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Abstract— Parkinson’s disease (PD) is one of the most 

widespread neurodegenerative diseases worldwide, affected by 

a number of alterations, among which speech impairments that, 

interestingly, manifests up to 10 years before other major 

evidences (e.g. motor impairments). In this regard, we 

investigated the feasibility of a model based on the temporal 

evolution of speech attractors in the reconstructed phase space 

to identify hallmarks of PD identification and progression. To 

this end, the adopted dataset was made of vocal emissions of 46 

de-novo and 54 mid-advanced People with PD, plus 113 healthy 

counterpart. A statistical analysis was applied to test the 

identified hallmarks effectiveness for diagnostic support, 

monitoring, and staging of the disease. According to the 

obtained results, the adopted approach of considering the 

temporal evolution of speech attractors in the reconstructed 

phase-space results effective to discriminate among the three 

groups of pathological or healthy voices.  

 

Keywords— Parkinson’s Disease, Speech Analysis, Speech 
Attractors, Automatic assessment   

I. INTRODUCTION  

Parkinson’s Disease (PD) is a long-term second most 

common (after Alzheimer) neurodegenerative disorder,  

expected to affect 9 million people by 2030 [1]. Motor 

symptoms (e.g., bradykinesia, tremor, rigidity...) are among 

the most common evidences of the disease [2] but 

approximately 75-90% of People with PD evidence abnormal 

speech too [3]. The measure and evaluation of such 

alterations can support early diagnosis and monitoring of PD, 

as a broad body of literature witnesses by implementing 

different metrics involving temporal, frequency, and mel-

cepstrum analysis [4], [5], [6], [7] and/or accounting of non-

linearities of vocal signals [8], [9]. Both normophonic and 

non-normophonic speakers indeed present non-linear 

phenomena occurring during voice production, mainly due to 

the pressure flow in the glottis, stress-strain curves of vocal 

fold tissues, and vocal fold collision [5], even further 

worsened by compensatory movements that People with PD 

tend to perform for lowering  motor disfunctions [5]. To 

inspect the non-linear phenomena, speech signal is 

commonly represented in the state space according to 

embedded procedure [5] (Fig.1) from which several features 

can be estimated and employed to quantify the impairment. 

Among the most common features are: (i) Correlation 

dimension (i.e., a measure of the space filled by the points in 

the state space); (ii) Largest Lyapunov exponent (i.e., a 

representation of the average divergence rate of neighbor 

trajectories in the state space); (iii) Hurst exponent (i.e., a 

measure of the long term dependencies in a time series); (iv) 

Recurrence Period Density Entropy (i.e., a measure of the 

periodicity of the given signal) [10], [5]. According to a 

recent work [10] in which we a aimed to present a through 

literature review, especially towards feature-based 

methodology, non-linear measures proved their pivotal 

importance in evaluating PD-related alterations. Moreover, 

despite being less frequent than common acoustic features 

such as Fundamental Frequency (F0), Jitter, and Shimmer, 

DFA and RPDE mesures proved to among the most effective 

features in discriminating between Healthy Controls (HC)  

and People with PD. Despite these features are strongly 

effective, they also rely on very complex and computationally 

expensive algorithms. Moreover, the time evolution of 

speech signals is a very important aspect to differentiate 

between PD and HC subjects but, to the best of our 

knowledge, no study specifically investigated the temporal 

evolution of speech trajectories in the reconstructed phase 

space as a measure for PD hallmarks identification. In this 

context, we propose a model based on a 3-D geometry and its 

time evolution aiming at extracting information related to the 

speaker's health status. Through a detailed analysis of the 

volume, its variations between adjacent time windows, as 

well as the speed at which these changes occur, we aim to 

obtain a detailed description of the subject’s vocal alterations, 
and to model the difficulty in performing fine and rapid 

movements, which it is well know to be a pivotal aspect of 

PD alterations [11]. Moreover, by using a dataset that   

includes both early-drug naïve (said de-novo) and mid-

advanced People with PD, we aimed at identifying relevant 

correlations between the extracted features and the patient 

disease stage.  

II. MATERIALS  

We enrolled 100 People with PD (54 mid-advanced and 46 

de-novo) and 113 age- and gender-matched healthy controls 

(HCs, age 70.3±10.3). Participants were recruited ar the 

IRCCS Neuromed Instituite and at the Department of System 

Medicine, Tor Vergata University of Rome, Italy.The 

patients were selected according to standardized diagnostic 



criteria by experienced neurologists. Patients with medium-

advanced PD (age 72.1±8.1, UPDRS 3.1 2.7±0.6) were 

recorded in off L-Dopa state (at least 12 hours after the last 

drug intake), while de-novo patients (age 64.2±8.6, UPDRS 

3.1 0.9±0.7) were drug-naive subjects (i.e., never underwent 

L-DOPA medication). Selection criteria for HCs and PDs 

included: (i) Italian native speakers; (ii) 18+ years; (iii) no 

previous history of smoking; (iv) no respiratory, gastro-

esophageal, auditory, or vocal fold disease. The vocal 

samples were recorded in a silent and echo-free room using a 

dynamic WH20 microphone (Shure, USA) connected to a 

high-quality, uncompressed H4n (Zoom, Tokyo, Japan) voice 

recorder (.wav, 16-bit, 44.1 kHz). Data analysis was 

performed in Python: Topological Signal Processing 

(Teaspoon) library was applied to identify the most suitable 

parameters for the voice embedding procedure, the 

Alphashape and Trimesh libraries were used to calculate and 

parameterize the shape alpha-geometries derived from the 

reconstructed speech attractors.  

The entire procedure was conducted following the Helsinki 

Declaration and approved by the institutional ethics 

committee (approval number 0026508/2019). Written 

informed consent was obtained; the demographic and clinical 

data were noted anonymously.  

 

III. METHODS 

A. Data Collection 

One participant at a time was instructed to sit with the back 

and arms adhering to a chair [12] and to sustain the vowel /e/ 

as long as possible without efforts and at a comfortable 

volume, the microphone 5 cm from the mouth, according to 

an effective validated protocol [13], [14], [12] Conveniently, 

the sustained vowel task is non-influenced by linguistic 

confounding factors so to benefit a worldwide procedure. 

B. Speech signal embedding  

According to the embedding theorem originally proposed in 

[15], the set of diffeomorphic attractors generated in the state 

space as a solution of a system of nonlinear differential 

equations can be represented as 

 𝑋(𝑘) = {𝑥(𝑘), 𝑥(𝑘 + 𝜏), … , 𝑥(𝑘 + (𝜃 − 1)𝜏)}                    (1)  

 

where 𝑋 = {𝑋(𝑘)} is the set of points of the attractors, 𝑥(𝑘) 

is the original time signal, 𝜏 is the time delay estimated to 

assure minimum correlation among state variables, and 𝜃 is 

the dimension of the embedding space [16]. 

To ensure a proper reconstruction of vocal signal dynamics 

whilst minimizing the redundancy of information, a method 

based on the auto-mutual information is usually employed to 

set the value of τ [5]. According to this procedure, the most 

suitable time delay for a given signal can be computed as the 

first minima in the auto-mutual information function [5], 

[16]. As for the embedding dimension, we decided to set θ=3 
to maintain a low complexity of the system and investigate 

the type and the quality of information retrieved from a 3-D 

representation of the vocal signal. It is worth noting that, to 

reduce the presence of noise in the reconstructed trajectories, 

for each k in the set of points of the attractor we computed 𝑋(𝑘) applying 50-samples moving average.   

 

C. 𝛼 − 𝑆ℎ𝑎𝑝𝑒  computation 

α-Shapes have been employed in several fields to generalize 

bounding polytopes containing a set of points [17], [18]. 

According to the original definition proposed in [19] by 

Edelsbrunner et al., the α-shape of a given set of points S can 

be seen as the straight line graph whose vertices are the α-

extreme points and whose edges connect the respective α-

neighbors. A point p in S is defined as an α-extreme if there 

exists a closed disc of radius 1/α, such that this latter contains 
all the points in S. Similarly, two α-extreme points are 

considered α-neighbors if there exists a closed disc of radius 

1/α such that they lay on its boundary and the geometry 
contains all the points in S.  

On these basis, it is possible to define an α-Shape such that 

its boundaries, containing all the points of the reconstructed 

attractors, describe the smallest volume filled by the set of 

trajectories in the phase space. It is worth noting that α-Shape 

geometries are usually reconstructed as an ensemble of 

various triangles, whose overall geometry can be described 

by means of their edges and vertices. Taking advantage of 

this representation of the reconstructed attractors, namely 

triangular meshes, it is possible to study the speech signal in 

the phase space through lightweight and efficient algorithms. 

Here, we evaluated an α-Shape solid for each reconstructed 

attractor by empirically setting α=30. Fig. 2 shows an 

example of an α-Shape triangular mesh computed from the 

reconstructed attractor of an HC subject (the same as in 

Fig.1.b) 

 

 

Fig. 2. 𝛼 − 𝑆ℎ𝑎𝑝𝑒 for a HC subject (as in Fig1.b) 

 

 

(a)                                                   (b) 

Fig. 1. Example of reconstructed attractor for a PD patient (a) and a HC (b) 



D. Speech features evaluation 

We propose a set of both novel and previously validated 

features to describe the speech attractors in the reconstructed 

phase space. As previously demonstrated [5], [10], the 

volume occupied by the points in the reconstructed phase 

space retains crucial information on the original signal. 

Higher points densities are associated to higher chaotic 

systems: the more regular the voice production system is, the 

more the trajectories of attractors tend to overlap and 

converge toward a predefined pattern. In this work, we 

measured the volume occupied by the set of points as the 

volume of the associated α-Shape mesh. Given our aim 

(evidence temporal evolution of speech attractors to derive 

information about vocal impairment), volume measurements 

in adjacent speech frames are included too. We selected two 

equal length windows: from 0 to 1 second (Volume0-1s) and 

from 1 second to 2 seconds (Volume1s-2s). This split enabled, 

on one hand, to retain for each window enough samples to 

properly reconstruct an accurate α-Shape mesh, and on the 

other hand, to study the different phenomena that occur 

during the voice production process. Since signals in the 

employed dataset presented various durations, we decided to 

use for subsequent analysis only recordings longer than 3s, to 

avoid the final decay of the phonation that could bias the 

results. It is worth noting that the first window includes the 

voice signal attack phase, which should exhibit more chaotic 

behavior even in normo-phonic speakers. Once the initial 

transient phase is exhausted, the signal is expected to exhibit 

a more predictable behavior and the reconstructed trajectories 

evolve to a predefined pattern. Therefore, we propose two 

measures to model the temporal evolution of speech 

attractors: the volume variation between adjacent windows 

( ∆ Volume) and the distance between the two α-Shapes 

triangular meshes. To compute the latter, we aligned the two 

consecutive tri-meshes using the principal axes of inertia as a 

starting point and measured the distance between the two 

geometries as the average square distance per point included 

on the surface of the 3-D object. In this way, we are able not 

only to quantify the variation of volumes but also the changes 

in the overall geometry. Finally, to further describe the 3D 

geometry of the reconstructed attractor, we evaluated whether 

the model is watertight (WT) (i.e., a closed surface that does 

not contain a hole). In fact, in the presence of more chaotic 

structures or lower recurrence periods, the points of the 

attractors tend to accumulate at the center of the 3-D 

geometry, resulting in a convex solid. 

E. Feature importance analysis  

The effectiveness of the employed features was studied 

through two subsequent steps. As for volume and distance 

measures, we first analyzed feature distributions and trends 

using violin plots. Thereafter, we applied Kruskal-Wallis 

statistical test to investigate whether the features can 

highlight significant differences between the classes. To 

further dive into the physical meaning of each feature, we 

performed additional statistical tests between paired groups: 

(i) HC vs People with PD (both early and mid-advanced) to 

assess the effectiveness of the approach in modeling speech 

alterations; (ii) HC vs early PD to test the capability of the 

model to identify early markers for neurodegeneration; (iii) 

early vs mid-advanced PD to evaluate the capability of the 

approach in differentiating different stages of the disease.  As  

 
Fig. 3. Violin plots represent the feature distribution for each of the 

investigated features. (a): Volume0-1 and Volume0-2; (b): ∆ Volume; (c) 

Distance between α-Shapes in the two temporal windows analyzed 

for WT, due to the categorical and binary nature of this 

feature, we counted the number of occurrences of watertight 

solids for each window and each class and investigated the 

presence of recurring 3-D geometries associated with the 

nature of the original signal. It is worth nothing that, prior to 

the feature importance analysis, we applied an outlier 

removal step and selected all those instances included within 

the 20th and the 80th percentile. 

IV. RESULTS 

 

Fig. 3 shows the violin plots associated to the features 

investigated in this study. Fig.3a highlights the difference 

between Volume0-1s and Volume1s-2s, the comparison is 

 

 (a) 

 

(b) 

 

(c) 



reported for each class. Fig.3b evidences the percentage of 

variation of the α-Shape volumes. Finally, Fig.3c shows the 

distance between the α-Shape geometry in window1 and 

window2.  

 

Fig.4 reports the bar plot representing the number of α-Shape 

geometries presenting a watertight structure. For the sake of 

conciseness, we reported the results only for the second 

investigated window, given that no significant variation 

related to this feature was observed when changing the time 

window analyzed.  

A Kruskal-Wallis test was calculated to evidence whether the 

continuous features employed can highlight statistically 

significant differences between HC, early PD, and mid-

advanced PD. Table I shows the results of the statistical 

analysis performed. 

 

V. DISCUSSION 

 Our results confirmed the feasibility of an analysis based on 

the reconstructed speech attractors to differentiate between 

HC and People with PD. The feature distribution analysis 

reported in Fig.3a revealed increased attractor volumes in 

People with PD. The evidence is in accordance with previous 

similar works and confirms that an impaired voice production 

process leads to highly chaotic attractors which tend not to 

converge to predictable patterns. In addition, altered 

attractors' temporal evolution are demonstrated to be 

associated with People with PD' vocal samples. However, 

this phenomenon seems to diversely affect early and mid-

advanced subjects. In the former group, we observed higher 

volumes in the first window, which drastically reduced in the 

adjacent segment. On the other hand, mid-advanced patients 

presented with a lower volume in the first windows that 

remains almost stable for the entire signal duration. As for the 

overall temporal evolution, Fig. 3a, Fig. 3b, and Fig. 3c reveal 

different trends for HC, early PD, and mid-advanced PD. HC 

subjects show a negative volume variation and a small but  

non-negligible cost measure between the two windows.  

This latter can be associated with the tendency of the attractor 

points to rapidly accumulate on the same trajectories with no 

significant differences in the overall 3D geometry. On the 

contrary, early and mid-advanced PD subjects present 

increased volumes for each time window analyzed. Going 

into more detail about the subtle difference between early and 

mid-advanced PD, we observed comparable volumes of the 

attractors in the second window. However, our results 

revealed a higher capability of early patients to rapidly 

exhaust the effects of the attack phase (similarly to HCs) 

which is not present in advanced patients, which exhibit 

almost stable chaotic behavior. The observed differences 

between early and mid-advanced PD may be due to different 

reasons. Primarily, whilst mid-advanced People with PD are 

recorded in OFF-condition, it is known that the effect of L-

Dopa on PD symptoms does not completely vanish after 12 

hours. This residual medication could lead to a partially 

reduced chaoticity during the initial transient. On the other 

hand, the capability of early People with PD to perform 

changes after the initial transient phase, may be due to a 

preserved capability to perform fine and rapid movements 

(similarly to the HC group), which is well known to be 

strongly affected after the arising of PD. As for the 3-D 

geometry of the 𝛼 − 𝑆ℎ𝑎𝑝𝑒, our results (Fig. 4) demonstrated 

that early People with PD have a strong tendency to produce 

non-watertight solids. From a physical point of view, this 

result points to wider trajectories being described by the set 

of points of the attractors associated with the speech of early 

drug-naive patients. The results of the Kruskal-Wallis test 

reported in Table I revealed that both the punctual and the 

differential features associated to the volume, as well the cost 

measure, present significant differences between HC, early 

PD, and mid-advanced PD. To further dive into this evidence, 

we performed additional statistical tests between paired 

groups. According to our results punctual volume measures 

are generally effective and including the initial attack phase 

can be more helpful when the aim is to differentiate between 

disease stages. As for differential volume measures, they 

generally resulted in statistically significant results (p<0.001) 

and outperformed punctual features especially in the 

comparison between HC and mid-advanced PDs. As for the 

cost function, the statistical test revealed significant 

differences between the compared populations (p<0.001) 

except when considering HC and mid-advanced PD (p = 

0.86). 

TABLE I.         KRUSKAL-WALLIS TEST RESULTS 

Kruskal-Wallis test 

results 

Feature 

name 
p-value 

HC vs Early PD vs 

Mid-Advanced PD 

Volume0-1s < 0.001 

Volume1s-2s < 0.001 ∆Volume < 0.001 

Cost < 0.001 

HC vs PD (Early PD 

and Mid-Advanced 

PD) 

Volume0-1s < 0.001 

Volume1s-2s < 0.001 ∆Volume 0.63 

Cost 0.0018 

HC vs Early PD  

Volume0-1s < 0.001 

Volume1s-2s < 0.001 ∆Volume < 0.001 

Cost < 0.001 

HC vs Mid-Advanced 

PD 

Volume0-1s 0.064 

Volume1s-2s 0.0012 ∆Volume < 0.001 

Cost 0.86 

Early PD vs Mid-

Advanced PD 

Volume0-1s < 0.001 

Volume1s-2s 0.29 ∆Volume < 0.001 

Cost < 0.001 

  

Fig.4 Bar plots representing the proportion between watertight and non-
watertight solids for each class.  



VI. CONCLUSIONS AND FUTURE WORK  

 

We investigated the feasibility of a tool for evaluating vocal 

impairment in People with PD through the analysis of 

attractors’ temporal evolution. To ease the parametrization of 

the reconstructed trajectories in the phase-space, a method 

based on the α-Shapes was proposed. The derived features 

resulted to be effective in discriminating healthy and 

pathological voices, confirming the ability of the 

reconstructed attractor to describe the presence of vocal 

alterations. Moreover, our results pointed out the importance 

of studying attractor’s temporal evolution to increase the 

performance of the algorithms, especially in presence of finer 

tasks, such as disease staging. Given the promising results of 

this preliminary work, we intend to further deepen this 

approach and address the current limitations. First, the current 

evaluation of the 𝛼 − 𝑆ℎ𝑎𝑝𝑒  is based on an empirically 

derived value of 𝛼. In future work, we plan to automatize the 

parameter choice and optimization. If properly validated, this 

approach can be embedded into Machine Learning models 

improve the study of speech nonlinearities with applications 

not only to PD but also to other speech affecting diseases, 

such as dysphonia [20], [21], [22], essential tremor [23], 

dysphagia [24], and COVID-19 [25], [26]. Moreover, the 

current results are obtained on a statistically relevant but 

limited dataset. In future studies we plan to increase the 

dataset numerosity and perform a more adequate 

stratification among classes to test the robustness of the 

proposed results. Finally, in the present work only binary or 

multiclass analyses were performed. In future studies we plan 

to introduce the information on the disease staging (e.g., 

UPDRS) and study the capability of the proposed features to 

perform a finer classification between people with PD.    
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