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Abstract

In this paper we explore the recent topic of point cloud completion, guided by an
auxiliary image. We show how it is possible to effectively combine the informa-
tion from the two modalities in a localized latent space, thus avoiding the need
for complex point cloud reconstruction methods from single views used by the
state-of-the-art. We also investigate a novel weakly-supervised setting where the
auxiliary image provides a supervisory signal to the training process by using a
differentiable renderer on the completed point cloud to measure fidelity in the
image space. Experiments show significant improvements over state-of-the-art
supervised methods for both unimodal and multimodal completion. We also show
the effectiveness of the weakly-supervised approach which outperforms a number
of supervised methods and is competitive with the latest supervised models only
exploiting point cloud information.

1 Introduction

The rise in popularity of 3D sensing technologies such as depth cameras, laser scanners, LiDARs,
etc. is making the processing of point cloud data ever more important. The acquisitions produced by
those instruments are often incomplete due to occlusions by objects in the environment, reflections,
and viewing angles. This limits the exploitability of those data in tasks like scene understanding [1],
robotic vision [2], autonomous driving [3] and many more. Completing a point cloud from partial
observations is a challenging ill-posed inverse problem that requires strong prior knowledge about
shapes to be effectively regularized.

At the same time, we know that humans are very proficient at mapping the visual concepts learnt
from 2D images to understand the 3D world, and are able to successfully infer the shape of partial
3D objects from their 2D experiences. It is thus sensible to expect that point cloud completion
techniques can benefit from 2D images to better characterize the 3D shape to be completed. Indeed,
several applications of interest in robotic vision can take advantage of multimodal data where the 3D
acquisitions of a depth-sensing instrument are paired with images from an RGB camera. It is also
worth noting that the two modalities may be acquired from different vantage points, either thanks to
disparities in the acquisition geometry or because the vantage point has changed with the passing
of time. This makes it clear that the two modalities may carry complementary information and
effectively fusing it is key to unlock better completion performance. Nevertheless, the literature on
the topic of point cloud completion [4, 5, 6, 7, 8, 9, 10, 11] has largely focused on the single-modality
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problem, where only priors about 3D shapes are exploited. Only recently, image-guided completion
has started to receive attention [12].

In this paper, we study how the side information offered by a single image can be used in addition to
shape priors to complete a partial point cloud. While following the setting of ViPC [12], we extend
the multimodal completion methodology in several different ways. First, ViPC [12] is bottlenecked
by the need to estimate a coarse point cloud from the image via single-view reconstruction techniques
to fuse the information. We avoid this task by proposing a novel architecture that performs fusion in
a latent domain via cross-attention operations on fine-grained, localized representations of the two
modalities, coupled with a flexible decoder that allows to complete areas of varied size. Moreover,
the multimodal setting is uniquely poised for weakly-supervised learning. In fact, the input image,
especially when captured from a different vantage point, may offer a supervisory signal to guide
the completion of those areas occluded in the partial point cloud but visible in the image. This is
especially interesting for practical applications where it could be difficult to have access to complete
shapes, but significantly easier to have images from a different viewing angle. Therefore, we propose
to augment the known 3D self-reconstruction losses with the exploitation of a differentiable renderer
to measure the fidelity of the completed point cloud in the image space.

Our experiments show that the proposed model significantly outperforms the state-of-the-art on both
the supervised and weakly-supervised settings. In particular, the addition of the rendering loss allows
the weakly-supervised image-guided model to outperform several supervised baselines and to be
competitive with the latest supervised models only exploiting point cloud information.

2 Related work

Point cloud completion 3D shape completion is a long-standing problem in computer vision. Early
works devised explicit geometric descriptors or relied on shape retrieval from large datasets [13] [14]
[15] [16]. Since the advent of neural networks operating on raw point cloud data, several models
for the completion problem have been studied [17]. They are mostly based on the encoder-decoder
architecture, pioneered by PCN [4], which was the first model that did not require any assumption of
structure or annotation information about the underlying shape. TopNet [5] presents a hierarchical
rooted tree structure that generates structured point clouds as a collection of its subsets. AtlasNet [6]
and MSN [18], on the other hand, recreate the point cloud by assessing a set of parametric surface
elements. Convolutional-based approaches ([19, 20]) use a voxelixed representation of shapes as
input to 3D CNNs; nevertheless, this representation introduces undesirable approximations in the
shape due to coordinate quantization effects. GRNet [21] uses techniques to represent point cloud
onto a 3D grid, so that CNNs can be exploited, without losing structural information. Recently,
VRCNet [8] has proposed a dual path architecture and a VAE-based relation enhancement module
for probabilistic modeling. Architectures based on transformers have also been proposed. PointTr [9]
changes the transformer block to take advantage of the inductive bias of 3D geometries, creating a
geometry-aware block that models local geometry relations. Moreover, SnowflakeNet [22] generates
child points by gradually splitting parent points by means of a Skip-Transformer that learns the
appropriate splitting modes for particular regions. As a result, the network is able to predict highly
detailed shape geometries. Finally, it is worth mentioning that the point cloud completion literature
is split between two settings: one, as in the aforementioned works, where the partial input has the
same number of points as the completed point cloud and another where the completed point cloud
has more points than the input such as in [23, 24]. In this paper, we will consider the former setting.

View-guided completion Recently, the usage of auxiliary data to complement point cloud comple-
tion has been introduced by ViPC [12]. The idea is to help the reconstruction objective using side
information available as a different imaging modality. In particular, ViPC assumes that an image
corresponding to a view of the same object is also available for the completion task, and it exploits
the image to retrieve the global shape information that is lacking in the incomplete point cloud. The
image is processed by a pre-trained single-view reconstruction model, which estimates a coarse point
cloud from the image, representing the entire shape. The key challenge in this setting is how to
effectively combine features extracted from the two modalities. Unlike ViPC, our approach leverages
direct fusion at a feature level, avoiding the need to explicitly reconstruct a coarse point cloud from a
single image, a generally hard inverse problem in itself and full of pitfalls.
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Figure 1: Architecture overview. Localized features from the partial point cloud and the input image
are jointly processed via cross- and self-attentions. A decoder reconstructs the target number of
points from the feature space with attention-based upsampling. The input partial point cloud is
downsampled with farthest point sampling (FPS) and concatenated. Supervised training only uses the
point cloud reconstruction loss with respect to the complete point cloud. Weakly-supervised training
has a point cloud reconstruction loss with respect to a less partial point cloud and a rendering loss. N
is the number of points of the input point cloud; M is the number of points generated by each branch
of the decoder, while F represents the feature dimension.

Self-supervised strategies for completion All the previously mentioned approaches rely on
complete ground truth as a supervisory training signal. This may be difficult to obtain in real-word
scenarios. Self-supervised training strategies avoid the need for retrieving such expensive ground
truths. However, the amount of work on this topic is rather limited. Wang et al. [10] use resampling
that removes further points from an already partial point cloud and mixup among shapes to train
their completion network in a self-supervised manner. Similarly, Mittal et al. [11] also propose an
inpainting procedure that leverages further partializations of partial point clouds. To the best of our
knowledge, there is no work exploring the availability of a different modality, namely an image to
provide a weak supervisory signal to the point cloud completion task.

3 Proposed Methods

We address the setting in which a partial point cloud needs to be completed with the assistance of an
image of the object taken from a certain viewpoint. Our goal is to study how to leverage this side
information in the most effective manner. To this purpose we study i) a supervised learning setting,
for which we show that the image features can be effectively fused with those of the partial point
cloud in a latent space; ii) a weakly-supervised setting based on the idea that the image may contain
clues about the missing part and can thus serve as a supervisory signal. Fig. 1 shows an overview of
the proposed method, named XMFnet (Cross-Modal Fusion network) which will be detailed in the
next sections.

3.1 Architecture and Supervised Setting

At a high level, the architecture of XMFnet is composed by two modality-specific feature extractors
that capture localized features of the input point cloud and image, summarized at a small number of
points/pixels, followed by a sequence of cross-attention and self-attention operations that progressively
merge the two feature spaces. Finally, a decoder upsamples this localized information to estimate a
predefined number of points of the missing component. More formally, we denote the partial point
cloud as X P RNˆ3, the input view as an image I P RPxˆPyˆ3 and the complete point cloud as
Y P RNˆ3. The task of our model is to predict a complete shape Ŷ P RNˆ3 given X and I as inputs.
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Notice we follow the conventional setting where the partial and complete point clouds have the same
number of points, meaning that there is a resampling of the known part.

3.1.1 Point Cloud and Image Encoder

The point cloud encoder should extract localized features from the partial shape X. It is important to
keep a degree of locality, i.e., associating features to a small number of points NX ă N rather than a
single global embedding because the information about the missing part that needs to be estimated
by the entire model is also mostly localized. However, it is also important to have a sufficiently
large receptive field to infer some global information about the object. For this reason, we adopt
a graph-convolutional architecture with graph pooling operations. The architecture is a sequence
of graph-convolutional layers (EdgeConv [25]) interleaved by pooling operations (Self-Attention
Graph Pooling [26]) to reduce the cardinality of the point cloud. Pooling has the double purpose of
expanding the receptive field to also include more global information and reduce the complexity of
the subsequent cross-attention operations fusing the two modalities.

Any network that extracts features from an image can be utilized as encoder for view I. The design
principles follow those of the point-cloud encoder, i.e., features localized at a subset NI ă PxPy of
the image pixels obtained from a sufficiently large receptive field are produced as output.

We will refer to the features produced by the point cloud encoder as HX P RNXˆFX and by the
image encoder as HI P RNIˆFI .

3.1.2 Modality Fusion

Once we have collected localized information from the two modalities, we need to combine them
effectively to capture their complementary information, despite the obvious domain gap. The attention
mechanism is particularly suited to find correspondences between the features of a region of the point
cloud and a region of the image. The cross-attention layer in our architecture uses the Transformer’s
multihead attention mechanism [27]. The point cloud features are projected to form the query
tensor, while the image features are projected to form the key and value tensors, and then attention
mechanism aggregates the features from different image regions according to the weights determined
by the cross-correlation between the two modalities. More formally:

QX “ HXWQ, KI “ HIWK , VI “ HIWV (1)

Hfused “ softmax
ˆ
QKT

?
F

˙
V (2)

being WQ P RFXˆF , WK ,WV P RFIˆF the projection weights. The fused features Hfused P
RNXˆF produced by the cross-attention mechanism can be regarded as the original point cloud
features enriched by the image features.

The XMFnet architecture depicted in Fig. 1 shows a self-attention layer after the cross-attention
fusion. The goal of this operation is to have a permutation-invariant transformation of the features
with a global receptive field so that any information from the image not properly integrated can be
rectified. Self-attention works exactly like Eq. (2) except for the fact that Q,K,V are all different
projections of the same features. Furthermore, a sequence of multiple cross- and self-attention
layers can be used to more effectively integrate the information from the two modalities via a “slow”
fusion. We remark that at the end of this sequence we use a special cross-attention layer that merges
information from the end and the beginning of the sequence allowing better flexibility in the decision
of the desired abstraction level (higher-level features cross-attend lower-level features).

3.1.3 Decoder and Supervised Loss

The decoder is a crucial component of our architecture as it should take the joint feature embedding
and learn to reconstruct a complete point cloud preserving both global and local structure. To be
precise, the decoder seeks to estimate the positions of a number of points that upper bounds the size
of the missing part, so that they can be concatenated to a version of the input partial point cloud
subsampled by means of farthest point sampling (FPS). This mechanism is reminiscent of what is
done in the setting with a variable number of points where only the missing part is estimated [23, 24].
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For example, in our experiments, we upper bounded the size of the missing part to 50% of the total
number of points, thus having N 1 points estimated by the decoder concatenated to N 1 points from the
subsampled input. However, our method allows to be flexible and handle more incomplete inputs by
simply tuning the desired ratio of points to be estimated and points provided from the partial input.
Typically, the latent space where we perform feature fusion is much more localized to constrain
complexity and allow higher-level features so that NX ! N 1, thus requiring the decoder to upsample
the feature field. We perform this operation by using a number of attention-based operations, inspired
by the work in [28], that convert features to points in parallel with the idea that each branch specializes
on the reconstruction of a sub-region of the missing part. The structure is depicted in Fig.1. More
formally, calling H P RNXˆF the features provided to the decoder, the output Ŷi P RN 1{Kˆ3 of
each of the K branches is computed as:

Zi “ MLPproj
i pHq i “ 1, . . . ,K (3)

Ŷi “ `
softmaxpMLPdec

i pZiqqTZi

˘
Wout,i i “ 1, . . . ,K (4)

where MLPproj
i : RF Ñ RF 1

, MLPdec
i : RF 1 Ñ RN 1{K are multilayer perceptrons with different

weights for each branch, projecting features to K subspaces and generating attention weights for
the resampling process, respectively. Wout,i P RF 1ˆ3 is projection matrix to 3D space. Finally, the
completed point cloud is generated by concatenation of the outputs of all decoder branches and the
partial input subsampled by FPS as:

Ŷ “
”
Ŷ1, Ŷ2, . . . , ŶK , FPSpXq

ı
. (5)

Supervised training is performed using the L1 Chamfer Distance (CD) between the generated shapes
and the ground truth shapes, defined as follows:

LCDpY, Ŷq “ 1

2N

ÿ

yPY
min
ŷPŶ

}y ´ ŷ} ` 1

2N

ÿ

ŷPŶ
min
yPY }ŷ ´ y}. (6)

3.2 Weakly-supervised Setting

The multimodal completion problem addressed in this paper is uniquely poised for weakly-supervised
learning in a setting where the full ground truth point cloud is not available. In fact, the image available
as input may contain complementary information with respect to the point cloud and, crucially, cues
about the missing part. This is especially true if the image is collected from a different viewpoint
or at a different time with respect to the point cloud, resulting in different kinds of occlusions.

MODEL

DIFF.
RENDER

Image

Partialized 
Partial PC

SILHOUETTE

Point 
cloud
loss

Render
loss

 Partial PC

Figure 2: Weakly-supervised training.

Existing architectures for self-supervised completion [10]
[11] rely solely on point cloud supervision, due to their
unimodal nature. The key insight of the proposed method
(Fig. 2) is to supplement completion losses on points with
a loss measuring a reprojection error in the image space.
In particular, we measure whether the reconstructed point
cloud produced by the architecture described in Sec. 3.1
leads to an image similar to the input one, when captured
from the correct viewpoint.

In order to measure this information and use it in the
training process, we include a differentiable rendering
module based on alpha compositing [29] which generates a rasterized version of the object, employing
provided camera parameters. In order to ensure consistency with the input image, intrinsic and
extrinsic camera parameters may be estimated with a number of well-known methods [30] [31]
[32]. In order to minimize the domain shift between the input image and the result of the rendering
process, we work on silhouettes, i.e., binary masks of objects. The differentiable renderer produces
a soft silhouette with continuous values, while the input image is directly binarized. Inevitable
inaccuracies in the camera parameters and rendering process will typically yield unreliable borders of
the silhouette. Therefore, we also compute a border mask with a simple edge detector (Laplacian of
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Gaussian) and discount the loss function by a factor ε ă 1 for the pixels in the mask. In summary,
our rendering loss is defined as:

Lrender “
›››M d

”
RpŶq ´ SpIq

ı›››
1
, Mi,j “

"
ε if pi, jq P edge
1 otherwise

(7)

being R the differentiable silhouette renderer and S the silhouette binarizer. We remark that [33]
proposes to use rendering to improve performance in point cloud completion, aiding the learning
process through an image domain supervision. However, their approach is supervised and is based on
rendering the ground truth and generated point cloud in depth-maps with different view-points.

In addition to the rendering loss, our weakly-supervised framework also adopts self-supervision in
the point cloud domain. In particular, we use a combination of the resampling and mixup approaches
proposed in [10, 11]. Resampling consists in removing random portions of the original partial input
point cloud, yielding even more partial shapes. As a result, the original partial input is employed as a
pseudo-ground truth. Mixup combines a pair of partial shapes weighed according to Beta distribution
in an attempt at increasing the complexity of the shapes processed by the network. Differently from
[10], we also have images associated with a partial shape in our setting. Hence, we also mix the
images in such a way that the mixup technique is carried out symmetrically for the two modalities.

We remark that the rendering loss is comparatively weaker than the point cloud loss and, by itself, has
a number of ambiguities due to the lack of depth information and the use of silhouettes. For this reason,
it is important to combine it with the point cloud loss. We found that the density-aware Chamfer
Distance (DCD) [34], a version of CD that is more sensitive to non-uniform point distributions is
superior in this weakly-supervised scenario to regularize the ambiguities of the rendering loss. Our
overall weakly-supervised training procedure is therefore as follows. We alternate between a step
that optimizes the point cloud loss consisting in a weighted CD:

LPC “ 1 ´ β

2N

ÿ

yPY
min
ŷPŶ

}y ´ ŷ} ` β

2N

ÿ

ŷPŶ
min
yPY }ŷ ´ y}, (8)

and a step optimizing a combination of DCD and rendering loss:

LI “
»
– 1

2N

ÿ

yPY

ˆ
1 ´ 1

N
e´α}y´w}2

˙
` 1

2N

ÿ

ŷPŶ

ˆ
1 ´ 1

N
e´α}ŷ´z}2

˙fi
fl ` λLrender (9)

where w “ argminŷPŶ }y´ ŷ}2 and z “ argminyPY }y´ ŷ}2. Notice that LPC and the DCD part
of LI use resampling and mixup for point clouds, while Lrender does not (LI is computed with full
minibatch for the point-cloud part and half minibatch with the original partials for rendering).

4 Experimental results

4.1 Experimental Settings and Implementation Details

All the experiments are conducted on the ShapeNet-ViPC[12] dataset. The dataset contains 38,328
objects from 13 categories; for each object it comprises 24 partial point clouds with occlusions
generated under 24 viewpoints, using the same settings as ShapeNetRendering [35]. The input and
ground truth point clouds contains N “ 2048 points each. Each 3D shape is rotated to the pose
corresponding to a certain view point after being normalized within the bounding sphere with radius
of 1. Images are generated from the 24 view points of ShapeNetRendering and have a resolution of
224 ˆ 224 pixels. For all the experiments in this paper, we employ the same selection used in [12]:
we used 31,650 objects from eight categories, with 80% of them for training and 20% for testing.

The partial point cloud is downsampled by farthest point sampling to N 1 “ 1024 points and
concatenated to the output of the decoder that produces N 1 “ 1024 points leading to a completed
point cloud with 2048 points. The decoder has K “ 8 branches, each of them producing M “ 128
points. The point cloud encoder employs EdgeConv and SAGPooling layers; the EdgeConv layers
selects k “ 20 nearest neighbors, while the two pooling layers use k “ 16 and k “ 6 nearest
neighbors, respectively. The original point cloud is overall downsampled by a factor of 16, resulting
in NX “ 128 points with FX “ 256 features. The image encoder is built with a ResNet18 [36] as
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Table 1: Mean Chamfer Distance per point (ˆ10´3). ShapeNet-ViPC dataset, supervised.

Methods Avg Airplane Cabinet Car Chair Lamp Sofa Table Watercraft

AtlasNet [6] 6.062 5.032 6.414 4.868 8.161 7.182 6.023 6.561 4.261
FoldingNet [39] 6.271 5.242 6.958 5.307 8.823 6.504 6.368 7.080 3.882
PCN [4] 5.619 4.246 6.409 4.840 7.441 6.331 5.668 6.508 3.510
TopNet [5] 4.976 3.710 5.629 4.530 6.391 5.547 5.281 5.381 3.350
ECG [7] 4.957 2.952 6.721 5.243 5.867 4.602 6.813 4.332 3.127
VRC-Net [8] 4.598 2.813 6.108 4.932 5.342 4.103 6.614 3.953 2.925
ViPC [12] 3.308 1.760 4.558 3.183 2.476 2.867 4.481 4.990 2.197
XMFnet 1.443 0.572 1.980 1.754 1.403 1.810 1.702 1.386 0.945

Table 2: Mean F-Score @ 0.001. ShapeNet-ViPC dataset, supervised

Methods Avg Airplane Cabinet Car Chair Lamp Sofa Table Watercraft

AtlasNet [6] 0.410 0.509 0.304 0.379 0.326 0.426 0.318 0469 0.551
FoldingNet [39] 0.331 0.432 0.237 0.300 0.204 0.360 0.249 0.351 0.518
PCN [4] 0.407 0.578 0.270 0.331 0.323 0.456 0.293 0.431 0.577
TopNet [5] 0.467 0.593 0.358 0.405 0.388 0.491 0.361 0.528 0.615
ECG [7] 0.704 0.880 0.542 0.713 0.671 0.689 0.534 0.792 0.810
VRC-Net [8] 0.764 0.902 0.621 0.753 0.722 0.823 0.654 0.810 0.832
ViPC [12] 0.591 0.803 0.451 0.512 0.529 0.706 0.434 0.594 0.730
XMFnet 0.796 0.961 0.662 0.691 0.809 0.792 0.723 0.830 0.901

backbone, it extracts NI “ 14 ˆ 14 “ 196 pixels with FI “ 256 features. The multihead attention
has 4 attention heads, with embedding size F “ 256. In the LI loss we use λ “ 0.15. The mask
factor for the edge detector has been set to ε “ 0.4.

The differentiable renderer has been implemented with PyTorch3D[37]. The rendered silhouettes
H ˆ W has size 224 ˆ 224 that is the same size of input views in our experiments. We adopt radius
ρ “ 0.025 in point rasterization. The proposed framework is implemented in PyTorch and trained on
an Nvidia V100 GPU. Class-specific training is performed for all models, using the Adam optimizer
[38] for roughly 200 epochs with a batch size of 128. The learning rate is initialized to 0.001 and
reduced by a factor of 10 at epoch 25 and 125.

4.2 Main Results

4.2.1 Supervised Learning

We first compare XMFnet against several baselines for the point cloud completion under supervised
learning. Since the new multimodal setting with an auxiliary image has been introduced only recently,
ViPC [12] represents the only method fully comparable to ours. However, we also report the results of
a number of state-of-the-art architectures for completion with only point cloud input, when retrained
on the ViPC dataset. AtlasNet[6] reconstructs a point cloud by estimating parametric surface elements.
FoldingNet[39] is a 2-D grid based auto-encoder. PCN[4] is an encoder-decoder framework that
reconstructs the point cloud in a coarse-to-fine manner. TopNet[5] has a rooted tree structure in the
decoder. ECG[7] is an edge-aware completion method based on Graph Convolutions. VRC-Net[8] is
the most recent method adopting a VAE-based model with a dual path architecture and probabilistic
modeling. In line with the previous evaluation protocols, we use CD and F-score [40] as metrics
for the reconstruction quality. Before evaluating the CD, we normalize the output of the models
to fit into the unit sphere. Table 1 and Table 2 report the experimental results and show XMFnet
outperforming the other techniques by a significant margin. While part of this gain with respect to
state-of-the-art models for point cloud completion can be attributed to the use of the input image, it is
worth noting that we also report significant improvements over the multimodal ViPC. This highlights
the sub-optimality of performing modality fusion by resorting to estimating a coarse point cloud
from the single input image, as in ViPC, rather than working in a latent feature space. Qualitative
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Partial PCN ECG VRCnet ViPC XMFnet GT

Figure 3: Qualitative comparison of completed point clouds for different classes.

comparisons2 are shown in Fig. 3. Our method is capable of producing cleaner completions than the
other baselines, with fewer outliers and a more uniform point distribution.

4.2.2 Weakly-supervised

We remark that we are the first to propose a weakly-supervised training strategy for multimodal
completion, so the setting in which supervisory information can be gathered from an input image
is unexplored. For this reason, we compare to a number of unimodal and multimodal supervised
methods as well as a self-supervised version using resampling and mixup of a unimodal state-of-the-
art model3. The results are reported in Table 3 for the CD and Table 4 for the F-Score. We notice that
our weakly-supervised method outperforms a number of supervised baselines and it is close to the
performance of the most recent unimodal supervised models.

4.3 Ablation Studies

In order to verify the effectiveness of the proposed design, we study the impact of the auxiliary image
input on the completion performance. To ensure a comparison as fair as possible, the version of
XMFnet that uses only point cloud information has the image encoder removed and the cross-attention
blocks replaced with self-attention ones.

2Visualizations for ViPC [12] have been kindly provided by the original authors.
3We remark the difficulty in reproducing several published methods in the self-supervised setting. The code

for [10, 11] was not available. The code to reproduce ViPC [12] is also incomplete so we cannot retrain the most
sensible self-supervised baseline of ViPC + Resampling + Mixup.
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Table 3: Mean Chamfer Distance per point
(ˆ10´3). ShapeNet-ViPC dataset.

Methods Airplane Lamp Watercraft

AtlasNet [6] 5.032 7.182 4.261
FoldingNet [39] 6.504 6.368 3.882
PCN [4] 4.246 6.331 3.510
TopNet [5] 3.710 5.547 3.350
ECG [7] 2.952 4.602 3.127
VRC-Net [8] 2.813 4.103 2.925
VRC-Net(self-sup.) 4.315 8.023 7.259
ViPC [12] 1.760 2.867 2.197
XMFnet (sup.) 0.572 1.810 0.945

XMFnet (weakly-sup.) 2.426 6.269 3.423

Table 4: Mean F-Score @ 0.001. ShapeNet-ViPC
dataset.

Methods Airplane Lamp Watercraft

AtlasNet [6] 0.509 0.426 0.551
FoldingNet [39] 0.432 0.360 0.518
PCN [4] 0.578 0.456 0.577
TopNet [5] 0.593 0.491 0.615
ECG [7] 0.880 0.689 0.810
VRC-Net [8] 0.902 0.823 0.832
VRC-Net(self-sup.) 0.689 0.710 0.673
ViPC [12] 0.803 0.706 0.730
XMFnet (sup.) 0.961 0.792 0.901

XMFnet (weakly-sup.) 0.742 0.542 0.704

Table 5: Unimodal vs. Multimodal comple-
tion (supervised)

Method Avg Airplane Cabinet Lamp

Unimodal 1.570 0.626 2.114 1.980
Multimodal 1.470 0.572 1.973 1.810
ë best view 1.223 0.545 1.426 1.697
ë worst view 1.819 0.722 2.621 2.115

Table 6: Ablation study for the Weakly-
Supervised method (airplane)

Resampling Mixup Rendering CD(10´3)

✓ ✗ ✗ 4.568
✓ ✓ ✗ 4.239
✓ ✓ ✓ 2.426

Table 7: Ablation study for the Weakly-
Supervised method - DCD (cabinet)

DCD CD(10´3)

✗ 3.012
✓ 2.426

The unimodal architecture is then trained with the same settings as the multimodal one, and
the results are reported in Table 5. The results show that the addition of the image input pro-
vides a significant improvement in performance. Notice that besides the result averaged over all
the possible 24 views, we also report the performance with the worst view and the best view.
Indeed, we are interested in investigating how the viewpoint of the image affects completion.

0 5 10 15 20 25
View

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

C
D

 (x
 1

0
-3

)

Multimodal
Unimodal
Multimodal Average

Figure 4: Impact of image contribution as function of
point of view, sorted by reconstruction CD (from worst
to best) averaged over cabinet category, supervised set-
ting.

Fig. 4 reports the average CD for different
views, ordered from worst to best, for the
cabinet category. It is clear that some views
provide complementary information due
to their different vantage point and allow
to substantially improve over the average
result. A small number of “bad” views
leads to results comparable to the unimodal
case.

Furthermore, it is interesting to study the
impact of our novel rendering loss in the
weakly-supervised setting. We noticed that
it allows the training process to have a
faster and smoother convergence and that
the overall completion performance is in-
creased from both a qualitative and quanti-
tative point of view. A qualitative compar-
ison between the weakly-supervised strat-
egy with and without the rendering module
can be visualized in Fig. 5 and quantitative
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Partial Without Rendering With Rendering GT

Figure 5: Qualitative visualization of the effect of the proposed weakly-supervised rendering loss.
The sample without rendering has CD “ 7.812, the one with rendering has CD“ 3.743.

Partial Normal CD DCD GT

Figure 6: Qualitative visualization of the effect of the DCD for the weakly-supervised setting.

results are reported in Table 6. The mixup loss provides only a small improvement from the perspec-
tive of the CD. However, it substantially improves the completed shape from a qualitative point of
view, helping the network generate more complete shapes. Moreover, the computational overhead
due to creating the mixed input shape is very small, so we decided to keep the method as it offered a
very favorable cost-performance trade-off. We also include the ablation for the DCD component of
the weakly-supervised loss, we found it helpful from both a qualitative and quantitative point of view.
Table 7 reports the impact of the DCD on the cabinet category, while Fig. 6 provides a qualitative
example, where the shape completed with the DCD presents a more uniform distribution of points
and a better overall quality.

5 Conclusions

In this paper, we explored the topic of point cloud completion guided by an auxiliary image, discover-
ing that effective fusion can be achieved in a latent space via cross-attention. Our method achieves
state-of-the-art results on the ShapeNetViPC-Dataset. Moreover, we showed how this setting lends
itself to weakly-supervised learning where the image can be used for supervision via a differentiable
rendering approach, when the full ground truth point cloud is not available. The major limitation
of our work is the lack of study of a real-world scenario for the proposed framework. In future
work, we will focus on extending the work to real acquisitions, thus dealing with complex effects
like acquisition noise, background or additional occlusions in the auxiliary images, and many more.
This paper has provided a proof of concept that effective multimodal completion is possible but a
more in-depth study of such issues on real scenes is needed, along with suitable improvements to our
design towards increased robustness.
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