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ABSTRACT 25 

The manufacturing industry is currently facing an increasing demand for customized products, leading to a 26 

shift from mass production to mass customization. As a result, operators are required to produce multiple 27 

product variants with varying complexity levels while maintaining high-quality standards. Further, in line 28 

with the human-centered paradigm of Industry 5.0, ensuring the well-being of workers is equally important 29 

as production quality. This paper proposes a novel tool, the "Human-Robot Collaboration Quality and Well-30 

Being Assessment Tool" (HRC-QWAT), which combines the analysis of overall defects generated during 31 

product variant manufacturing with the evaluation of human well-being in terms of stress response. The 32 

HRC-QWAT enables the evaluation and monitoring of human-robot collaboration systems during product 33 

 
1 Corresponding author: Tel: +39 0110907236, e-mail: elisa.verna@polito.it. 
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variant production from a broader standpoint. A case study of collaborative human-robot assembly is used 34 

to demonstrate the applicability of the proposed approach. The results suggest that the HRC-QWAT can 35 

evaluate both production quality and human well-being, providing a useful tool for companies to monitor 36 

and improve their manufacturing processes. Overall, this paper contributes to developing a human-centric 37 

approach to quality monitoring in the context of human-robot collaborative manufacturing. 38 

 39 

1. INTRODUCTION 40 

Mass production has long been the standard in manufacturing, allowing efficient 41 

use of available resources and a corresponding reduction in production costs. In recent 42 

years, however, there has been a shift towards mass customization, an approach to 43 

production that allows products to be individually tailored to meet each customer's 44 

specific needs and preferences [1]. Several factors have driven this shift, including 45 

technological advances, increased demand for customized products, and growing 46 

awareness of mass production's environmental and social impacts [2]. As a result, 47 

manufacturers are increasingly turning to mass customization as a way to remain 48 

competitive in the marketplace and meet the evolving needs of their customers, thus 49 

representing a significant paradigm shift in how goods are produced and consumed.  50 

While greater product variety can increase market share and sales volumes, it also 51 

increases product complexity and costs [1].  As a result, mass customization requires a 52 

flexible production system that can adapt to product volume and type variations. An 53 

effective approach to mass customization is the use of collaborative robots (also called 54 

cobots) in what is known as Human-Robot Collaboration (HRC) [3]. This approach 55 

combines the flexibility and versatility of human operators with the precision of cobots, 56 
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creating a flexible system capable of assembling different product variants in the same 57 

workstation [4].  58 

Interest in HRC has grown with the development of Industry 4.0 and is becoming 59 

increasingly important with the emergence of Industry 5.0. Indeed, the main goal of 60 

Industry 5.0 is to put human well-being at the center of production systems in order to 61 

provide sustainable prosperity for long-term development [5–7]. The technologies and 62 

processes used in Industry 5.0 are designed to enhance the capabilities of human 63 

operators, as in the case of cobots. This approach departs from traditional production 64 

methods, which prioritize efficiency and automation over the satisfaction of human 65 

workers. This shift towards human-centred production should lead to improved 66 

productivity, greater job satisfaction and a more sustainable manufacturing sector 67 

towards mass customization. 68 

While the benefits of HRC are clear, there is a lack of comprehensive tools that 69 

can assess and monitor the quality and well-being aspects of these systems. Therefore, a 70 

need exists for an evaluation tool that not only considers production quality but also 71 

considers the well-being of the human operator. With the growing emphasis on human-72 

centered production in Industry 5.0, such an assessment tool becomes increasingly 73 

crucial. 74 

To address the lack of comprehensive tools for assessing and monitoring HRC 75 

systems taking into account both process performance and human-centered 76 

performance for highly customized product variants, this research aims to answer the 77 

following research question: How can a diagnostic tool be developed to assess the 78 
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performance of HRC systems considering the specificities of highly customized product 79 

variants? 80 

In response to this research question, this paper introduces a novel tool, the 81 

"Human-Robot Collaboration Quality and Well-Being Assessment Tool" (HRC-QWAT). This 82 

tool integrates two indicators, a product and process quality indicator and a human stress 83 

response indicator, to assess and monitor the quality of an HRC system, specifically 84 

tailored to accommodate the unique challenges and variations associated with highly 85 

customized product variants. Unlike previous studies that focused on individual 86 

measurements and indicators, the HRC-QWAT incorporates multiple dimensions of 87 

evaluation, encompassing product and process quality as well as human well-being. This 88 

comprehensive approach enables a holistic assessment of the collaborative assembly 89 

process, capturing the interplay between quality outcomes and the well-being of human 90 

operators.  91 

The versatility and adaptability of the HRC-QWAT are demonstrated by its 92 

applicability to single-variant and small-batch variant production scenarios, catering to 93 

diverse production contexts. Thus, the HRC-QWAT fills a critical gap in assessing and 94 

monitoring HRC systems, providing practitioners and researchers with a valuable tool for 95 

evaluating, diagnosing, and optimizing HRC systems in the context of diverse and 96 

customized product variants. 97 

To show the practical implementation of the HRC-QWAT, a real-life case study was 98 

conducted involving the assembly of electronic board variants using a human-robot 99 

collaborative assembly system. The methodology consists of two main phases: (1) the 100 
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realization phase, in which the HRC-QWAT is constructed by collecting historical 101 

experimental data and developing a model that relates the two performance measures, 102 

i.e. total defects (cobot-related and human-related errors) and human stress response, to 103 

represent the overall quality of the system; and (2) the use phase, in which the HRC-QWAT 104 

is used as a reference for predicting future products/batches and identifying critical 105 

products in terms of defects and human stress response. The HRC-QWAT can be used to 106 

identify critical production scenarios and implement necessary corrective actions to 107 

maintain the desired quality level while taking into account the well-being of human 108 

operators, thus advancing human-centered production practices within the framework of 109 

Industry 5.0. 110 

The remaining paper is structured as follows. Section 2 summarizes the main 111 

studies in the field of quality in HRC. Section 3 presents the HRC assembly system used as 112 

a case study. Section 4 illustrates the complexity assessment of the product HRC 113 

assemblies. Section 5 presents the data collected on product and process quality and their 114 

relationship with assembly complexity. Section 6 illustrates data on human well-being and 115 

discusses the relationship with assembly complexity of product variants. Section 7 116 

presents the novel diagnostic tool called HRC-QWAT, which shows the potential for single 117 

variant and small-batch production. Finally, Section 8 concludes the paper. 118 

 119 

2. LITERATURE REVIEW 120 

HRC is a rapidly developing field with promising applications in service, social, and 121 

industrial contexts. When designing and implementing an HRC system, evaluating its 122 

quality is crucial to ensure that the system meets individual, collective, and production 123 
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needs or objectives. From an engineering point of view, quality refers to the degree to 124 

which a system, product, service, or process conforms to specified requirements and 125 

conditions [6]. Quality models, such as conceptual or definition models, are commonly 126 

used in engineering to support, evaluate, and manage quality [8]. These models outline a 127 

set of quality attributes and their potential interrelationships and serve as a guide for 128 

selecting relevant factors for experimental validation of applications, services or systems. 129 

However, efforts to identify and classify factors, measures and metrics that 130 

describe quality in the HRC field are still rare, especially from a human-centred 131 

perspective [6,9]. The industrial perspective can be categorized into two interests: 132 

performance-centred and human-centred. The former considers robots as a means to 133 

optimize the production process, often involving full automation and substituting human 134 

workers with machines, while the latter aims to improve human well-being by respecting 135 

their role, needs, job, talents, and rights [10–12]. Consequently, there is a trade-off 136 

between optimising the production process and optimising the well-being of the 137 

operators, which requires the use of performance measures specific to the collaborative 138 

environment. 139 

According to [6], performance measures for HRC are variables that can be 140 

obtained from physical measurements or an aggregate of facts to assess the current or 141 

final state of the human, robot, process, or interaction. These measures can be grouped 142 

into four categories:  143 

• Time behavior measures indicate the response and processing times required to 144 

perform functions or complete tasks.  145 
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• Process measures are an aggregation of facts related to task completion, 146 

workspace design, safety, or product quality.  147 

• Physiological measures are obtained from body measures, such as heart rate, to 148 

understand the current state of the human.  149 

• Human-Robot physical measures are obtained from sensors that indicate the 150 

current state of the interaction, such as the distance between the human and the 151 

robot. 152 

Moreover, performance metrics for HRC can be defined as a combination of direct 153 

measures used to express a rate, average or input/output relationship [6]. Efficiency and 154 

effectiveness are considered the main attributes used to evaluate such performance. 155 

Efficiency metrics assess the use of resources, i.e. the input/output ratio. On the other 156 

hand, effectiveness metrics assess the accuracy and completeness of the achievement of 157 

specific objectives, measuring the relationship between actual and expected results. 158 

These metrics assess whether HRC systems are "doing things right" and "doing the right 159 

things", respectively. 160 

As far as the human-centred perspective is concerned, quality factors that have 161 

received more attention in the robotics literature are safety [13], trust [14], attitudes and 162 

acceptance [15], mental and physical workload [16,17], situation awareness and mental 163 

models [18,19], emotional responses [20,21] and anxiety [22]. 164 

Additionally, the review paper [6] identifies seven emergent research topics that 165 

could have a significant impact on future Industry 5.0 applications, including (i) non-166 

invasive monitoring and online analysis of human factors, (ii) individualized HRC, (iii) 167 
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transparent robotic systems, (iv) fluency, (v) adaptive workload systems, (vi) privacy in 168 

data-driven HRC, and (vii) benchmarks. 169 

Regarding point (i), the Industry 5.0 paradigm aims to optimize human well-being 170 

through human-centred smart environments. However, most tools for assessing human 171 

factors in HRC require offline or intrusive techniques. Creating accurate, non-invasive, and 172 

online ergonomic assessment tools that require short preparation represents a relevant 173 

challenge in HRC for manufacturing settings [23,24]. One of the most widely used tools 174 

for this purpose is the digital twin, which allows the human comfort and flexibility of the 175 

cobot to be improved in a non-intrusive way [25]. Several DT applications have already 176 

been implemented in the area of collaborative assembly and disassembly [26]. 177 

Concerning point (ii), applications enabling collaborations between humans and 178 

robots are generally short and static for practical reasons [27]. However, individualized 179 

machine collaboration is essential for Industry 5.0. Nowadays, various technologies have 180 

been identified that enable machine collaboration, such as human action recognition, 181 

intention prediction, augmented, virtual or mixed reality, exoskeletons, and collaborative 182 

robots. Personalized HRI systems can continuously collect and process personal and 183 

physiological data, adapt to individuals' needs and preferences, and maintain long-term 184 

interactions [27,28]. Hedonics factors, which mostly focus on individual goals, require 185 

more research attention on applications for Industry 5.0 [29]. Additionally, human-186 

centred initiatives need to consider technologies enabling job satisfaction, work-life 187 

balance, and up-skilling and re-skilling of workers [12]. 188 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

9 

 

Regarding point (iii), Industry 4.0 applications use black-box AI to enhance 189 

autonomy, while Industry 5.0 requires transparent AI that interacts with humans. In HRC, 190 

this transparency includes predictability, legibility, and explainability. Legibility enables 191 

observers to quickly infer correct goals, while predictability matches expectations. 192 

Creating legible trajectories is a broad open issue. Multimodal systems for anticipating 193 

human actions face high-dimensional data, which dimensionality reduction techniques 194 

can address. AI aims to explain robot behavior to users and improve trust and situational 195 

awareness, but challenges include creating methods for generating explanations and 196 

evaluating their effectiveness [30,31]. 197 

With regard to point (iv), fluency is not considered a metric but rather a quality of 198 

interaction in HRC, as described in [32]. In HRC environment, fluency refers to the 199 

seamless interaction between humans and robots. It involves a high level of coordination, 200 

well-synchronized joint activities with precise and efficient timing, and dynamic 201 

adaptation of plans and actions. However, fluency is still a relatively new concept in HRC 202 

research, and proposed metrics for fluency are often task-specific [32]. Recent studies, 203 

such as those of Hoffman [32], have categorized fluency metrics as subjective or objective. 204 

However, due to the somewhat vague and ephemeral nature of fluency, it remains a topic 205 

of discussion in the robotics community, with further research needed to fully understand 206 

the factors affecting fluency and to design metrics that can assess it in various 207 

collaborative settings. 208 

Concerning point (v), real-time workload assessment algorithms using 209 

physiological measures, such as heart rate, electrodermal activity and skin temperature, 210 
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can accurately estimate optimal workload levels in humans [17,33]. This information can 211 

be used to improve task performance, reduce errors, and prevent accidents by changing 212 

interaction mediums, level of autonomy, and reallocating tasks and responsibilities 213 

between humans and robots [33]. Such systems are called adaptive workload or adaptive 214 

teaming systems [17]. The use of these algorithms in various human-robot teaming 215 

scenarios remains an open challenge [34]. 216 

Regarding point (vi), data-driven technologies like big data, machine learning, 217 

cloud computing, and IoT can enhance production performance and human working 218 

conditions. However, Industry 4.0 has largely overlooked the human factor and the 219 

privacy issues arising from the collection, storage and processing of personal data that 220 

these technologies entail [35,36]. In human-centred manufacturing, privacy efforts must 221 

focus on protecting workers' personal information and ensuring data security [35]. 222 

Cybersecurity assessment criteria for HRI in automobile manufacturing have been 223 

proposed [37], but comprehensive metrics are needed for HRI and HRC [37]. 224 

Finally, with respect to point (vii), international robotics competitions have 225 

become a valuable tool for evaluating the performance of robotics systems, providing a 226 

form of reproducibility and enabling the evaluation of non-competing systems. Although 227 

the scoring mechanism tends to hide the underlying characteristics of the system, 228 

competitions allow systems to be compared by linking relevant metrics to the score and 229 

explaining which aspects influenced the score and in what way. Typically, the score is 230 

based on objective task completion (e.g., image classification accuracy), with few 231 

competitions evaluating safety in HRI. However, there is a shift towards more human-232 
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centred objective evaluations, exemplified by the safety score in the Future Convenience 233 

Store Challenge [38,39].  234 

Based on the literature review, it is evident that many approaches proposed in the 235 

field of HRC have a performance-centred perspective, which fails to consider the full 236 

potential of HRC applications. Towards a human-centred society and industry, HRC 237 

researchers should broaden their perspective beyond mere task fulfilment and adopt 238 

holistic approaches that enable robotic systems to achieve both collective and individual 239 

goals. In line with this viewpoint and to help address the challenges identified in the seven 240 

emerging research topics, the "Human-Robot Collaboration Quality and Well-Being 241 

Assessment Tool" (HRC-QWAT) has been proposed. In detail, the proposed tool can 242 

respond to the challenges mentioned above as follows:  243 

(i) Non-invasive monitoring and online analysis of human factors: HRC-QWAT allows for 244 

real-time, non-invasive monitoring of human operators' stress levels and well-being 245 

through the integration of wearable devices and sensors. This real-time evaluation 246 

ensures a prompt intervention to reduce stress levels, fostering a more efficient and 247 

balanced working environment. 248 

(ii) Individualized HRC: The tool offers the possibility of individualized HRC by considering 249 

the unique physiological responses of each worker. This personalized approach promotes 250 

a more efficient and harmonious human-robot interaction, potentially leading to 251 

improved productivity and well-being. 252 

(iii) Transparent robotic systems: Transparency is facilitated as the tool evaluates the 253 

collaborative process based on clear performance indicators and stress responses. These 254 
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evaluations can be shared with human operators, fostering an understanding of the robot 255 

function and promoting trust and collaboration. 256 

(iv) Fluency: By measuring the quality of the collaboration through multiple performance 257 

indicators, the HRC-QWAT contributes to assessing the fluency of the human-robot 258 

interaction and collaboration. This analysis promotes the optimization of joint actions and 259 

the creation of more fluid and synchronized interactions. 260 

(v) Adaptive workload systems: The HRC-QWAT real-time monitoring of human stress 261 

responses can inform adaptive systems. By detecting stress or overwork, the system can 262 

automatically adjust the workload distribution between human and robot, improving 263 

efficiency and reducing the risk of human error or health implications. 264 

(vi) Privacy in data-driven HRC: While HRC-QWAT uses data-driven methods for 265 

evaluation, it is designed with the utmost respect for privacy standards. Personal and 266 

sensitive data are strictly used for the intended purpose of enhancing human-robot 267 

interaction and are safeguarded according to the highest security protocols. 268 

(vii) Benchmarks: The proposed tool also serves as a benchmarking instrument for HRC in 269 

different scenarios. By providing comprehensive metrics on both the performance of the 270 

collaborative process and the well-being of the human operator, the HRC-QWAT offers a 271 

valuable standard against which different collaboration setups can be compared. 272 

Accordingly, the HRC-QWAT serves as a comprehensive tool, specifically 273 

addressing the identified challenges in HRC, thereby offering a strategic instrument for 274 

human-centered Industry 5.0. 275 

 276 
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3. HRC ASSEMBLY SYSTEM 277 

An experimental campaign is conducted to assemble six different variants of 278 

electronic boards (from variant V1 to variant V6) using the ARDUINO UNO starter kit 279 

(ARDUINO®). The choice of electronic boards is based on the fact that, by using the same 280 

components, highly customized products with varying levels of complexity can be 281 

assembled (as will be discussed in the next Section 4). Moreover, these boards allow real-282 

time verification of the correct functioning of the products, i.e., their proper assembly. 283 

The ARDUINO UNO starter kit is composed of: (i) the components that are 284 

assembled to make up the various boards listed in Table 1 (e.g., the jumper wires that 285 

carry current between the various components); (ii) the microcontroller, i.e., a small 286 

computer that enables the circuits to function; and (iii) the breadboard, i.e., a board on 287 

which the actual circuit can be built. The breadboard consists of rows and columns of 288 

holes that conduct electricity through thin metal connectors under the plastic screen, 289 

allowing the circuit components to be connected. The ARDUINO UNO Breadboard is 290 

defined as 'seamless' as the components do not need to be welded but simply inserted 291 

into the holes. Fig. 1(a) shows an example of an assembled electronic board (variant V3), 292 

while Fig. 1(b) displays the product circuit diagram. 293 

Each of the selected products has a varying number of components, which are 294 

connected to the breadboard. As outlined in Section 4, the six electronic boards were 295 

chosen to span a broad range of assembly complexity. Table 1 indicates the type and 296 

number of components required for each of the six electronic board variants (V1 – V6). 297 
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The assembly of the six electronic board variants was conducted using a Universal 298 

Robots™ UR3e cobot, as depicted in Fig. 2. The boards were assembled using an 299 

OnRobot™ RG6 gripper, a versatile gripper capable of handling small objects and a range 300 

of other objects. Six skilled operators, proficient in electronics and electrical engineering,  301 

were involved in the assembly process of all six electronic boards, following a random 302 

order to prevent any learning effects. During the preliminary stages, each operator 303 

underwent training sessions to ensure consistent proficiency among the participants and 304 

minimize the potential impact of varying skill levels on the results. These training sessions 305 

were carefully designed to familiarize the operators with the assembly process and 306 

equipment, allowing them to develop a solid understanding of the tasks involved in the 307 

HRC assembly. Table 2 provides an overview of the participants’ characteristics, including 308 

relevant information such as age, gender, domain knowledge of HRC, and domain 309 

knowledge of assembly tasks. The inclusion of skilled operators with expertise in 310 

electronics and electrical engineering helped ensure that the participants were familiar 311 

with the intricacies of electronic board assembly and could contribute effectively to the 312 

HRC trials. 313 

In the assembly phase, the cobot handed over the required components to the 314 

operator, who assembled the electronic boards in a predetermined order, defined based 315 

on circuit theory [40]. The operator completely controlled the logistic tasks by activating 316 

the cobot using a button. After the assembly was completed, an experienced external 317 

operator (who was not involved in the assembly) conducted an offline quality control 318 

check to identify any defects in the final product. Data on overall assembly defects (cobot-319 
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related and human-related errors) were collected during the trials, as described in Section 320 

5. Additionally, data on the operators' stress response during the assembly phase were 321 

collected, as per Section 6.  322 

 323 

4. COMPLEXITY ANALYSIS 324 

In scientific literature, complexity is typically used as a metric to predict 325 

production performance, including production times and defects. Indeed, it is often found 326 

that a reduction in complexity is associated with a significant performance improvement 327 

[41–43]. In this study, the structural complexity model, first introduced by Sinha et al. [44] 328 

and later adapted by Alkan and Harrison [45] and Verna et al. [43,46], serves as the 329 

foundation for assessing the assembly complexity of selected ARDUINO products. This 330 

model, originally developed for manual and fully automated assembly, is extended to the 331 

HRC assembly of the present case study, where the robot primarily performs 332 

organizational and logistical tasks, such as selecting components to be assembled in a 333 

predetermined sequence and delivering them to the human assembler. Adapting and 334 

integrating the structural complexity model to the domain of HRC assembly for highly 335 

customized product variants represents an innovative aspect of this study. This enables a 336 

quantitative assessment of assembly complexity within the context of mass 337 

customization. 338 

The six product variants were selected to cover a wide range of assembly 339 

complexity. In the case study, each hole on the breadboard was modelled as a single 340 

component. This assumption allows multiple connections between the components and 341 
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the board to be modelled and distinguished from single connections. For example, 342 

pushbuttons, i.e., the components that close a circuit when pressed, consist of four 343 

different pins that need to be connected to the board. As this type of connection is more 344 

complex than connecting a single-pin component, it was necessary to model the 345 

individual holes on the board to distinguish these different cases. 346 

The structural complexity model used to model the HRC assembly complexity is 347 

based on Huckel's molecular theory [47] and defines the structural complexity of any 348 

network-based engineering system as a function of the complexity of individual 349 

components (𝐶1), the pairwise interaction between connected components (𝐶2), and the 350 

effects of the overall system topology (𝐶3). The structural complexity, represented as 𝐶, 351 

is a combination of these factors and can be expressed as: 352 

𝐶 = 𝐶1 + 𝐶2 ∙ 𝐶3.                                      (1) 

In Eq. (1), 𝐶1 represents the complexity of managing and interacting with the 353 

individual components of a product when they are considered separately, i.e., the 354 

handling complexity of the product. 𝐶1 can be defined as follows:   355 

𝐶1 = ∑ ℎ𝑝

𝑁

𝑝=1

 (2) 

where 𝑁 is the total number of product components and ℎ𝑝 is the handling complexity of 356 

component 𝑝. One of the most widely accepted models for calculating a handling 357 

complexity index of individual components is the Lucas method [45], based on Design For 358 

Assembly (DFA). This method uses a point scale that provides a relative measure of 359 
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assembly difficulty (a normalized handling complexity index) based on the size, weight, 360 

handling difficulty and orientation (alpha and beta symmetry) of individual components 361 

(see Table 3). Using the Lucas method, each component can be assigned a different 362 

handling complexity index (see Table 5). The higher the value of ℎ𝑝, the more difficult the 363 

component is to handle and place on the board. These values are obtained as follows: 364 

ℎ𝑝 =
𝑑ℎ

𝐴 + ∑ 𝑑ℎ
𝐵𝑁𝐵

1 + 𝑑ℎ
𝐶 + 𝑑ℎ

𝐷

ℎ𝑚𝑎𝑥
 (3) 

where 𝑑ℎ
𝑖∈{𝐴,𝐵,𝐶,𝐷}

 is the handling difficulty of attribute i, 𝑁𝐵  is the number of applicable 365 

handling difficulties related to attribute B, and ℎmax is the theoretical maximum value for 366 

the handling index (i.e., 6.9, according to Table 3). 367 

In Eq. (1), 𝐶2 is the complexity of connections and liaisons between components, 368 

calculated as the sum of the complexities of the pairwise connections present in the 369 

product structure, according to Eq. (4): 370 

𝐶2 = ∑ ∑ 𝑐𝑝𝑟 ∙ 𝑒𝑝𝑟

𝑁

𝑟=𝑝+1

𝑁−1

𝑝=1

 (4) 

where 𝑐𝑝𝑟 is the complexity in achieving a connection between components p and r, and 371 

𝑒𝑝𝑟 is the (p,r)th entry of the binary adjacency matrix (AM) of the product. It has to be 372 

noted that in this specific case study, given that all components are connected to the 373 

breadboard, the r-th component is always the breadboard. 374 

The complexity 𝑐𝑝𝑟 can be evaluated by the Lucas Method [45], by using the 375 

difficulty of connection attributes reported in Table 4, and is obtained as follows:  376 
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𝑐𝑝𝑟 =
𝑑𝑐

𝐸 + 𝑑𝑐
𝐹 + 𝑑𝑐

𝐺 + 𝑑𝑐
𝐻 + 𝑑𝑐

𝐼 + 𝑑𝑐
𝐽 + 𝑑𝑐

𝐾

𝑐max
 (5) 

where 𝑑𝑐
𝑗∈{𝐸,𝐹,𝐺,𝐻,𝐼,𝐽,𝐾}

 is the connection difficulty of attribute j, and 𝑐max is the theoretical 377 

maximum value for the connection index (i.e., 13.1, according to Table 4). 378 

Thus, the Lucas method provides a normalized assembly index that penalizes the 379 

physical attributes (e.g. component positioning and fastening, assembly direction, 380 

visibility, alignment and resistance to insertion) that affect assembly difficulty.  381 

In Eq. (4), 𝑒𝑝𝑟 is defined by using the symmetric AM matrix of the product (see Fig. 382 

3). It can take two different values:  383 

𝑒𝑝𝑟 = {
1,  if there is a connection between 𝑝 and 𝑟
0,  otherwise

 (6) 

Each entry in the AM matrix indicates the presence of an assembly connection 384 

between the component and the breadboard. As an example, Fig. 3 shows the AM matrix 385 

of product variant V3.  386 

As shown in Table 5, the connection complexity of each component with the 387 

breadboard (𝑐𝑝𝑟) in the six electronic board variants (V1-V6) can take different values 388 

depending on multiple factors. For example, the connection complexity of long wires to 389 

the breadboard ranges from 3.7 to 6.3, depending on how the component is inserted into 390 

the breadboard and what other components are already connected. A complexity score 391 

of 5.3, for instance, is given if the wire needs to be bent to make the connection, and 6.3 392 

if the connection is made with reduced visibility. 393 
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Finally, in Eq. (1), 𝐶3 represents the topological complexity, i.e., the complexity 394 

associated with the product architecture pattern, which is defined as follows:  395 

𝐶3 =
𝐸𝐴𝑀

𝑁
=

∑ 𝛿𝑞
𝑁
𝑞=1

𝑁
, (7) 

where 𝐸𝐴𝑀 is the matrix energy of AM, i.e. the sum of the singular values 𝛿𝑞 of AM [43]. 396 

It increases as the system topology shifts from centralized to more distributed 397 

architectures [44].  398 

According to the increasing total assembly complexity 𝐶, Table 6 lists the 399 

complexities 𝐶1, 𝐶2 and 𝐶3 of the selected product variants. It is worth noting that an 400 

increase in complexity does not always imply an increase in the number of components. 401 

In fact, although variant V5 has more components than variant V6, the total complexity 402 

of variant V6 is higher than that of variant V5. This is due to the different nature of the 403 

components that compose the different products, the nature of the connections and the 404 

architecture of the final assembly. 405 

 406 

5. PRODUCT AND PROCESS QUALITY ANALYSIS 407 

In this section, complexity measures are integrated into the analysis of product 408 

and process quality, providing a novel perspective on the relationship between assembly 409 

complexity and the occurrence of defects in collaborative assembly processes for 410 

customized products. 411 

During the manufacturing process, quality data on the overall defectiveness of 412 

product and process were collected to assess the quality of the HRC system (see Table 7). 413 
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Specifically, for each product variant assembly, the total number of defects (both in-414 

process defects occurring during assembly – referred to as D1 - and offline defects 415 

detected during offline quality control – referred to as D2) was recorded. A classification 416 

was made for both types of defects, D1 and D2 (see Table 8). During the manufacturing 417 

process, the assembly operators and the quality control operator filled Table 8, indicating 418 

the number of defects found in each category for each assembled board. Certain defect 419 

categories, such as "Unpicked Component" and "Slipped Component," specifically relate 420 

to errors made by the cobot during the assembly phase. These categories reflect instances 421 

where the cobot failed to pick up a component or where a component slipped during the 422 

cobot handling. It is important to highlight that these defect categories capture cobot-423 

related errors occurring during the assembly phase. Furthermore, it should be noted that 424 

the defects recorded in the in-process and offline phases reflect a combination of both 425 

cobot-related and human-related errors. This means that the defect data collected 426 

encompasses the performance of both the cobot and the human operators involved in 427 

the assembly process. To achieve a holistic view of the quality of the system, the total 428 

number of assembly defects 𝐷𝑡𝑜𝑡  (i.e., the sum of in-process and offline defects) were 429 

considered and analyzed (see Table 7). 430 

The exclusion rule used was the Modified Interquartile Range Method, which is 431 

widely recognized as a practical and effective method for identifying outliers, taking into 432 

account the sample size [48]. The relationship between the total number of defects 433 

recorded by the six operators for each of the six variants of electronic boards and the 434 

complexity of the assembly (calculated as described in Section 4) was then analyzed. The 435 
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“operator factor” was not considered in the analysis after checking its non-significance at 436 

95% confidence level using a two-way ANOVA (p-value of 0.290). The Poisson regression 437 

model was used for the analysis, as total defects are count data [49]. The logarithm and 438 

square root link functions were considered, and different models were compared up to 439 

the third order of the predictor (i.e., assembly complexity C). The selection of the best 440 

model was made based on Akaike's Corrected Information Criterion (AICc) and Bayesian 441 

Information Criterion (BIC), goodness-of-fit tests (Deviance and Pearson tests), and 442 

deviance residual plots [49,50]. The Deviance and Pearson tests assessed whether the 443 

predicted number of events deviated from the observed number in a way that was not 444 

predicted by the Poisson distribution. If the p-value was less than the significance level, 445 

the null hypothesis that the Poisson distribution provided a good fit could be rejected 446 

[49,50]. 447 

According to the results, the most appropriate Poisson model to describe the 448 

relationship between defects and complexity was the one using the square root link 449 

function, represented as: 450 

𝐷𝑡𝑜𝑡 = (𝑘1 ∙ 𝐶)2,                                      (8) 

where 𝐷𝑡𝑜𝑡  is the total number of defects (in-process and offline), C is assembly 451 

complexity evaluated according to Eq. (1), and 𝑘1 is the regression coefficient. The results 452 

of the Poisson regression analysis, reported in Table 9, showed that the relationship 453 

between 𝐷𝑡𝑜𝑡  and C was statistically significant. In addition, the analysis of the deviance 454 

residuals and the goodness-of-fit tests of Deviance and Pearson (where p-values are 455 
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higher than the significance level of 0.05) indicated that the model fitted the data well. In 456 

addition, a very high value of the deviance R2 was obtained. 457 

Fig. 4(a) shows the total defects recorded during the experiment and the predicted 458 

curve obtained by Poisson regression with 95% confidence and prediction intervals are 459 

represented. Moreover, Fig. 4(b) shows the deviance residual plots, where the residuals 460 

appear satisfactory overall. Also using the Anderson-Darling test, the hypothesis of 461 

normality of the residual distribution cannot be rejected at the 95% confidence level (p-462 

value = 0.194, which is higher than the significance level of 5%). The results obtained for 463 

product and process quality show that the increase in assembly complexity of the variants 464 

leads to an increase in the total number of defects, following a non-linear trend. 465 

 466 

6. HUMAN WELL-BEING ANALYSIS 467 

In this section, existing methodologies for assessing human well-being are 468 

integrated and adapted to capture the impact of assembly complexity on the human 469 

stress response in the context of mass customization, showcasing the originality of the 470 

proposed approach. 471 

Physiological measures can be used to assess the state of human well-being during 472 

production, providing an objective measure compared to self-report tools, which may 473 

suffer from retrospective post-task bias [51]. Electrodermal activity (EDA) data is used in 474 

this study as a measure of human well-being, as it is commonly used as an indicator of 475 

the human stress response [52]. The Empatica E4 wristband (see Fig. 5(a)), a non-invasive 476 

biosensor that records EDA information at 4 Hz, was used to collect the EDA data. In 477 
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addition to EDA, the Empatica E4 also records information on pulsed blood volume (BVP), 478 

operator pulse motion (ACC), heart rate variability (HRV) and temperature (TMP). Fig. 5(b) 479 

shows an example of the raw output provided by the Empatica E4.  480 

For each test performed by the operators, this raw signal was recorded and then 481 

analyzed using the EDA Explorer software [53]. This software removes any external noise 482 

from the raw signal and decomposes the EDA signal into two types of signals: the tonic 483 

signal and the phasic signal. The tonic signal refers to the long-term fluctuations of the 484 

EDA signal that are not explicitly triggered by external stimuli. Changes in Skin 485 

Conductance Level (SCL) are the best indicator of tonic activity. On the other hand, phasic 486 

activity refers to transient changes in EDA that are triggered by typically perceived and 487 

externally delivered stimuli. It is best characterized by Skin Conductance Response (SCR) 488 

changes. Accordingly, the SCR can be defined as a change in the amplitude of the EDA 489 

signal from the SCL to a peak in the response [52].  490 

According to its widespread use [51,52], the average value of the SCR peak 491 

amplitude was used as a stress indicator for each assembly worker in this study. The peak 492 

amplitude values were then normalized in the formulation of the final stress indicator to 493 

remove individual differences between individuals. As a result, the human stress response 494 

(𝐻𝑆) indicator for each operator can be defined as: 495 

𝐻𝑆 = [

∑ 𝑎𝑤
𝑁𝑃
𝑤=1

𝑁𝑃
 − 𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛
] ∙ 100,                                      (9) 

where 𝑎𝑤 is the amplitude of the 𝑤-th SCR peak, 𝑁𝑃 is the total number of SCR peaks 496 

during the assembly of a given product variant, 𝑎𝑚𝑖𝑛 is the minimum amplitude of the 497 
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SRC peaks and 𝑎𝑚𝑎𝑥 is the maximum amplitude of the SRC peaks (both related to each 498 

operator). 499 

The human stress response data obtained during the 36 assembly processes (i.e., 500 

the 6 product variant assemblies performed by the 6 operators) are reported in Table 7. 501 

The 𝐻𝑆 value of each operator is related to the assembly complexity (as per Section 4) in 502 

order to model the function that captures their relationship. The “operator factor” was 503 

not considered in the analysis after checking its non-significance at 95% confidence level 504 

using a two-way ANOVA (p-value of 0.999). Fig. 6 shows the two-term power curve fitting 505 

relating human stress response and product variant assembly complexity, in the form: 506 

𝐻𝑆 = 𝑘2 ∙ 𝐶𝑘3,                                      (10) 

where 𝐻𝑆 is the human stress response, C is the assembly complexity evaluated according 507 

to Eq. (1), and 𝑘2 and 𝑘3 are the regression coefficients. 508 

This model was the best-fitting model compared to various linear and non-linear 509 

models, considering the goodness-of-fit statistics and residual analysis [54]. The statistical 510 

significance of the parameter estimate is confirmed by checking that the 95% confidence 511 

intervals for the parameters, calculated from the corresponding Standard Errors (SE) 512 

reported in Table 10, exclude the zero [55,56]. The S-value, i.e., the standard error of the 513 

regression, is a measure of the goodness of fit of the model under consideration instead 514 

of the R2 for non-linear models [56]. The residual plots in Fig. 6(b) appear satisfactory 515 

overall and, using the Anderson-Darling test, the hypothesis of normality of the residual 516 

distribution cannot be rejected at the 95% confidence level. It should be noted that, 517 

according to the result obtained, non-linear regression is preferable to linear quadratic 518 
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regression, as linearizing the function to perform linear regression can lead to bias in the 519 

predictions [57]. According to the results shown in Table 10 and Fig. 6, there is a super-520 

linear relationship between human stress response and the complexity of product variant 521 

assembly. This result, which is one of the first attempts to study the relationship between 522 

assembly complexity and human stress response, shows that as the complexity of the 523 

product assembly increases, the assembly process becomes more challenging and entails 524 

a higher degree of mental workload and cognitive effort, leading to a more than 525 

proportional increase in human stress response.  526 

 527 

7. HRC-QWAT 528 

This section introduces the "Human-Robot Collaboration Quality and Well-Being 529 

Assessment Tool" (HRC-QWAT), a tool designed to synthesize previous analyses of quality 530 

and human well-being, by directly relating 𝐻𝑆 and 𝐷𝑡𝑜𝑡, regardless of the complexity of 531 

the product assembled. The selection of total defects and human stress response in the 532 

HRC-QWAT tool was based on their significant impact on evaluating the performance of 533 

the HRC system, including both product quality and human well-being. The tool 534 

establishes a direct relationship between human stress response and total defects, 535 

enabling a comprehensive assessment of system performance within the context of 536 

single-variant and small-batch variant production. This design is specifically tailored to 537 

address the distinct challenges and demands posed by customized production scenarios, 538 

where the adaptability of the production process and the individuality of each assembly 539 

play pivotal roles. 540 
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Two typologies of HRC-QWAT are proposed. The first typology is intended for 541 

single variant production of highly customized products produced one by one in the HRC 542 

system, even if repeated over time. This type of production involves the manufacture of 543 

a single product variant at a time, typically in response to specific customer orders or 544 

market demand. The production process is adapted as required for each variant, which 545 

can result in longer lead times and higher production costs. In this scenario, the company 546 

is interested in monitoring the performance of each individual product variant assembly 547 

in terms of quality and human well-being. On the other hand, the second typology of HRC-548 

QWAT is proposed to provide companies with a diagnostic method for products of the 549 

same variant manufactured in small batches, after each of such productions. This type of 550 

production involves the manufacture of small batches of the same product variant, 551 

typically in response to forecasted demand or market trends. The production process is 552 

adapted for each batch, allowing a product variant to be produced more efficiently and 553 

cost-effectively than in the single variant scenario. The choice between single variant 554 

production and small-batch variant production generally depends on factors such as 555 

demand variability, lead time requirements, and production costs. Single variant 556 

production is best suited for highly customized products with low demand, while variant 557 

batch production is more efficient for producing a range of products with moderate to 558 

high demand.  559 

The use phase of the proposed tool is the same for practitioners in both cases, 560 

while the difference lies in the realization phase of the HRC-QWAT. 561 
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In both typologies, the HRC-QWAT allows for the assessment of quality and human 562 

well-being in the collaborative assembly process, taking into account the unique 563 

characteristics and requirements of each production scenario. This tool offers a 564 

comprehensive evaluation of the HRC system's performance, considering the relationship 565 

between human stress response (𝐻𝑆), total defects (𝐷𝑡𝑜𝑡), and the complexity of the 566 

assembly process. Although the complexity indicator is not explicitly included as a 567 

separate metric in the HRC-QWAT, its influence on the performance measures is implicitly 568 

accounted for in the evaluation. As discussed in the previous sections, assembly 569 

complexity plays a crucial role in affecting performance metrics, particularly in highly 570 

customized and personalized product assemblies within the same product family [58–60]. 571 

Although the HRC-QWAT does not directly measure complexity, it considers its impact on 572 

the overall performance of the collaborative process. By capturing the relationship 573 

between human stress response, total defects, and the intricate nature of the assembly, 574 

the tool indirectly accounts for the effects of assembly complexity on the HRC system's 575 

performance. 576 

To construct the HRC-QWAT, the following operational steps should be taken. 577 

First, a set of historical experimental data representative of the production must be 578 

collected. In the case of the HRC-QWAT for single variant production, a reasonable 579 

number of products (at least about thirty, for robust regression parameter estimation 580 

[61]) should be produced, and quality and human stress responses should be measured 581 

(according to Section 5 and 6, respectively). On the other hand, for the HRC-QWAT for 582 

small batches, an adequate number of production units should be collected for each 583 
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batch (at least about fifteen units for each product type, if possible [61]) and the average 584 

performance measures should be obtained for each batch. As mentioned in Section 5 and 585 

6, it is advisable to perform preliminary data analysis using conventional statistical 586 

techniques to detect and filter outliers [62]. 587 

Second, the model relating the two performance measures should be developed 588 

to represent the overall quality of the systems, in terms of product/process quality and 589 

human well-being. Considering the case study, the combination of the models in Eq. (8) 590 

and (10) leads to a linear model. Such a linear model is the best fit when considering single 591 

variant production, as also confirmed by the goodness-of-fit statistics and residual 592 

analysis [54]. Fig. 7(a) depicts the prediction model relating human stress response 𝐻𝑆 to 593 

total defects 𝐷𝑡𝑜𝑡  and Fig. 7(b) shows the residual plots. The output of the regression is 594 

shown in Table 11.  595 

When considering small batches of products of the same variant, average values 596 

of human stress response (𝐻𝑆
̅̅ ̅) and total defects (𝐷𝑡𝑜𝑡

̅̅ ̅̅ ̅) should be obtained for each 597 

variant. Then, the prediction model should be derived using these averages. In the case 598 

study, six small batches are considered, one for each product variant (V1-V6), each 599 

consisting of six products.  600 

Referring to the case study data, Fig. 8 illustrates the best fitting model, i.e., a 601 

linear regression model, with the residual plots, and the main output of the regression is 602 

reported in Table 11.  603 

The HRC-QWAT diagnostic tool (see Fig. 9) uses the model as a reference for 604 

prediction and takes into account the associated uncertainty range. Specifically, the two 605 
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prediction limits (Lower Prediction Limit LPL and Upper Prediction Limit UPL) derived from 606 

the regression models shown in Fig. 7 and 8, serve as thresholds for identifying critical 607 

products and small batches, respectively. Products and small batches are classified as 608 

critical in terms of both defects and human stress response when a special source of 609 

variation i.e., a source not inherent to the process, occurs [61]. It should be noted that 610 

the negative values of LPL are set equal to zero, as this is not physically possible. As a 611 

result, for some products or batches, the prediction interval may not be symmetrical with 612 

respect to the predicted regression value, as shown in Fig. 9. 613 

The two prediction limits can be calculated as follows:  614 

𝐿𝑃𝐿 = 𝐻�̂� − 𝑡
1−

𝛼
2

,𝛾
√[𝑆𝐸(𝐹𝑖𝑡)]2 + 𝑆2 

(11) 

𝑈𝑃𝐿 = 𝐻�̂� + 𝑡
1−

𝛼
2

,𝛾
√[𝑆𝐸(𝐹𝑖𝑡)]2 + 𝑆2 

where 𝐻�̂� is the predicted value of the regression curve, 𝑡1−
𝛼

2
,𝛾 is the value of the Student's 615 

t distribution with γ degrees of freedom (i.e., number of observations minus 1) and 616 

significance level α, 𝑆𝐸(𝐹𝑖𝑡) is the standard error of the fit, and S is the standard error of 617 

the regression [61]. 618 

In the use phase, when new single products or small batches of products are 619 

produced, the observed values (𝐷𝑡𝑜𝑡 , 𝐻𝑆) or (𝐷𝑡𝑜𝑡
̅̅ ̅̅ ̅, 𝐻𝑆

̅̅ ̅) are compared with the 620 

corresponding prediction limits from the HRC-QWAT for single variant or small-batch 621 

production, respectively. Accordingly: 622 

a) If the observed (𝐷𝑡𝑜𝑡 , 𝐻𝑆) or (𝐷𝑡𝑜𝑡
̅̅ ̅̅ ̅,𝐻𝑆

̅̅ ̅) value falls within the prediction 623 

range (LPL, UPL), the product or batch is considered non-critical. 624 
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b) If the observed (𝐷𝑡𝑜𝑡 , 𝐻𝑆) or (𝐷𝑡𝑜𝑡
̅̅ ̅̅ ̅,𝐻𝑆

̅̅ ̅) value is higher than the upper 625 

prediction limit (UPL) (area A in Fig. 9) or lower than the lower prediction limit (LPL) 626 

(area B in Fig. 9), it indicates a mismatch between the human stress response and the 627 

total defects, and an abnormal situation exists, resulting in the product or batch being 628 

signaled as critical. Specifically, products or batches located in area A of Fig. 9 are 629 

reported as critical due to the high level of stress response experienced by operators 630 

compared to the number of total defects detected. On the other hand, products or 631 

batches lying in area B are characterized by abnormal defectiveness compared to the 632 

level of human stress response. 633 

Table 12 reports an example of critical product production and an example of 634 

small-batch production detected as critical using the HRC-QWAT and possible root causes.  635 

The proposed diagnostic tool has been developed with a dual objective. Firstly, it 636 

aims to accurately position products or small batches on the HRC-QWAT, thereby 637 

providing a clear understanding of their relative position compared to other products. 638 

This information can be valuable in making informed quality control decisions and 639 

identifying areas for improvement. Secondly, the diagnostic tool is designed to detect 640 

unusual production scenarios and identify critical out-of-control situations. By 641 

continuously monitoring production processes, the tool can identify any deviations from 642 

established normal operating conditions, allowing corrective action to be taken in a timely 643 

manner. This feature of the diagnostic tool acts as an in-process control mechanism, 644 

ensuring that the quality of the overall system (product/process and human) remains 645 

consistently high throughout the production process. 646 
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In conclusion, the proposed diagnostic tool represents a significant step forward 647 

in quality control and monitoring, providing manufacturers with a powerful tool to ensure 648 

consistent product quality and to detect and correct quality deviations in real-time. 649 

 650 

8. DISCUSSION   651 

The novelty of the HRC-QWAT lies in its comprehensive assessment of quality 652 

systems, encompassing both technical aspects of production quality and the human 653 

factor of worker well-being. While previous studies have focused on individual 654 

measurements and indicators in HRC systems, the HRC-QWAT combines multiple 655 

dimensions of evaluation to provide a more holistic understanding of the collaborative 656 

assembly process. By integrating indicators related to total defects and human stress 657 

response, the tool offers a more nuanced evaluation of the performance of HRC systems. 658 

Moreover, the HRC-QWAT's versatility and adaptability contribute to its novelty. 659 

It can be applied to both single variant and small-batch production scenarios, 660 

accommodating different production environments and collaboration settings. Whether 661 

the work is predominantly performed by a robot or in a high-intensity human work 662 

environment, the HRC-QWAT assesses production quality and worker stress response, 663 

ensuring an optimized collaborative process. The tool's adaptability allows it to be fine-664 

tuned to the unique parameters of various production environments and collaboration 665 

scenarios, making it not only a quality and well-being assessment tool but also a strategic 666 

tool for comparing and contrasting different collaboration scenarios. 667 
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The potential for generalization is another key aspect of the HRC-QWAT's novelty. 668 

Although the case study focused on electronic board assembly, the design and 669 

methodology of the HRC-QWAT were conceived with a broader application in mind. Its 670 

adaptability allows it to be utilized in a wide range of production scenarios, even when a 671 

robot performs the majority of the work and the role of the human operator is minimal 672 

or focused on labor-intensive tasks. It should be noted, however, that the generalizability 673 

of the HRC-QWAT depends on careful adaptation and refinement of the model 674 

parameters. This will allow the tool to accurately reflect the interaction dynamics and 675 

associated stress responses in different HRC settings. The possibility of extending the use 676 

of the HRC-QWAT to more diverse and nuanced collaboration scenarios represent a 677 

promising avenue for future research and development in the field of HRC. 678 

 679 

9. CONCLUSIONS 680 

The aim of the present research was to propose a novel tool, called the HRC-681 

QWAT, which combines two indicators to evaluate and monitor the quality of a 682 

production system: the total number of defects generated during the production of 683 

product variants, and the stress response of workers. This innovative tool addresses a 684 

significant gap in the field of human-robot collaboration assessment, providing a unique 685 

approach to evaluating both the production quality and the well-being of human 686 

operators. The methodology used a collaborative human-robot assembly system as a case 687 

study to demonstrate the feasibility of the HRC-QWAT approach. The methodology 688 

consists of two main phases: (1) the realization phase, in which the HRC-QWAT is 689 
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constructed by collecting historical experimental data and developing a model relating 690 

the two performance measures (total defects and human stress response) that represent 691 

the overall quality of the system; and (2) the use phase, in which the HRC-QWAT is used 692 

as a reference for predicting future products/batches and identifying critical products in 693 

terms of defects and human stress response. The diagnostic tool uses the model to 694 

compare observed performance measures with corresponding prediction limits and 695 

detect abnormal production scenarios.  696 

The HRC-QWAT introduces a novel approach to the evaluation of quality systems 697 

in HRC. Unlike previous studies that focused on individual metrics, this tool 698 

comprehensively assesses both technical production quality and worker well-being 699 

factors. Its adaptability and versatility make it suitable for single variant or small-batch 700 

production, and for different environments and collaborative settings. In addition, 701 

although in this study the HRC-QWAT was applied to electronic boards assembly, its 702 

adaptable design allows for a broader application, opening doors for future research in 703 

the evaluation and development of human-robot collaboration. 704 

A limitation of the proposed approach is the use of a structural complexity model, 705 

which was originally designed for manual and fully automated processes. While such a 706 

model serves as a good first approximation for collaborative human-robot contexts, as 707 

the cobot mainly performs logistical and organizational support tasks, a more refined 708 

complexity model will be required for a more accurate evaluation. Another limitation of 709 

the study is that the comparison in the HRC-QWAT is based on only two indicators, total 710 

defects and human stress response. In such measures, the performance of the cobot is 711 
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not directly evaluated, although it is implicitly reflected in the total number of defects. 712 

Furthermore, additional performance measures, such as workload, are not directly 713 

addressed. Recognizing these limitations, it is important to consider that the proposed 714 

approach has the flexibility to be extended to include additional indicators, including 715 

cobot performance and workload, as well as encompass process sustainability and 716 

economic impact measures.  717 

Future research efforts will aim to overcome (at least some of) the above 718 

limitations. Particular attention will be paid to refining the complexity model by including 719 

factors related to HRC and performing a validation of the proposed approach using 720 

different products to quantitatively assess its efficiency. In addition, the study could be 721 

extended to include other cobot performance measures, including efficiency metrics 722 

(cycle time, throughput), accuracy and reliability metrics, safety metrics, and 723 

environmental/economic sustainability indicators, such as equivalent carbon dioxide 724 

emissions and life cycle costs. 725 

 726 

NOMENCLATURE 727 

 728 

HRC Human-Robot Collaboration 

HRC-QWAT 
Human-Robot Collaboration Quality and Well-Being Assessment 

Tool 

C Assembly complexity 

𝐶1 Handling complexity 
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N Total number of product components 

ℎ𝑝 Handling complexity of component 𝑝 

𝑑ℎ
𝑖∈{𝐴,𝐵,𝐶,𝐷}

 Handling difficulty of attribute i 

ℎmax Theoretical maximum value for the handling index 

𝑁𝐵 Number of applicable handling difficulties related to attribute B 

𝐶2 Complexity of connections and liaisons 

𝑐𝑝𝑟 Complexity in achieving a connection between components p and r 

AM Binary adjacency matrix of the product 

𝑒𝑝𝑟 (p,r)th entry of the AM matrix of the product 

𝑑𝑐
𝑗∈{𝐸,𝐹,𝐺,𝐻,𝐼,𝐽,𝐾}

 Connection difficulty of attribute j 

𝑐max Theoretical maximum value for the connection index 

𝑒𝑝𝑟 𝑒𝑝𝑟 = {
1,  if there is a connection between 𝑝 and 𝑟
0,  otherwise

 

𝐶3 Topological complexity 

𝐸𝐴𝑀 Matrix energy of AM 

𝛿𝑞 Singular values of AM 

D1 In-process defects 

D2 Offline defects 

𝐷𝑡𝑜𝑡  Total number of defects 
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𝑘1 Regression coefficient of the model 𝐷𝑡𝑜𝑡vs C 

EDA Electrodermal activity 

SCR Skin Conductance Response 

𝐻𝑆 Human stress response 

𝑎𝑤 Amplitude of the 𝑤-th SCR peak 

𝑁𝑃 Total number of SCR peaks 

𝑎𝑚𝑖𝑛 Minimum amplitude of the SRC peaks 

𝑎𝑚𝑎𝑥 Maximum amplitude of the SRC peaks 

𝑘2 Regression coefficient of the model 𝐻𝑆 vs C 

𝑘3 Regression coefficient of the model 𝐻𝑆 vs C 

CI  Confidence Interval 

SE Standard Error 

R2 Coefficient of determination 

S Standard error of the regression 

𝐻𝑆
̅̅ ̅ Average value of human stress response 

𝐷𝑡𝑜𝑡
̅̅ ̅̅ ̅ Average value of total defects 

𝑘4 Regression coefficient of the model 𝐻𝑆 vs 𝐷𝑡𝑜𝑡  

PI  Prediction Interval 

LPL Lower Prediction Limit and 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

37 

 

UPL Upper Prediction Limit 

𝐻�̂� Predicted 𝐻𝑆 value of the regression curve 

𝑡
1−

𝛼
2

,𝛾
 

Value of the Student's t distribution with γ degrees of freedom and 

significance level α 

𝑆𝐸(𝐹𝑖𝑡) Standard error of the fit 

 729 

REFERENCES 730 

[1] Falck, A.-C., Örtengren, R., Rosenqvist, M., and Söderberg, R., 2017, “Basic 731 

Complexity Criteria and Their Impact on Manual Assembly Quality in Actual 732 

Production,” Int. J. Ind. Ergon., 58, pp. 117–128. 733 

[2] Buckholtz, B., Ragai, I., and Wang, L., 2015, “Cloud Manufacturing: Current Trends 734 

and Future Implementations,” J. Manuf. Sci. Eng., 137(4). 735 

[3] Krüger, J., Lien, T. K., and Verl, A., 2009, “Cooperation of Human and Machines in 736 

Assembly Lines,” CIRP Ann., 58(2), pp. 628–646. 737 

[4] Peshkin, M., and Colgate, J. E., 1999, “Cobots,” Ind. Robot An Int. J., 26(5), pp. 738 

335–341. 739 

[5] Maddikunta, P. K. R., Pham, Q.-V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T. 740 

R., Ruby, R., and Liyanage, M., 2021, “Industry 5.0: A Survey on Enabling 741 

Technologies and Potential Applications,” J. Ind. Inf. Integr., p. 100257. 742 

[6] Coronado, E., Kiyokawa, T., Ricardez, G. A. G., Ramirez-Alpizar, I. G., Venture, G., 743 

and Yamanobe, N., 2022, “Evaluating Quality in Human-Robot Interaction: A 744 

Systematic Search and Classification of Performance and Human-Centered 745 

Factors, Measures and Metrics towards an Industry 5.0,” J. Manuf. Syst., 63, pp. 746 

392–410. 747 

[7] Ramanujan, D., Bernstein, W. Z., Diaz-Elsayed, N., and Haapala, K. R., 2023, “The 748 

Role of Industry 4.0 Technologies in Manufacturing Sustainability Assessment,” J. 749 

Manuf. Sci. Eng., 145(1). 750 

[8] Deissenboeck, F., Juergens, E., Lochmann, K., and Wagner, S., 2009, “Software 751 

Quality Models: Purposes, Usage Scenarios and Requirements,” 2009 ICSE 752 

Workshop on Software Quality, IEEE, pp. 9–14. 753 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

38 

 

[9] Damacharla, P., Javaid, A. Y., Gallimore, J. J., and Devabhaktuni, V. K., 2018, 754 

“Common Metrics to Benchmark Human-Machine Teams (HMT): A Review,” IEEE 755 

Access, 6, pp. 38637–38655. 756 

[10] Breque, M., De Nul, L., and Petridis, A., 2021, “Industry 5.0: Towards a 757 

Sustainable, Human-Centric and Resilient European Industry,” Luxemb. LU Eur. 758 

Comm. Dir. Res. Innov. 759 

[11] Leng, J., Sha, W., Wang, B., Zheng, P., Zhuang, C., Liu, Q., Wuest, T., Mourtzis, D., 760 

and Wang, L., 2022, “Industry 5.0: Prospect and Retrospect,” J. Manuf. Syst., 65, 761 

pp. 279–295. 762 

[12] Xu, X., Lu, Y., Vogel-Heuser, B., and Wang, L., 2021, “Industry 4.0 and Industry 763 

5.0—Inception, Conception and Perception,” J. Manuf. Syst., 61, pp. 530–535. 764 

[13] Marvel, J. A., Bagchi, S., Zimmerman, M., and Antonishek, B., 2020, “Towards 765 

Effective Interface Designs for Collaborative HRI in Manufacturing: Metrics and 766 

Measures,” ACM Trans. Human-Robot Interact., 9(4), pp. 1–55. 767 

[14] Khavas, Z. R., Ahmadzadeh, S. R., and Robinette, P., 2020, “Modeling Trust in 768 

Human-Robot Interaction: A Survey,” Social Robotics: 12th International 769 

Conference, ICSR 2020, Golden, CO, USA, November 14–18, 2020, Proceedings 12, 770 

Springer, pp. 529–541. 771 

[15] Venkatesh, V., and Davis, F. D., 2000, “A Theoretical Extension of the Technology 772 

Acceptance Model: Four Longitudinal Field Studies,” Manage. Sci., 46(2), pp. 186–773 

204. 774 

[16] Young, M. S., Brookhuis, K. A., Wickens, C. D., and Hancock, P. A., 2015, “State of 775 

Science: Mental Workload in Ergonomics,” 776 

https://doi.org/10.1080/00140139.2014.956151, 58(1), pp. 1–17. 777 

[17] Heard, J., Harriott, C. E., and Adams, J. A., 2018, “A Survey of Workload 778 

Assessment Algorithms,” IEEE Trans. Human-Machine Syst., 48(5), pp. 434–451. 779 

[18] Tabrez, A., Luebbers, M. B., and Hayes, B., 2020, “A Survey of Mental Modeling 780 

Techniques in Human–Robot Teaming,” Curr. Robot. Reports, 1, pp. 259–267. 781 

[19] Mathieu, J. E., Heffner, T. S., Goodwin, G. F., Salas, E., and Cannon-Bowers, J. A., 782 

2000, “The Influence of Shared Mental Models on Team Process and 783 

Performance.,” J. Appl. Psychol., 85(2), p. 273. 784 

[20] Hudlicka, E., 2003, “To Feel or Not to Feel: The Role of Affect in Human–785 

Computer Interaction,” Int. J. Hum. Comput. Stud., 59(1–2), pp. 1–32. 786 

[21] Zhang, P., 2013, “The Affective Response Model: A Theoretical Framework of 787 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

39 

 

Affective Concepts and Their Relationships in the ICT Context,” MIS Q., pp. 247–788 

274. 789 

[22] Naneva, S., Sarda Gou, M., Webb, T. L., and Prescott, T. J., 2020, “A Systematic 790 

Review of Attitudes, Anxiety, Acceptance, and Trust towards Social Robots,” Int. J. 791 

Soc. Robot., 12(6), pp. 1179–1201. 792 

[23] Lorenzini, M., Kim, W., and Ajoudani, A., 2022, “An Online Multi-Index Approach 793 

to Human Ergonomics Assessment in the Workplace,” IEEE Trans. Human-794 

Machine Syst., 52(5), pp. 812–823. 795 

[24] Ajoudani, A., Albrecht, P., Bianchi, M., Cherubini, A., Del Ferraro, S., Fraisse, P., 796 

Fritzsche, L., Garabini, M., Ranavolo, A., and Rosen, P. H., 2020, “Smart 797 

Collaborative Systems for Enabling Flexible and Ergonomic Work Practices 798 

[Industry Activities],” IEEE Robot. Autom. Mag., 27(2), pp. 169–176. 799 

[25] Fan, J., Zheng, P., and Lee, C. K. M., 2023, “A Vision-Based Human Digital Twin 800 

Modelling Approach for Adaptive Human-Robot Collaboration,” J. Manuf. Sci. 801 

Eng., pp. 1–11. 802 

[26] Verna, E., Puttero, S., Genta, G., and Galetto, M., 2023, “Toward a Concept of 803 

Digital Twin for Monitoring Assembly and Disassembly Processes,” Qual. Eng., pp. 804 

1–18. 805 

[27] Irfan, B., Ramachandran, A., Spaulding, S., Glas, D. F., Leite, I., and Koay, K. L., 806 

2019, “Personalization in Long-Term Human-Robot Interaction,” 2019 14th 807 

ACM/IEEE International Conference on Human-Robot Interaction (HRI), IEEE, pp. 808 

685–686. 809 

[28] Müller, J., 2020, “Enabling Technologies for Industry 5.0—Results of a Workshop 810 

with Europe’s Technology Leaders,” Dir. Res. Innov. 811 

[29] Hu, Y., Abe, N., Benallegue, M., Yamanobe, N., Venture, G., and Yoshida, E., 2022, 812 

“Toward Active Physical Human–Robot Interaction: Quantifying the Human State 813 

during Interactions,” IEEE Trans. Human-Machine Syst., 52(3), pp. 367–378. 814 

[30] Setchi, R., Dehkordi, M. B., and Khan, J. S., 2020, “Explainable Robotics in Human-815 

Robot Interactions,” Procedia Comput. Sci., 176, pp. 3057–3066. 816 

[31] Anjomshoae, S., Najjar, A., Calvaresi, D., and Främling, K., 2019, “Explainable 817 

Agents and Robots: Results from a Systematic Literature Review,” 18th 818 

International Conference on Autonomous Agents and Multiagent Systems 819 

(AAMAS 2019), Montreal, Canada, May 13–17, 2019, International Foundation for 820 

Autonomous Agents and Multiagent Systems, pp. 1078–1088. 821 

[32] Hoffman, G., 2019, “Evaluating Fluency in Human–Robot Collaboration,” IEEE 822 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

40 

 

Trans. Human-Machine Syst., 49(3), pp. 209–218. 823 

[33] Heard, J., Harriott, C. E., and Adams, J. A., 2017, “A Human Workload Assessment 824 

Algorithm for Collaborative Human-Machine Teams,” 2017 26th IEEE 825 

International Symposium on Robot and Human Interactive Communication (RO-826 

MAN), IEEE, pp. 366–371. 827 

[34] Heard, J., Heald, R., Harriott, C. E., and Adams, J. A., 2019, “A Diagnostic Human 828 

Workload Assessment Algorithm for Collaborative and Supervisory Human--Robot 829 

Teams,” ACM Trans. Human-Robot Interact., 8(2), pp. 1–30. 830 

[35] Petersen, S. A., Mannhardt, F., Oliveira, M., and Torvatn, H., 2018, “A Framework 831 

to Navigate the Privacy Trade-Offs for Human-Centred Manufacturing,” 832 

Collaborative Networks of Cognitive Systems: 19th IFIP WG 5.5 Working 833 

Conference on Virtual Enterprises, PRO-VE 2018, Cardiff, UK, September 17-19, 834 

2018, Proceedings 19, Springer, pp. 85–97. 835 

[36] Mannhardt, F., Petersen, S. A., and Oliveira, M. F., 2019, “A Trust and Privacy 836 

Framework for Smart Manufacturing Environments,” J. Ambient Intell. Smart 837 

Environ., 11(3), pp. 201–219. 838 

[37] Rahman, S. M. M., 2021, “Cybersecurity Metrics for Human-Robot Collaborative 839 

Automotive Manufacturing,” 2021 IEEE International Workshop on Metrology for 840 

Automotive (MetroAutomotive), IEEE, pp. 254–259. 841 

[38] Causo, A., Durham, J., Hauser, K., Okada, K., and Rodriguez, A., 2020, Advances on 842 

Robotic Item Picking, Springer. 843 

[39] Fujita, M., Domae, Y., Noda, A., Garcia Ricardez, G. A., Nagatani, T., Zeng, A., 844 

Song, S., Rodriguez, A., Causo, A., Chen, I. M., and Ogasawara, T., 2019, “What 845 

Are the Important Technologies for Bin Picking? Technology Analysis of Robots in 846 

Competitions Based on a Set of Performance Metrics,” 847 

https://doi.org/10.1080/01691864.2019.1698463, 34(7–8), pp. 560–574. 848 

[40] Zadeh, L., 1962, “From Circuit Theory to System Theory,” Proc. IRE, 50(5), pp. 849 

856–865. 850 

[41] ElMaraghy, H., Schuh, G., ElMaraghy, W., Piller, F., Schönsleben, P., Tseng, M., 851 

and Bernard, A., 2013, “Product Variety Management,” Cirp Ann., 62(2), pp. 629–852 

652. 853 

[42] Genta, G., Galetto, M., and Franceschini, F., 2018, “Product Complexity and 854 

Design of Inspection Strategies for Assembly Manufacturing Processes,” Int. J. 855 

Prod. Res., 56(11), pp. 4056–4066. 856 

[43] Verna, E., Genta, G., Galetto, M., and Franceschini, F., 2022, “Defect Prediction 857 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

41 

 

for Assembled Products: A Novel Model Based on the Structural Complexity 858 

Paradigm,” Int. J. Adv. Manuf. Technol., 120(5–6), pp. 3405–3426. 859 

[44] Sinha, K., 2014, “Structural Complexity and Its Implications for Design of Cyber-860 

Physical Systems,” PhD dissertation, Engineering Systems Division, Massachusetts 861 

Institute of Technology. 862 

[45] Alkan, B., and Harrison, R., 2019, “A Virtual Engineering Based Approach to Verify 863 

Structural Complexity of Component-Based Automation Systems in Early Design 864 

Phase,” J. Manuf. Syst., 53, pp. 18–31. 865 

[46] Verna, E., Genta, G., Galetto, M., and Franceschini, F., 2022, “Defects-per-Unit 866 

Control Chart for Assembled Products Based on Defect Prediction Models,” Int. J. 867 

Adv. Manuf. Technol., 119(5–6), pp. 2835–2846. 868 

[47] Hückel, E., 1932, “Quantentheoretische Beiträge Zum Problem Der Aromatischen 869 

Und Ungesättigten Verbindungen. III,” Zeitschrift für Phys., 76(9–10), pp. 628–870 

648. 871 

[48] Barbato, G., Barini, E. M., Genta, G., and Levi, R., 2011, “Features and 872 

Performance of Some Outlier Detection Methods,” 873 

http://dx.doi.org/10.1080/02664763.2010.545119, 38(10), pp. 2133–2149. 874 

[49] Cameron, A. C., and Trivedi, P. K., 2013, Regression Analysis of Count Data, 875 

Cambridge university press. 876 

[50] Myers, R. H., Montgomery, D. C., Vining, G. G., and Robinson, T. J., 2012, 877 

Generalized Linear Models: With Applications in Engineering and the Sciences, 878 

John Wiley & Sons, Hoboken, NJ, USA. 879 

[51] Gervasi, R., Aliev, K., Mastrogiacomo, L., and Franceschini, F., 2022, “User 880 

Experience and Physiological Response in Human-Robot Collaboration: A 881 

Preliminary Investigation,” J. Intell. Robot. Syst., 106(2), p. 36. 882 

[52] Zhao, B., Wang, Z., Yu, Z., and Guo, B., 2018, “EmotionSense: Emotion 883 

Recognition Based on Wearable Wristband,” 2018 IEEE SmartWorld, Ubiquitous 884 

Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & 885 

Communications, Cloud & Big Data Computing, Internet of People and Smart City 886 

Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, pp. 346–887 

355. 888 

[53] Taylor, S., Jaques, N., Chen, W., Fedor, S., Sano, A., and Picard, R., 2015, 889 

“Automatic Identification of Artifacts in Electrodermal Activity Data,” Proc. Annu. 890 

Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2015-Novem, pp. 1934–1937. 891 

[54] Montgomery, D., Runger, G., and Hubele, N., 2010, Engineering Statistics, John 892 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

42 

 

Wiley & Sons Inc., New York. 893 

[55] Seber, G. A. F., and Wild, C. J., 1989, Nonlinear Regression, John Wiley & Sons, 894 

New York. 895 

[56] Bates, D. M., and Watts, D. G., eds., 1988, Nonlinear Regression Analysis and Its 896 

Applications, John Wiley & Sons, Inc., Hoboken, NJ, USA. 897 

[57] Galetto, M., Verna, E., and Genta, G., 2020, “Accurate Estimation of Prediction 898 

Models for Operator-Induced Defects in Assembly Manufacturing Processes,” 899 

Qual. Eng., 32(4), pp. 595–613. 900 

[58] Hasan, S. M., Baqai, A. A., Butt, S. U., and quz Zaman, U. K., 2018, “Product Family 901 

Formation Based on Complexity for Assembly Systems,” Int. J. Adv. Manuf. 902 

Technol., 95(1), pp. 569–585. 903 

[59] Lim, K. Y. H., Zheng, P., Chen, C. H., and Huang, L., 2020, “A Digital Twin-Enhanced 904 

System for Engineering Product Family Design and Optimization,” J. Manuf. Syst., 905 

57, pp. 82–93. 906 

[60] Dan, B., and Tseng, M. M., 2007, “Assessing the Inherent Flexibility of Product 907 

Families for Meeting Customisation Requirements,” Int. J. Manuf. Technol. 908 

Manag., 10(2–3), pp. 227–246. 909 

[61] Montgomery, D. C., 2019, Introduction to Statistical Quality Control, Wiley Global 910 

Education. 911 

[62] Barbato, G., Germak, A., and Genta, G., 2013, Measurements for Decision Making, 912 

Società Editrice Esculapio, Bologna. 913 

[63] Chan, V., and Salustri, F. A., 2003, “Dfa: The Lucas Method,” Ryerson University, 914 

Toronto. 915 

  916 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

43 

 

Figure Captions List 917 

 918 

Fig. 1 Example of an assembled electronic board (variant V3): (a) final product 

assembled and (b) circuit diagram 

Fig. 2 Collaborative assembly workstation showing (a) the single-armed UR3e 

cobot equipped with the OnRobot RG6 gripper and (b) product 

components 

Fig. 3 AM matrix of variant V3 

Fig. 4 Total defects (𝐷𝑡𝑜𝑡) vs assembly complexity (C): (a) Poisson regression 

model and (b) Deviance residual plots 

Fig. 5 (a) Empatica E4 wristband (b) Empatica E4 outputs vs time 

Fig. 6 Human stress response (𝐻𝑆) vs assembly complexity (C): (a) non-linear 

regression model, and (b) residual plots 

Fig. 7 Human stress response (𝐻𝑆) vs total defects (𝐷𝑡𝑜𝑡) for single variant 

production: (a) linear regression model, and (b) residual plots 

Fig. 8 Average human stress response (𝐻𝑆
̅̅ ̅) vs average total defects (𝐷𝑡𝑜𝑡

̅̅ ̅̅ ̅) for 

small batches of product variant: (a) linear regression model, and (b) 

residual plots 

Fig. 9 HRC-QWAT for (a) single variant production and (b) small-batch variant 

production 
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Table Caption List 920 

 921 

Table 1 Components of the six electronic board variants (V1-V6) 

Table 2 Participants’ characteristics 

Table 3 Difficulty of component handling attributes. Adapted from [63] 

Table 4 Difficulty of component connection attributes. Adapted from [63] 

Table 5 Handling complexity (ℎ𝑝) of components and connection complexity (𝑐𝑝𝑟) 

of components with the breadboard in the six electronic board variants 

(V1-V6) 

Table 6 Complexities of the six electronic boards (V1-V6) 

Table 7 Experimental values of total defects (𝐷𝑡𝑜𝑡) and human stress response 

(𝐻𝑆) recorded in each trial 

Table 8 Number of defects classified into in-process (D1) and offline (D2) defects 

for the six assembled products 

Table 9 Poisson regression output for total defects (𝐷𝑡𝑜𝑡) vs assembly complexity 

(C). Model is in the form 𝐷𝑡𝑜𝑡 = (𝑘1 ∙ 𝐶)2 

Table 10 Non-linear regression output for human stress response (𝐻𝑆) vs assembly 

complexity (C). Model is in the form 𝐻𝑆 = 𝑘2 ∙ 𝐶𝑘3 

Table 11 Linear regression output for human stress response vs total defects for 

single variant production and small-batch variant production 

Table 12 Examples of critical situations detected by the HRC-QWAT 
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 922 
Fig. 1 Example of an assembled electronic board (variant V3): (a) final product 923 

assembled and (b) circuit diagram 924 
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 926 
Fig. 2 Collaborative assembly workstation showing (a) the single-armed UR3e cobot 927 

equipped with the OnRobot RG6 gripper and (b) product components  928 
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 929 
Fig. 3 AM matrix of variant V3 930 
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 932 
 Fig. 4 Total defects (𝐷𝑡𝑜𝑡) vs assembly complexity (C): (a) Poisson regression model and 933 

(b) Deviance residual plots 934 
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 936 
Fig. 5 (a) Empatica E4 wristband (b) Empatica E4 outputs vs time 937 
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 939 

Fig. 6 Human stress response (𝐻𝑆) vs assembly complexity (C): (a) non-linear regression 940 

model, and (b) residual plots 941 

942 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

51 

 

 943 

Fig. 7 Human stress response (𝐻𝑆) vs total defects (𝐷𝑡𝑜𝑡) for single variant production: 944 

(a) linear regression model, and (b) residual plots 945 
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 947 
Fig. 8 Average human stress response (𝐻𝑆

̅̅ ̅) vs average total defects (𝐷𝑡𝑜𝑡
̅̅ ̅̅ ̅) for small 948 

batches of product variant: (a) linear regression model, and (b) residual plots 949 
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     951 
Fig. 9 HRC-QWAT for (a) single variant production and (b) small-batch variant production 952 
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Table 1 Components of the six electronic board variants (V1-V6) 954 

 V1 V2 V3 V4 V5 V6 

Breadboard (BB) 1 1 1 1 1 1 
Long wires (LW) - 1 2 8 9 13 
Short wires (SW) 1 3 5 3 6 4 

Resistors (R) 1 1 4 6 2 2 
Pushbuttons (PB) - 2 4 - 2 1 

LED (L) 1 1 - 1 - - 
Phototransistor (F) - - - 3 - - 
Potentiometer (PT) - - - - 1 1 

Piezo (PZ) - - 1 - - - 
LCD (LCD) - - - - - 1 

Battery snap (BS) - - - - 1 - 
DC Motor (M) - - - - 1 - 
H-bridge (HB) - - - - 1 - 

N° of components 4 9 17 22 24 23 
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Table 2 Participants’ characteristics 957 

Participant Age Gender 
Domain knowledge 

of HRC 
Domain knowledge of electronic 

board assembly  

P1 21 Female Intermediate Intermediate 
P2 21 Male Intermediate Expert 
P3 22 Male Expert Expert 
P4 21 Male Intermediate Expert 
P5 27 Male Intermediate Expert 
P6 23 Male Intermediate Intermediate 
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Table 3 Difficulty of component handling attributes. Adapted from [63] 960 

Attribute i Description 
Handling 

difficulty 𝑑ℎ 

A - Size and weight  (One 
of the following) 

Very small - requires handling aids 
 

1.5 

Easy - requires one hand only 
 

1 

Large and/or heavy - requires more 
than one hand or aid 

 
1.5 

Large and/or heavy- requires hoist or 
more than one person 

2 

B - Handling difficulty 
(All that apply) 

Delicate 0.4 

Flexible 0.6 
Sticky 0.5 

Tangible 0.8 
Severely nest 0.7 

Sharp/abrasive 0.3 
Untouchable 0.5 

Gripping problem/slippery 0.2 
Automatic handling - no difficulty 0 

C - Alpha Symmetry 
(One of the following) 

Symmetrical - no orientation required 0 
Easy to orient - end to end 0.1 

Difficult to orient - end to end 0.5 

D - Beta Symmetry 
(One of the following) 

Rotational orientation is not required 0 
Easy to orient - end to end 0.2 

Difficult to orient - end to end 0.4 
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Table 4 Difficulty of component connection attributes. Adapted from [63] 964 

Attribute j Description 
Connection difficulty 

𝑑𝑐 
E - Component placing 
(One of the following) 

Self-holding 1 
Holding down required 2 

F – Component 
fastening 

(One of the following) 

Self-securing 1.3 
Screwing 4 

Riveting 4 

Bending 4 
Mechanical deformation 4 

Soldering or welding 6 
Adhesive 5 

G – Direction 
(One of the following) 

Straight line from above 0 
Straight line not from above 0.1 

Not straight line and/or bending is 
required 

1.6 

H – Insertion 
(One of the following) 

Single 0 
Multiple 0.7 

Simultaneous multiple insertions 1.2 
I – Restricted vision 

(One of the following) 
Visible 0 

Not visible 1 
J – Difficult to align 

(One of the following) 
No 0 
Yes 0.7 

K – Resistance to 
insertion 

(One of the following) 

No 0 

Yes 0.6 
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Table 5 Handling complexity (ℎ𝑝) of components and connection complexity (𝑐𝑝𝑟) of 968 

components with the breadboard in the six electronic board variants (V1-V6) 969 

Component ℎ𝑝 𝑐𝑝𝑟 

Breadboard (BB) 1.7 - 
Long wires (LW) 1.8 3.7, 5.3, 6.3 
Short wires (SW) 2.3 3.7, 5.3 
Resistors (R) 1.8 3.8 
Pushbuttons (PB) 1.9 4.2 
LED (L) 1.9 4.2 
Phototransistor (F) 1.9  4.2 
Potentiometer (PT) 1.7 5.8 
Piezo (PZ) 1.7 3.7 
LCD (LCD) 3.0 6.4  
Battery snap (BS) 1.8 3.7 
DC Motor (M) 1.8 3.7 
H-bridge (HB) 1.9 4.2 
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Table 6 Complexities of the six electronic boards (V1-V6) 973 

 V1 V2 V3 V4 V5 V6 

𝐶1 1.64 3.12 5.35 6.59 7.49 6.97 
𝐶2 2.90 5.89 10.03 13.39 15.83 18.24 
𝐶3 0.75 0.57 0.45 0.40 0.37 0.39 
𝐶 3.80 6.50 9.83 11.95 13.37 14.12 
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Table 7 Experimental values of total defects (𝐷𝑡𝑜𝑡) and human stress response (𝐻𝑆) 995 

recorded in each trial 996 

Participant Variant 𝐶 𝐷𝑡𝑜𝑡  HS 
1 V4 11.95 3 8.97 
1 V6 14.12 7 34.87 
1 V1 3.8 0 0.00 
1 V5 13.37 5 10.00 
1 V3 9.83 3 4.02 
1 V2 6.5 1 3.13 
2 V5 13.37 4 12.70 
2 V4 11.95 3 16.65 
2 V3 9.83 3 8.46 
2 V6 14.12 5 20.45 
2 V2 6.5 0 0.33 
2 V1 3.8 0 0.00 
3 V3 9.83 0 8.95 
3 V6 14.12 6 23.27 
3 V1 3.8 0 0.00 
3 V4 11.95 3 12.16 
3 V2 6.5 2 2.23 
3 V5 13.37 3 11.30 
4 V2 6.5 2 7.35 
4 V4 11.95 3 14.90 
4 V1 3.8 0 0.00 
4 V3 9.83 0 6.35 
4 V6 14.12 4 19.84 
4 V5 13.37 6 11.45 
5 V1 3.8 0 0.00 
5 V3 9.83 2 11.12 
5 V5 13.37 3 9.21 
5 V6 14.12 5 22.01 
5 V4 11.95 0 11.55 
5 V2 6.5 1 5.00 
6 V6 14.12 6 27.88 
6 V2 6.5 0 1.04 
6 V5 13.37 1 17.31 
6 V3 9.83 1 8.75 
6 V1 3.8 0 0.00 
6 V4 11.95 2 7.75 
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Table 8 Number of defects classified into in-process (D1) and offline (D2) defects for the 998 

six assembled products 999 

 
Incorrect 

Component 
Misplaced 

Component 
Unpicked 

Component 
Slipped 

Component 
Defective 

Component 

Improperly 
Inserted 

Component 
Variant D1 D2 D1 D2 D1 D1 D1 D2 D1 D2 

V1 0 0 0 0 0 0 0 0 0 0 
V2 0 0 1 1 3 0 0 0 0 1 
V3 0 0 5 2 3 0 0 0 0 1 
V4 0 0 4 3 4 0 0 0 3 0 
V5 0 0 6 3 11 2 0 0 0 0 
V6 0 0 11 11 10 0 0 0 1 0 

Total 0 0 27 20 31 2 0 0 4 2 
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Table 9 Poisson regression output for total defects (𝐷𝑡𝑜𝑡) vs assembly complexity (C). 1002 

Model is in the form 𝐷𝑡𝑜𝑡 = (𝑘1 ∙ 𝐶)2 1003 

𝑘1 SE(𝑘1) 
Coefficient 

p-value 
Deviance 

R2 Goodness-of-Fit Tests 

0.144 0.008 <0.0005 99.29% 
Deviance Test p-value 0.557 
Pearson Test p-value 0.933 

 1004 

  1005 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Manufacturing Science and Engineering. Received April 28, 2023;
Accepted manuscript posted August 24, 2023. doi:10.1115/1.4063284
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/doi/10.1115/1.4063284/7037070/m
anu-23-1259.pdf by Politecnico di Torino, Elisa Verna on 29 August 2023



ASME Journal of Manufacturing Science and Engineering 

63 

 

Table 10 Non-linear regression output for human stress response (𝐻𝑆) vs assembly 1006 

complexity (C). Model is in the form 𝐻𝑆 = 𝑘2 ∙ 𝐶𝑘3 1007 

𝑘2 SE(𝑘2) 95% CI for 𝑘2 𝑘3 SE(𝑘3) 95% CI for 𝑘3 S 

0.004 0.006 (4 ∙ 10−5, 0.076) 3.222 0.594 (2.086, 5.025) 4.284 
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Table 11 Linear regression output for human stress response vs total defects for single 1010 

variant production and small-batch variant production 1011 

 Model 𝑘4 SE(𝑘4) 
Coefficient 

p-value 
R2 R2 pred. S 

Single 
variant 

production 
𝐻𝑆 = 𝑘4 ∙ 𝐷𝑡𝑜𝑡 3.821 0.278 <0.0005 84.38% 82.99% 5.243 

Small-batch 
variant 

production 
𝐻𝑆
̅̅ ̅  = 𝑘4 ∙ 𝐷𝑡𝑜𝑡

̅̅ ̅̅ ̅ 4.257 0.294 <0.0005 97.67% 95.64% 2.127 
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Table 12 Examples of critical situations detected by the HRC-QWAT 1013 

HRC-QWAT Observed values Possible root cause 

Single variant 
production 

(𝐷𝑡𝑜𝑡 , 𝐻𝑆)=(2,35) Area A 
(cf. Fig. 9(a)) 

Abnormal stress experienced by 
the operator 

Small-batch variant 
production 

(𝐷𝑡𝑜𝑡
̅̅ ̅̅ ̅, 𝐻𝑆

̅̅ ̅)=(6,10) Area B 
(cf. Fig. 9(b)) 

Wrong/faulty components 
undetected by the operator 

during the production process 
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