
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural
networks / Berrone, Stefano; Canuto, Claudio; Pintore, Moreno; Sukumar, Natarajan. - In: HELIYON. - ISSN 2405-8440.
- ELETTRONICO. - 9:8(2023), pp. 1-20. [10.1016/j.heliyon.2023.e18820]

Original

Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-
informed neural networks

Publisher:

Published
DOI:10.1016/j.heliyon.2023.e18820

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981366 since: 2023-08-29T12:23:08Z

Elsevier

Heliyon 9 (2023) e18820

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Enforcing Dirichlet boundary conditions in physics-informed

neural networks and variational physics-informed neural networks

S. Berrone a, C. Canuto a, M. Pintore a,∗, N. Sukumar b

a Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA

A R T I C L E I N F O A B S T R A C T

MSC:

35A15

65L10

65L20

65K10

68T05

Keywords:

Dirichlet boundary conditions

PINN

VPINN

Deep neural networks

Approximate distance function

In this paper, we present and compare four methods to enforce Dirichlet boundary conditions in
Physics-Informed Neural Networks (PINNs) and Variational Physics-Informed Neural Networks
(VPINNs). Such conditions are usually imposed by adding penalization terms in the loss function
and properly choosing the corresponding scaling coefficients; however, in practice, this requires
an expensive tuning phase. We show through several numerical tests that modifying the output
of the neural network to exactly match the prescribed values leads to more efficient and accurate
solvers. The best results are achieved by exactly enforcing the Dirichlet boundary conditions
by means of an approximate distance function. We also show that variationally imposing the
Dirichlet boundary conditions via Nitsche’s method leads to suboptimal solvers.

1. Introduction

Physics-Informed Neural Networks (PINNs), proposed in [1] after the initial pioneering contributions of Lagaris et al. [2–4], are
rapidly emerging computational methods to solve partial differential equations (PDEs). In its basic formulation, a PINN is a neu-

ral network that is trained to minimize the PDE residual on a given set of collocation points in order to compute a corresponding
approximate solution. In particular, the fact that the PDE solution is sought in a nonlinear space via a nonlinear optimizer dis-

tinguishes PINNs from classical computational methods. This provides PINNs flexibility, since the same code can be used to solve
completely different problems by adapting the neural network loss function that is used in the training phase. Moreover, due to the
intrinsic nonlinearity and the adaptive architecture of the neural network, PINNs can efficiently solve inverse [5–7], parametric [8],
high-dimensional [9,10] as well as nonlinear [11] problems. Another important feature characterizing PINNs is that it is possible to
combine distinct types of information within the same loss function to readily modify the optimization process. This is useful, for
instance, to effortlessly integrate (synthetic or experimental) external data into the training phase to obtain an approximate solution
that is computed using both data and physics [12].

In order to improve the original PINN idea, several extensions have been developed. Some of these developments include the Deep
Ritz method (DRM) [13], in which the energy functional of a variational problem is minimized; the conservative PINN (cPINN) [14],

* Corresponding author.

E-mail addresses: stefano.berrone@polito.it (S. Berrone), claudio.canuto@polito.it (C. Canuto), moreno.pintore@polito.it (M. Pintore), nsukumar@ucdavis.edu
Available online 2 August 2023
2405-8440/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

(N. Sukumar).

https://doi.org/10.1016/j.heliyon.2023.e18820

Received 13 July 2023; Received in revised form 29 July 2023; Accepted 29 July 2023

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:stefano.berrone@polito.it
mailto:claudio.canuto@polito.it
mailto:moreno.pintore@polito.it
mailto:nsukumar@ucdavis.edu
https://doi.org/10.1016/j.heliyon.2023.e18820
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e18820&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e18820
http://creativecommons.org/licenses/by/4.0/

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

where the approximate solution is computed by a domain-decomposition approach enforcing flux conservation at the interfaces, as
well as its improvement in the extended PINN (XPINN) [15]; and the variational PINN (VPINN) [16,17], in which the loss function
is defined by exploiting the variational structure of the underlying PDE.

Most of the existing PINN approaches enforce the essential (Dirichlet) boundary conditions by means of additional penalization
terms that contribute to the loss function, these are each multiplied by constant weighting factors. See for instance [18–26]; note
that this list is by no means exhaustive, therefore we also refer to [27–29] for more detailed overviews of the PINN literature.
However, such an approach may lead to poor approximation, and therefore several techniques to improve it have been proposed.
In [30] and [31], adaptive scaling parameters are proposed to balance the different terms in the loss functions. In particular, in [30]

the parameters are updated during the minimization to maximize the loss function via backpropagation, whereas in [31] a fixed
learning rate annealing procedure is adopted. Other alternatives are related to adaptive sampling strategies (e.g., [32–34]) or to
specific techniques such as the Neural Tangent Kernel [35].

Note that although it is possible to automatically tune these scaling parameters during the training, such techniques require more
involved implementations and in most cases lead to intrusive methods since the optimizer has to be modified. Instead, in this paper,
we focus on three simple and non-intrusive approaches to impose Dirichlet boundary conditions and we compare their accuracy and
efficiency. The proposed approaches are tested using standard PINN and interpolated VPINN which have been proven to be more
stable than standard VPINNs [36].

The main contributions of this paper are as follows:

1. We present three non-standard approaches to enforce Dirichlet boundary conditions on PINNs and VPINNs, and discuss their
mathematical formulation and their pros and cons. Two of them, based on the use of an approximate distance function, modify
the output of the neural network to exactly impose such conditions, whereas the last one enforces them approximately by a
weak formulation of the equation.

2. The performance of the distinct approaches to impose Dirichlet boundary conditions is assessed on various test cases. On average,
we find that exactly imposing the boundary conditions leads to more efficient and accurate solvers. We also compare the
interpolated VPINN to the standard PINN, and observe that the different approaches used to enforce the boundary conditions
affect these two models in similar ways.

The structure of the remainder of this paper is as follows. In Section 2, the PINN and VPINN formulations are described: first,
we describe the neural network architecture in Section 2.1 and then focus on the loss functions that characterize the two models in
Section 2.2. Subsequently, in Section 3, we present the four approaches to enforce the imposition of Dirichlet boundary conditions;
three of them can be used with both PINNs and VPINNs, whereas the last one is used to enforce the required boundary conditions
only on VPINNs because it relies on the variational formulation. Numerical results are presented in Section 4. In Section 4.1, we
first analyze for a second-order elliptic problem the convergence rate of the VPINN with respect to mesh refinement. In doing so, we
demonstrate that when the neural network is properly trained, identical optimal convergence rates are realized by all approaches
only if the PDE solution is simple enough. Otherwise, only enforcing the Dirichlet boundary conditions with Nitsche’s method or
by exactly imposing them via approximate distance functions ensure the theoretical convergence rate. In addition, we compare the
behavior of the loss function and the 𝐻1 error while increasing the number of epochs, as well as the behavior of the error when the
network architecture is varied. In Section 4.2, we show that it is also possible to efficiently solve second-order parametric nonlinear
elliptic problems. Furthermore, in Sections 4.3–4.5, we compare the performance of all approaches on PINNs and VPINNs by solving a
linear elasticity problem and a stabilized Eikonal equation over an L-shaped domain, and a convection problem. Finally, in Section 5,
we close with our main findings and present a few perspectives for future work.

2. PINNs and interpolated variational PINNs

In this section, we describe the PINN and VPINN that are used in Section 4. In particular, in Section 2.1 the neural network
architecture is presented, and the construction of the loss functions is discussed in Section 2.2.

2.1. Neural network description

In this work we compare the efficiency of four approaches to enforce Dirichlet boundary conditions in PINN and VPINN. The
main difference between these two numerical models is the training loss function; the architecture of the neural network is the same
and is independent of the way the boundary conditions are imposed.

In our numerical experiments we only consider fully-connected feed forward neural networks with a fixed architecture. Such
neural networks can be represented as nonlinear parametric functions 𝑢 ∶ ℝ𝑁in → ℝ𝑁out that can be evaluated via the following
recursive formula:

𝐱∗
𝑖
= 𝜎𝑖

(
𝐴𝑖𝐱∗𝑖−1 + 𝑏𝑖

)
, 𝑖 = 1,2,… ,𝐿. (2.1)

In particular, with the notation of (2.1), 𝐱∗0 ∈ ℝ𝑁in is the neural network input vector, 𝐱∗
𝐿
∈ ℝ𝑁out is the neural network output

vector, the neural network architecture consists of an input layer, 𝐿 − 1 hidden layers and one output layer, 𝐴𝑖 and 𝑏𝑖 are matrices
and vectors containing the neural network weights, and 𝜎𝑖 ∶ ℝ → ℝ is the activation function of the 𝑖-th layer and is element-wise
2

applied to its input vector. We also remark that the 𝑖-th layer is said to contain dim(𝐱∗
𝑖
) neurons and that 𝜎𝑖 has to be nonlinear

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

for any 𝑖 = 1, 2, … , 𝐿 − 1. Common nonlinear activation functions are the rectified linear unit (ReLU(𝑥) ∶= max(0, 𝑥)), the hyperbolic
tangent and the sigmoid function. In this work, we take 𝜎𝐿 to be the identity function in order to avoid imposing any constraint on
the neural network output.

The weights contained in 𝐴𝑖 and 𝑏𝑖 can be logically reorganized in a single vector 𝐰 . The goal of the training phase is to
find a vector 𝐰 that minimizes the loss function; however, since such a loss function is nonlinear with respect to 𝐰 and the
corresponding manifold is extremely complicated, we can at best find good local minima.

2.2. PINN and interpolated VPINN loss functions

For the sake of simplicity, the loss function for PINN and interpolated VPINN is stated for second-order elliptic boundary-value
problems. However, the discussion can be directly generalized to different PDEs, and in Section 4, numerical results associated with
other problems are also presented.

Let us consider the model problem:

⎧⎪⎨⎪⎩
𝐿𝑢 ∶= −∇ ⋅ (𝜇∇𝑢) + 𝜷 ⋅∇𝑢+ 𝜎𝑢 = 𝑓 in Ω,
𝑢 = 𝑔 on Γ𝐷,
𝜇
𝜕𝑢

𝜕𝑛
= 𝜓 on Γ𝑁,

(2.2)

where Ω ⊂ ℝ𝑛 is a bounded domain whose Lipschitz boundary 𝜕Ω is partitioned as 𝜕Ω = Γ𝐷 ∪ Γ𝑁 , with meas𝑛−1(Γ𝐷) > 0. For the
well-posedness of the boundary-value problem we require 𝜇, 𝜎 ∈ L∞(Ω) and 𝜷 ∈ (W1,∞(Ω))𝑛 satisfying, in the entire domain Ω, 𝜇 ≥ 𝜇0
for some strictly positive constant 𝜇0 and 𝜎 − 1

2∇ ⋅ 𝜷 ≥ 0. Moreover, 𝑓 ∈ L2(Ω), 𝜓 ∈ L2(Γ𝑁) and 𝑔 = 𝑢|Γ𝐷 for some 𝑢 ∈ H1(Ω). We point
out that even if these assumptions ensure the well-posedness of the problem, PINNs and VPINNs often struggle to compute low
regularity solutions. We refer to [37] for a recent example of a neural network based model that overcomes this issue.

In order to train a PINN, one introduces a set of collocation points {𝑥1, … , 𝑥𝑁𝐼
} and evaluates the corresponding equation residuals

{𝑟PINN
1 , … , 𝑟PINN

𝑁𝐼
}. Such residuals, for problem (2.2), are defined as:

𝑟PINN
𝑖

(𝑢) = −∇ ⋅ (𝜇∇𝑢)(𝑥𝑖) + 𝜷 ⋅∇𝑢(𝑥𝑖) + 𝜎𝑢(𝑥𝑖) − 𝑓 (𝑥𝑖) ∀𝑖 = 1,2,… ,𝑁𝐼 . (2.3)

Since we are interested in a neural network that satisfies the PDE in a discrete sense, the loss function minimized during the PINN
training is:

𝑅2
PINN

(𝑤) =
𝑁𝐼∑
𝑖=1

|||𝑟PINN
𝑖

(𝑤)|||2 . (2.4)

In (2.4), when 𝑁𝐼 is sufficiently large and 𝑅2
PINN

(𝑢) is close to zero, the function 𝑢 represented by the neural network output
approximately satisfies the PDE and can thus be considered a good approximation of the exact solution. Other terms are often added
to impose the boundary conditions or improve the training, which are discussed in Section 3.

Let us now focus on the interpolated VPINN proposed in [36]. We introduce the function spaces 𝑈 ∶= 𝐻1(Ω) and 𝑉 ∶= {𝑣 ∈
𝐻1(Ω) ∶ 𝑣|Γ𝐷 = 0}, the bilinear form 𝑎 ∶ 𝑈 × 𝑉 →ℝ and the linear form 𝐹 ∶ 𝑉 →ℝ,

𝑎(𝑤,𝑣) = ∫
Ω

𝜇∇𝑤 ⋅∇𝑣+ 𝛽∇𝑤𝑣+ 𝜎𝑤𝑣, 𝐹 (𝑣) = ∫
Ω

𝑓𝑣+ ∫
Γ𝑁

𝜓𝑣.

The variational counterpart of problem (2.2) thus reads: Find 𝑢 ∈𝑈 such that:

𝑎(𝑢, 𝑣) = 𝐹 (𝑣) ∀𝑣 ∈ 𝑉 ,

𝑢 = 𝑔 on Γ𝐷 .
(2.5)

In order to discretize problem (2.5), we use two discrete function spaces. Inspired by the Petrov-Galerkin framework, we denote
the discrete trial space by 𝑈ℎ ⊂ 𝑈 and the discrete test space by 𝑉ℎ ⊂ 𝑉 . The functions comprising such spaces are generated on two
conforming, shape-regular and nested partitions 𝐻 and ℎ with compatible meshsizes 𝐻 and ℎ, respectively. Assuming that ℎ is
the finer mesh, one can claim that 𝐻 ≲ ℎ <𝐻 and that every element of ℎ is strictly contained in an element of 𝐻 .

Denoting by 𝑈𝐻 ∶= span{𝜑𝑢
𝑖
∶ 𝑖 ∈ 𝐼𝐻} ⊂𝑈 the space of piecewise polynomial functions of order 𝑘int over 𝐻 and 𝑉ℎ ∶= span{𝜑𝑣

𝑖
∶

𝑖 ∈ 𝐼ℎ} ⊂ 𝑉 the space of piecewise polynomial functions of order 𝑘test over ℎ that vanish on Γ𝐷 , we define the discrete variational
problem as: Find 𝑢 ∈𝑈𝐻 such that:

𝑎(𝑢, 𝑣) = 𝐹 (𝑣) ∀𝑣 ∈ 𝑉ℎ,

𝑢 = 𝑔𝐻 on Γ𝐷,
(2.6)

where 𝑔𝐻 is a suitable piecewise polynomial approximation of 𝑔. A representation of the spaces 𝑈𝐻 and 𝑉ℎ in a one-dimensional
domain is provided in Figs. 1a and 1b. Examples of pair of meshes 𝐻 and ℎ are shown in Fig. 1c.

In order to obtain computable forms 𝑎ℎ and 𝐹ℎ, we introduce elemental quadrature rules of order 𝑞 and define 𝑎ℎ(⋅, ⋅) and 𝐹ℎ(⋅)
3

as the approximations of 𝑎(⋅, ⋅) and 𝐹 (⋅) computed with such quadrature rules. In [36], under suitable assumptions, an a priori error

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 1. Pair of meshes and corresponding basis functions of a one-dimensional discretization (left) and nested meshes 𝐻 and ℎ in a two-dimensional domain (right).
(a) Basis functions of 𝑉ℎ . The filled circles (red) are the nodes of the corresponding mesh ℎ; (b) Basis functions of 𝑈𝐻 . The filled circles (blue) are the vertex nodes
that define the elements of the corresponding mesh 𝐻 ; and (c) Meshes used in the numerical experiments of Sections 4.3 and 4.4. The blue mesh is 𝐻 , the red one
is ℎ . All the figures are obtained with 𝑞 = 3, 𝑘test = 1, 𝑘int = 4.

estimate with respect to mesh refinement has been proved when 𝑞 = 𝑘int + 𝑘test − 2. It is then possible to define the computable
variational residuals associated with the basis functions of 𝑉ℎ as:

𝑟ℎ,𝑖(𝑤) = 𝐹ℎ(𝜑𝑣
𝑖
) − 𝑎ℎ(𝑤,𝜑𝑣

𝑖
), 𝑖 ∈ 𝐼ℎ. (2.7)

Consequently, in order to compute an approximate solution of problem (2.6), one seeks a function 𝑤 ∈ 𝑈𝐻 that minimizes the
quantity:

𝑅2
ℎ
(𝑤) =

∑
𝑖∈𝐼ℎ

𝑟2
ℎ,𝑖
(𝑤), (2.8)

and satisfies the imposed boundary conditions. We refer to Section 3 for a detailed description of different approaches used to impose
Dirichlet boundary conditions. It should be noted that, since in Sections 4.2–4.5 we consider problems other than (2.2), the residuals
in (2.7) have to be suitably modified, while the loss function structure defined in (2.8) is maintained.

We are interested in using a neural network to find the minimizer of 𝑅2
ℎ
. We thus denote by 𝐻 ∶ 𝐶0(Ω) → 𝑈𝐻 an interpolation

operator used to map the function 𝑢 associated with the neural network to its interpolating element in 𝑈𝐻 , and train the neural
network to minimize the quantity 𝑅2

ℎ
(𝐻𝑢). We highlight that in order to construct the function 𝐻𝑢 , the neural network has

to be evaluated only on dim(𝑈𝐻) interpolation points {𝑥1 , … , 𝑥
dim(𝑈𝐻)} ⊂ Ω. Then, assuming that {𝜑𝑢

𝑖
∶ 𝑖 ∈ 𝐼𝐻} is a Lagrange basis

such that 𝜑𝑢
𝑖
(𝑥

𝑗
) = 𝛿𝑖𝑗 for every 𝑖, 𝑗 ∈ 𝐼𝐻 , it holds:

𝐻𝑢 =
∑
𝑖∈𝐼𝐻

𝑢 (𝑥
𝑖
)𝜑𝑢

𝑖
. (2.9)

We remark that the approaches proposed in Section 3 can also be used on non-interpolated VPINNs. However, we restrict our
analysis to interpolated VPINNs because of their better stability properties (see Fig. 11 and the corresponding discussion).

3. Mathematical formulation

We compare four methods to impose Dirichlet boundary conditions on PINNs and VPINNs. We do not consider Neumann or
Robin boundary conditions since they can be weakly enforced by the trained VPINN due to the chosen variational formulation
(computations using PINNs is discussed in [38]). We also highlight that method 𝐌𝐃 below can be used only with VPINNs because it
relies on the variational formulation of the PDE. We analyze the following methods:

𝐌𝐀: Incorporation of an additional cost in the loss function that penalizes unsatisfied boundary conditions; this is the standard
approach in PINNs and VPINNs because of its simplicity and effectiveness. In fact, it is possible to choose 𝑁𝐵 control points
4

{𝑥𝑔1 , … , 𝑥𝑔
𝑁𝐵

} ⊂ Γ𝐷 and modify the loss functions defined in (2.4) or (2.8) as follows:

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 2. Representation of the signed distance function 𝑑(𝐱) to a straight line (left), the trimming function 𝑡(𝐱) (middle) and the approximate distance function 𝜙(𝐱) to
a segment (right).

𝑅2
PINN

(𝑤) =
𝑁𝐼∑
𝑖=1

|||𝑟PINN
𝑖

(𝑤)|||2 + 𝜆

𝑁𝐵∑
𝑖=1

(
𝑤(𝑥𝑔

𝑖
) − 𝑔(𝑥𝑔

𝑖
)
)2
, (3.1)

or

𝑅2
ℎ
(𝑤) =

∑
𝑖∈𝐼ℎ

𝑟2
ℎ,𝑖
(𝑤) + 𝜆

𝑁𝐵∑
𝑖=1

(
𝑤(𝑥𝑔

𝑖
) − 𝑔(𝑥𝑔

𝑖
)
)2
, (3.2)

where 𝜆 > 0 is a model hyperparameter. Note that on considering the interpolated VPINN and exploiting the solution structure
in (2.9), it is possible to ensure the uniqueness of the numerical solution by choosing the control points {𝑥𝑔1 , … , 𝑥𝑔

𝑁𝐵
} as the 𝑁𝐵

interpolation points belonging to Γ𝐷 .

We also highlight that such a method can be easily adapted to impose other types of boundary conditions just by adding suitable
terms to (3.1) and (3.2). On the other hand, despite its simplicity, the main drawback of this approach is that it leads to a more
complex multi-objective optimization problem.

𝐌𝐁: Exactly imposing the Dirichlet boundary conditions as described in [38] and [36]. In this method we add a non-trainable layer
𝐵 at the end of the neural network to modify its output 𝑤 according to the rule:

𝐵𝑤 = 𝑔 + 𝜙𝑤, (3.3)

where 𝑔 ∈ 𝐶0(Ω) is an extension of the function 𝑔 inside the domain Ω (i.e., 𝑔|Γ𝐷 = 𝑔) and 𝜙 ∈ 𝐶0(Ω) is an approximate distance
function (ADF) to the boundary Γ𝐷, i.e., 𝜙(𝒙) = 0 if and only if 𝒙 ∈ Γ𝐷 , and it is positive elsewhere. During the training phase
one minimizes the quantity 𝑅2

PINN
(𝐵𝑤) or 𝑅2

ℎ
(𝐵𝑤).

For the sake of simplicity, we only consider ADFs for two-dimensional unions of segments, even though the approach generalizes
to more complex geometries. Following the derivation of 𝑔 and 𝜙 in [38], we start by defining 𝑑 as the signed distance function
from 𝒙 ∶= (𝑥, 𝑦) to the line defined by the segment 𝐴𝐵 of length 𝐿 with vertices 𝐴 = (𝑥𝐴, 𝑦𝐴) and 𝐵 = (𝑥𝐵, 𝑦𝐵):

𝑑(𝒙) =
(𝑥− 𝑥𝐴)(𝑦𝐵 − 𝑦𝐴) − (𝑦− 𝑦𝐴)(𝑥𝐵 − 𝑥𝐴)

𝐿
.

Then, we denote (𝑥𝑐, 𝑦𝑐) ∶=
(
(𝑥𝐴 + 𝑥𝐵)∕2, (𝑦𝐴 + 𝑦𝐵)∕2

)
to be the center of 𝐴𝐵 and define 𝑡 as the following trimming function:

𝑡(𝒙) = 1
𝐿

[(
𝐿

2

)2
− ‖‖(𝑥, 𝑦) − (𝑥𝑐, 𝑦𝑐)‖‖2] .

Note that 𝑡 ≥ 0 defines a circle of center (𝑥𝑐 , 𝑦𝑐). Finally, the ADF to 𝐴𝐵 is defined as

𝜙(𝒙) =

√√√√√𝑑2 +

(√
𝑡2 + 𝑑4 − 𝑡

2

)2

.

A graphical representation of 𝑑(𝒙), 𝑡(𝒙) and 𝜙(𝒙) for an inclined line segment is shown in Figs. 2a, 2b and 2c, respectively.

Assuming that Γ𝐷 can be expressed as the union of 𝑛𝑠 segments {𝑠1, … , 𝑠𝑛𝑠}, then the ADF to Γ𝐷, normalized up to order 𝑚 ≥ 1,
is defined as:

𝜙 = 1

𝑚

√
1
𝜙𝑚1

+ 1
𝜙𝑚2

+⋯+ 1
𝜙𝑚𝑛𝑠

, (3.4)

where 𝜙𝑖 is the ADF to the segment 𝑠𝑖 (see [39]). We remark that an ADF normalized up to order 𝑚 ≥ 1 is an ADF such that, for
5

every regular point of Γ𝐷 , the following holds:

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

𝜙 = 0, 𝜕𝜙

𝜕𝑛
= 1, 𝜕𝑘𝜙

𝜕𝑛𝑘
= 0 (𝑘 = 2,3,… ,𝑚).

Such a normalization is useful to impose constraints associated with the solution derivatives and to obtain ADFs with about
the same order of magnitude in every region of the domain Ω. However, one of the main limitations of this approach with
collocation-PINN is that Δ𝜙 tends to infinity near the vertices of Γ𝐷 (see Appendix A for an example). This phenomenon
produces oscillations in the numerical solutions, hence collocation points that are close to such vertices should not be selected.
On the other hand, when only first derivatives are present in the weak formulation of second-order problems (as in the present
study), then one can choose quadrature points that are very close to the vertices of Γ𝐷 .

When a function 𝑔 is not known, it is possible to construct it using transfinite interpolation. Let 𝑔𝑖 be a function such that
𝑔𝑖|𝑠𝑖 = 𝑔|𝑠𝑖 , then 𝑔 can be defined as:

𝑔 =
𝑛𝑠∑
𝑖=1

𝑤𝑖𝑔𝑖,

where 𝑤𝑖 is defined as:

𝑤𝑖 =

∏𝑛𝑠
𝑗=1;𝑗≠𝑖 𝜙𝑗∑𝑛𝑠

𝑘=1
∏𝑛𝑠

𝑗=1;𝑗≠𝑘 𝜙𝑗

.

Note that since 𝑠𝑖 is a segment, a function 𝑔𝑖 can be readily defined at any arbitrary point (𝑥, 𝑦) just by evaluating 𝑔 at the
orthogonal projection of (𝑥, 𝑦) onto 𝑠𝑖.

𝐌𝐂: Exactly imposing the Dirichlet boundary conditions as in 𝐌𝐁 but without normalizing the ADF. Therefore, we consider a
different function 𝜙 in (3.3), namely

𝜙 =
𝑛𝑠∏
𝑖=1

𝜙𝑖.

This ensures that 𝜙 and all its derivatives exist and are bounded in Ω, although 𝜙 may be very small in regions close to many
segments 𝑠𝑖.

𝐌𝐃: Using Nitsche’s method [40]. The goal of this method is to variationally impose the Dirichlet boundary conditions. In doing so,
the network architecture is not modified with additional layers (as in 𝐌𝐁 and 𝐌𝐂) and a single objective function suffices for
network training.

To do so, one enlarges the space 𝑉ℎ to contain all piecewise polynomials of order 𝑘test defined on ℎ and modifies the residuals
defined in (2.7) in the following way:

𝑟ℎ,𝑖(𝑤) = 𝐹ℎ(𝜑𝑣
𝑖
) − 𝑎ℎ(𝑤,𝜑𝑣

𝑖
) + ∫

Γ𝐷

(𝑤− 𝑔)
𝜕𝜙𝑣

𝑖

𝜕𝑛

+ 𝛾 ∫
Γ𝐷

ℎ−1(𝑔 −𝑤)𝜙𝑣
𝑖
, 𝑖 ∈ 𝐼ℎ,

(3.5)

where 𝛾 is a positive constant satisfying 𝛾 ≥ 𝛾0 for a suitable 𝛾0 > 0 and 𝐼ℎ is now an enlarged index set corresponding to
the enlarged basis {𝜙𝑣

𝑖
∶ 𝑖 ∈ 𝐼𝐻}. Thanks to the scaling term ℎ−1 that magnifies the quantity ∫Γ𝐷 (𝑔 −𝑤)𝜙𝑣

𝑖
when fine meshes

are used, the choice of 𝛾 is not as important as the one of 𝜆 in method 𝐌𝐀. This property is confirmed by numerical results
shown in Figs. 8 and 10. Since there is no ambiguity, we maintain the same symbols 𝑉ℎ, 𝐼ℎ and {𝜙𝑣

𝑖
} introduced in Section 2.2;

they always represent the enlarged sets when method 𝐌𝐷 is considered. Note that when 𝑤 satisfies the Dirichlet boundary
conditions, the terms added in (3.5) vanish.

We point out that method 𝐌𝐀 is often referred to as soft boundary condition imposition, whereas 𝐌𝐁 and 𝐌𝐂 are known as hard
boundary condition impositions. Hence, we can treat 𝐌𝐃 as weak boundary condition imposition.

4. Numerical results

In this section, the methods 𝐌𝐀, 𝐌𝐁, 𝐌𝐂 and 𝐌𝐃 discussed in Section 3 are analyzed and compared. In each numerical experiment
the neural network is a fully-connected feed-forward neural network as described in Section 2.1. The corresponding architecture is
composed of 4 hidden layers with 50 neurons in each layer and with the hyperbolic tangent as the activation function, while the
output layer is a linear layer with one or two neurons.

In order to properly minimize the loss function we use the first-order ADAM optimizer [41] with an exponentially decaying
learning rate, and after a prescribed number of epochs, the second-order BFGS method [42] is used until a maximum number of
iterations is reached, or it is not possible to further improve the objective function (i.e. when two consecutive iterates are identical, up
to machine precision). When the interpolated VPINN is used, the training set consists of all the interpolation nodes {𝑥1 , … , 𝑥

dim(𝑈𝐻)}
and no regularization is applied since the interpolation operator already filters the neural network high frequencies out. Instead,
6

when the PINN is used, the training set contains a set of dim(𝑈𝐻) control points inside the domain Ω, and when 𝐌𝐀 is employed, a

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 3. Exact solution 𝑢 (left) and a plot of the absolute error with VPINN and method 𝐌𝐁 in which the Dirichlet boundary conditions are imposed on every edge of
𝜕Ω (right).

set of approximately
√

dim(𝑈𝐻) control points on the boundary 𝜕Ω. Moreover, in order to stabilize the PINN, the 𝐿2 regularization
term

reg(𝐰) = 𝜆reg‖𝐰 ‖22 (4.1)

is added to the loss function, where 𝐰 is the vector containing all the neural network weights defined in Section 2.1 and
𝜆reg = 10−6. The value of this parameter has been chosen through several numerical experiments to minimize the 𝐻1 norm of the
error.

The computer code to perform the numerical experiments is written in Python, while the neural networks and the optimizers are
implemented using the open-source Python package Tensorflow [43]. The loss function gradient with respect to the neural network
weights and the PINN output gradient with respect to the spatial coordinates are always computed with automatic differentiation
that is available in Tensorflow [44]. On the other hand, the VPINN output gradient with respect to its input is computed by means
of suitable projection matrices as described in [36].

4.1. Rate of convergence for second-order elliptic problems

We focus on the VPINN model and show that the a priori error estimate proved in [36] for second-order elliptic problems holds
even on varying the way in which the boundary conditions are imposed. On letting 𝒙 ∶= (𝑥, 𝑦), we consider problem (2.2) in the
domain Ω = (−1, 1)2 ⧵ (0, 0.5)2 with the physical parameters

𝜇(𝒙) = 2 + sin(𝑥+ 2𝑦), 𝛽(𝒙) =
{√

𝑥− 𝑦2 + 5,
√
𝑦− 𝑥2 + 5

}
, 𝜎(𝒙) = 𝑒

𝑥

2 −
𝑦

3 + 2.

We consider two test cases. In the first one the Dirichlet boundary conditions and forcing term are chosen so that the exact solution
is

𝑢(𝒙) = cos(5(𝑥+ 𝑦∕2)) + (𝑥+ 𝑦∕2)2, (4.2)

whereas in the second one they are chosen such that the exact solution is more oscillatory. Its expression is:

𝑢(𝒙) = sin [3𝑥(𝑥− 𝑦)] cos(4𝑦+ 𝑥) + sin [5(𝑥+ 2𝑦)] cos [3(𝑦− 2𝑥)] . (4.3)

Such a solution is shown in Fig. 3a, whereas an example of numerical error corresponding to the VPINN in which Dirichlet boundary
conditions are imposed using method 𝐌𝐁 is shown in Fig. 3b; it exhibits a rather uniform distribution of the error, which is not
localized near boundaries. We remark that in these numerical tests and in the subsequent ones, the function 𝑔 used in 𝐌𝐁 and 𝐌𝐂 is
computed via transfinite interpolation.

We vary both the order of the quadrature rule and the degree of the test functions, and train the same model with different meshes
and impose the Dirichlet boundary conditions with the proposed approaches. In Figs. 4a–4c, 5a–5c and 6a–6c, in which the exact
solution is the one in (4.2), we observe close agreement with the results shown in [36]. In fact, when the loss is properly minimized,
all the approaches perform comparably and the corresponding empirical convergence rates are always close to the theoretical rate
of 𝑘int = 𝑞 + 2 − 𝑘test. We point out that in [36] we prove that, when the solution is regular enough and a method similar to 𝐌𝐂 is
7

used to enforce the boundary conditions, the convergence rate is 𝑘int = 𝑞 + 2 − 𝑘test. Here, instead we show that the same behavior is

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 4. Error decay obtained with 𝐌𝐀 and different values of 𝜆. Forcing term and Dirichlet boundary conditions are set such that the exact solution is (4.2). The
theoretical convergence rate is 𝑘int . (a) Convergence rates: 4.04 (𝜆 = 103), 3.99 (𝜆 = 1), 3.42 (𝜆 = 10−3). (b) Convergence rates: 6.18 (𝜆 = 103), 6.00 (𝜆 = 1), 5.52
(𝜆 = 10−3). (c) Convergence rates: 4.50 (𝜆 = 103), 4.44 (𝜆 = 1), 5.29 (𝜆 = 10−3).

Fig. 5. Error decay obtained with 𝐌𝐁 , with different values of 𝑚, and 𝐌𝐂 . Forcing term and Dirichlet boundary conditions are set such that the exact solution is
(4.2). The theoretical convergence rate is 𝑘int . (a) Convergence rates: 4.05 (𝐌𝐁, 𝑚 = 1), 4.05 (𝐌𝐁 , 𝑚 = 2), 4.06 (𝐌𝐂). (b) Convergence rates: 6.24 (𝐌𝐁, 𝑚 = 1), 6.25
(𝐌𝐁 , 𝑚 = 2), 6.25 (𝐌𝐂). (c) Convergence rates: 4.43 (𝐌𝐁, 𝑚 = 1), 4.43 (𝐌𝐁 , 𝑚 = 2), 4.67 (𝐌𝐂).

observed even if the boundary conditions are enforced in different ways. Note in particular that the choice 𝑚 = 1 or 𝑚 = 2 in 𝐌𝐁, and
the choice 𝛾 = 0.1, 𝛾 = 1 or 𝛾 = 10 in 𝐌𝐃 yields nearly identical results (see Figs. 5 and 6).

We highlight that the different methods, while delivering similar empirical convergence rates with respect to mesh refinement,
exhibit very different performance during training. To observe this phenomenon, let us train multiple identical neural networks on
the same mesh but impose the Dirichlet boundary conditions in different ways. Here we only consider quadrature rules of order 𝑞 = 3
and piecewise linear test functions. The values of the loss function and of the 𝐻1 error prediction during training are presented in
Figs. 7a and 7b, respectively. A vertical line separates the epochs where the ADAM optimizer is used from the ones where the BFGS
optimizer is used.

It can be noted that the most efficient method is 𝐌𝐁, as it converges faster and to a more accurate solution, while method 𝐌𝐃
is characterized by very fast convergence only when the BFGS optimizer is adopted. Such an optimizer is also crucial to train the
VPINN with 𝐌𝐂; in fact the corresponding error does not decrease when the ADAM optimizer is used. Instead, the convergence
obtained using method 𝐌𝐀 seems independent of the choice of the optimizer. It is important to remark that all the loss functions are
8

decreasing even when the error is constant. This implies that there exist other sources of error that dominate and that a very small

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 6. Error decay obtained with 𝐌𝐃 and different values of 𝛾 . Forcing term and Dirichlet boundary conditions are set such that the exact solution is (4.2). The
theoretical convergence rate is 𝑘int. (a) Convergence rates: 3.98 (𝛾 = 0.1), 3.89 (𝛾 = 1), 4.39 (𝛾 = 10). (b) Convergence rates: 6.45 (𝛾 = 0.1), 5.69 (𝛾 = 1), 6.90 (𝛾 = 10).
(c) Convergence rates: 4.46 (𝛾 = 0.1), 4.43 (𝛾 = 1), 4.43 (𝛾 = 10).

Fig. 7. Training loss (left) and 𝐻1 error prediction (right) for the VPINN. The first 5000 epochs are performed with a standard ADAM optimizer, the remaining ones
with the BFGS optimizer. The exact solution is given in (4.3).

loss function does not ensure a very accurate solution; this phenomenon is also observed in Fig. 3 of [45] and is discussed in greater
detail therein.

Note that, if we change the forcing term and Dirichlet boundary conditions to consider the more oscillatory exact solution in
(4.3), some approaches do not ensure the theoretical convergence rate (see Figs. 8a–8c, 9a–9c and 10a–10c). In fact, in Fig. 8 it is
evident that, in this case, large values of 𝜆 are required to properly enforce the Dirichlet boundary conditions. In Fig. 9, instead,
we can observe that the VPINN trained with method 𝐌𝐂 is often inaccurate and the corresponding error decay is very noisy. The
performance of methods 𝐌𝐁 and 𝐌𝐃 seems independent of the complexity of the forcing term and boundary conditions.

In order to show that interpolation acts as a stabilization, we fix a mesh and vary the number of layers and neurons of the neural
network. The boundary conditions are imposed using method 𝐌𝐁 with 𝑚 = 2 and the exact solution is the one in (4.2); the results
are shown in Fig. 11. The number 𝐿 of layers varies in {2, 3, 4, 5}, whereas the number of neurons in each hidden layer belongs
to the set {1, 5, 10, 30, 50, 70, 100, 200, 500, 1000}. In Fig. 11a we show the performance of a non-interpolated VPINN trained with the
𝐿2 regularization in (4.1), where 𝜆reg = 10−6. It can be noted that the error is high when the neural network is small because of
its poor approximation capability, and that it decreases with intermediate values of the two hyperparameters. However, when the
neural networks contain more than 100 neurons in each layer the error increases because of uncontrolled spurious zero-energy
modes and the fact that we are looking for good local minima in a very high-dimensional space. On the other hand, when the VPINN
is interpolated and the neural network is sufficiently rich, the error is constant and independent of the network dimension (see
9

Fig. 11b). In addition, note that the average accuracy of an interpolated VPINN is better than its non-interpolated counterpart.

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 8. Error decay obtained with 𝐌𝐀 and different values of 𝜆. Forcing term and Dirichlet boundary conditions are set such that the exact solution is (4.3). The
theoretical convergence rate is 𝑘int . (a) Convergence rates: 3.66 (𝜆 = 103), 2.05 (𝜆 = 1), 0.01 (𝜆 = 10−3). (b) Convergence rates: 5.85 (𝜆 = 103), 4.42 (𝜆 = 1), 2.89
(𝜆 = 10−3). (c) Convergence rates: 3.95 (𝜆 = 103), 3.68 (𝜆 = 1), 3.71 (𝜆 = 10−3).

Fig. 9. Error decay obtained with 𝐌𝐁 , with different values of 𝑚, and 𝐌𝐂 . Forcing term and Dirichlet boundary conditions are set such that the exact solution is
(4.3). The theoretical convergence rate is 𝑘int . (a) Convergence rates: 3.90 (𝐌𝐁, 𝑚 = 1), 3.88 (𝐌𝐁 , 𝑚 = 2), 2.36 (𝐌𝐂). (b) Convergence rates: 5.85 (𝐌𝐁, 𝑚 = 1), 4.42
(𝐌𝐁 , 𝑚 = 2), 2.89 (𝐌𝐂). (c) Convergence rates: 4.60 (𝐌𝐁, 𝑚 = 1), 4.59 (𝐌𝐁 , 𝑚 = 2), -0.43 (𝐌𝐂).

4.2. Application to nonlinear parametric problem

Let us now extend our analysis to nonlinear and parametric PDEs. Since in the previous section we observed that method 𝐌𝐁
performs the best, in this example we do not consider 𝐌𝐂 and 𝐌𝐃. We focus on the following problem:{

𝑁(𝑢;𝑝) ∶= −∇ ⋅ (𝜇∇𝑢) + 𝜷 ⋅∇𝑢+ 𝜎 sin(𝑝𝑢)𝑢 = 𝑓 in Ω= (0,1)2,

𝑢 = 𝑔 on Γ𝐷.
(4.4)

It has been observed in [36] that considering constant or variable coefficients does not influence VPINN convergence. Hence, we
choose 𝜇 = 1, 𝛽 = [2, 3], 𝜎 = 4 and assume that the exact solution is

𝑢(𝒙;𝑝) = sin(𝑝𝜋𝑥) sin
(
1
𝑝
𝜋𝑦

)
, (4.5)
10

where 𝑝 ∈ 𝑝 = [0.5, 2] is a scalar parameter.

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 10. Error decay obtained with 𝐌𝐃 and different values of 𝛾 . Forcing term and Dirichlet boundary conditions are set such that the exact solution is (4.3). The
theoretical convergence rate is 𝑘int. (a) Convergence rates: 4.18 (𝛾 = 0.1), 4.79 (𝛾 = 1), 3.78 (𝛾 = 10). (b) Convergence rates: 6.54 (𝛾 = 0.1), 6.51 (𝛾 = 1), 7.06 (𝛾 = 10).
(c) Convergence rates: 4.19 (𝛾 = 0.1), 4.19 (𝛾 = 1), 4.20 (𝛾 = 10).

Fig. 11. 𝐻1 errors using method 𝐌𝐁 for standard (left) and interpolated VPINNs (right) as a function of the hyperparameters.

In order to train the VPINN to solve problem (4.4), we minimize

𝑅2
ℎ
(𝑤) =

∑
𝑝∈#𝑝

[∑
𝑖∈𝐼ℎ

𝑟2
ℎ,𝑖;𝑝(𝑤) + 𝜆

𝑁𝐵∑
𝑖=1

(
𝑤(𝑥𝑔

𝑖
) − 𝑔(𝑥𝑔

𝑖
;𝑝)
)2]

when 𝐌𝐀 is used, or

𝑅2
ℎ
(𝐵𝑤) =

∑
𝑝∈#𝑝

∑
𝑖∈𝐼ℎ

𝑟2
ℎ,𝑖;𝑝(𝐵𝑤)

when 𝐌𝐁 is used instead. Here #
𝑝
= {𝑝1, … , 𝑝

𝑁 train
𝑝

} ⊂ 𝑝 is a finite set of parameter values and 𝑟ℎ,𝑖;𝑝 is the residual obtained using the
𝑖-th test function and the parameter 𝑝. In the numerical computations, we use 𝑁 train

𝑝
= 13 and the VPINN is trained with 𝑞 = 3 and

𝑘test = 1.

In Fig. 12, we report the behavior of the loss function and the average 𝐻1 error:

1
𝑁 test
𝑝∑
11

𝑁 test
𝑝 𝑖=1

‖𝑢(⋅;𝑝𝑖) − 𝑢 (⋅;𝑝𝑖)‖𝐻1(Ω),

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 12. (a) Training loss and (b) 𝐻1 error prediction for the VPINN. The first 10000 epochs are performed with a standard ADAM optimizer, the remaining ones with
the BFGS optimizer. The exact solution is given in (4.5).

Fig. 13. 𝐻1 error for different parameter values in problem (4.4).

where 𝑁 test
𝑝

= 100. It is noted that the loss functions behave qualitatively similarly (see Fig. 12a). On the other hand, higher values
of 𝜆 lead to lower errors when 𝐌𝐀 is adopted, but the most stable and accurate approach remains 𝐌𝐁.

Moreover, when the VPINN is trained, it can be evaluated at arbitrary locations in the parameter domain 𝑝, yielding the error
plot shown in Fig. 13. Therein, for each dot and for each point belonging to the solid lines, given the parameter value �̂� represented
on the horizontal axis, its value on the vertical axis represents the 𝐻1 error between the VPINN solution and the exact solution 𝑢(⋅; �̂�).
Note that dots are associated with parameter values that are chosen in #

𝑝
during the training, whereas solid lines are the predictions

to assess the accuracy of the models for intermediate values of 𝑝. Such lines thus show the 𝐻1 error for values of the parameter not
used during the training.

4.3. Deformation of an elastic body

We consider the deformation of a linear elastic solid in the region Ω𝐿 = (−1, 1)2 ⧵ [−1, 0]2, which is subjected to a body force field
𝐟 and Dirichlet boundary conditions imposed on Γ𝐷 = 𝜕Ω. The elastostatic boundary-value problem is:

⎧⎪⎪⎨⎪
−∇ ⋅ 𝝈 = 𝐟 in Ω𝐿 , (a)

𝜺 = 1
2
(
∇𝐮+

(
∇𝐮𝑇

))
in Ω𝐿 , (b)

𝝈 = 2𝜇𝜺+ 𝜆 trace(𝜺)𝐈 in Ω𝐿 , (c)
(4.6)
12

⎪⎩ 𝐮 = 𝐠 on Γ𝐷 . (d)

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 14. Reference finite element displacement field solution for problem (4.6). The 𝑥-component (left) and 𝑦-component (right) of 𝐮ℎ are shown.

In (4.6), 𝝈 ∶= 𝝈(𝐮) is the Cauchy stress tensor, 𝜺 ∶= 𝜀(𝐮) is the small strain tensor and (4.6c) is the isotropic linear elastic
constitutive relation. The Lamé parameters 𝜆 and 𝜇 are related to the Young modulus 𝐸 and the Poisson ratio 𝜈 via

𝜇 = 𝐸

2(1 + 𝜈)
, 𝜆 = 𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
.

For the numerical experiments, we choose 𝐸 = 117, 𝜈 = 1∕3 and the following body force field and boundary data:

𝐟 = (𝜇 + 𝜆)
[
𝑥𝑒𝑦, 𝑦

√
𝑥+ 2

]
, 𝐠 =

[
sin(𝜋(𝑥+ 𝑦)), 𝑒𝑥−𝑦

]
𝑥𝑦.

The variational formulation of problem (4.6a) reads as: Find 𝐮 ∈ 𝐮+
(
𝐻1

0 (Ω)
)2

such that:

∫
Ω

𝝈(𝐮) ∶ 𝜺(𝐯) = ∫
Ω

𝐟𝐯 ∀𝐯 ∈
(
𝐻1

0 (Ω)
)2
,

where 𝐮 = 𝐠 is the natural lifting of the boundary data. Such a formulation is used to compute the quantity 𝑅2
ℎ

in (2.8), where the
modified residuals

𝑟ℎ,𝑖(𝐰) = ∫
Ω

𝐟𝝋𝑣
𝑖
− ∫

Ω

𝝈(𝐰) ∶ 𝜺(𝝋𝑣
𝑖
), 𝑖 ∈ 𝐼ℎ,

replace the ones defined in (2.7). For this and the subsequent test cases, we will also provide a comparison with the results obtained
by a PINN, in order to give a more complete view of the performance of the methods. The modified residuals required in the PINN
loss function are defined as:

𝑟PINN
𝑖

(𝐮) = ∇ ⋅ 𝝈(𝑥𝑖) + 𝐟(𝑥𝑖) ∀𝑖 = 1,2,… ,𝑁𝐼 .

Since the exact solution is not known, we produce a very accurate numerical solution for comparison (shown in Figs. 14a and 14b),
using the open-source FEM solver FEniCS [46].

Problem (4.6) is solved by training a VPINN on the mesh shown in Fig. 1c with 𝑞 = 3 and 𝑘test = 1. Then, in order to compare the
performance of PINN and VPINN, a standard PINN is trained to solve the same problem. In order to verify if the distribution of the
collocation points affects the PINN accuracy, we firstly train it by choosing as collocation points the interpolation nodes used in the
VPINN training, and then we train it with the same number of uniformly distributed collocation points.

For these three methods we analyze the 𝐻1 error during the neural network training for a fixed training set dimension; we report
the results in Figs. 15a–15c. Observing that Figs. 15b and 15c are very similar, we deduce that, in this case, the choice of control
points in the PINN training is not strictly related to the efficacy of the different approaches.

It can be observed that method 𝐌𝐁 is always the most efficient approach and leads to convergence to more accurate solutions.
Exactly imposing the Dirichlet boundary conditions via 𝐌𝐂 can be considered a good alternative since the solutions at convergence
obtained with the VPINN and the PINN trained with random control points are very similar to the ones computed using 𝐌𝐁 , although
the convergence is slower. The most commonly used approach, 𝐌𝐀, is instead dependent on the choice of the non-trainable parameter
𝜆. In this case, large values of 𝜆 ensure accurate solutions and acceptably efficient training phases, but the correct values are problem
dependent and can be often found only after a potentially expensive tuning. Indeed, choosing the wrong values of 𝜆 can ruin the
efficiency and the accuracy of the method, as it can be observed in Fig. 15 when 𝜆 = 10−3 or 𝜆 = 1. We also highlight that the
13

performance of method 𝐌𝐃 is very similar to method 𝐌𝐀 when reasonable values of 𝜆 are chosen.

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 15. 𝐻1 error decay during the neural network training when solving problem (4.6). (a) VPINN error: 𝐻1 error of the most accurate solution is 0.020; (b) PINN
error: model is trained with collocation points distributed on a Delaunay mesh and the 𝐻1 error of the most accurate solution is 0.070; and (c) PINN error: model is
trained with collocation points from a uniform distribution and the 𝐻1 error of the most accurate solution is 0.047. The legend in (a) also applies to (b) and (c).

4.4. Stabilized Eikonal equation

In this section we consider the stabilized Eikonal equation, which is a nonlinear second-order PDE and reads as:{
−𝜀Δ𝑢+ ‖∇𝑢‖2 = 𝑓 in Ω𝐿,

𝑢 = 𝑔 on Γ𝐷,
(4.7)

where 𝜀 is a small positive constant. Note that when 𝜀 = 0, 𝑓 = 1 and 𝑔 = 0, the exact solution is the distance function to the boundary
and the problem can be efficiently solved by the fast sweeping method [47] or by the fast marching method [48]. In our numerical
computations we set 𝑓 = 1 and 𝑔 = 0 and we introduce a weak diffusivity with 𝜀 = 0.1 to guarantee uniqueness of the solution.

The PINN and VPINN residuals associated with problem (4.7) that extend the residuals in (2.3) and (2.7), respectively, are defined
as:

𝑟PINN
𝑖

(𝑤) = −𝜀Δ𝑤(𝑥𝑖) + ‖∇𝑤(𝑥𝑖)‖2 − 𝑓 (𝑥𝑖) ∀𝑖 = 1,… ,𝑁𝐼 ,

and

𝑟ℎ,𝑖(𝑤) = ∫
Ω

𝑓𝜑𝑣
𝑖
− ∫

Ω

𝜀∇𝑤∇𝜑𝑣
𝑖
− ∫

Ω

‖∇𝑤‖2𝜑𝑣
𝑖
, 𝑖 ∈ 𝐼ℎ.

We compute the VPINN and PINN numerical solutions as described in Section 4.3 and compute the corresponding 𝐻1 errors using
a finite element reference solution that is computed on a much finer mesh (see Fig. 16).

As in Fig. 15, in Fig. 17 we show the decay of the 𝐻1 error during the training for the different methods. Again, it can be noted
14

that the most accurate method is always 𝐌𝐁; 𝐌𝐀 is a valid alternative provided 𝜆 is properly chosen. However, when the value of

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 16. Reference finite element solution for problem (4.7).

Fig. 17. 𝐻1 error decay during the neural network training when solving problem (4.7). (a) VPINN error: 𝐻1 error of the most accurate solution is 0.021; (b) PINN
error: model is trained with collocation points distributed on a Delaunay mesh and the 𝐻1 error of the most accurate solution is 0.085; and (c) PINN error: model is
15

trained with collocation points from a uniform distribution and the 𝐻1 error of the most accurate solution is 0.029. The legend in (a) also applies to (b) and (c).

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

𝜆 is not suitably chosen, convergence can be completely ruined (see, for instance, the curves associated with 𝜆 = 10−3 in Figs. 17b
and 17c) or a second-order optimizer is required to retain convergence (see all the curves computed with 𝜆 = 103). Moreover, similar
convergence issues are present when 𝐌𝐂 or 𝐌𝐃 are employed.

4.5. One-dimensional convection problem

As a final example, we consider a one-dimensional convection problem on the space-time domain Ω ∶= Ω𝑥 ×Ω𝑡 = [0, 1] × [0, 1]. As
discussed in [49], when solving such a hyperbolic PDE with PINN, possible failure modes may arise due to the very complex loss
landscape. The model problem reads as:

⎧⎪⎨⎪⎩
𝜕𝑢

𝜕𝑡
+ 𝛽

𝜕𝑢

𝜕𝑥
= 0, ∀𝑥 ∈Ω𝑥 = [0,1], 𝑡 ∈Ω𝑡 = [0,1],

𝑢(0, 𝑡) = 𝑔(𝑡) ∀𝑡 ∈Ω𝑡,

𝑢(𝑥,0) = ℎ(𝑥) ∀𝑥 ∈Ω𝑥.

(4.8)

Let us consider the boundary condition 𝑔(𝑡) = − sin(𝛽𝑡) and the initial condition ℎ(𝑥) = sin(𝑥). The corresponding exact solution is
𝑢(𝑥, 𝑡) = sin(𝑥 − 𝛽𝑡). We solve problem (4.8) with the convection coefficient 𝛽 = 30.

Given a set of collocation points (𝑥𝑖, 𝑡𝑖) ∈ Ω, 𝑖 = 1, … , 𝑁𝐼 and a suitable set of space-time test functions 𝑉ℎ ∶= span{𝜑𝑣
𝑖
= 𝜑𝑣

𝑖
(𝑥, 𝑡) ∶

𝑖 ∈ 𝐼ℎ}, the PINN and VPINN residuals that are used to train the models are given by

𝑟PINN
𝑖

(𝑤) = 𝜕𝑤

𝜕𝑡
(𝑥𝑖, 𝑡𝑖) + 𝛽

𝜕𝑤

𝜕𝑥
(𝑥𝑖, 𝑡𝑖) ∀𝑖 = 1,2,… ,𝑁𝐼

and

𝑟ℎ,𝑖(𝑤) = ∫
Ω

[
𝜕𝑤

𝜕𝑡
+ 𝛽

𝜕𝑤

𝜕𝑥

]
𝜑𝑣
𝑖
, 𝑖 ∈ 𝐼ℎ,

respectively. When the boundary conditions are exactly imposed (i.e., when 𝐌𝐁 or 𝐌𝐂 are used), the function 𝜙 = 𝜙(𝑥, 𝑡) is con-

structed as 𝜙(𝑥, 𝑡) ∶= 𝜙𝑥(𝑥)𝜙𝑡(𝑡), where 𝜙𝑡(𝑡) = 𝑡 and 𝜙𝑥(𝑥) is a function that vanishes on the Dirichlet boundary of Ω𝑥. Note that, due
to the simplicity of the spatial domain Ω𝑥, there is no reason to distinguish between 𝐌𝐁 and 𝐌𝐂. Therefore, we just consider the
function 𝜙𝑥(𝑥) = 𝑥 in both approaches.

The numerical results obtained using the different approaches are presented in Fig. 18. In Fig. 18a, problem (4.8) is solved with
the VPINN method. In this case, 𝐌𝐀 is slightly more accurate and efficient than 𝐌𝐁 (or 𝐌𝐂 since they coincide) if 𝜆 is chosen
properly. However, when the value of 𝜆 is not optimal, the solution is significantly less accurate. Once more, method 𝐌𝐃 is not
competitive with the other approaches. On the other hand, when PINN is considered, exactly imposing the boundary conditions
ensures better accuracy and efficiency than using 𝐌𝐀, regardless of the value of 𝜆 (see Figs. 18b and 18c).

5. Conclusions

In this paper, we analyzed the formulation and the performance of four different approaches to enforce Dirichlet boundary
conditions in PINNs and VPINNs on arbitrary polygonal domains. In the first approach, which is the most commonly used when
training PINNs, the boundary conditions are imposed by means of additional terms in the loss function that penalize the discrepancy
between the neural network output and the prescribed boundary conditions. The subsequent two approaches exactly enforce the
boundary conditions and differ in the way they modify the model output in order to force it to satisfy the desired conditions. The
last approach, which can be used only when the loss function is derived from the weak formulation of the PDE, is based on Nitsche’s
method and enforces the boundary conditions variationally.

We have shown that 𝐌𝐁 and 𝐌𝐃, in the considered second-order elliptic PDEs, always ensure the theoretically predicted conver-

gence rate with respect to mesh refinement, regardless of the value of the involved parameter. Instead, method 𝐌𝐀 and 𝐌𝐂 ensure
it only if the exact solution is not characterized by an intense oscillatory behavior.

In general, we observed that the most efficient and accurate approach is the one introduced in [38] (method 𝐌𝐁), which is based
on the use of a class of approximate distance functions. A variant of this approach (method 𝐌𝐂) leads to suboptimal results and may
even ruin the convergence of the method (as in Fig. 17c). Imposing the boundary conditions via additional cost (method 𝐌𝐀) can be
considered a valid alternative, but the choice of the additional penalization parameter is crucial because wrong values can prevent
convergence to the correct solution or dramatically slow down the training. In the proposed numerical experiments we fixed the
penalization parameter. As discussed in the Introduction, we highlight that it is possible to tune it during training, but we chose to
fix it in order to compare non-intrusive methods with simple implementations. Finally, we observed that Nitsche’s method (method
𝐌𝐃) is in some cases similar to 𝐌𝐀 with an acceptable value of 𝜆, while in other cases requires a second-order optimizer to converge
to the correct solution.

Among possible extensions of this work, we mention applications to high-dimensional PDEs over complex geometries, where we
expect methods 𝐌𝐁 and 𝐌𝐂 to be even more efficient than their alternatives. In fact, such methods can enforce the correct conditions
16

on each portion of the boundary, whereas methods 𝐌𝐀 and 𝐌𝐃 are likely to be less robust and efficient.

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Fig. 18. 𝐻1 error decay during the neural network training when solving problem (4.8). (a) VPINN error: 𝐻1 error of the most accurate solution is 0.077; (b) PINN
error: model is trained with collocation points distributed on a Delaunay mesh and the 𝐻1 error of the most accurate solution is 0.125; and (c) PINN error: model is
trained with collocation points from a uniform distribution and the 𝐻1 error of the most accurate solution is 0.051. The legend in (a) also applies to (b) and (c).

CRediT authorship contribution statement

S. Berrone; C. Canuto; N. Sukumar: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed
reagents, materials, analysis tools or data.

M. Pintore: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed
reagents, materials, analysis tools or data; Wrote the paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability statement

Data will be made available on request.

Acknowledgements

CC, SB and MP performed this research in the framework of the Italian MIUR Award “Dipartimenti di Eccellenza 2018-2022”
17

granted to the Department of Mathematical Sciences, Politecnico di Torino (CUP: E11G18000350001). The research leading to this

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

paper has also been partially supported by the SmartData@PoliTO center for Big Data and Machine Learning technologies. SB was
supported by the Italian MIUR PRIN Project 201744KLJL-004, CC was supported by the Italian MIUR PRIN Project 201752HKH8-003.
CC, SB and MP are members of the Italian INdAM-GNCS research group.

Appendix A. On the Laplacian of the approximate distance function

In [38], the issue of the blowing-up of the Laplacian of 𝜙 in (3.4) is discussed. Herein, we illustrate the same for the simple setting
in which Γ𝐷 is composed of two edges that intersect.

Let Ω be the non-negative quadrant {(𝑥, 𝑦) ∶ 𝑥 ≥ 0, 𝑦 ≥ 0} and let us consider the (semi-infinite) segments 𝑠1 = {(𝑥, 0) ∶ 𝑥 ≥ 0} and
𝑠2 = {(0, 𝑦) ∶ 𝑦 ≥ 0}. For the sake of simplicity, we consider the exact distance functions 𝜙1(𝑥, 𝑦) = 𝑥 and 𝜙2(𝑥, 𝑦) = 𝑦. Let us compute
the ADF of order 𝑚 = 1 to the boundary Γ𝐷 = 𝑠1 ∪ 𝑠2. Substituting 𝑚 = 1 in (3.4), 𝜙 can be written as:

𝜙 =
𝜙1𝜙2
𝜙1 +𝜙2

= 𝑥𝑦

𝑥+ 𝑦
.

The gradient of 𝜙 is:

∇𝜙 =
[
𝜕𝜙

𝜕𝑥
,
𝜕𝜙

𝜕𝑦

]𝑇
=
[
(𝑥+ 𝑦)𝑦− 𝑥𝑦

(𝑥+ 𝑦)2
,
(𝑥+ 𝑦)𝑥− 𝑥𝑦

(𝑥+ 𝑦)2

]𝑇
=
[

𝑦2

(𝑥+ 𝑦)2
,

𝑥2

(𝑥+ 𝑦)2

]𝑇
.

Note that the gradient is bounded on Γ𝐷 , and in particular:

𝜕𝜙

𝜕𝑥

||||𝑥=0 = 1, 𝜕𝜙

𝜕𝑦

||||𝑦=0 = 1, ∇𝜙|𝑦=𝛼𝑥 = [𝛼2

(1 + 𝛼)2
,

1
(1 + 𝛼)2

]𝑇
,

where 𝛼 is a strictly positive constant, i.e. 𝜙 is an ADF of order 1 and ∇𝜙 is bounded along any straight line intersecting the origin
and entering inside the domain. The Laplacian of 𝜙 is:

Δ𝜙 = 𝜕2𝜙

𝜕𝑥2
+ 𝜕2𝜙

𝜕𝑦2
= 𝜕

𝜕𝑥

[
𝑦2

(𝑥+ 𝑦)2

]
+ 𝜕

𝜕𝑦

[
𝑥2

(𝑥+ 𝑦)2

]
= −2 𝑥

2 + 𝑦2

(𝑥+ 𝑦)3
.

Consider the limit at (0, 0) along the line 𝑦 = 𝛼𝑥, for 𝛼 ≥ 0:

lim
𝑥,𝑦→0

Δ𝜙 = lim
𝑥→0

−2 𝑥
2 + (𝛼𝑥)2

(𝑥+ (𝛼𝑥))3
= lim

𝑥→0
−2 (1 + 𝛼2)𝑥2

(1 + 𝛼)3𝑥3
= lim

𝑥→0
−2 (1 + 𝛼2)

(1 + 𝛼)3
1
𝑥
= −∞.

Therefore, Δ𝜙 is unbounded at the origin.

For 𝑚 = 2, the function 𝜙 is:

𝜙 = 1√
1
𝜙21

+ 1
𝜙22

=
𝜙1𝜙2√
𝜙2
1 +𝜙2

2

= 𝑥𝑦√
𝑥2 + 𝑦2

.

Its gradient is:

∇𝜙 =

[
𝑦√

𝑥2 + 𝑦2
− 𝑥2𝑦

(𝑥2 + 𝑦2)3∕2
,

𝑥√
𝑥2 + 𝑦2

− 𝑥𝑦2

(𝑥2 + 𝑦2)3∕2

]𝑇
,

which in polar coordinates (𝑥 = 𝜌 cos(𝜃), 𝑦 = 𝜌 sin(𝜃)) is expressed as:

∇𝜙 =
[
𝜌 sin(𝜃)

𝜌
− 𝜌3 cos2(𝜃) sin(𝜃)

𝜌3
,
𝜌 cos(𝜃)

𝜌
− 𝜌3 cos(𝜃) sin2(𝜃)

𝜌3

]𝑇
,

=
[
sin(𝜃) − cos2(𝜃) sin(𝜃), cos(𝜃) − cos(𝜃) sin2(𝜃)

]𝑇
.

In polar coordinates, we can write

𝜕2𝜙

𝜕𝑥2
= 3 𝑥3𝑦

(𝑥2 + 𝑦2)5∕2
− 3 𝑥𝑦

(𝑥2 + 𝑦2)3∕2
= 3𝜌

4 cos3(𝜃) sin(𝜃)
𝜌5

− 3𝜌
2 cos(𝜃) sin(𝜃)

𝜌3

= 3 cos(𝜃) sin(𝜃)
𝜌

[
cos2(𝜃) − 1

]
= −3cos(𝜃) sin

3(𝜃)
𝜌

.

Similarly,

𝜕2𝜙

𝜕𝑦2
= −3cos

3(𝜃) sin(𝜃)
𝜌

holds, which implies:

𝜕2𝜙 𝜕2𝜙 cos(𝜃) sin(𝜃)
18

Δ𝜙 =
𝜕𝑥2

+
𝜕𝑦2

= −3
𝜌

.

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

Thus, as in the case 𝑚 = 1, Δ𝜙 →−∞ when 𝜌 → 0.

We point out that for 𝜃 = 𝜋∕2 and 𝜃 = 0, respectively, we note that:

𝜕𝜙

𝜕𝑥

||||𝑥=0 = 1, 𝜕𝜙

𝜕𝑦

||||𝑦=0 = 1, 𝜕2𝜙

𝜕𝑥2

|||||𝑥=0,𝑦>0 = 0, 𝜕2𝜙

𝜕𝑦2

|||||𝑦=0,𝑥>0 = 0.

Therefore, 𝜙 is an ADF that is normalized up to order 2.

References

[1] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.

[2] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural network methods in quantum mechanics, Comput. Phys. Commun. 104 (1997) 1–14.

[3] I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (1998) 987–1000.

[4] I.E. Lagaris, A.C. Likas, D.G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Netw. 11 (2000)
1041–1049.

[5] Y. Chen, L. Lu, G.E. Karniadakis, L.D. Negro, Physics-informed neural networks for inverse problems in nano-optics and metamaterials, Opt. Express 28 (2020)
11618–11633.

[6] Q. Guo, Y. Zhao, C. Lu, J. Luo, High-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN), J. Hydrol. 616
(2023) 128828.

[7] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs, IMA
J. Numer. Anal. (2021).

[8] H. Gao, L. Sun, J.-X. Wang, PhyGeoNet: physics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on
irregular domain, J. Comput. Phys. 428 (2021) 110079.

[9] J. Han, A. Jentzen, E. Weinan, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (2018) 8505–8510.

[10] S. Lanthaler, S. Mishra, G.E. Karniadakis, Error estimates for DeepONets: a deep learning framework in infinite dimensions, Trans. Math. Appl. 6 (2022).

[11] X. Jiang, D. Wang, Q. Fan, M. Zhang, C. Lu, A.P. Tao Lau, Solving the nonlinear Schrödinger equation in optical fibers using physics-informed neural network,
in: 2021 Optical Fiber Communications Conference and Exhibition (OFC), 2021, pp. 1–3.

[12] Z. Chen, Y. Liu, H. Sun, Physics-informed learning of governing equations from scarce data, Nat. Commun. 12 (2021) 1–13.

[13] E. Weinan, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.

[14] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis, Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward
and inverse problems, Comput. Methods Appl. Mech. Eng. 365 (2020) 113028.

[15] A.D. Jagtap, G.E. Karniadakis, Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning
framework for nonlinear partial differential equations, Commun. Comput. Phys. 28 (2020) 2002–2041.

[16] E. Kharazmi, Z. Zhang, G. Karniadakis, VPINNs: variational physics-informed neural networks for solving partial differential equations, arXiv preprint, arXiv :
1912 .00873, 2019.

[17] E. Kharazmi, Z. Zhang, G. Karniadakis, ℎ𝑝-VPINNs: variational physics-informed neural networks with domain decomposition, Comput. Methods Appl. Mech.
Eng. 374 (2021) 113547.

[18] T. De Ryck, A. Jagtap, S. Mishra, Error estimates for physics-informed neural networks approximating the Navier-Stokes equations, IMA J. Numer. Anal. (2023).

[19] T. De Ryck, S. Mishra, Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs, Adv. Comput. Math. 48 (2022).

[20] N. Demo, M. Strazzullo, G. Rozza, An extended physics informed neural network for preliminary analysis of parametric optimal control problems, arXiv preprint,
arXiv :2110 .13530, 2021.

[21] R. Hu, Q. Lin, A. Raydan, S. Tang, Higher-order error estimates for physics-informed neural networks approximating the primitive equations, arXiv preprint,
arXiv :2209 .11929, 2022.

[22] J. Pu, J. Li, Y. Chen, Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method, Nonlinear Dyn. 105
(2021) 1723–1739.

[23] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.

[24] A. Tartakovsky, C. Marrero, P. Perdikaris, G. Tartakovsky, D. Barajas-Solano, Learning parameters and constitutive relationships with physics informed deep
neural networks, arXiv preprint, arXiv :1808 .03398, 2018.

[25] L. Yang, X. Meng, G. Karniadakis, B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data, J. Comput. Phys.
425 (2021) 109913.

[26] Y. Zhu, N. Zabaras, P. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data, J. Comput. Phys. 394 (2019) 56–81.

[27] C. Beck, M. Hutzenthaler, A. Jentzen, B. Kuckuck, An overview on deep learning-based approximation methods for partial differential equations, Discrete Contin.
Dyn. Syst., Ser. B (2022).

[28] S. Cuomo, V.S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, F. Piccialli, Scientific machine learning through physics-informed neural networks: where we are and
what’s next, J. Sci. Comput. 92 (2022).

[29] Z. Lawal, H. Yassin, D. Lai, A. Che Idris, Physics-informed neural network (PINN) evolution and beyond: a systematic literature review and bibliometric analysis,
Big Data Cogn. Comput. 6 (2022).

[30] L.D. McClenny, U.M. Braga-Neto, Self-adaptive physics-informed neural networks, J. Comput. Phys. 474 (2023) 111722.

[31] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed neural networks, SIAM J. Sci. Comput. 43 (2021)
A3055–A3081.

[32] C.L. Wight, J. Zhao, Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks, Commun. Comput. Phys. 29 (2021)
930–954.

[33] K. Tang, X. Wan, Q. Liao, Adaptive deep density approximation for Fokker-Planck equations, J. Comput. Phys. 457 (2022) 111080.

[34] X. Feng, L. Zeng, T. Zhou, Solving time dependent Fokker-Planck equations via temporal normalizing flow, arXiv preprint, arXiv :2112 .14012, 2021.

[35] S. Wang, X. Yu, P. Perdikaris, When and why pinns fail to train: a neural tangent kernel perspective, J. Comput. Phys. 449 (2022) 110768.

[36] S. Berrone, C. Canuto, M. Pintore, Variational physics informed neural networks: the role of quadratures and test functions, J. Sci. Comput. 92 (2022) 1–27.

[37] J.M. Taylor, D. Pardo, I. Muga, A deep Fourier residual method for solving PDEs using neural networks, Comput. Methods Appl. Mech. Eng. 405 (2023) 115850.

[38] N. Sukumar, A. Srivastava, Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks, Comput. Methods Appl.
Mech. Eng. 389 (2022) 114333.

[39] A. Biswas, V. Shapiro, Approximate distance fields with non-vanishing gradients, Graph. Models 66 (2004) 133–159.

[40] J.A. Nitsche, Uber ein Variationsprinzip zur Losung Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unteworfen sind, Abh.
19

Math. Semin. Univ. Hamb. 36 (1971) 9–15.

http://refhub.elsevier.com/S2405-8440(23)06028-0/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib7E3C7C7F55CC974547048C4EF5BF49BCs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib3BAB71061A41AAFC901D883266809035s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibA575B10445BF355838CAECAC19042011s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibA575B10445BF355838CAECAC19042011s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibBA3E78BDAC605CA7C929D3CF19CCD7BBs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibBA3E78BDAC605CA7C929D3CF19CCD7BBs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD570501363070C151816556EDBF5F100s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD570501363070C151816556EDBF5F100s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib278397D594FDB98AFCDB0C4B8148A877s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib278397D594FDB98AFCDB0C4B8148A877s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib2FEDA84DCA07959B702BC1BB6AFC2D0As1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib2FEDA84DCA07959B702BC1BB6AFC2D0As1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib2824FC668A056030F0344CA23EB78996s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib232097C039E8834536E37024B3B959F5s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib232097C039E8834536E37024B3B959F5s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib5153F7DE96A21D976456CE9077B9A94Bs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib46320B1F027DBD8315FFC8C59A58EE9Bs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD3A93C4394A82453D8A76875FAA23D06s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD3A93C4394A82453D8A76875FAA23D06s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibA54B7FB0DF7B5643C05165F259A9B1BFs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibA54B7FB0DF7B5643C05165F259A9B1BFs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib2818596A032BC9659329BDE4141F1CCEs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib2818596A032BC9659329BDE4141F1CCEs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD3242973F793D9BF4A8B706771173372s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD3242973F793D9BF4A8B706771173372s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib330343EFE9CCC05B15FC69CA0EB34511s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib62156EC53707CFC2A0CE12E5C8CB4B5Ds1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib190A95C483496FFE3EEB4CC075B78560s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib190A95C483496FFE3EEB4CC075B78560s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib1AAD02C0DAB1FDB58ED1507F1F65B3F2s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib1AAD02C0DAB1FDB58ED1507F1F65B3F2s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibFCD256E8F33735BDB6491F3425722458s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibFCD256E8F33735BDB6491F3425722458s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib5A4717E7DAF1A350B916D75B72A632A9s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib5A4717E7DAF1A350B916D75B72A632A9s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibB66185AE7946AF906899637997BFDEF6s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibB66185AE7946AF906899637997BFDEF6s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibF2ED18876A723CF794A8F2C05EC7D74As1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibF2ED18876A723CF794A8F2C05EC7D74As1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib864E656889E945A48D3FB253F6229D68s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib864E656889E945A48D3FB253F6229D68s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib28EEDB9D8805D8859BE2C082E194AAF0s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib28EEDB9D8805D8859BE2C082E194AAF0s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib5FCC650CA6B127772E956B51C7E29F3As1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib4D2EFF244A9E41090258B56606DD5F16s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib4D2EFF244A9E41090258B56606DD5F16s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib1F21BCE0C091685F03744A4A37B79C17s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib1F21BCE0C091685F03744A4A37B79C17s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib29ED9CDB9D2D6B0B40D647345B7CF680s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib427EA74B88679C1ED01BE3B0BDE1AF94s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibF61CC9A1A2248FBD0D1E6C053D807B0Bs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib09390B835621C948CA2ED45F1D8C1508s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD1CA397FA8DE2FC6440025166F17534Bs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib1732FE166C087EA9B6D35D9F86F6FE6Es1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib1732FE166C087EA9B6D35D9F86F6FE6Es1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibA9ECAC28EECBFBEE3113F977D0C84A4Es1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibB3D566C2AE62E7D5C1AFA91213637CD6s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibB3D566C2AE62E7D5C1AFA91213637CD6s1

Heliyon 9 (2023) e18820S. Berrone, C. Canuto, M. Pintore et al.

[41] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint, arXiv :1412 .6980, 2014.

[42] S. Wright, J. Nocedal, et al., Numerical Optimization, vol. 35, 1999.

[43] M. Abadi, et al., TensorFlow: large-scale machine learning on heterogeneous systems, http://tensorflow .org/, 2015, software available from tensorflow.org.

[44] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18 (2018).

[45] S. Berrone, C. Canuto, M. Pintore, Solving PDEs by variational physics-informed neural networks: an a posteriori error analysis, Ann. Univ. Ferrara 68 (2022)
575–595.

[46] M.S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes, G.N. Wells, The FEniCS project version 1.5, Arch. Numer.
Softw. 3 (2015).

[47] H. Zhao, A fast sweeping method for Eikonal equations, Math. Comput. 74 (2005) 603–627.

[48] J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Science, vol. 3, Cambridge University Press, 1999.

[49] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, M.W. Mahoney, Characterizing possible failure modes in physics-informed neural networks, Adv. Neural Inf.
20

Process. Syst. 34 (2021) 26548–26560.

http://refhub.elsevier.com/S2405-8440(23)06028-0/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibBBB588B5F68816C3A4C6D1AFC431CDDBs1
http://tensorflow.org/
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib76C5AB9AAE568B5DD1A272BB4586CB39s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib9DE1AD5C43F81438A2F447D92E36F2ABs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib9DE1AD5C43F81438A2F447D92E36F2ABs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib19839AEDCB4FDC5670414F3B2852609Ds1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib19839AEDCB4FDC5670414F3B2852609Ds1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib9470D16CA2021CDD3C47F3676CE4982Fs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD2365C9F01EE5B897E6E5D764DF039E4s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bibD2365C9F01EE5B897E6E5D764DF039E4s1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib3A2B05494693434CF48FDD500CB2BA3Bs1
http://refhub.elsevier.com/S2405-8440(23)06028-0/bib3A2B05494693434CF48FDD500CB2BA3Bs1

	Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
	1 Introduction
	2 PINNs and interpolated variational PINNs
	2.1 Neural network description
	2.2 PINN and interpolated VPINN loss functions

	3 Mathematical formulation
	4 Numerical results
	4.1 Rate of convergence for second-order elliptic problems
	4.2 Application to nonlinear parametric problem
	4.3 Deformation of an elastic body
	4.4 Stabilized Eikonal equation
	4.5 One-dimensional convection problem

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability statement
	Acknowledgements
	Appendix A On the Laplacian of the approximate distance function
	References

