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What can a cook in Italy teach a mechanic in India?
Action Recognition Generalisation Over Scenarios and Locations

Chiara Plizzari♣* Toby Perrettq Barbara Caputo♣ Dima Damenq

♣ Politecnico di Torino, Italy q University of Bristol, United Kingdom

Abstract

We propose and address a new generalisation problem:
can a model trained for action recognition successfully
classify actions when they are performed within a previ-
ously unseen scenario and in a previously unseen loca-
tion? To answer this question, we introduce the Action
Recognition Generalisation Over scenarios and locations
dataset (ARGO1M), which contains 1.1M video clips from
the large-scale Ego4D dataset, across 10 scenarios and 13
locations. We demonstrate recognition models struggle to
generalise over 10 proposed test splits, each of an unseen
scenario in an unseen location. We thus propose CIR, a
method to represent each video as a Cross-Instance Re-
construction of videos from other domains. Reconstruc-
tions are paired with text narrations to guide the learning
of a domain generalisable representation. We provide ex-
tensive analysis and ablations on ARGO1M that show CIR
outperforms prior domain generalisation works on all test
splits. Code and data: https://chiaraplizz.github.io/
what-can-a-cook/ .

1. Introduction
A notable distinction between human and machine intel-

ligence is the ability of humans to generalise. We can see
an example of the action “cut” performed by a cook in Italy,
and recognise the same action performed in a different ge-
ographic location, e.g. India, despite having never visited.
We can also recognise actions within new scenarios, such
as a mechanic cutting metal, even if we are unfamiliar with
the tools they use.

This problem is known as domain generalisation [62],
where a model trained on a set of labelled data fails to
generalise to a different distribution in inference. The gap
between distributions is known as domain shift. To date,
works have focused on generalising over visual domain
shifts [25, 46, 31, 10, 39]. In this paper, we introduce the
scenario shift, where the same action is performed as part

*Work carried during Chiara’s research visit to the University of Bristol

Figure 1: Problem statement and samples from the ARGO1M
dataset. The same action, e.g. “cut”, is performed differently based
on the scenario and the location in which it is carried out. We
aim to generalise so as to recognise the same action within a new
scenario, unseen during training, and in an unseen location, e.g.,
Mechanic ( ) in India ( ).

of a different activity, impacting the tools used, objects in-
teracted with, goals and behaviour. We combine this with
the location shift, generalising over both simultaneously.

In Fig. 1, the action “cut’ is performed using a knife

whilst cooking ( ), pliers whilst building ( ) and scissors
for arts and crafts ( ). Tools are not specific for a scenario
and can vary over locations – e.g. in Fig. 1, seaweed sheets
are cut with scissors while cooking in Japan. Generalising
would be best achieved by learning the notion of “cutting”
as separating an object into two or more pieces, regardless
of the tool or background location. Successful generalisa-
tion can thus enable recognising metal being “cut” by a me-
chanic in India using an angle grinder (Fig. 1 Test).

Our investigation is enabled by the recent introduction of
the Ego4D [17] dataset of egocentric footage from around
the world. We curate a setup specifically for action gener-
alisation, called ARGO1M. It contains 1.1M action clips of
60 classes from 73 unique scenario/location combinations.

To tackle the challenge of ARGO1M, we propose a new
method for domain generalisation. We represent each video



as a weighted combination of other videos in the batch, po-
tentially from other domains. We refer to this as Cross-
Instance Reconstruction (CIR). Through reconstruction, the
method learns domain generalisable video features. CIR is
supervised by a classification loss and a video-text associa-
tion loss. To summarise, our key contributions are:
• We curate the Action Recognition Generalisation dataset

(ARGO1M) from videos and narrations from Ego4D.
ARGO1M is the first to test action generalisation across
both scenario and location shifts, and is the largest do-
main generalisation dataset across images and video.
• We introduce CIR, a domain generalisation method

which exploits Cross-Instance Reconstruction and video-
text pairing to learn generalisable representations.
• We test CIR on the proposed ARGO1M, showing that

it consistently outperforms baselines and recent domain
generalisation approaches on 10 test sets.

2. Related Work
In this section, we review datasets and methods for Do-

main Generalisation. Domain Generalisation (DG) aims
to generalise to any unseen target domain, where data from
the target domain are not available during training [62]. We
note the distinction from the Domain Adaptation setting,
where unlabelled target samples are available during train-
ing [31, 44, 22]. Adaptation is out of scope for this paper.

2.1. Domain Generalisation (DG) datasets

Table 1 presents a comparison of vision datasets used
for domain generalisation. Existing image datasets present
a stylistic shift. For example, common objects in pho-
tos, paintings, clipart, cartoons and sketches [25, 49, 36],
or common categories across datasets [46]. Location shift
was explored in [2] which contains animals photographed
in different locations. Image DG works typically test on a
number of these benchmarks [19]. For video, shifts include
cross-dataset [8], synthetic-to-real [8], viewpoint [9], loca-
tion [31] and the passage of time [11].

Compared to prior works, ARGO1M is 21× the largest
video DG dataset and 1.8× image DG dataset. Impor-
tantly, ARGO1M introduces the scenario shift, which it
tests alongside the location shift, with many more domains
(up to 64 training domains and 10 test domains).

2.2. Domain Generalisation (DG) Methods

Previous approaches for DG are mostly designed around
image data [4, 51, 27, 13, 28, 3]. Feature-based alignment
between training domains can be used to learn domain-
invariant representations [27, 45, 16, 55]. This can be
achieved using a domain-adversarial network [16] or by
minimising distances such as Maximum Mean Descrep-
ancy (MMD) [27, 18]. This has recently been extended

Samples Domains
Dataset # Samples # Cls # Train # Test Domain Shift

Im
ag

es

PACS [25] 9,991 7 3 4 Style
VLCS [46] 10,729 5 3 4 N/A
OfficeHome [49] 15,588 65 3 4 Style
TerraIncognita [2] 24,788 10 3 4 Loc
DomainNet [36] 586,575 345 5 6 Style

V
id

eo
s

UCF-HMDB [8] 3809 12 1 2 N/A
Kinetics-Gameplay [8] 49,998 30 1 2 Realism
MM-SADA [31] 10,094 8 2 3 Loc
EPIC-Kitchens [11] 48,139 86 11 1 Time Gap
ARGO1M 1,050,371 60 54-64 10 (Scenario, Loc)

Table 1: Datasets for DG. ARGO1M tests combined scenario and
location shifts, and is the largest in # of samples & # of domains.

in [55], which handles class and domain imbalance with a
weighted loss. Data-based methods augment training data
to prevent overfitting [51, 50, 62, 59, 6, 32, 7, 53, 54]. For
example, data augmentation such as Mixup [57] has been
shown to improve accuracy on unseen data. Meta-Learning
methods simulate the distribution shift between seen and
unseen environments [24, 1, 13, 26, 29] using meta-train
and meta-test domains. Self-Supervision [4, 3] has been
shown to learn generalisable representations, with unsuper-
vised pretext tasks better capturing the shared knowledge
among multiple sources. A recent trend is to learn domain
prompts from visual [60, 42] or text information [33, 58],
or utilise cross-modal supervision [30]. For example, Do-
Prompt [60] learns training domain-specific prompts, and
predicts prompts for test samples as linear combinations of
training prompts. There are limited works on video do-
main generalisation. [39] relies on multi-modal alignment,
and [56] uses adversarial data augmentation.

For our comparative analysis, we extend a representa-
tive selection of prior works [53, 27, 45, 16, 55, 60] to the
large number of training domains in ARGO1M, and show-
case their limitation experimentally.

2.3. Cross-Attention for Reconstruction

The task of predicting masked tokens within one video is
now common in many representation learning approaches,
e.g. [15]. We differ from these works in reconstructing from
other videos in the batch. Such cross-instance attention has
been used to reconstruct query instances from examples of
each class for few-shot learning [12, 37]. In [38], few-shot
instances are reconstructed from samples of head classes.
In cross-modal retrieval [35], reconstruction through cross-
attention learns better video-text representations through a
caption generation task. Differently from prior works, we
reconstruct each video as a learned weighted combination
of videos from various domains.

3. ARGO1M Benchmark

In this section, we detail how we curated the ARGO1M
dataset from videos of the Ego4D [17] dataset.
Ego4D Background. Ego4D [17] contains untrimmed ego-



Figure 2: Frequency (log-scale) of the 60 classes in ARGO1M
across scenarios (top) and locations (bottom) - % in legend. Sce-
narios and locations are linearly scaled within each bar.

centric videos totaling 3,670 hours collected from 8 non-US
countries and 5 US states. These represent a variety of daily
life scenarios (e.g. playing cards, cooking, fixing the car).
Each video is associated with metadata reflecting the geo-
graphic location and the scenario it captures. Within each
video, timestamp-level narrations of actions are provided.
ARGO1M Metadata. The high-level scenario descriptions
in Ego4D are free-form and at times missing. We exclude
repetitive scenarios such as “talking” or “on a screen”, as
well as videos with missing or multiple scenarios. We
then manually cluster the free-form descriptions into 10

scenarios. These are: Cooking ( ), Building ( ), Arts

and crafts ( ), Cleaning ( ), Mechanic ( ), Garden-

ing ( ), Playing ( ), Shopping ( ), Sport ( ), Knit-
ting ( ). As an example, the free-form descriptions “Car
mechanic”, “Getting the car fixed” and “Bike mechanic” are
clustered into Mechanic.

Similarly, while text narrations offer the ground-truth for
the action in each video clip, they are also free-form sen-
tences. We extract action labels by parsing the text narra-
tions using spaCy [20]. We take verbs as actions and convert
these to closed-vocabulary classes, using modified cluster-
ing from [10] for the additional vocabulary. We have 60
action classes shown in Fig. 2. The distribution is long-
tailed, and each action class appears in multiple scenarios
and in multiple locations. On average each class appears in
8 scenarios and 11 locations.

In summary, ARGO1M contains 1,050,371 video clips.
Each video clip is captured in a given scenario (out of 10)
and geographic location (out of 13), with associated text
narration and action class (out of 60). For example, the
caption, “#Camera wearer (C) cuts the lemon strand.” is
associated to a clip recorded in “Italy” and capturing “Gar-
dening” scenario, with associated action label “cut”.
ARGO1M Splits. We curate 10 distinct train/test splits to
evaluate generalisation over scenarios and locations. We

(a) Accuracy without samples
from the test scenario or loca-
tion (Sc, Lo) as well as (Sc,
Lo)∪(Sc, Lo) and (Sc Lo).

(b) % of drop recovered when
adding examples from either sce-
nario (Sc, Lo) or location (Sc,
Lo).

Figure 3: Analysis of scenario and location shifts on ARGO1M.

select these 10 test splits so all scenarios are covered. For
each scenario, we select the location with the largest num-
ber of samples to form the test split for robust evaluation.
Given paired scenario and location (Sc, Lo), the corre-
sponding training split excludes all samples from the sce-
nario (Sc) as well as all samples from the location (Lo). We
show later in this section that these 10 splits present a vari-
ety of combined scenario/location shift properties.

The selected test splits and their [number of samples]
are: Gardening in Pennsylvania (Ga, US-PNA1) [16,410],
Cleaning in Minnesota (Cl, US-MN) [22,008], Knitting
in India (Kn, IND) [13,250], Shopping in India (Sh,
IND) [11,239], Building in Pennsylvania (Bu, US-PNA)
[99,865], Mechanic in Saudi Arabia (Me, SAU) [11,700],
Sport in Colombia (Sp, COL) [16,453], Cooking in Japan
(Co, JPN) [82,128], Arts and crafts in Italy (Ar, ITA)
[36,812], Playing in Indiana (Pl, US-IN) [17,379].
ARGO1M Domain Shift Analysis. We analyse the im-
pact of scenario and location shifts on the 10 test splits in
ARGO1M by varying whether samples from the test sce-
nario and/or location appear during training.

For all experiments we use Empirical Risk Minimization
(ERM) (i.e. standard cross entropy training) - see Section 5
for full experimental details. We present this early analysis
so as to understand the domain shift in ARGO1M . We take
the default setting (1) where no examples from the test sce-
nario or the location appear during training. We denote this
as (Sc, Lo), where overline indicates samples are excluded
from the training split. We compare this against cases where
(2) the training split also includes samples showcasing ei-
ther the test scenario or the test location but not both, i.e.
(Sc, Lo)∪(Sc, Lo), and (3) samples from the test scenario
in the test location are included, i.e. (Sc, Lo). In Figure
3a, performance improves from (1)→ (2) with a bigger im-
provement (2)→ (3). This demonstrates that generalisation
is particularly challenging when the combined test scenario
and location do not appear during training.

Next, we analyse how much the scenario and location
shifts individually contribute to this drop in performance.

1We use ISO country codes and US state codes.



Figure 4: CIR. One clip and corresponding narration are shown
along with the support set of other clips in the batch. Video f (v)
and text g(t) embeddings are extracted using trained encoders on
top of a frozen model. Cross entropy Lc, and two CIR objectives
Lrt andLrc are minimized. ForLrt, query Q and key K projections
are learnt for clips in the batch, followed by self-masking. Weights
are multiplied by f (v), and the reconstructed ⊕v is paired with
the corresponding narration. For Lrc, ⊕v′ is classified using the
classifier h. At inference, only the video classifier h is used.

We show the fraction of the drop recovered against (3) when
introducing training samples from either the test scenario
(Sc, Lo) or the test location (Sc, Lo). Fig. 3b shows the
impact of scenario and location varies widely for each test
split. For example, on (Sh, IND), training with the test
scenario shopping does not help, whereas the location In-
dia does. Conversely, on (Ar, ITA), training with arts and
crafts recovers 40% of the drop, whereas the location does
not help. This showcases that both shifts are interesting and
that our 10 test splits offer the diversity to study both.

4. Method
We propose Cross-Instance Reconstruction (CIR) to rep-

resent an action as a weighted combination of actions from
other scenarios and locations. We first formulate the input
to our method in Section 4.1, then focus on our proposed
CIR in Section 4.2. We detail training in Section 4.3 and
inference in Section 4.4.

4.1. Proposed Setting
Each training sample is a video clip v with a free-form

text narration t and an action class label y: (v, t, y). During
testing, we only require an input video clip, to predict the
action label. We use ŷ to refer to the predicted label.

We consider a composite function to classify actions:

ŷ = h ◦ f (v) (1)

where f is an encoder which learns a video representation

Figure 5: Video-text association. The reconstructed clip ⊕v′i (vi-
olet) is paired with its text representation. The reconstruction-text
loss Lr→t has the reconstruction ⊕v′i as positive and other text nar-
rations as negatives, and the text-to-reconstruction loss Lt→r has
other reconstructions ⊕v′j as negative.

suitable for domain generalisation, while h specialises in
learning an action classifier from that representation.

In addition to the cross-entropy loss Lc on h, we train
the domain generalisable representation f using two losses;
one cross-modal and another classification loss.

4.2. Cross-Instance Reconstruction (CIR)

Our main premise in cross-instance reconstruction (CIR)
is to encourage cross-domain representations of actions,
where domains are scenarios and locations. In doing so,
these representations can be domain generalisable, as it re-
constructs the same action from samples of other domains.

We learn-to-reconstruct any video clip from other video
clips in the randomly sampled batch, which we call the sup-
port set S . We jointly reconstruct all video clips in the batch,
at the feature level. Each video clip appears in the support
set of every other video clip in the batch. Before outlining
the training objectives, we first describe the reconstruction
process.

We learn two projection heads, which we term the query
and key heads, Q and K, in line with standard works [48],
along with a layer norm L. We calculate the correlation
between each pair of video clips, vi and v j, in the training
batch as:

ci j = L(Q( f (vi))) · L(K( f (v j))) (2)

The resulting weights ci j are softmaxed and self-masked to
avoid trivial reconstructions from the sample itself. The re-
constructed representation ⊕vi is a weighted combination of
all embeddings in its support set, using the weights ci j:

∀i : ⊕vi =
∑
j∈S

exp(ci j) f (v j)∑
k∈S exp(cik)

(3)

We directly weight f (v) – this is analogous to using the
identity matrix for the value head in standard attention.



4.3. Training CIR

Fig. 4 gives an overview of CIR which we detail next.
We intend for reconstructions to learn to generalise, and
backpropogate this ability to the video encoder f (Eq. 1).
We propose two reconstructions, each guided by a different
objective. The video-text association reconstruction (⊕v in
Fig. 4) uses text narrations so these cross-instance recon-
structions are associated with the video clip’s semantic de-
scription. The classification reconstruction (⊕v′ in Fig. 4) is
trained to recognise the clip’s action class.

For the video-text association reconstruction ⊕vi, we
use contrastive learning to push ⊕vi towards the embedding
of the text narration associated with the video, e.g. “He
turns the lawn mower”. Given a batch of video-text pairs
with corresponding reconstructions B = {(vi,⊕vi, ti)}Bi=1, the
resulting objective is formulated using Noise Contrastive
Estimation [34] over both reconstruction-text and text-
reconstruction pairs. Specifically, the reconstruction-text
loss considers the reconstruction ⊕vi as the anchor and the
negatives as other text narrations in the batch, such that:

Lr→t(⊕vi, g(ti)) = −
1
B

B∑
i

log
exp (s(⊕vi, g(ti))/τ)

B∑
j

exp
(
s(⊕vi, g(t j))/τ

) (4)

where s(·, ·) is the cosine similarity, g is the text encoder,
g(ti) is the encoded text narration, and τ is a learnable tem-
perature. The analogous loss Lt→r considers g(ti) as anchor
and other reconstructions as negatives. We showcase these
in Fig. 5. Both are combined to form our reconstruction-text
association loss Lrt = Lr→t +Lt→r.

Note that we avoid pairing this reconstruction with the
video embedding f (vi), instead of the text narration g(ti),
as it may convey domain-knowledge (i.e. scenario and lo-
cation), which might bias the reconstruction to videos from
the same scenario or location. Instead, the associated narra-
tion offers an instance-level description of the action, which
guides the reconstruction.

Our classification reconstruction ⊕v′i forms the input to
the classifier h, so as to recognise the action class such that
ŷ′ = h(⊕v′). We train with cross-entropy loss, which we
term Lrc to imply classifying reconstructions. We share the
weights between the classifier for videos and for reconstruc-
tions. Additionally, for this reconstruction, we compute
weights with cross-product attention: c′i j = f (vi) · f (v j), i.e.
by replacing c with c′ in Eq. 3. We thus do not learn addi-
tional query and key projections. We ablate these decisions
in Section 5.2.

We combine our two losses with the cross-entropy video
classification loss Lc (see Section 4.1). Our overall training
objective is:

L = Lc + λ1Lrt + λ2Lrc. (5)

where λ1 and λ2 weight the two reconstruction losses.

4.4. Inference

Once training concludes, f is capable of extracting
domain generalisable representations that maintain action
class knowledge without domain bias. Accordingly, at test
time, only video clips vi from the test split are processed by
the encoder f and classifier h. We do not require any nar-
ration during inference, and there is no reconstruction – i.e.
each clip is classified independently.

5. Experiments

We test the ability of CIR to generalise over scenarios
and locations by comparing it against baseline and state-
of-the-art domain generalisation methods adapted for our
setting. We then show ablations on its different components,
and visualise its impact with qualitative examples.
Dataset and metrics. We use the ARGO1M dataset in-
troduced in Section 3 for all experiments. We report top-1
accuracy for each test split, as well as mean accuracy.
Baselines. We first compare our method with the Empiri-
cal Risk Minimisation (ERM) baseline [47], as is standard
practice in DG works [4, 19]. This is cross-entropy (Lc)
without a generalisation objective. We then compare
against 6 methods for DG, all trained jointly with Lc.

Most DG methods do require domain labels during train-
ing. We thus provide these labels when required and mark
these methods with (*). At test time, all methods only use
video clip input, and are not aware of any domain knowl-
edge. Our baselines, ordered by publication year, are:

• CORAL* [45]: two mean and covariance distances are
minimised. These are the distances between means and
covariances of video representations from different sce-
narios, and the distances between means and covariances
from different locations.
• DANN* [16]: 2-fully connected layers form an adversar-

ial network to predict the location. A separate adversarial
network predicts the scenario.
• MMD* [27]: same as CORAL w/MMD distances [18].
• Mixup [53]: training data is augmented by performing

linear interpolations of samples and labels. Note that
Mixup is distinct from CIR as it focuses only on pairs of
videos selected randomly, rather than reconstructing from
all videos in the batch based on visual similarity. Addi-
tionally, Mixup changes the output label, while in CIR the
video class label is maintained.
• BoDA* [55]: minimises distances between domains, sim-

ilar to MMD, weighted by both domain size and class
size, in an effort to handle imbalance.
• DoPrompt* [60]: learns one domain prompt for each sce-

nario and location to be appended to visual features be-
fore classification.

We also provide random chance averaged over 10 trials.



DG Strategies

D A M P R T Ga
US-PNA

Cl
US-MN

Kn
IND

Sh
IND

Bu
US-PNA

Me
SAU

Sp
COL

Co
JPN

Ar
ITA

Pl
US-IN

Mean

Random 08.00 10.64 09.13 14.36 09.55 13.04 08.35 10.13 09.86 15.68 10.84
ERM 20.75 22.35 18.69 22.14 20.73 23.51 18.97 24.81 22.75 23.29 21.80
CORAL* [45] ✓ 22.14 22.55 19.07 24.01 22.18 24.31 19.16 25.36 23.89 25.96 22.86
DANN* [16] ✓ ✓ 22.42 23.85 19.27 22.89 22.23 23.70 18.64 25.86 23.86 23.28 22.60
MMD* [27] ✓ 22.42 23.60 19.66 24.46 22.08 24.64 19.59 25.87 23.84 24.78 23.09
Mixup [53] ✓ 21.97 22.21 19.90 23.81 21.45 24.35 19.01 25.90 23.85 24.41 22.69
BoDA*[55] ✓ 22.17 22.78 19.62 22.94 21.46 23.97 19.18 25.68 23.92 24.90 22.66
DoPrompt* [60] ✓ 21.92 22.77 20.40 23.67 22.75 24.67 18.24 25.04 24.74 25.24 22.94
CIR (w/o text) ✓ 23.39 24.52 21.02 26.62 24.64 27.00 19.66 25.42 25.71 30.17 24.81
CIR ✓ ✓ 24.10 25.51 20.46 27.78 24.93 26.83 19.75 26.34 25.67 30.94 25.23

Table 2: Top-1 accuracy on ARGO1M. Best results in bold, second best underlined (omitting CIR w/o video-text association loss, which
is greyed out but given for direct comparison showcasing strong performance w/o narrations). ∗: Domain labels required during training.
D: distribution matching, A: adversarial learning, M: label-wise mix-up, P: domain-prompts, R: reconstruction T: video-text association.

Cl
US-MN

Bu
US-PNA

Co
JPN

Ar
ITA

Pl
US-IN Mean

CIR (ours) 25.51 24.93 26.34 25.67 30.94 26.68
−Lrt 24.83 24.80 25.06 25.38 29.50 25.91
−Lrc 23.13 23.53 25.87 24.95 26.59 24.81
−Lrt − Lrc 22.35 20.73 24.81 22.75 23.29 22.78
⊕v cross-product 25.66 24.84 25.42 25.41 30.67 26.40
⊕v′ learnt att. 22.58 22.55 25.85 24.53 25.35 24.17
⊕v = ⊕v′ 23.47 23.33 25.53 24.06 28.74 25.03
h , h′ 24.47 23.12 26.74 24.74 27.37 25.29

Table 3: Ablation on CIR, showing the contribution of the two
reconstructions and alternative design choices.

Implementation details. We use SlowFast features [14],
pre-trained on Kinetics [5], provided with the videos of
Ego4D [17]. We represent the action by concatenating three
features, forming a 6912-D vector, as in [61], taken from
the action’s onset as associated with the narration, halfway
to the next action, and before the start of the next action.
For text features (512-D) we use the frozen text encoder of
the pre-trained CLIP-ViT-B-32 model [41]

f is implemented as 2 fully connected layers of hidden
dimension 4096 and output dimension 512, with a ReLU ac-
tivation function and a Batch Normalisation layer [21]. g is
implemented as 2 fully connected layers with 512 hidden
dimension and a ReLU activation function. The dimension
of query and key embeddings for reconstruction is 128.

We use a batch size of 128 for all experiments and meth-
ods, and train for 50 epochs using the Adam optimiser [23].
The learning rate is set to 2e−4 for CIR, decaying by a fac-
tor of 10 at epochs 30 and 40. We set λ1 = 1 and λ2 = 0.5
(Eq. 5). Ablation on hyperparameters is in the Supplemen-
tary. Training takes 8 hours on one Nvidia P100 GPU.

5.1. Results

Table 2 shows CIR outperforms all previous approaches,
on every test split, by up to 4.9%, and is on average 2.1%
better than the second best method. Compared to the ERM
baseline, CIR outperforms by 3.4% on average and up to
7.7%. The improvement varies across splits, with the small-

SL SS OL OS
Cl

US-MN
Bu

US-PNA
Co

JPN
Ar

ITA
Pl

US-IN Mean

✓ ✓ ✗ ✓ 25.01 24.86 25.73 25.99 30.69 26.46
✓ ✓ ✓ ✗ 25.00 25.05 26.07 25.62 30.98 26.55
✓ ✓ ✗ ✗ 24.87 24.68 25.77 25.38 30.07 26.15

✗ ✓ ✓ ✓ 24.89 25.13 26.05 25.80 30.47 26.47
✓ ✗ ✓ ✓ 25.22 24.99 26.34 25.84 30.25 26.53
✗ ✗ ✓ ✓ 25.17 24.97 26.36 25.61 30.31 26.48

✓ ✓ ✓ ✓ 25.51 24.93 26.34 25.67 30.94 26.68

Table 4: Effect of masking samples in the support set used for re-
construction. Columns indicate whether the query can (✓) or can-
not (✗) attend to samples from the Same Scenario/Location (SS,
SL) or Other Scenario/Location (OS, OL) based on the domains
they belong to. Note that CIR (bottom) does not use any masking.

est improvements occurring on harder splits – those with
lower ERM baselines, e.g. (Kn, IND) and (Sp, COL).

CIR does not use any domain labels during training,
which is a common strategy for other methods (marked by ∗
in Table 2), but instead assumes access to textual narrations.
We also report results of CIR without text (i.e. without Lrt)
or domain labels showcasing strong average performance
for CIR with less supervision than other methods.

The second best performing method varies per split,
showcasing the complexity of the problem as well as the
need for multiple test splits to properly assess domain gen-
eralisation approaches. Methods that learn domain invari-
ant visual features by matching distributions or via domain
prompts seem to struggle with the scenario shift proposed
in ARGO1M. Results of CIR show that reconstruction and
usage of text narrations are an effective alternative.

5.2. Ablations

We use the 5 largest test splits for all ablation results.
CIR Ablation. CIR has two reconstruction objectives, and
three architectural choices for reconstruction, which are ab-
lated in Table 3. For the two objectives, the one with the
largest impact differs per split, with the classification re-
constructions (Lrc) performing better on average (shown by



Figure 6: Accuracy improvement of CIR over ERM using the
same training: (1) neither the test scenario nor location appears
in training (Sc,Lo), (2) w/ scenario samples ((Sc,Lo), (3), w/ loca-
tion samples(Sc,Lo)), and (4) w/ both ((Sc, Lo)∪(Sc, Lo)).

worse results when it is excluded). Both outperform the
baseline (- Lrc - Lrt) without reconstruction by a large mar-
gin. We also ablate other decisions in the reconstruction.
Recall that ⊕v is computed using learnt attention, while ⊕v′

is computed using cross-product attention. We show the im-
pact of reversing each of these decisions. Finally, we show
that sharing the same reconstruction (⊕v′ = ⊕v) and not
sharing the classifier (h , h′) produces worse results.
Attention Masking. CIR reconstructs each clip from oth-
ers in the batch. On average, a batch contains 11% videos
from the same scenario, 9% from same location and 3%
from both. We do not restrict which samples to attend to,
only avoiding reconstruction from the sample itself. In Ta-
ble 4, we ablate possible masks of Same Scenario/Location
(SS, SL) or Other Scenario/Location (OS, OL). Results ob-
tained without masking are best on average, followed by
results where the same/other scenario is masked. On cer-
tain splits, masking improves performance. For example,
masking out samples from different locations helps for (Ar,
ITA). We do not use masking (which avoids the need for
domain labels) but showcase its potential value when addi-
tional knowledge of the domain shift can be utilised.
Effect of scenarios and locations on CIR. Figure 6 shows
the top-1 accuracy improvement of CIR over ERM when
both methods have access to samples from test scenarios
and locations. Four cases are evaluated: (Sc,Lo), (Sc,Lo),
(Sc,Lo), and (Sc, Lo)∪(Sc, Lo). CIR improves over ERM
in every case and every split. The improvement is largest on
the hardest case (Sc,Lo).
Support-Set Size. In Table 5 we show how CIR is affected
by the size of the batch, which determines the size of the
support set used for reconstruction. CIR is relatively stable
over a range of sizes, with slightly worse performance for
very small or very large batch sizes.
Text models. We compare the CLIP-ViT-B-32 text encoder
to other pre-trained language models in Table 6. Results are
comparable for different language models.

CIR exploits text narrations to help overcome domain
shifts. Table 7 shows the benefit of this approach, and that
merely adding video-text association to existing methods is

Cl
US-MN

Bu
US-PNA

Co
JPN

Ar
ITA

Pl
US-IN Mean

16 23.90 22.99 26.04 23.87 28.46 25.05
64 23.89 24.36 26.54 24.98 28.97 25.75

128 25.51 24.93 26.34 25.67 30.94 26.68
256 25.00 24.97 26.52 25.96 30.61 26.61
2048 24.66 24.73 25.48 25.53 30.27 26.14

Table 5: Effect of varying the batch size on CIR.

LM
Cl

US-MN
Bu

US-PNA
Co

JPN
Ar

ITA
Pl

US-IN Mean

CLIP-ViT-B-32 [40] 25.51 24.93 26.34 25.67 30.94 26.68
all-mpnet-base-v2 [43] 25.15 25.01 26.30 25.73 30.71 26.58
all-miniLM-L6-v2 [52] 25.08 25.36 26.36 25.45 30.50 26.55

Table 6: Comparison of pre-trained text models.

T
Cl

US-MN
Bu

US-PNA
Co

JPN
Ar

ITA
Pl

US-IN Mean

ERM 22.35 20.73 24.81 22.75 23.29 22.78
MMD* 23.60 22.08 25.87 23.84 24.78 24.03
Mixup 22.21 21.45 25.90 23.85 24.41 23.56
CIR 24.52 24.64 25.42 25.71 30.17 26.09

ERM ✓ 23.32 23.30 25.84 24.31 27.32 24.82
MMD* ✓ 23.69 23.43 25.90 24.27 27.66 24.99
Mixup ✓ 23.94 22.94 25.45 24.71 28.52 25.11
CIR ✓ 25.51 24.93 26.34 25.67 30.94 26.68

Table 7: Impact of adding text to existing DG methods. T indicates
text supervision. * requires additional domain label supervision.

Figure 7: Analysis of attention during reconstruction. (a) Nor-
malised sum of attention weights over SS, OS, SL, OL. (b) Cross-
scenario attention (c) Cross-location attention.

insufficient. We add the text association loss Lrt, acting di-
rectly on video representations (i.e. no reconstruction) to
existing DG methods. We compare MMD, which performs
second best after CIR, and which requires domain labels.
We also provide results for ERM and Mixup which do not
require domain labels, and thus have the same level of su-
pervision as CIR. Importantly, CIR without text is better
than other methods with text.

5.3. CIR Analysis

Figure 7 analyses how videos attend to other videos dur-
ing reconstruction-text association. (a) shows that videos
primarily attend to other scenarios and locations, which
helps to learn representations that generalise across domain
shifts. (b) shows attention between scenarios, with some
strong self-attention (e.g. cooking) as well as cross-attention
(e.g. sport attending to knitting). Certain scenarios attend



Figure 8: CIR weights for reconstruction. Five examples of cross-instance reconstruction from the training set. The query video is
shown on the left. For each video, we show its corresponding scenario/location/narration. For each query, the bar shows the score of the
j-th support video (colour-matched) with white indicating the sum of the remaining scores from other samples.

evenly to all scenarios (e.g. playing). (c) shows attention
between locations, which has fewer strong entries, suggest-
ing that knowledge from all locations is helpful.

We show selected samples of our reconstructions during
training in Fig. 8. The Top-5 support set videos with the
highest weights in the reconstruction (right) to the query
video (left) obtained via CIR (ci j, Section 4.2) are shown.
CIR is able to attend to samples belonging to other scenar-
ios, other locations, and both. For example, in the top row,
a video of painting from a ‘Building’ scenario in Italy is re-
constructed using examples of ‘Arts and Crafts’ in India, as
well as ‘Building’ from Italy.

6. Conclusion
In this paper, we introduced ARGO1M, a dataset for Ac-

tion Recognition Generalisation Over scenarios and loca-
tions. We hypothesise that it is plausible to learn actions in
a way that generalises to new scenarios (e.g. an action ‘cut’

in cooking can be used to recognise ‘cut’ by a mechanic) in
new locations (e.g. the action ‘cut’ in Italy can be used to
recognise ‘cut’ in India), as motivated by our paper’s title.
We propose a method to reconstruct a video using samples
from other scenarios and locations. In doing so, the learnt
representation is generalisable to test splits with different
scenarios and/or locations. CIR consistently improves over
baselines, and we offer extensive analysis and ablations.

The problem posed by ARGO1M is both practical and
challenging. We hope this paper will foster further re-
search on domain generalisation, which is under-explored
in videos.
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