
= A

tp+1

tp . By assumption,
graphs G[Aε

p] are quasi-strongly connected for all p, that is,
each of those graphs contains a directed spanning tree [1].
Since the number of possible trees with n nodes is finite,
at least one of these spanning trees belongs to an infinite
sequence of graphs Gk ∆

= G[Aε
pk
], where pk → ∞. For each

arc (j, i) of this tree, one thus has∫ t1+pk

tpk

aij(s)ds ≥ ε,

which means that
∫∞
0
aij(s) ds = ∞. The graph G∞ contains

the common spanning tree of graphs Gk, and a) is true.
Finally, assume that a) holds. For a given ε > 0, consider

the following sequence (tp): t0 = 0, and for all p ≥ 0

tp+1 = inf

{
t > tp :

∫ t

tp

aij(s)ds ≥ ε ∀(j, i) ∈ G∞

}
.

By construction, graphs G[Ap] are quasi-strongly ε-connected
for all p. It remains to prove that tp → ∞. Indeed, tp+1 > tp

by construction, and thus the limit t̄ ∆
= limp→∞ tp exists. If

we had t̄ <∞, then some functions aij(·) could not be locally
L1-summable, because for (j, i) ∈ E∞ one would have∫ t̄

t0

aij(t)dt ≥
∞∑
p=0

∫ tp+1

tp

aij(t)dt = ∞.

This proves the remaining implication a) =⇒ c). ■

E. Proofs of Lemmas 6 and 7

1) Proof of Lemma 7: The “only if” part follows from
Lemma 5. To prove the “if” part, choose (j, i) ∈ G∞ and
ε > 0. Since aij ̸∈ L1, for some sequence tp → ∞∫ tp+1

tp

aij(t)dt = Kε.

Then, using (21) we have

ε ≤
∫ tp+1

tp

akm(t)dt ≤ K2ε ∀(m, k) ∈ E∞.

Recalling that akl ∈ L1 for (l, k) ̸∈ E∞, one proves that
matrices Atp+1

tp are bounded (the supremum in (15) is finite)
and their graphs are quasi-strongly ε-connected (containing
graph G∞), that is, the AQSC condition holds. ■

2) Proof of Lemma 6: The proof of implication (b) ⇐⇒ (c)
is straightforward from the definition of G∞. If (b) and (c)
are both valid, then, obviously, the matrix (20) obeys the arc-
balance condition (21), where K is found as

K = max

{
āij
ākm

: āij , ākm > 0

}
.

The implication (b) ⇐⇒ (a) now follows from Lemma 7. ■

F. Proofs of Theorem 1, Lemma 4 and Corollary 2

Theorem 1 is based on Lemma 9 and the following lemma.
Lemma 13: Let B1, . . . , Bn−1 ∈ RV×V , where n = |V|,

be substochastic matrices with positive diagonal entries and
quasi-strongly connected graphs G[Bi]. Consider a sequence
z1, . . . , zn ∈ RV , where 0 ≤ z1 ≤ 1 and

0 ≤ zk ≤ Bk−1zk−1 + (1−Bk−11), k = 2, . . . , n. (45)

Then, 0 ≤ max zn −min zn < 1. Moreover, for each ε, η >
0 there exists ρ = ρ(ε, η) ∈ (0, 1) such that if G[Bi] are
quasi-strongly ε-connected and b1ii, . . . , b

n−1
ii ≥ η ∀i ∈ V , then

max zn −min zn ≤ ρ(ε, η).
Proof: For a vector x ∈ [0, 1]V

∆
= {(xi)i∈V : xi ∈

[0, 1]∀i}, denote ZER(x)
∆
= {i : xi = 0} ⊆ V and ONE(x) ∆

=
{i : xi = 1} ⊆ V . In view of (45) and substochasticity of Bk,
we have zk ∈ [0, 1]V for all k = 1, . . . , n.

For any substochastic matrix B with positive diagonal
entries and any x ∈ [0, 1]V , the inequality xi > 0 (respectively,
xi < 1) entails that (Bx)i > 0 (respectively, (Bx)i <
1). Hence, the sets ZER(zk) and ONE(zk) are nested:
ZER(zk) ⊆ ZER(zk−1) and ONE(zk) ⊆ ONE(zk−1).

Furthermore, as can be easily seen, if j ̸∈ ONE(zk) and
bkij > 0, then zk+1

i < 1. Similarly, if j ̸∈ ZER(zk) and bkij >
0, then zk+1

i > 0. If G[Bk] is quasi-strongly connected, with
some node r, then either r ̸∈ ONE(zk) or r ̸∈ ZER(zk).
In the first situation, we either have ONE(zk) = ∅ or a path
connecting r to ONE(zk) in G[Bk] should exist, that is, at least
one arc comes to ONE(zk) from outside. In this situation,
ONE(zk+1) ⊊ ONE(zk). Similarly, if r ̸∈ ZER(zk), then
either ZER(zk) = ∅ or ZER(zk+1) ⊊ ZER(zk). Since the
cardinality of ONE(z1)∪ZER(z1) is not greater than n = |V|,
at least one of the sets ONE(zn) or ZER(zn) is empty, and
hence max zn −min zn > 0.

The set B(η, ε) of substochastic matrices B such that
aii ≥ η and G[B] is quasi-strongly ε-connected is compact.
Hence, the set of all sequences (z1, . . . , zn) obeying (45) is
also compact. The continuous function max zn −min zn thus
reaches a maximum ρ = ρ(ε, η) < 1 on B(η, ε).

1) Proof of Theorem 1: Without loss of generality
(Lemma 3), we assume that (16) holds and thus Lemma 11 is
applicable. Also, one may suppose that t0 ≥ t∗ and r = 0.

For brevity, we denote M(t)
∆
= maxx(t) ≤ Λ(t), m(t)

∆
=

minx(t) ≥ λ(t) and D(t)
∆
= Λ(t)− λ(t).

We are going to show that

D(t2n−1) ≤ θD(t0), θ
∆
= 1− η̃ + η̃ρ(η̃, ε̃), (46)

where η̃, ε̃ are from Lemma 11 and ρ is the function from
Lemma 13. Note that θ depends on n = |V|, ℓ and ε.
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In view of the system (4) linearity, it suffices to prove (46)
for the solution such that λ(t0) = 0 and Λ(t0) = 1, so that
D(t0) = 1. For this solution, one has 0 ≤ λ(t) ≤ Λ̄(t) ≤
1 ∀t ≥ t0 thanks to Lemma 8. Using (29) (where t∗ = tp and
t = tp+2), one arrives at the inequality

0 ≤ x(tp+2)− U(tp+2, tp)x(tp) ≤ 1− U(tp+2, tp)1.

In view of Lemma 11, matrices Bj = U(t2j , t2j−2)
have strongly positive diagonal entries and quasi-strongly ε̃-
connected graphs. Applying Lemma 13 to matrices Bj =
U(t2j , t2j−2) and vectors zj = x(t2j−2), one arrives at

M(t2(n−1))−m(t2(n−1)) ≤ ρ = ρ(η̃, ε̃) < 1, (47)

where ρ is the function from Lemma 13. Substituting t∗ =
t2n−2 into (29), we also have

0 ≤ x(t)− U(t, t2n−2)x(t2n−2) ≤ 1− U(t, t2n−2)1,

and thus for t ∈ [t2n−2, t2n−1] inequalities hold

U(t, t2n−2)iim(t2n−2) ≤ U(t, t2n−2)iixi(t2n−2) ≤ xi(t) ≤
≤ U(t, t2n−2)ii xi(t2n−2) + 1− U(t, t2n−2)ii ≤
≤ U(t, t2n−2)iiM(t2n−2) + 1− U(t, t2n−2)ii.

Using the inequality (32) (where p = 2n − 2) and recalling
that m(t2n−2) ≥ 0,M(t2n−2) ≤ 1, one shows that

η̃m(t2n−2) ≤ xi(t) ≤ η̃M(t2n−2) + 1− η̃ ∀i ∈ V

for all t ∈ [t2n−2, t2n]. Since t2n−1 ≥ t2n−2 + h̄, we have

η̃m(t2n−2) ≤ λ(t2n−1) ≤ Λ(t2n−1) ≤ η̃M(t2n−2) + 1− η̃,

whence D(t2n−1) ≤ η̃(M(t2(n−1))−m(t2(n−1)))+ 1− η̃
(47)
≤

θ = θD(t0), which proves (46).
Replacing t0 by t2n−1, the same argument shows that

D(t(2n−1)k) ≤ θD(t(2n−1)(k−1)) ≤ . . . ≤ θkD(t0), (48)

which finishes the proof of the second inequality in (17). The
first inequality is from Lemma 8: since Λ(t) is non-increasing,
one has x̄i = lims→∞ xi(s) ≤ Λ(t)∀t ≥ 0. Similarly, x̄i =
lims→∞ xi(s) ≥ λ(t)∀t ≥ 0. Hence, for all i ∈ V we have
xi(t), x̄i ∈ [λ(t),Λ(t)], and ∥x(t)− x̄∥∞ ≤ Λ(t)− λ(t). ■

2) Proof of Lemma 4: Applying (17) to t∗ = s and solution
x(t) = U(t, s)v, where v ∈ RV is an arbitrary vector with
∥v∥∞ = 1, one proves that

∥U(t, s)− Ūs∥∞ ≤ (Λ(s)− λ(s))θk = 2θk,

t ∈ [tr+2k(n−1), tr+2(k+1)(n−1)], tr ≥ s.
(49)

For an arbitrary vector x ∈ RV , denote δ(x) ∆
= maxx −

minx; obviously, 0 ≤ δ(x) ≤ 2∥x∥∞ and δ(x+ y) ≤ δ(x) +
δ(y). Similar to Lemma 1, it suffices to prove (18) for the
“forced” solution (43). To this end, we introduce the function

xf∗(t)
∆
=

∫ t

t∗

Ūsf(s) ds.

It seems natural that, in view of (31), xf and xf∗ are sufficiently
close when t becomes large. To make the latter statement
formal, choose an index q ≥ r (so that tq ≥ t∗). Obviously,∥∥xf (t)− xf∗(t)

∥∥
∞ ≤

∫ tq

t∗

∥U(t, s)− Ūs∥∞ ∥f(s)∥∞ds+

+

∫ t

tq

∥U(t, s)− Ūs∥∞ ∥f(s)∥∞ds

The Lebesgue dominated convergence theorem ensures that
the first integral vanishes as t → ∞. In view of (49), the
second integral can be estimated as

∞∑
k=0

2(n− 1) 2(1 + θ + θ2 + . . .)︸ ︷︷ ︸
=C1

sup
p≥q

∫ tp+1

tp

∥f(t)∥∞dt.

One thus concludes that for every q ≥ r we have

lim sup
t→∞

∥∥xf (t)− xf∗(t)
∥∥
∞ ≤ C1 sup

p≥q

∫ tp+1

tp

∥f(t)∥∞dt.

Since q can be arbitrary, one can now pass to the limit q → ∞,
replacing sup in the latter inequality by lim supp→∞. Hence,

lim sup
t→∞

δ(xf (t)) ≤ lim sup
t→∞

δ(xf∗(t))︸ ︷︷ ︸
=0

+ lim sup
t→∞

δ(xf (t)− xf∗(t))

≤ 2 lim sup
t→∞

∥∥xf (t)− xf∗(t)
∥∥
∞ = C lim sup

p→∞

∫ tp+1

tp

∥f(t)∥∞dt,

where C ∆
= 2C1. This proves (18) for the “forced” solution

xf (t), which implies (18) for an arbitrary solution of (11). ■

G. Proof of Theorem 2

In this subsection, we assume that the conditions of Theo-
rem 2 hold. We will prove, in fact, that consensus is guaranteed
for every bounded solution to the inequality (24) (in particular,
for all solutions to (4)). For every such a solution, the
function Λ(t) is non increasing (Lemma 8), and thus the limit
Λ̄

∆
= limt→∞ Λ(t) > −∞ exists. Assume that Λ(t∗) > λ(t∗)

(otherwise, consensus is obvious due to Lemma 8).
The proof of Theorem 2 is based on the fruitful idea of a

one-to-one ordering mapping σt : [1 : n] → V (n = |V|),
which sorts the vector is the ascending order

z1(t) = xσt(1)(t) ≤ . . . ≤ zn(t) = xσt(n)(t). (50)

Notice that, in general, σt(i) is defined non-uniquely (if x(t)
has two or more equal components), however, the mapping σt
can always be chosen measurable in t and the functions zi(t)
are absolutely continuous on [0,∞) [20], [54].

1) The reduction to the global consensus case: As we have
noticed in Section VI, the persistent graph G∞ is undirected,
consisting thus of several disjoint connected components.
It suffices to prove Theorem 2 for the case where G∞ is
connected. Indeed, if A(·) satisfies the NITS condition, this
condition also holds for the matrix Ã(·) from (12). The
system (12) consists of fully decoupled subsystems, corre-
sponding to connected components of G∞. If consensus in
each of these components is proved, Corollary 1 guarantees
that this consensus is also guaranteed by protocol (4).
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2) Global consensus in terms of the sorted vector: Intro-
ducing the sorted state vector z(t) (50), the global consensus
is established if and only if

zk(tp) −−−→
p→∞

Λ̄ = lim
t→∞

Λ(t) > −∞ ∀k = 1, . . . , n. (51)

Indeed, (51) is equivalent to

x(tp) −−−→
p→∞

Λ̄1. (52)

If (52) is valid, then, choosing tp−1 < t′ < tp and using
Lemma 9 (where t∗ in (29) is replaced by t′), one has
x(tp) ≤ ψx(t′) + (1 − ψ)Λ(t′)1, and hence [x(tp) − (1 −
ψ)Λ(t′)1]ψ−1 ≤ x(t′) ≤ Λ(t′)1, where the leftmost and
rightmost expressions both go to Λ̄1 as p→ ∞.

3) The proof of (51): Assuming that the persistent graph
G∞ is connected, we are going to prove (51) using the
backward induction on k = n, . . . , 1.

Induction base. We will prove a stronger statement zn(t) =
maxx(t) −−−→

t→∞
Λ̄, using the inequality (26) and Assump-

tion 1. Due to Assumption 1, one has exp(−
∫ t

s
αi(ξ)dξ) ≥

δ
∆
= e−(n−1)µ for all s ≥ 0 and t ∈ [s, s+ h̄]. Hence

Λ(s+ h̄) = supt∈[s,s+h̄] maxx(t) ≤ δmaxx(s) + (1− δ)Λ(s)

=⇒ δ−1[Λ(s+ h̄)− (1− δ)Λ(s)] ≤ maxx(s) ≤ Λ(s),

Therefore, zn(s) = maxx(s) −−−→
s→∞

Λ̄. This also implies that

lim sup
t→∞

zr(t) ≤ lim sup
t→∞

zn(t) ≤ Λ̄. (53)

Induction base. Suppose that (51) has been proved for k =
r + 1, . . . , n; our goal is to prove (51) it for k = r. In view
of (53), it suffices to show that

lim inf
p→∞

zr(tp) ≥ Λ̄. (54)

Assume, on the contrary, that a subsequence τm
∆
= tp(m)

exists, m → ∞ such that zr(τm) ≤ Λ(τm) − δ ∀m. Passing
to a subsequence, one can assume, without loss of generality,
that V0

∆
= στm([1 : r]) ⊂ V does not depend on m (this

set contains indices of the r smallest elements at time τm).
By definition, xi(τm) ≤ zr(τm) ≤ Λ(τm) − δ ∀i ∈ V0 ∀m.
Without loss of generality, we choose m so large that

zr+1(t) > Λ(τm)− δ/3 ∀t ≥ τm − h̄. (55)

We will show that the aforementioned assumptions contra-
dict to the induction hypothesis, proving the existence of such
j ̸∈ V0, a sequence τ̃m = tp̃(m) → ∞ and δ̃ < δ that

max
i∈V0∪{j}

xi(τ̃m) ≤ Λ(τm)− δ̃. (56)

The cardinality of V0 ∪ {j} is r + 1, so (56) entails that
zr+1(tp̃(m)) ≤ Λ(τm)− δ̃ for each m, which is incompatible
with the induction hypothesis. Informally speaking, some
agent from Vc

0
∆
= V \ V0 comes “sufficiently close” to agents

from V0 due to persistent interactions between V0 and Vc
0 .

The proof of (56) is based on Lemma 12, and, in fact,
similar to Step 3 of its proof. We divide it into several steps.

Step 1. As we have seen in the proof of Lemma 12,
introducing the functions fi as in (39), the functions xi(t)

obey the system (40),(41). One may easily notice that the
submatrices A+ = (aij)i,j∈V+ and A† = (aij)i,j∈V† obey the
NITS condition (with the same sequence (tp) and constant
K), and hence Lemma 12 is applicable to the corresponding
evolutionary matrices U+, U† of linear systems (40),(41).

Introducing the subvectors x+ = (xi)i∈V0
and x† =

(xi)i∈Vc
0

and corresponding vectors f+, f† and using
Lemma 9 (where t∗ = τm, U = U+), we have

x+(t) ≤ U+(t, τm)x+(τm) + Λ(τm)(1V+ − U+(t, τm)1V+)

+

∫ t

τm

U+(t, ξ)f+(ξ)dξ ∀t ≥ τm.

Recalling that x+(τm) ≤ (Λ(τm)− δ)1V+ , one arrives at

x+(t) ≤ (Λ(τm)− δ)1V+ +

∫ t

τm

U+(t, ξ)f+(ξ)dξ. (57)

Recalling that x†(τm) ≤ Λ(τm)1V† and using Lemma 9 (with
τm, U

† instead of t∗, U ), one also proves that

x†(t) ≤ Λ(τm)1V† +

∫ t

τm

U†(t, ξ)f†(ξ)dξ. (58)

Step 2. Using the connectivity of G∞, we will show that
maxx+(t) > [Λ(τm)− 2δ/3] at some instant t ≥ τm. Indeed,
assume that this statement is incorrect, and hence x+(t) ≤
[Λ(τm) − 2δ/3]1V0

∀t ≥ τm. In view of (55), maxx+(t) <
zr+1(t) for t ≥ τm, that is, the set V0 contains the indices
of r smallest elements of x(t), whereas the indices of n − r
largest elements belong to Vc

0 at all instants t ≥ τm (and not
only at τm). Therefore, xj(t) > Λ(τm)− δ/3 ∀j ∈ Vc

0 and

fi(t)
(39)
≤ −δ

3

∑
j∈V0

aij(t) ≤ 0 ∀i ∈ Vc
0 ∀t ≥ τm − h̄.

Recalling that the persistent graph is connected and aij ̸∈
L1[0,∞) for some j ∈ V0, we have

∫∞
τm
fi(t)dt = −∞∀i ∈

Vc
0 . Lemma 12 and (58) entail that xi(t) −−−→

t→∞
−∞ ∀i ∈

Vc
0 , which leads us to a contradiction.
Step 3. Let t′ ≥ τm be the first instant such that xi(t′) =

Λ(τm)−2δ/3 for some i ∈ V0; find q such that tq−1 < t′ ≤ tq .
Corollary 3 entails that

xi(t) ≤ (1− θ1)Λ(t
′) + θ1x(t

′), ∀t ∈ [t′, tq]∀i ∈ V0,

Therefore, for all i ∈ V0 and t ∈ [τm, tq] one has

xi(t) ≤ Λ(τm)− δ1, δ1
∆
=

2δ

3
θ1. (59)

On the other hand, by construction xi(t
′) − xi(τm) ≥ δ/3.

Using (57) and recalling that U(t, ξ) is substochastic, one has∑
l∈V0

∫ t′

τm

fl(t)dt =
∑
l∈V0,
j∈Vc

0

∫ t′

τm

alj(t)[x̂
l
j(t)− xl(t)]dt ≥

δ

3
.

Since x̂lj(t)− xl(t) ≤ D0
∆
= Λ(t∗)− λ(t∗) due to Lemma 8,

∑
l∈V0,
j∈Vc

0

∫ t′

τm

alj(t)dt ≥ c1
∆
=

δ

3D0
.
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Therefore, in view of the NITS condition and tq ≥ t′,∑
l∈V0,
j∈Vc

0

∫ tq

τm

ajl(t)dt ≥ c2
∆
= K−1c1. (60)

Informally speaking, we have proved that the influence
between V0 and Vc

0 during [τm, tq] is strong enough.
Step 4. Using (60), Lemma 12 and inequality (58), one

can show that for some j ∈ V† and t′′ ∈ [τm, tq] we have
xj(t

′′) ≤ Λ(τm)− δ2, where, by definition

δ2
∆
= min

(
ϱ†c2δ1

ϱ†c2 + n− r
,
δ

3

)
, (61)

c2 is defined in (60) and ρ† is the constant from (33),
corresponding to U†.

Indeed, assume that xj(t) > Λ(τm)− δ2 for all j ∈ V† and
t ∈ [τm, tq]. In view of (55), the latter inequality holds also
for t ∈ [τm− h̄, τm] (recall that δ2 < δ/3). Therefore, we have
x̂ji (t)−xj(t) > δ1 − δ2 for i ∈ V+, j ∈ V†, t ∈ [τm, tq]. Thus∑

j∈V†

∫ tq

tp

fj(t)dt
(60)
< −c2(δ1 − δ2) < 0.

Applying Lemma 12 to matrix U†, one has

(n− r)(Λ(τm)− δ2) ≤ 1⊤
V†x

†(tq)
(58)
≤ (n− r)Λ(τm)+

+

∫ tq

τm

1⊤
V†U

†(tq, t)f
†(t)dt <

< (n− r)Λ(τm)− ρ†c2(δ1 − δ2).

The latter inequality, obviously, contradicts (61).
Step 5. Finally, one can find such an index p̃(m) ≤ q that

t′′ ∈ (tp̃(m)−1, tp̃(m)]. Corollary 3 entails that

xj(tp̃(m)) ≤ Λ(τm)− δ̃, δ̃
∆
= θ1δ2.

The latter inequality, in combination with (59), obviously
entails (56), where τ̃m = tp̃(m), which contradicts to the
induction hypothesis. The induction step is proved, which
finishes the proof of Theorem 2. ■

VIII. NUMERICAL SIMULATION

In this section, we consider several numerical examples
illustrating the difference between Theorem 1 and 2. In all
experiments, n = 4 agents interact over a simple graph
(Fig. 1), where all connections are bidirectional yet unequally
weighted: aij(t) ̸= aji(t). In fact, we will have G[A(t)] = G∞.
Three types of delays are used: (a) zero delays hij ≡ 0 ∀i, j;
(b) asymmetric constant delays hij(t) = τ0j h̄; (c) asymmetric
time-varying delays hij(t) = h̄(sin(t + θ0j ))

2. The initial
conditions and parameters of the delays in all tests are

x(t) ≡ x(0) = [−1, 0.8,−0.5, 1]⊤ ∀t ∈ [−h̄, 0],
τ0 = [0.1, 0.9, 0.4, 0.2], θ0 = [π/4, π/3, 0, π], h̄ = 50s.

We also introduce the functions

a(t) =
1

0.01 + t
, b(t) =

log(1.01 + t)

0.01 + t
.

1 2 3 4

Fig. 1: The graph G[A(t)] = G∞ in experiments 1-3.

Experiment 1: Type-symmetric graph. Consider first the
situation where a12(t) = b(t), a21(t) = 2b(t), a34(t) =
0.9b(t), a43(t) = b(t), whereas a23(t) = a(t), a32(t) =
0.8a(t). All functions are bounded, and thus (5) holds.

Note that the links between agents 2 and 3 are much weaker
than the other links, because a(t)/b(t) −−−→

t→∞
0. One can also

note that Theorem 1 cannot be applied, because the AQSC
condition is violated. Indeed, if the condition (i) in Definition 4
holds, then the graph G[Atp+1

tp ] contains at least one of arcs
2 → 3 or 3 → 2, and, by noticing that b(t) > a(t) log t,∫ tp+1

tp

a(t)dt ≥ ε =⇒
∫ tp+1

tp

b(t)dt ≥ ε log tp −−−→
p→∞

∞,

so the supremum in (15) is infinite. However, the type-
symmetry condition (22) holds, so consensus is ensured by
Theorem 2 and Remark 6. The behaviors of the solutions
in the three situations (no delay, static delays, time-varying
delays) are shown in Fig. 2. Neither static nor time-varying
delays destroy consensus, but they substantially reduce the
convergence speed and alter the consensus value x̄i from (7).

Experiment 2: None of Theorems works. Consider
now the weights a12(t) = a(t), a21(t) = 2b(t), a34(t) =
0.9b(t), a43(t) = a(t), a23(t) = a(t), a32(t) = 0.8a(t).
None of Theorems 1 and 2 can be applied, because the
AQSC condition remains violated, and type-symmetry is also
destroyed. Although the absence of consensus has not been
proved analytically, the simulation over a very long time
interval (Fig. 3) reveals that the system fails to reach global
consensus under constant delays (case (b)). This can be
expected, because attraction between two “central” nodes of
the graph 2 and 3 is much weaker than ties connecting them
to the “peripheral” nodes 1 and 4. This example shows the im-
portance of condition (ii) in Definition 4 and the insufficiency
of the persistent graph’s connectivity for consensus.

Experiment 3: Consensus guaranteed by Theorem 1.
We now show that consensus is regained if asymmetric
weights obey the AQSC condition. Consider now the weights
a12(t) = a(t), a21(t) = 2b(t), a34(t) = 0.9b(t), a43(t) =
b(t), a23(t) = a(t), a32(t) = b(t). Unlike experiments 1 and
2, the conditions of Definition 4 are satisfied by the sequence
(tp), where t0 = 0 and tp+1 > tp is the instant when∫ tp+1

tp

b(t) dt = 1 ∀p = 0, 1 . . .

Then, obviously, the graphs G[Atp+1

tp ] contain a chain 1 7→
2 7→ 3 ↔ 4 of arcs whose weight is ≥ 1, whereas the weights
of other arcs in these graphs do not exceed ≤ (log 1.01)−1,
because b(t) ≥ (log 1.01)a(t)∀t ≥ 0. The behaviors of the
solutions in all cases (no delay, static delays, time-varying
delays) are shown in Fig. 4. Neither static nor time-varying
delays destroy consensus, but they substantially reduce the
convergence speed and alter the consensus value x̄i from (7).
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Notice that consensus in this experiment does not follow
from any of the results available in the literature, even in the
undelayed case. The UQSC condition fails to hold, because
the weights aij(t) vanish as t → ∞. The arc-balance condi-
tion (21) also fails to hold, because a(t)/b(t) → 0 as t→ ∞.

CONCLUSION

First-order consensus protocols, based on the idea of
iterative averaging (discrete time) or the Laplacian flow
(continuous-time), are prototypic distributed algorithms that
arise in many problems of multi-agent coordination. In spite
of substantial progress in their analysis, some fundamental
problems still remain open, in particular, there are no necessary
and sufficient criteria of the algorithm’s convergence in the
situation where the interaction graph is time-varying. The latter
problem becomes especially complicated in the case where
communication among the agents is delayed. The most typical
assumption under which the delay robustness of consensus is
proved the uniform quasi-strong connectivity (UQSC).

In this paper, we demonstrate that the UQSC assumption
is not necessary and can be substantially relaxed. Our first
main result shows that, in the case of a general directed
graph, it can be relaxed to the condition we refer to as the
aperiodic quasi-strong connectivity (AQSC), which, as we
show, is closely related to the well-known necessary consensus
condition (integral connectivity). A special case of the AQSC
graph is the arc-balanced graph, for such graphs there is no
gap between necessary and sufficient conditions. The same
holds for networks with reciprocal (e.g. undirected or type-
symmetric) interactions; this constitutes the second main result
of our work. As has been mentioned in Remark 3, the explicit
estimation of convergence speed of consensus algorithms
(even in the UQSC case) remains a non-trivial problem.

APPENDIX A
DISCUSSION ON ASSUMPTION 1

In this appendix, we demonstrate that Assumption 1 in fact
cannot be omitted even for the case of two agents. Consider
two agents whose values evolve in accordance with

ẋ0(t) = a(t)(x1(t− τ(t))− x0(t)),

ẋ1(t) = a(t)(x0(t− τ(t))− x1(t)).
(62)

Here a(t) ≥ 0 is a locally L1-summable function, however
a ̸∈ L1[0,∞). As shown in Lemma 6, the AQSC condition is
satisfied for some sequence (tp); the NITS condition is also
fulfilled with the same sequence. All conditions of Theorems 1
and 2 thus holds except for, possibly, Assumption 1.

Unbounded delay can destroy consensus

A trivial counterexample showing that the delay bound-
edness condition cannot be discarded is the case τ(t) = t,
a(t) = 1, in which situation (62) turns into

ẋ0(t) = x1(0)− x0(t), ẋ1(t) = x0(0)− x1(t).

Obviously, one has xi(t) −−−→
t→∞

x1−i(0) (i = 0, 1), so
consensus is impossible unless x0(0) = x1(0). All existing

results on consensus with unbounded delays [44], [45] thus
assume that t − τ(t) is separated from 0 as t → ∞. Even
in this situation, quite restrictive assumptions on the graph
G[A(·)] have to be imposed to prove consensus robustness.

Notice that a similar effect can be found by considering
the case of very large constant delay τ(t) ≡ τ . The deviation
between the agents’ states v(t) = x0(t) − x1(t) obeys the
equation v̇(t) = −v(t)− v(t− τ). Characteristic roots of the
latter system, i.e., the solutions of the transcendental equation

s+ 1 + e−sτ = 0, s ∈ C (63)

converge10 [55] to the imaginary axis as τ → ∞. In this sense,
the equation v̇(t) = −v(t)−v(t−τ) loses asymptotic stability
as the delay becomes infinite τ → ∞.

Unbounded integral in (5) can destroy consensus

We now show that the function a(·) can be chosen in such
a way that the system (62) fails to establish consensus in spite
of the delay boundedness. On each interval [k, k + 1) (where
k = 0, 1, . . .), we define the “saw-tooth” [53] delay τ(t) =
t − k ∀t ∈ [k, k + 1), so that x̂j(t) = xj(t − τ(t)) = xj(k).
Therefore, the agents obey the following equations

ẋi(t) = a(t)(x1−i(k)−xi(t)), i = 0, 1, ∀t ∈ [k, k+1). (64)

Denoting ak
∆
= exp(−

∫ k+1

k
a(t) dt), one has

x1−i(k)− xi(k + 1) = ak(x1−i(k)− xi(k)),

which leads to a discrete-time consensus algorithm as follows

xi(k + 1) = (1− ak)x1−i(k) + akxi(k), i = 0, 1, (65)

which, as easily shown, ensures that |x1(k+1)−x0(k+1)| =
|1− 2ak| |x1(k)− x0(k)|. If ak < 1/2 and

∑
k ak <∞, then

π∗
∆
=

∏∞
k=0(1− 2ak) > 0, and hence |x1(k)− x0(k)| −−−−→

k→∞
π∗|x1(0)− x0(0)|, so consensus is not established.
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