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Abstract

This report presents the technical details of our approach
for the EPIC-Kitchens-100 Unsupervised Domain Adapta-
tion (UDA) Challenge in Action Recognition. Our approach
is based on the idea that the order in which actions are per-
formed is similar between the source and target domains.
Based on this, we generate a modified sequence by ran-
domly combining actions from the source and target do-
mains. As only unlabelled target data are available under
the UDA setting, we use a standard pseudo-labeling strat-
egy for extracting action labels for the target. We then ask
the network to predict the resulting action sequence. This
allows to integrate information from both domains during
training and to achieve better transfer results on target. Ad-
ditionally, to better incorporate sequence information, we
use a language model to filter unlikely sequences. Lastly,
we employed a co-occurrence matrix to eliminate unseen
combinations of verbs and nouns. Our submission, labeled
as ‘sshayan’, can be found on the leaderboard, where it cur-
rently holds the 2nd position for ‘verb’ and the 4th position
for both ‘noun’ and ’action’.

1. Introduction

Egocentric action recognition, aiming to understand hu-
man activities from a first-person view, has gained signif-
icant attention with the rising popularity of wearable de-
vices. Those have provided access to a vast amount of data,
creating opportunities for applications in augmented reality,
robotics, and human-computer interaction.

However, achieving high accuracy on new data becomes
challenging due to the so called domain shift, which refers
to the difference in terms of distribution between the train-
ing (source) and test set (target), caused by changes in visual
appearance or contexts, leading to a significant performance
gap. To address this challenge, the Unsupervised Domain
Adaptation (UDA) setting has been proposed, where an un-
labeled set of samples from the test distribution is available
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Figure 1. Example of action sequence similarities across two dif-
ferent kitchens. When “picking something out of the fridge”, the
sequence “open”, “pick-up”, and “put-down” repeats across the
two domains.

during training for adaptation.
Human activities tend to follow patterns as actions are

strongly influenced by the temporal context in which they
are performed. For example, regardless of the person and
the environment, putting something in the fridge always in-
volves the same steps, as shown in Figure 1. Based on this
simple observation, we propose to use sequential prediction
and the inherent relationships between action sequences to
mitigate the negative effects of domain shift in EAR.

Our approach consists in replacing random action clips
in a source domain sequence with action clips from the tar-
get domain that represent the same action. By training the
model to predict the sequence of actions in the modified
sequences, we encourage the model to learn common se-
quence patterns that exist across different domains, aiming
at mitigating the influence of domain shift. Additionally, by
taking inspiration from [5], we integrate a language model
into our framework to better incorporate the context derived
from the surrounding actions. Finally, we compute a co-
occurrence matrix on the action of the source domain to fil-
ter out improbable predictions of verb and noun pairs, thus
further refining the prediction process, as done in [1].
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Figure 2. Overall architecture of the proposed framework. First, we randomly choose an action among the n actions of the sequence from
the source domain. Next, we use pseudo-labels on the target to find a substitute for the selected action sharing the same verb and noun
labels. RGB, optical flow and audio features of the samples in the sequence are fed to a transformer to enable information sharing between
neighbouring actions. A domain classifier encourages the network to produce domain agnostic features. Finally, we use the language
model to refine the sequence predictions.

We evaluate our approach on the EPIC-Kitchens Un-
supervised Domain Adaptation challenge [2], showcasing
the effectiveness of exploiting sequential information in ad-
dressing the domain gap.

2. Our Approach
In this section, we describe our method in details. We in-

troduce our approach to model temporal dependencies be-
tween actions and to adapt action sequences across differ-
ent domains. Finally, we refine the predictions of our model
using a language model and we reduce the likelihood of ac-
tions not seen during training. Figure 2 presents the differ-
ent components of our method.

2.1. Mixed Sequence Generation

The main objective of our method is to augment action
sequences from the source domain with samples from the
target sharing the same verb and noun labels. As labels are
not available in the target domain, we assign pseudo-labels
to the target data, based on a confidence threshold λ. For
each target sample, we define the confidence of the model
predictions as (pv + pn)/2, where pv and pn represent the
probabilities of the top verb and noun predictions respec-
tively. Samples whose prediction confidence falls below the
threshold are not considered in the mixing process.

Given a sequence consisting of w actions, our goal is
to predict the central action i within the temporal window
(i − w/2 < i < i + w/2), while exploiting the context
provided by both preceding and subsequent actions.

To incorporate target domain information, we introduce
a domain adaptation approach for replacing action clips
from the source domain with action clips from target distri-
bution representing the same action. More specifically, for
each sequence of actions Si = {s−w/2, . . . , s0, . . . sw/2}
from the source domain, we randomly select one or more
item (si) - excluding the central action - and replace them
with an equivalent ti sampled from the target domain, with
the constraint that ti pseudo-labels match verb and noun la-

bels of si. The model is trained to predict the verb and
noun labels of the central action of the mixed sequence
S̃i = {s−w/2, ..., ti, ..., sw/2}.

2.2. Sequence Predictor

To integrate sequences in the action recognition process,
we take inspiration from [5] to model temporal relations
within the actions window using a transformer model.

Positional Embedding In the first step, we concatenate
input features of different modalities and project the output
to a lower dimension D. Then, we apply learnt positional
embedding to tag the position of each action in the temporal
window. Finally, we also append to the sequence two sep-
arate tokens for verb and noun prediction of central action.
The resulting sequence is indicated by Xe.

Transformers Encoding Once temporal consistency is
encoded in positional embeddings, the resulting sequence is
fed to a transformer encoder f(.). The attention layers in the
transformer allow actions inside the sequence to attend to all
the surrounding actions, possibly exchanging relevant clues
for the classification of the central action. This operation
can be expressed as Z = f(Xe), where Z represents the
output of the transformer module, and Xe is the output of
positional embedding.

Action Classifier Finally, samples in the sequence are
classified using two heads, to predict the verb and noun
labels separately. As in [5], we define two classification
losses. The primary loss function is defined as the cross en-
tropy of the central action of the sequence, computed sep-
arately for verb and noun predictions. Then, to further en-
courage the network to model temporal relations between
all neighbouring actions in the sequence, we also ask the
model to predict the labels for all the actions in the sequence
through standard cross entropy loss, which we refer to as the
mixed sequence prediction loss (LMS).

To encourage the network to learn domain agnostic rep-
resentations, we also include a domain adversarial module
with Gradient Reversal Layer [4] to produce a domain clas-
sification loss LDC for all the actions in the sequence. The
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resulting loss is thus determined by the summation of the
domain discriminator loss LDC and the sequence predic-
tion loss LMS .

2.3. Language Model

Inspired by MTCN [5], we introduce a Language Model
(LM) to filter out unlikely action sequences. We adopt the
Masked Language Model (MLM) approach as in [5], in
which the model is trained to predict the masked actions
within a sequence from the source data, thus encouraging
the model to derive high-level dependencies between the
actions that make up the sequence. At inference time, to
integrate the LM into our framework, we generate all pos-
sible sequences of size w using the top-k predictions of the
mixed sequence model for each action and select the most
probable sequence according to the LM. The final predic-
tion of the model is a linear combination of the predictions
from the mixed sequence yMS and the output of the lan-
guage model for the most probable sequence yLM :

yfinal = (1− β)yMS + βyLM . (1)

2.4. Co-Occurrence

To further refine the model predictions, we compute a
co-occurrence matrix MCO of verbs and nouns labels in
the source domain, as introduced in [1]. Each entry MCOi,j

stores the occurrences of verb class i and noun class j to-
gether in the source data. At test time, the probability of
predicting verb and noun pairs which are not present in the
source data reduces by a factor of 0.01, i.e. we use the sim-
ple assumption that actions not present in the source data
are unlikely to be found in the target data.

3. Experiments
3.1. Implementation Details

Sequence Predictor Architecture. To train the mixed
sequence model, we use the pre-extracted Temporal Bind-
ing Network (TBN) [6] features from the Unsupervised
Domain Adaptation (UDA) splits of the EPIC-Kitchens
dataset. These features were available for three modalities:
RGB, Flow, and Audio. Each modality comprises 25 clips
with features size 1024 and we use TRN [8] to temporally
aggregate the sample clips.

The model is trained for 100 epochs using a SGD opti-
mizer, with learning rate 0.005. Pseudo-labels for the target
data are generated with a confidence threshold of λ = 0.75.
During each epoch, we mix actions between the source and
target domains. Specifically, we replace one action from the
source domain with a corresponding action from the target
domain using a temporal window of length 5.

Language Model. The language model is trained for
an additional 100 epochs using the Adam optimizer, with a

loss value set to 0.001, and fine-tuned on the source train-
ing set labels. The training process incorporates a temporal
window (w) of size 5. The weight coefficient (β) that com-
bines the predictions of the language model and sequence
predictor is set to 0.25. To score sequences, the top-5 ac-
tions predicted by the model are taken into account.

3.2. Results

Table 1 presents an ablation study of our method, us-
ing three modalities and TBN features. The sequence at-
tention mechanism from MTCN [5] enhances the accuracy
compared to the baseline, highlighting the significance of
temporal context reasoning even in the presence of domain
shift. Furthermore, the inclusion of target and source mix-
ing further boosts the accuracy. Additionally, the introduc-
tion of a domain classifier aids in better integration of target
information into our model, resulting in further improve-
ment. Subsequently, we apply to filter improbable predic-
tions using the language model, leading to enhanced action
accuracy, and demonstrate the role of temporal context in
alleviating the domain gap. Lastly, the inclusion of the co-
occurrence matrix yields a final improvement to the model’s
performance, especially on the action metric as it weakens
the probability of the unlikely verb and noun pairs.

3.3. Ablations

Sequence length. Table 2 shows the effect of the
number of actions w in the temporal window on verb and
noun classification accuracy, without mixing actions be-
tween source and target. Best results on action category
are obtained by using a sequence of length w = 5.

Number of replacements. Table 3 shows the effect
of replacing one or more actions in the sequence with the
target before the sequence is sent to the transformer. Im-
provements in accuracy on all metrics are observed when
at least one sample is substituted, while the substitution of
more samples only improves on individual categories.

3.4. Model Ensemble

For the final submission, we ensemble our technique
with different backbones, using SlowFast [3] and Tem-
poral Shift Module [7] trained on EPIC-Kitchens-55 with
ResNet50. The performances of the individual backbones
and the ensemble are presented in Table 4. Our approach
is visible on the official leaderboard and shown in Table 5,
along with the top five teams’ performance.

4. Conclusion
In conclusion, this report presents our sequential ap-

proach to the EPIC-Kitchens-100 unsupervised domain
adaptation challenge. We propose a mixed sequence strat-
egy to improve the transferability of our model across do-
mains. Furthermore, we leverage a language model and
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Sequence len > 1 LMS LDC LM MCO Verb Noun Action

✗ ✗ ✗ ✗ ✗ 51.17 28.88 20.93
✓ ✗ ✗ ✗ ✗ 51.27 30.48 21.59
✓ ✓ ✗ ✗ ✗ 53.22 32.68 23.40
✓ ✓ ✓ ✗ ✗ 54.30 33.31 24.58
✓ ✓ ✓ ✓ ✗ 55.22 34.07 24.99
✓ ✓ ✓ ✓ ✓ 54.95 34.15 25.46

Table 1. Ablation study of the different components of our architecture on TBN features. The table shows the Top-1 accuracies starting
from the baseline, e.g. each action sample is classified individually, and adding sequence predictions with a temporal window of 5 actions,
mixing with the target data (LMS), adversarial alignment using a domain classifier (LDC ), predictions refinement using a language model
(LM) and pruning of the unlikely verb and noun pairs using a Matrix of Co-Occurrences (MCO).

Sequence length Verb Noun Action

1 51.17 28.88 20.93
3 50.97 30.23 21.18
5 51.27 30.48 21.59
9 51.31 30.34 21.41

Table 2. Top-1 accuracy using different numbers of actions in the
temporal window w on the EPIC-Kitchens-100 validation set.

# Replacements Verb Noun Action

0 51.27 30.48 21.59
1 53.22 32.68 23.40
2 53.13 32.07 23.73
3 53.64 32.70 23.59

Table 3. Top-1 accuracy using a different number of target re-
placements results within a sequence of w = 5 actions. Results
reported on the EPIC-Kitchens-100 validation set.

Backbone Verb Noun Action

TBN [6] 54.30 33.31 24.58
TSM [7] 54.13 33.25 24.53

SlowFast [3] 54.44 30.74 23.38
Ensemble(E) 56.97 35.64 26.50

E + LM 57.46 36.44 27.25
E + LM + MCO 57.24 36.42 27.63

Table 4. Top-1 accuracy using our domain adaptation method with
different backbones on the EPIC-Kitchens-100 validation set. LM:
Language Model. MCO: Matrix of Co-Occurrences.

co-occurrence matrix to integrate contextual information by
filtering out improbable combinations of verbs and nouns.
Through these techniques, our model achieves significant
performance improvements.
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