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Abstract

Reducing computational time has become a critical 
issue in recent years, particularly in the transportation 
field, where the complexity of scenarios demands 

lightweight controllers to run large simulations and gather 
results to study different behaviors. This study proposes two 
novel formulations of the Optimal Control Problem (OCP) 
for the Energy Management System of a Plug-in Hybrid 
Electric Vehicle (PHEV) and compares their performance 
with a benchmark found in the literature. Dynamic 
Programming was chosen as the optimization algorithm to 
solve the OCP in a Matlab environment, using the DynaProg 
toolbox. The objective is to address the optimality of the fuel 
economy solution and computational time. In order to 
improve the computational efficiency of the algorithm, an 
existing formulation from the literature was modified, which 
originally utilized three control inputs. The approach involves 
leveraging the unique equations that describe the Input-Split 
Hybrid powertrain, resulting in a reduction of control inputs 
firstly to two and finally to one in the proposed solutions. The 

aforementioned formulations are referred to as 2-Controls 
and a 1-Control. Virtual tests were conducted to evaluate the 
performance of the two formulations. The simulations were 
carried out in various scenarios, including urban and highway 
driving, to ensure the versatility of the controllers. The results 
demonstrate that both proposed formulations achieve a reduc-
tion in computational time compared to the benchmark. The 
2-Controls formulation achieved a reduction in computational 
time of approximately 40 times, while the 1-Control formula-
tion achieved a remarkable reduction of approximately 850 
times. These reductions in computational time were achieved 
while obtaining a maximum difference in fuel economy of 
approximately 1.5% for the 1-Control formulation with respect 
to the benchmark solution. Overall, this study provides 
valuable insights into the development of efficient and optimal 
controllers for PHEVs, which can be applied to various trans-
portation scenarios. The proposed formulations reduce 
computational time without sacrificing the optimality of the 
fuel economy solution, making them a promising approach 
for future research in this area.

Introduction

Electrification plays an important role in tackling the 
issue of climate changes when it comes to the trans-
portation field. A multitude of solutions have been 

proposed since the early 1990s’ to include electrical compo-
nents in the powertrain of a vehicle. The highest degree of 
electrification can be  found in Battery Electric Vehicles 
(BEVs), where electricity is the only energy source. However, 
different powertrains may involve the co-existence of two (or 
more) energy carriers, as in Hybrid Electric Vehicles (HEVs) 
and Fuel Cell Hybrid Electric Vehicles (FCHEVs). Currently, 
the former provides a solution to the so called “charge-
anxiety” [1], i.e., the psychological anxiety experienced by 

BEV drivers due to the limited range. HEVs indeed, can 
operate as conventional vehicles using the Internal Combustion 
Engine (ICE).

Among the main challenges that electrification has 
brought in the transportation sector, how to optimally control 
the power split between the electric motor/generator (MG) 
and the ICE surely attracts widespread interest. Different strat-
egies are proposed to address the aforementioned need, the 
most famous include: Dynamic Programming (DP), a tech-
nique applicable to a wide field of optimal control in multi-
stage decision problems [2] that exploits the Bellman’s prin-
ciple of optimality [3]; Pontryagin’s Minimum Principle 
(PMP) [4] based algorithms, where global optimal solutions 
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can be achieved for particular scenarios by minimizing the 
Hamiltonian function describing the optimal control problem; 
Equivalent Consumption Minimization Strategy (ECMS) [5] 
which is based on comparing the instantaneous fuel consump-
tion of the ICE with an equivalent consumption associated to 
the battery power. Some applications of these strategies are 
found below. Hou et al. [6] proposed an approximate PMP 
strategy for a Plug-in HEV that resulted in a drastic reduction 
of the computational time together with an improved fuel 
consumption (with respect to a baseline strategy). In [7], the 
authors proposed a PMP-based controller where the charge 
sustaining operation of the vehicle could be achieved when 
repeated driving patterns are found, such as in city buses or 
parcel delivery vehicles. Regarding the ECMS instead, much 
research has focused on tuning the equivalence factor being 
it crucial to achieve quasi-optimal solutions. An adaptation 
rule has been proposed by Musardo et al. [8] in which the 
equivalence factor update was related to the difference between 
the current value of battery State of Charge (SOC) and the set 
target value, achieving charge-sustaining operation and 
results close to the optimal. In [9] the value of equivalence 
factor has been adapted in real-time by leveraging information 
from a neural network velocity predictor. 3% reduction in fuel 
consumption was obtained with respect to a traditional 
Adaptive-ECMS. Furthermore, Villani et al. [10] proposed a 
hierarchical Energy Management Strategy (EMS) for a class 
6 range-extender electric truck, where on the higher level a 
heuristic strategy decided the operating mode while on the 
lower level the ECMS managed the power split. For what 
concerns DP, it has been used in a vast number of studies to 
assess the global optimal solution of several HEV-related 
control problems. Yang et al. [11] designed a complex HEV 
architecture and compared it with a parallel P1-P2 HEV in 
terms of the fuel economy capability predicted by DP. A signif-
icant improvement was suggested to be achievable from the 
proposed architecture. In [12], a Stochastic version of DP has 
been implemented for the optimal control of a HEV such that 
in real-world driving conditions less electrical stress was given 
to the battery without affecting the fuel consumption. A vast 
research effort has been put on the study of complex hybrid 
architectures, such as the Toyota Hybrid System (THS) [13] 
and the most recent Stellantis eFlite® [14]. Both powertrains 
include a Planetary Gearset (PG) and the presence of two MGs 
and one ICE. Thanks to the PG, a degree of freedom is added, 
i.e., the ICE speed does not depend on the vehicle velocity and 
can be adjusted using one MG. Moreover, when it comes to 
the eFlite® powertrain, the presence of a one-way clutch (OWC) 
allows the wheels to be driven by a combination of the two 
EMs, thus introducing an additional degree of freedom. In 
the literature, several works on the energy management 
strategy of the THS are found. In [15] DP results were used to 
create a lookup table and control in real-time a Toyota Prius. 
Vinot et al. [16] used DP to compare the performances of an 
electric variable transmission (EVT) and a THS. Regarding 
the eFlite®, to the author’s knowledge not a large number of 
studies are found in the literature. In a previous work [17], an 
algorithm was developed to diminish the computational 
burden of the DP while predicting similar performance in 
terms of fuel economy.

A research interest has been growing recently regarding 
the exploitation of DP as a global optimal controller to improve 
the performance of on-board HEV energy management 
systems, in terms of fuel economy [18, 19, 20]. For example, a 
real-time implementation of a DP-based HEV energy manage-
ment system has been proposed for an NVIDIA GPU with 
CUDA programming in [21] The considered HEV embedded 
a 48V P0 powertrain architecture, where the only control 
variable was the mechanical power split between the ICE and 
the belt starter-generator. More complex electrified 
powertrains such as the eFlite® require a larger number of 
control variables to be considered in their energy management 
systems. The potential of the on-board implementation of DP 
for power split HEVs such as the eFlite® is currently restrained. 
One of the drawbacks of this optimization algorithm is indeed 
the curse of dimensionality that arises due to the exponential 
increase in computational complexity as the number of state 
and control variables grows, hindering its practical applicability.

To overcome the identified research gap, this work 
presents two computationally lightweight DP-based EMSs for 
a Plug-in Hybrid Electric minivan equipped with an eFlite® 
powertrain. The proposed strategies involve a reduction in 
control inputs without the loss of optimality in the solution 
in terms of fuel economy. In order to prove its robustness and 
quality, the controllers are compared with a benchmark 
DP-based algorithm for the same powertrain that considers 
the full set of control variables. The remaining sections are 
organized as follows. Firstly, a brief overview of the eFlite® 
powertrain is given together with the main properties of the 
minivan. Then, the three formulations of the DP (i.e. the 
baseline and the two proposed lightweight versions) are 
explained and a comparison of their results is brought up for 
different driving cycles and diverse scenarios. Finally, conclu-
sions of this analysis are drawn and possible future works 
are suggested.

Methodology
In this section, the methodology used to describe the vehicle 
behavior and its numerical modelling are introduced. An 
exhaustive review of most equation is found.

Vehicle Characteristics and 
Modelling
A vehicle similar to the M.Y. 2022 Chrysler Pacifica Hybrid 
is considered here. The main vehicle specifications have been 
found in the Environmental Protection Agency (EPA) database 
[22] and in [14] and are listed in Table I.

To model the behavior of the vehicle, a quasi-static 
backward approach is used. In general, it exploits the knowl-
edge of the velocity and acceleration needed to follow a drive 
cycle to compute the torque requested at the wheels (Twhl) 
as follows:

 T T T Twhl RL inertia slope� � �  (1)
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where TRL, Tinertia, and Tslope are the resisting torques to 
overcome road loads, inertial effects, and inclination of the 
road, respectively calculated as in (2), (3), and (4):

 T A B v C v rRL whl� � � � �� � �2  (2)

 T m a rinertia whl� � �  (3)

 T m g rslope whl� � � � � �sin �  (4)

Where v is the vehicle velocity, a is the acceleration, g 
is the gravity acceleration, and β is the road slope. Using 
the knowledge of Twhl it is possible to derive the torque that 
the powertrain has to supply so that the cycle velocity is 
followed. However, due to the presence of a Planetary 
Gearset and three different power sources, namely Motor/
Generator 1 (MG1), Motor/Generator 2 (MG2), and the ICE, 
efficiently controlling the power split is far from trivial and 
a detailed description of the equation governing the PG is 
needed to better understand the choices to be made by 
the controller.

Powertrain Formulation
In the literature, different formulations are found for 
describing the behavior of a planetary gearset depending on 
the level of accuracy to be achieved. The lever analogy diagram 
[23] has been widely used due to its simplicity and the equa-
tions to correlate the different speeds and torques of carrier, 
sun and ring gears have been formulated by Liao et al. [24]. 
In general, after constructing the free body diagram for a 
single planetary gearset, an assessment of the forces acting on 
each gear can be made, leading to the formulation of relation-
ships as depicted in the subsequent equations:

 � �
�

� �
�C S R�

�� � � �� �
1

1 1
 (5)

 T T
S

C� �
�� �1 �

 (6)

 T TR C� �
�� �
�
�1

 (7)

 T TR S� �  (8)

Where subscripts C, S, and R stand for carrier, sun and 
ring gears respectively, that are the main elements in a plan-
etary gearset. It is worth noting that one could substitute the 
term α with the ratio between number of teeth of ring over 
sun gears to obtain the same formulation as in [24]. In the 
eFlite® configuration, MG1 is attached to the sun gear, the ICE 
is attached to the carrier and the OWC allows the ICE to spin 
freely only in one direction (preventing negative ICE speeds). 
The ICE speed can therefore be decoupled by the wheels speed 
which allows improving the operational efficiency of this 
component. MG2 is instead connected to the outer ring 
through a transfer gear. To help the readers, a qualitative sche-
matics of the powertrain is illustrated in Fig. 1. The torque 
balance at the differential input shaft is provided by the 
following equation:

 T T T
R CD MG TG

whl

diff
� � � �� �

�2  (9)

 FIGURE 1  Qualitative illustration of the eFlite® powertrain representing the planetary gearset, counter-driven gear and transfer 
gear. In brackets the power sources connected to the different gears.

TABLE 1 Chrysler Pacifica Specifications

Characteristics Value Unit
Curb weight, m 2381 kg

Road load coefficient A, A 139.7 N

Road load coefficient B, B 4.83 N/(m/s)

Road load coefficient C, C 0.50 N/(m/s)2

Wheel radius, rwhl 0.37 m

Final drive ratio, τdiff 3.59 -

Planetary Gearset ratio, α 3.15 -

Transfer gear ratio, τTG 2.59 -

Counter-driven gear ratio, τCD 1.01 -

Battery nominal capacity 16 kWh

ICE displacement 3.6 L

MG1 continuous peak power, kW 85 kW

MG2 continuous peak power, kW 63 kW
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Where τTG is the transfer gear ratio between MG2 and the 
differential. The instantaneous value of TR can be derived 
using (7) or (8) depending on hybrid electric operation or pure 
electric operation being set by the controller, respectively. It 
is also worth mentioning that the previous equations do not 
consider any gear meshing loss or efficiency. To this end 
however, 90% and 95% efficiencies have been considered in 
the differential and in each gear meshing, respectively. Once 
the torques required to meet the drive cycle are calculated, it 
is possible to get the fuel consumption rate using a fuel map 
of the ICE (as a function of speed and torque) and the battery 
power request, as follows:

 P P P P P Pbatt MG loss MG MG loss MG aux� � � � �1 1 2 2, ,  (10)

Where PMG1 and PMG2 are the powers of MG1 and MG2, 
respectively; Ploss, MG1 and Ploss, MG2 are the power losses due to 
various effects (such as core losses and copper losses for 
example) computed through lookup tables; Paux is the auxiliary 
power request, a constant equal to 600 W. By exploiting the 
knowledge of battery power request it is possible to derive the 
instantaneous variation in battery SOC and hence in the 
energy stored in the battery using:

 I V V R P
Rbatt

OC OC batt batt

batt
�

� �2 4
2

 (11)

 dSOC
dt

I
C

batt

nom
� �  (12)

Where Ibatt is the current flowing through the battery and 
it is computed as in (11) based on a 0-th order model of the 
battery. Cnom is the nominal capacity of the battery expressed 
in ampere-seconds, while VOC and Rbatt are the open-circuit 
voltage and the equivalent internal resistance of the battery 
which are both expressed as 1-D lookup tables as a function 
of SOC.

Dynamic Programming 
Formulation
In the following section, the three different formulations used 
to virtually simulate the fuel economy of a Chrysler Pacifica 
Hybrid are introduced.

Dynamic Programming is a powerful tool that solves 
multi-stage decision problems and provides the global optimal 
solution for a specified control scenario. It requires the formu-
lation of control inputs U, state variables X, and a cost func-
tional J to be minimized. Among the main drawbacks, DP is 
bound to run backwardly the simulation hence it needs the a 
priori knowledge of the entire problem. In the case of HEV 
controllers, it particularly requires the knowledge of the entire 
drive cycle in advance. The tool then starts from the end of 
the drive cycle and computes backwardly at each time-step 
the cost function for each control input at each combination 
of values for the state variables. The optimal solution stems 
from the trajectory associated to the lowest value of J, and its 
guaranteed by the Bellman’s principle.

Benchmark DP Formulation
It is true that a vast number of DP formulations can be found 
for a Toyota Hybrid System powertrain, however the same 
does not apply for the eFlite®. A brief description of the refer-
ence DP for this analysis is therefore required. Its formulation 
is taken from [17] and it embeds three control inputs (ICE 
speed, ICE torque, and MG1 torque) and two state variables 
(battery SOC and ICE state which is a binary variable). 
Regarding the control inputs:

 1. ICE speed is needed to solve (5) and determine the 
sun speed having the ring speed imposed by the 
wheels. Moreover, HEV and Electric Vehicle (EV) 
mode can be easily described by ICE speed being 
different or equal to zero, respectively.

 2. The ICE torque is used when operating in HEV mode 
to compute both MG1 torque and ring torque using 
(6) and (7), respectively.

 3. The MG1 torque is required to determine the ring 
torque using (8) when operating in EV mode. In this 
operating conditions, the ICE is turned off and the 
reactive torque at the carrier is provided by the One-
Way Clutch, thus allowing the combined motoring of 
MG1 and MG2.

For what concerns the state variables, SOC dynamics is 
needed to update battery characteristics. On the other hand, 
ICE state is used to penalize turning on and off the engine 
frequently over time. The cost function J to be minimized can 
be  found below along with the mechanical and battery  
constraints.

 J x t u t t
m x t u t t

t

t f

crank crank

f

� � � �� � �
�

�
�� � � � �� � ��

��
�

�

�, ,
, ,

0



� � ��� dt
 

subject to:

 � � �ice ice icet,min ,max� � � �  

 � � �MG MG MGt1 1 1,min ,max� � � �  

 � � �MG MG MGt2 2 2,min ,max� � � �  

 T T t Tice ICE ice ice ICE,min ,max� �� � � � � � � � 

 T T t TMG MG MG MG MG1 1 1 1 1,min ,max� �� � � � � � � � 

 T T t TMG MG MG MG MG2 2 2 2 2,min ,max� �� � � � � � � � 

 �ice EVt t�� � � 0 

 T t tice EV�� � � 0 
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 SOC t SOC tend i� � � � � 
As seen, the cost function mainly aims at minimizing the 

fuel consumption over the drive cycle, however a second term 
(i.e., a weighting constant factor αcrank and a flag μcrank) was 
added to penalize frequent ICE cranking and improve driv-
ability. Computational time and memory requirement increase 
exponentially with the number of control inputs and state 
variables. Therefore, two different solutions are proposed next 
to tackle these issues without losing the optimality of the 
solution and complying with the constraints above.

Proposed DP Formulations
The 2-Controls formulation decreases the number of control 
inputs to two by implementing a new variable, i.e., the normal-
ized torque Tnorm:

 T T
Tnorm

X

X X
� � �,max �

 (13)

Tnorm is a value ranging from 0 to 1 which expresses the 
torque of a certain power component TX (i.e., ICE or MG1 in 
this study) as a function of its maximum value TX,max. This 
latter value is obtained by interpolating in a 1D lookup table 
as a function of the instantaneous rotational speed of the 
component ωX. The curve describing the maximum torque 
capability as a function of the angular speed is provided by 
the manufacturer of the power component. Then, the ICE 
torque and the MG1 torque afterwards can be  computed 
as follows:

 

T

T T
if mode HEV

if mode EV

ICE

norm ICE ICE

�

� � �
�

�

�
�
�
�

�

�
�
�
�

,max �
 

 

0

 (14)

 

T
T

T T

if mode HEV

if mode
MG

ICE

norm MG MG

1

1 1

1
�

� �� �

� � �

�

�
�

�
�

/

,max

�

�

 

 EEV  (15)

where mode is a binary variable detecting pure electric 
or hybrid electric powertrain operation. As a reminder, pure 
electric and hybrid electric operations differ in this work by 
the controlled value of ICE speed being null or greater than 
zero, respectively. It is worth pointing out that the torque 
equations of a PG already mentioned in (6) and (7) are still 
true, nevertheless in EV mode the OWC bears the resistive 
torque that allows the power to flow from the sun gear (MG1) 
to the ring gear. Regarding the state variables, no changes have 
been made to keep the same dynamics of the initial problem. 
The 1-Control version of DP proposed in this study involves 
a further reduction in the number of control inputs. The oper-
ating points of the ICE are constrained to be  only on its 

Optimal Operating Line (OOL). The OOL defines the combi-
nations of ICE speed and torque that for a given mechanical 
power result in the lowest fuel consumed (also seen as the 
lowest Brake Specific Fuel Consumption, BSFC). The only 
control input relates to the ICE power request in this case. 
This is in turn translated into a combination of ICE speed and 
torque using the OOL. The control input ranges from 0 to 
PICE, max that is the maximum value of mechanical power deliv-
erable buy the ICE. Setting zero as the value of ICE power 
corresponds to select the EV mode. Due to the possible elec-
trical power split between MG1 and MG2 in pure electric 
mode, a lookup table correlating the optimal MG1 torque to 
the vehicle speed and the differential torque was created offline 
by minimizing the battery power request. The obtained map 
is shown in Fig. 2. As a reminder, for each controlled value of 
MG1 torque, the corresponding MG2 torque can be computed 
using (8). Finally, a summary of the diverse control inputs in 
the different formulations is found in Table 2 together with 
the grids information.

 FIGURE 2  Map of optimal MG1 torque in Nm as a function 
of vehicle velocity and differential torque request.

TABLE 2 Summary of DP formulations

DP version U Grids
Benchmark

ω

1

ICE

ICE

MG

T

T

∈  

ω ω ∈  

∈  







40 1

45 1

40 1
1

0

0

0

,
ICE ,max

,
idle max

,
MG ,max

: T ,

, : ,

: T ,

2 - Controls

ω

norm

ICE

T ∈  
ω ω ∈  




40 1

45 1

0 1
0

,

,
idle max

: ,
, : ,

1 - Control PICE ∈   50 10 ,
ICE ,max: P
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Results
The objective of this paper is to provide and validate a fast 
optimal controller based on DP to solve the energy manage-
ment problem of a eFlite® HEV powertrain. In this section, 
the results obtained using each of the three different DP 
formulations are compared both in terms of fuel economy 
and computational time.

To implement the DP based controller, a MATLAB 
toolbox called DynaProg [25] has been chosen. The different 
simulations have been performed on a laptop computer 
equipped with Intel Core i7-9850H (2.6 GHz) and 16 GB of 
RAM. To ensure fairness in the comparison between the 
different DP versions, the same grid of state variables has been 
used, i.e., 301 values of SOC ranging from 10% to 40% and 2 
values (1/0) for the ICE state. Four different conventional drive 
cycles have been considered, namely the Worldwide 
Harmonized Light Vehicles Test Procedure (WLTP), the EPA 
Urban Dynamometer Driving Schedule (UDDS), the Highway 
Fuel Economy Test (HWFET) and the Supplemental Federal 
Test Procedure (US06). It is worth mentioning that the 
comparison has been made on a charge sustaining strategy 

by constraining the final SOC of every drive mission to 
be equal to the initial one, i.e., 25% SOC.

The differences between the proposed 2-Controls and 
1-Control DP versions and the benchmark DP formulation in 
terms of predicted fuel economy and computational time are 
reported in Table 3 and in Table 4, respectively. Both tables 
present not only the absolute value but also a relative change 
with respect to the benchmark. Comparing these two tables, 
it is possible to see how the 2-Controls DP formulation obtains 
approximately equal results with respect to the benchmark 
while significantly decreasing the computational time of 1 – 2 
orders of magnitude. A drastic drop in computational time is 
obtained by the 1-Control DP, where up to 3 orders of magni-
tude of difference are observed in comparison with the bench-
mark DP formulation. Moreover, it can be noted that the fuel 
economy is minimally impacted by the constraint on the ICE 
(i.e., working on the OOL) resulting in a maximum difference 
of approximately 1.5%, proving the robustness of the proposed 
1-Control formulation in terms of fuel economy capability for 
different driving scenarios.

To provide a deeper comparison and further analyze the 
controllers, Fig. 3 shows the ICE operating points for the three 
different DP versions in the WLTP. It is worth mentioning 
that the map of the ICE comes from a generic 3.3 L naturally-
aspirated engine [26] with similar characteristics to the one 
found in the commercially available Chrysler Pacifica Hybrid. 
It can be immediately seen in Fig. 3(c) how the ICE is operating 
only on the OOL at any given time, whereas the other two 
versions show a wider area of operation. Therefore, in the 
1-Control DP formulation the ICE is consistently operated at 
its optimal efficiency points. However, this optimized opera-
tion does not necessarily result in overall improved efficiencies 
of the driveline. This limitation arises from the constrained 
space of control variables that the optimization algorithm can 
explore. Specifically, when calculating the average driveline 
efficiency by dividing energy at the wheels by the sum of fuel 
and battery energies, it becomes evident that the 3-Controls 
DP formulation consistently achieves higher efficiency values. 
To provide a comprehensive analysis, Table 5 presents the 
average driveline efficiency values obtained from the three 
different DP formulations across the considered drive cycles 
in this study.

TABLE 3 Fuel economy results for the three DP versions.

Cycle
Benchmark, 
L/100km

2 – Controls, 
L/100km

1 – Control, 
L/100km

WLTP 7.67 7.72 (0.7%) 7.78 (1.4%)

UDDS 6.48 6.56 (1.2%) 6.56 (1.2%)

HWFET 6.85 6.93 (1.2%) 6.94 (1.3%)

US06 9.76 9.76 (0.0%) 9.91 (1.5%)

TABLE 4 Computational time for the three DP versions.

Cycle Benchmark, s 2 – Controls, s 1 – Control, s
WLTP 3780.0 88.3 (÷43) 4.1 (÷945)

UDDS 2767 69.7 (÷40) 3.4 (÷813)

HWFET 1688.0 41.1 (÷41) 1.9 (÷888)

US06 1305.0 29.1 (÷45) 1.6 (÷816)

 FIGURE 3  Brake Specific Fuel Consumption (BSFC, expressed in kWh/g) map of a 3.3 L engine with scattered plot of the 
operating points in the WLTP for (a) 3-Controls, (b) 2-Controls, and (c) 1-Control DP formulations.
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Conclusions
The energy management of electrified vehicles is a crucial 
topic to ensure the optimal use of the different energy sources. 
Dynamic Programming has been often used in the last 
decades to solve any optimal control problem, with interesting 
performances in energy management of HEVs. Although DP 
can ensure the optimality of the solution in terms of fuel 
economy, it suffers from excessive computational burden and 
use of memory. In this study, two computationally lightweight 
DP formulations are proposed for a power split HEV 
powertrain with the objective of tackling these issues while 
ensuring the optimality of the identified control solution. To 
this end, two techniques are proposed for reducing the number 
of control variables that need consideration for solving the 
optimal energy management problem of the eFlite® as repre-
sentative power split HEV. The robustness of the two proposed 
DP controllers (2-Controls and 1-Control) is tested consid-
ering different driving cycles and benchmarking with the 
baseline DP formulation which considers the full set of control 
variables. The obtained improvements in computational effi-
ciency are substantial: on the same platform, 40-45 times and 
815-945 times lower computational times are obtained by the 
2-Controls and 1-Control DPs compared with the baseline 
formulation. Regarding the optimality of the HEV control 
solution in terms of fuel economy, the 2-Controls DP obtains 
close results in all the four drive cycles retained. The 1-Control 
DP limits the increase in predicted fuel consumption below 
1.5% compared with the benchmark. This confirms that 
constraining the ICE to work on the optimal operating line 
does not heavily affect the fuel economy results for the eFlite® 
powertrain considered in this study.

Possible future work could study more complex solutions 
to manage the optimal electrical split between the MGs while 
ensuring the computational rapidness. Finally, the proposed 
DP formulations could be used to develop predictive HEV 
controllers towards improved fuel economy in real-world 
driving. The enhancement in computational efficiency 
achieved in this work could enable the practical on-board 
implementation in this framework.
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Definitions/Abbreviations
BEV - Battery electric vehicle
BSFC - Brake specific fuel consumption
DP - Dynamic programming
ECMS - Equivalent consumption minimization strategy
EMS - Energy management strategy
EPA - Environmental protection agency
EVT - Electronically variable transmission
FCHEV - Fuel cell hybrid electric vehicle
HEV - Hybrid electric vehicle
HWFET - Highway fuel economy test
ICE - Internal combustion engine
MG - Motor/generator
OCP - Optimal control problem
OOL - Optimal operating line
OWC - One-way clutch
PGS - Planetary gearset
PHEV - Plug-in hybrid electric vehicle
PMP - Pontryagin’s minimum principle
SOC - State of charge
THS - Toyota hybrid system
UDDS - Urban dynamometer driving schedule
US06 - Supplemental Federal Test Procedure
WLTP - Worldwide harmonized light vehicles test procedure
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