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Machine learning for seismic exploration: Where are we and how far are
we from the holy grail?

Farbod Khosro Anjom1, Francesco Vaccarino2, and Laura Valentina Socco1

ABSTRACT

Machine-learning (ML) applications in seismic exploration are
growing faster than applications in other industry fields, mainly
due to the large amount of acquired data for the exploration in-
dustry. The ML algorithms are constantly being implemented for
almost all the steps involved in seismic processing and interpre-
tation workflow, mainly for automation, processing time reduc-
tion, efficiency, and in some cases for improving the results. We
carry out a literature-based analysis of existing ML-based seismic
processing and interpretation published in SEG and EAGE liter-
ature repositories and derive a detailed overview of the main ML
thrusts in different seismic applications. For each publication, we
extract various metadata about ML implementations and perfor-
mances. The data indicate that current ML implementations in
seismic exploration are focused on individual tasks rather than
a disruptive change in processing and interpretation workflows.
The metadata indicate that the main targets of ML applications for

seismic processing are denoising, velocity model building, and
first-break picking, whereas, for seismic interpretation, they
are fault detection, lithofacies classification, and geobody identi-
fication. Through the metadata available in publications, we ob-
tain indices related to computational power efficiency, data
preparation simplicity, real data test rate of the ML model, diver-
sity of ML methods, etc., and we use them to approximate the
level of efficiency, effectivity, and applicability of the current
ML-based seismic processing and interpretation tasks. The indi-
ces of ML-based processing tasks indicate that current ML-based
denoising and frequency extrapolation have higher efficiency,
whereas ML-based quality control is more effective and appli-
cable compared with other processing tasks. Among the interpre-
tation tasks, ML-based impedance inversion indicates high
efficiency, whereas high effectivity is depicted for fault detection.
ML-based lithofacies classification, stratigraphic sequence iden-
tification, and petro/rock properties inversion exhibit high appli-
cability among other interpretation tasks.

INTRODUCTION

Seismic processing and interpretation rely on a workflow that uses
a series of standard steps customized and calibrated by expert oper-
ators for each specific data set. The choice of an optimal processing
workflow and the selection of the most appropriate interpretation
strategy are a mixture of constantly evolving technologies, scientific
knowledge, technical competence, talent, and intuition. The growing
size of the data sets (Arrowsmith et al., 2022) and the need for reduc-
ing the acquisition-to-delivery time on one side, and the growing
power of computational facilities on the other, have made the use
of data-drivenmethods extremely attractive for industry and research-

ers. In this context, machine-learning (ML) methods have been the
object of remarkable investments and developments witnessed by an
exponentially growing number of publications.
ML methods rely on techniques in which the “machine” learns

how to process and interpret the data by optimizing complex rela-
tionships between the input and the output data space that are often
agnostic to the modeling of physical phenomena. This represents a
real revolution with respect to the traditional methods that are
strongly based on the physics of the problem. However, is the goal
of science to understand or predict? Alkhalifah (2022) believes, that
in the age of data science, we are moving back to predictive models
that can resolve many limitations of the physical models. He defines
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ML as “a very extensive numerical tool, nothing more and nothing
less, which is based on optimization.” It means that instead of hand
crafting the transformations and representations, such as the Fourier
transform, the machine develops its own transformations through
optimization that is calibrated for specific problems. Despite the
controversies, many believe that the ML revolution is the one that
we cannot miss. It is very big, and it might fundamentally change
the way we do things in the industry.
The main driver for moving to fully data-driven methods is the

idea of mitigating some drawbacks of the current technologies and
methods. The first aspect is efficiency. Currently, we use complex
workflows that demand many parameters and solutions that require
an expert operator based on analysis, tests, and evaluations carried
out with a Galilean approach (trial and error). This process requires
time and expertise. It is very attractive to have technologies that can

directly provide results on a computer-based process without the
need to make decisions. The second aspect is bias. Various technol-
ogies and different operators will provide different results, which
are biased in an uncontrolled way by the choices that are made dur-
ing the process. The objective of an ML application would be
obtaining results that are more repeatable and, in a sense, more “ob-
jective” because they are from a process that is only related to the
real information present in the data. The third aspect is effective-
ness. Every processing and interpretation technique has intrinsic
limitations and, according to the method and choices, the results
will allow us to “see” different things. The objective here is to have
methods that automatically provide high-quality results, reflecting
rich information about the subsurface.
All of these limitations are the reasons for investing in ML tech-

niques.We look at these new developments as a potential holy grail of
seismic exploration where the raw data are given to a machine that
provides automatically the best and most informative model in an ef-
ficient manner. This idea undoubtedly represents a revolution in the
way we carry out seismic processing and interpretation, but many
issues related to ML implementation must be addressed. The com-
plexity in the relationship between the model and the data in seismic
exploration is incomparable to most of the problems that are now rou-
tinely solved by ML techniques. For example, the wave propagation
inside the earth is much more complex than the wave propagation
inside human organs that is used for medical imaging (Pratt,
2019; Jakobsen et al., 2023). As a result, in most cases, fine-tuning
already trained ML models from other disciplines (also referred to as
transfer learning) for seismic processing and interpretation tasks is
useless. Moreover, training ML models from scratch strongly relies
on abundant labeled data, which in seismic exploration is challenging
because ground truth for real data does not exist. Even though syn-
thetic data, which can be labeled, complement the real training data,
they hardly replicate the complexity of the real noisy field data. For
these reasons, the current state of ML implementation is mostly de-
voted to making some processing or interpretation steps of the tradi-

tional workflow more efficient, effective, and
unbiased. Therefore, the main question is: Where
are we on our path to search for the holy grail?
The use of ML techniques for seismic process-

ing and interpretation has exponentially expanded
in the past 10 years, even at a faster pace com-
pared with other industries (Figure 1). However,
are the existing ML-based seismic exploration
applications effective and efficient? Do ML algo-
rithms considerably change the traditional seismic
exploration workflow and bypass traditional inter-
mediate steps to provide end-to-end algorithms?
These are the important questions that we want
to answer in this paper by creating a clear picture
of the existing ML-based applications in the con-
text of seismic exploration.
We considered the major literature repositories

in the field of seismic exploration (SEG Digital
Library and EAGE EarthDoc) between 2010
and 2021 and analyzed more than 500 ML-based
publications. Most of the publications were from
the EAGE annual conference, the SEG technical
program, and GEOPHYSICS (Figure 2). We carried
out a literature-based analysis by harvesting meta-

Figure 1. The number of ML-based publications in each year from
2010 to 2021. According to SEG and EAGE databases, the trend
related to seismic exploration is shown in blue, and according to the
Scopus platform, the trend relevant to the applications in all scien-
tific fields is shown in orange.

Figure 2. The distribution of the reviewed literature sources from SEG and EAGE
repositories.
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data of the publications, focusing on the type of the addressed seismic
processing/interpretation task, the dimensionality of the problem and
solution (one dimension, two dimensions, or three dimensions), the
characteristics of the implemented ML model and its architecture, the
optimization method, data format and data conditioning, size of the
input and output, number of training samples, attribute features, com-
putational power requirement, generalization of the model to unseen
data, type of training and testing data (synthetic and real), as well as
basic publication information such as the type of paper, affiliation and
company involvement, synthetic data simulation method and simu-
lated noise, and data augmentation for training. We avoided duplica-
tions and ignored similar abstracts and journal papers from the same
authors presented to EAGE and SEG.
We divide the publications into processing and interpretation ap-

plications. Already from this very general representation, it is pos-
sible to infer some research trends. More than half (53%) of the
documents are related to interpretation applications (the pie chart
in Figure 3), which is in contrast with the general (ML-based
and non-ML-based) research focus within the same period. Accord-
ing to EAGE and SEG repositories between 2010 and 2021, only
44% of total publications are devoted to interpretation (the pie chart
in Figure 3). One of the main drivers for the implementation of ML-
based interpretation is the similarity of the tasks to those in com-
puter vision. In addition, interpretation is the most time-consuming
aspect of seismic exploration in terms of human involvement. As a
result, the automation of interpretation tasks is another motivation
for the implementation of ML methods. In contrast, for processing
steps, the larger size data (raw prestack) have led to the development
of many data-driven quantitative measurements in the traditional
processing workflow. Nevertheless, the processing steps such as
velocity model building (VMB) are usually computationally very
demanding. The ML implementations to processing tasks usually
aim at enhancing computational efficiency and at creating competi-
tive solutions to traditional ones with higher accuracy. Another re-
markable aspect is the large interest from exploration companies in
the research and development of ML-based seismic exploration ap-
plications, which has been the main booster for these applications.

Almost half (47%) of the ML-based processing applications are
developed directly by or in collaboration with companies, whereas
the involvement of the companies for ML-based interpretation ap-
plications increased to 66% (Figure 3).
In the following, we review and briefly describe the state-of-the-

art ML approaches that are currently applied to seismic processing
and interpretation. Because synthetic data play a major role in ML
model training, we provide a short overview of such synthetic mod-
els and associated data that are being used for ML-based seismic
exploration. The ML-based interpretation applications can be rein-
forced by using appropriate attributes as the input. We investigate
the use of attributes in ML-based interpretation surveys and de-
scribe the essential dimensionality reduction methods used for
attribute selection. In the “Discussion” section, based on the extract-
able statistical data and described applications, we define indices
that aim at approximating the current efficiency, applicability,
and effectiveness of ML-based processing and interpretation tasks.
In general, very rich glossaries and online materials are available for
ML and deep-learning terminologies and descriptions. We suggest
Google Developer’s glossary (Google, 2023) for terminologies and
short descriptions of ML and deep-learning algorithms and scikit-
learn (Scikit-learn, 2023) for ML supervised and unsupervised al-
gorithms. A detailed description of deep-learning methods can be
found in Goodfellow et al. (2016) and Aggarwal (2018). A com-
prehensive description of ML methods can be found in Kroese
et al. (2019) and Kelleher et al. (2020). In addition, a useful over-
view of ML methods in seismology is provided in Mousavi and
Beroza (2022). From the implementation point of view for ML
and deep-learning algorithms, we suggest the guidelines on Keras
and scikit-learn platforms.

SYNTHETIC DATA SETS FOR SEISMIC
APPLICATIONS

The use of synthetic seismic data sets for the training stage of ML
for seismic processing and interpretation is rapidly growing, mainly
due to the challenging task of labeling the real data, bias associated
with labeled real data, and lack of open-access field data that are

Figure 3. The pie chart shows the contribution of the companies in
the development of ML-based processing and interpretation appli-
cations. The bar below shows the fraction of total publications (ML-
based and non-ML-based) related to processing and interpretation
within the same period. Figure 4. Synthetic models used in ML-based seismic applications.
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representative of different geologic settings. The synthetic data sets
can be labeled automatically or semiautomatically in most of the
applications such as denoising, frequency extrapolation, and fault
detection. If we neglect the bias in the numerical modeling of
the synthetic data, the synthetic labeled data can be considered
as the ground truth and, as a result, bias-free data. This assumption

is reasonable as numerical modeling is already a part of many tradi-
tional workflows (e.g., full-waveform inversion [FWI] and imped-
ance inversion). Nevertheless, an ML model that is trained solely by
synthetic labeled data can underperform when it is applied to a real
data set due to a distribution mismatch between synthetic and real
data. Alkhalifah et al. (2022) propose a strategy to bridge the gap

between synthetic and real data using domain
adaptation principles that can potentially resolve
this issue and enhance the performance of the
ML model on real data. For seismic processing
problems, usually raw synthetic data from elas-
tic/acoustic numerical solvers are considered,
whereas the use of the 1D convolutional model
is more common for interpretation steps because
it is computationally much more efficient.
Many realistic synthetic models have been in-

troduced in the literature and, for most, the open-
access raw data are also available. Figure 4
shows that the Marmousi I, Marmousi II, and
SEG Advanced Modeling Program (SEAM)
models correspond to approximately 70% of
the synthetic models that are used for ML-based
seismic processing and interpretation appli-
cations.

SEISMIC PROCESSING

According to the literature, there is a diverse
use of ML in different processing steps and,
although certain technical problems are rou-
tinely addressed with ML, for many others
the application of ML is still limited. Hence,
we analyzed the publications concerning
ML’s application to various processing tasks
and, according to the published examples, we
divided seismic processing into four main cat-
egories, each containing several steps: prepro-

cessing, processing, VMB, and passive surveys (Figure 5).
Preprocessing and VMB are comprised of 82% ML-based appli-
cations, mostly focused on denoising (22%), trace interpolation
(11%), VMB from raw data (14%), frequency extrapolation for
FWI (6%), first-break picking (9%), event separation (6%),
near-surface velocity model estimation using groundroll (6%),
and quality control (QC) (4%).
Another aspect that we considered was the choice of different

ML methods and we analyzed the literature to identify the most
used methods, also in relation to specific applications. It is inter-
esting to notice that whereas for certain tasks there are examples
of using many different ML methods (e.g., for surface wave
processing), there are processing steps for which the use of meth-
ods other than convolutional neural networks (CNN) seems to be
negligible (Figure 6). We analyzed all the published applications
for processing and identified subcategories and their share.
Among all the published examples of application, we selected
the most relevant ones in terms of technical innovation in terms
of efficiency and ML model selection and the significance of the
results. For each processing step, we will describe in the following
the most important applications and technical issues.

Figure 5. The fraction of each processing category among the reviewed ML-based pub-
lications (inner pie) and each specific application (middle pie). The focus of ML-based
QC, denoising, and event separation (the outer pie).

Figure 6. The ML algorithms used for most prominent processing
applications. The three gray circles are examples showing the rela-
tionship between the size of the circle and their fractions in the ap-
plications.
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Preprocessing

Quality control

Because in many of the QC applications, such as anomalous trace
detection, the prestack raw data are considered, using an automatic
and fast approach is of high importance. The ML-based QC appli-
cations (outer pie in Figure 5) are mainly focused on noise recog-
nition (Farmani and Pedersen, 2020; Walpole et al., 2020),
anomalous trace identification (Damianus et al., 2020), and errone-
ous first-break detection (Duan et al., 2018). By noise detection, we
intend the step of recognizing the noise only and not the process of
performing the denoising.
Noise detection is treated as classification and regression prob-

lems. Martin et al. (2021) use CNN U-Net architecture to classify
2D patches of the labeled seismic data into four classes of data
(i.e., signal, signal and noise, noise, and mask). Conversely,
Walpole et al. (2020) consider the CNN InceptionV3 architecture
with a single output node that defines the noise level of the input
trace. The ML implementation for anomalous trace detection is
implemented using unsupervised (Hou et al., 2019; Damianus
et al., 2020) and supervised (Vishwakarma, 2021) algorithms.

Denoising

Despite the many advances of these denoising methods, they in-
clude many parameter settings, and if poorly selected, they can lead
to an ineffective denoising application. However, ML-based algo-
rithms have a long history in nonseismic image denoising (Elad and
Aharon, 2006; Vincent et al., 2010; Chen et al., 2014). Similar ML
algorithms are usually adopted for ML-based seismic denoising,

and they can be applied in a fully automatic manner after training.
The ML-based seismic denoising is mainly focused on random
noise and groundroll attenuation (Figure 5).
The supervised CNN denoising models are being applied for ran-

dom denoising (Wu et al., 2019b; Yu et al., 2019), multiple removal
(Wang and Nealon, 2019), groundroll attenuation (Jia et al, 2018; Li
et al., 2018a; Yu et al., 2019), and seismic interference and swell
noise removal for marine data (Slang et al., 2019; Brusova et al.,
2021). Denoising CNN (DnCNN) algorithms are very common
for image-denoising applications, in which usually the target is
the noise (residual data) rather than the clean data (Zhang et al.,
2017). Residual mapping provides a tremendous advantage for the
simplicity of the implementation as the model is required to simulate
only the noise. Therefore, the details of the seismic events are well
preserved when predicted noise is subtracted from the noisy data.
Several authors have implemented the DnCNN method for seismic
random denoising (Liu et al., 2018; Zhang et al., 2018a). Generative
adversarial network (GAN) models are also routinely used for ran-
dom denoising (Alwon, 2018) and groundroll attenuation (Si et al.,
2020), which are usually implemented in a semisupervised manner.
Nevertheless, Ovcharenko and Hou (2020) show that although a
GAN model works well for trace interpolation, CNN (U-Net archi-
tecture) performs better for random noise removal compared with
GAN (U-GAN architecture). Unsupervised denoising autoencoder
(DAE) models are the other common methods for denoising seismic
random noise (Liu et al., 2020a; Saad and Chen, 2020; Birnie et al.,
2021; Gao et al., 2021). DAEs are specific types of autoencoder mod-
els, in which the training data are intentionally corrupted with noise.
Then, the corrupted data are encoded into useful features and de-
coded to reconstruct the clean data, removing the random noise

Figure 7. Comparison between f-x deconv and DAE denoising (reproduced from Saad and Chen, 2020). (a–c) Denoised data, removed noise,
and magnification of the removed noise using f-x deconv, respectively. (d–f) Denoised data, removed noise, and magnification of the removed
noise using DAE, respectively.
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(Liu et al., 2017b). Saad and Chen (2020) pretrain the DAE with a
synthetic data set in a supervised manner, in which the loss function
was designed to represent the misfit with respect to the true clean
data. In other words, the DAE was treated as a normal encoder-
decoder network in the first step. Then, they fine tune the DAE in
an unsupervised manner using the field data sets with a customized
loss function that does not require the labels. This approach is also
referred to as self-supervised training. They show with four synthetic
and two field tests that the DAE performs better in the denoising task
compared with f-x singular spectrum analysis (SSA) (Oropeza and
Sacchi, 2011) and f-x deconvolution (deconv) (Canales, 1984) bench-
mark algorithms. Specifically, the DAE model is better at preserving
useful signals during the denoising process compared with the other
two methods. In Figure 7, a comparison between the performance of
the DAE compared with f-x deconv is shown. Using a similar self-
supervised approach, Birnie and Alkhalifah (2022) aim at damping
field noise in the data rather than solely the random noise.

Trace interpolation

Several interpolation methods currently exist that aim at recov-
ering randomly and regularly missing traces, such as the sparse
transform method (Duijndam and Schonewille, 1999), frequency
space filter method (Spitz, 1991), and rank reduction method
(Trickett et al., 2010). Nevertheless, each of these methods is effi-
cient under certain assumptions such as linearity, sparsity, and sam-
pling regularities. The supervised ML implementation for data
interpolation is much easier compared with other ML-based
processing applications because the labeled data can be prepared
automatically. Usually, traces are randomly or regularly and in
an automatic manner removed from the shot gathers to create
the input data, and the full shot gathers or patches of the full shot
gathers are considered as the output.
CNN is by far the most common model in these applications

(Mandelli et al., 2018; Wang et al., 2018a; Wang et al., 2019a;
Zhang et al., 2020b). Mandelli et al. (2018) compare the results
of the CNN-based interpolator with the benchmark multichannel
SSA algorithm (Oropeza and Sacchi, 2011) that was applied to a seis-
mic shot gather field data set with 10%, 30%, and 50% missing
traces; the signal-to-noise ratio (S/N) of the ML-based results
was, on average, more than 70% higher in all three cases. Another
common model for seismic data reconstruction is GAN (Alwon,
2018; Chang et al., 2018; Garg et al., 2019; Ovcharenko and
Hou, 2020; Wei et al., 2021a), which is usually implemented in a
semisupervised manner. The Ovcharenko and Hou (2020) compari-
son of the CNN and GAN models for interpolation suggests a better
performance of GAN in reconstructing weak events of noisy data.
Data interpolation is also conducted using the support vector regres-
sion (SVR) (Jia and Ma, 2017), long short-term memory recurrent
neural networks (LSTM-RNN) (Kuijpers et al., 2020; Yeeh et al.,
2020), autoencoder (Wang et al., 2020), and transformer (Harsuko
and Alkhalifah, 2022) methods. Jia and Ma (2017) combine a
data-driven tight frame with the classical SVR algorithm to further
improve the performance of the training and enhance the S/N of
the reconstructed data. Harsuko and Alkhalifah (2022) create a trans-
former model that involves pretraining and fine-tuning procedures
to process seismic data. They pretrain the data in a self-supervised
manner to store useful features of specific data needed for various
processing tasks such as trace first-break picking and denoising. They
use the masked language modeling concept from natural language

processing to pretrain the ML model. In this context, the seismic
sections are treated as sentences and traces as individual words.
The pretrained model can reconstruct the missing traces in addition
to extracting useful features for downstream processing tasks (the
fine-tuning stage).

Event separation

The ML-based seismic event separation task is focused on P- and
S-wave separation, diffraction, and deblending (Figure 5). Tradi-
tional P- and S-wave separation algorithms require accurate velocity
models to perform well in the far offsets. In the ML-based P- and S-
wave separation, multichannel input and output are considered
mainly in the framework of the CNN (Xiong et al., 2020) and GAN
(Wei et al., 2021b) neural networks. The input channels include the
horizontal and vertical components of the data, whereas the output
channels correspond to the separated S and P waves.
Traditional diffraction separation methods rely on exploiting the

different kinematic properties of the reflection and refraction waves
(e.g., Landa et al., 1987; Bansal and Imhof, 2005; Fomel et al.,
2007; Moser and Howard, 2008) and attempting to destroy the re-
flection data. Nevertheless, the remaining noise in the data can have
a noise level similar to diffraction data, obscuring the refractions
(Decker et al., 2013). In addition, these analytical models can be
computationally very expensive (Lowney et al., 2020). Recently,
noticeable attention has been dedicated to the use of ML algorithms
in the recognition of the diffraction data from seismic gathers. Most
applications use the supervised approach in the scheme of CNN
(Lowney et al., 2019; Kim et al., 2020; Tschannen et al., 2020;
Bauer et al., 2021) to separate the reflection and diffraction data.
Semisupervised methods such as GAN models (Durall et al.,
2020; Lowney et al., 2020) are also other common methods for this
task. In the training stage of almost all the applications, synthetic
data with or without field data are considered, given the difficulty of
obtaining precise diffraction data from real data using traditional
methods. The applications can be applied to various stages of
the data, such as raw, zero offset, and prestack migrated data.
Traditional deblending involves many steps that should be opti-

mized and are computationally very expensive. All reviewed ML-
based deblending applications are considered CNN models and
models are trained in a supervised manner (Slang et al., 2019;
Nakayama and Blacquière, 2020; Sun et al., 2020; Hou and
Messud, 2021), using the raw shot gathers as the input and de-
blended results as the output. Given that the synthetic data simula-
tion of blended data is complicated, most applications only consider
real data for the training stage (Slang et al., 2019; Hou and Hoeber,
2020; Sun et al., 2020; Hou and Messud, 2021; Li et al., 2021b).

Processing

Seismic processing has been automated to a great degree, and
consequently, few ML applications are available to address this
stage of seismic exploration workflow. In Figure 5, we show the
fraction of ML-based applications focused on deconvolution, mi-
gration, and stacking.
Chen et al. (2019) and Lu et al. (2019) use multilayer perceptron

(MLP) to estimate the seismic wavelet, whereas Xiao et al. (2020)
consider CNN to perform sparse-spike deconvolution. Almost all
ML-based migration applications focus on performing least-squares
migration (Liu et al., 2020b) and least-squares reverse time migra-
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tion (Huang and Huang, 2021; Torres and Sacchi, 2021; Vamaraju
et al., 2021). Cheng et al. (2020) address the prerequisite of the mi-
gration step, and they use the CNN model to find the Fresnel lo-
cation required for a successful migration.
Stacking is already a fully automated and computationally rea-

sonable process. Nevertheless, sometimes the number of shots
being stacked is not sufficient to significantly increase the S/N
and enhance the seismic image. To further increase the stacking
capability, Aharchaou et al. (2021) develop a CNN model to find
similar small patches of poststack data and stack these patches to
enhance the seismic image. From another perspective, the stacking
can be observed as a temporal resolution issue and the seismic im-
ages can be enhanced by recovering high frequencies of the data.
Halpert (2018) and Zhang et al. (2019) develop a GAN model, Choi
et al. (2021) use the CNN model, and Yuan et al. (2021) consider a
sequential CNN scheme to recover the high-frequency data.
Although the three former authors considered the poststack mi-
grated data as the input, Yuan et al. (2021) aim to recover the high
frequencies of the raw data.

Velocity model building

Frequency extrapolation

Low-frequency data can significantly enhance the performance of
FWI, mitigating cycle skipping (Bunks et al., 1995). Recently, sig-
nificant research has been conducted to recover low-frequency data,
which can be categorized into envelope calculation methods (Wu
et al., 2014), a phase tracking method (Li and Demanet, 2016),
and an exponential damping method (Choi and Alkhalifah, 2015).
Still, these approaches do not exploit an intrinsic relationship be-
tween the high and low frequencies. ML-based applications have
gained remarkable attention for the task of frequency extrapolation
because the training data can be automatically generated using
low-cut filters applied to full-bandwidth data.
Most ML-based frequency extrapolation applications consider

CNN models (Kazei et al., 2019; Ovcharenko et al., 2019; Fang
et al., 2020; Sun and Demanet, 2020) and other schemes such as
RNN (Fabien-Ouellet, 2020) and physics-guided neural networks
(Hu et al., 2020) are rarely used. The existing applications use vari-
ous innovative representations of the input data to the ML architec-
ture. Ovcharenko et al. (2019) treat the frequency extrapolation as
an estimation of the spectral values of considered target frequencies.
They consider spectral real and imaginary values at 34 discrete
frequencies as the input to estimate spectral val-
ues of a single frequency lower than the input
frequencies. They perform FWI on the extrapo-
lated data, which shows that the low-frequency
elements significantly helped in correcting the
large-scale errors in the initial model and in
the convergence of the inversion. The issue with
this approach is that, for each frequency recov-
ery, a separate ML model should be trained.
Sun and Demanet (2020) consider the single
trace with only high-frequency and full-band fre-
quency elements as the input and output, respec-
tively, of the CNN scheme. Fang et al. (2020) use
2D patches of the raw data with high-frequency
elements as the input and full-frequency band
patches as the output. They test the frequency

extrapolation and FWI on the synthetic SEG/EAGE overthrust
model and field data; in both cases, the FWI of the extrapolated
data from the CNN model resulted in better continuity of the layers
compared with the FWI when the high-frequency data were used.
Ovcharenko et al. (2022), using a similar approach, are able to es-
timate the seismic data as low as 2.5 Hz for real marine streamer
data and perform FWI.

VMB from raw data

Recently, ML-based VMB from raw data has gained significant
attention, with the aim of providing an ML model that can substitute
for the FWI. The input of these ML models is the seismic raw gather,
and the output is the velocity model. Because ground truth velocity
models for real data sets do not exist, all supervised implementations
use synthetic data sets for the training stage. In most popular appli-
cations, CNN and MLP schemes are used to model the nonlinear
relationship between the input raw data and target velocity models
(Lewis and Vigh, 2017; Araya-Polo et al., 2018; Yang and Ma,
2019; Kazei et al., 2020; Li et al., 2020). In these applications,
the parameters of the ML models are updated iteratively by comput-
ing the loss between the target and estimated velocity models. Deep
GAN algorithms are also applied to VMB tasks (Mosser et al., 2018)
that can address the limitation in the availability of abundant labeled
data. Araya-Polo et al. (2019) train a GAN model to generate arbi-
trary velocity models using a small number of variables and compute
the seismic data corresponding to them using a finite-difference al-
gorithm. Yao et al. (2023a) use adversarial neural networks to regu-
larize anisotropic FWI to balance the increase in the sensitivity of the
inversion to anisotropy and to constrain the updates at each iteration.
Then, a CNN model was trained to map the relationship between the
seismic data and the velocity models. The application of the model to
the test data set shows good accuracy (Figure 8). In another notable
application, Yao et al. (2023b) use the domain translation CNN-GAN
to translate acoustic data to elastic data during FWI, to reduce the cost
of simulating the elastic data. FWI is a significantly nonlinear opti-
mization problem. Recently, the use of neural-network-assisted FWI
(Sun and Alkhalifah, 2020) and regularized neural network FWI (Wu
and McMechan, 2019; Zhang and Alkhalifah, 2022) has shown
promising results.
In other innovative approaches, the physics of the seismic wave-

field is considered in the ML-based model for VMB (Costa
Nogueira Junior et al., 2019; Xu et al., 2019; Jin et al., 2020;

Figure 8. The GAN-based VMB from raw data example (reproduced from Araya-Polo
et al., 2019): (a) ground truth and (b) ML-based prediction.
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Sun et al., 2021). In contrast to model-based schemes, in these phys-
ics-based applications, the loss is computed between the simulated
and true seismic data, reducing the dependencies of the ML model
on the training set by enforcing physical constraints on the model-
data relationship. Within these types of applications, various ML
methods with different terminologies (e.g., physics-guided,
theory-guided, and physics-based neural networks) are considered.
Sun et al. (2021) compare the performance of the CNN and physics-
guided recurrent neural network architecture and show that the
physics-guided model better resolves the boundaries of velocity
anomalies such as salt geobodies. Recently, the use of a specific
type of physics-based neural network, a physics-informed neural
network (PINN) (Raissi et al., 2019), is emerging in the context
of VMB (Costa Nogueira Junior et al., 2019; Xu et al., 2019;
Jin et al., 2020; Voytan and Sen, 2020; Rasht-Behesht et al.,
2022). PINN can approximate partial derivative equations that gov-
ern physical problems. Xu et al. (2019) apply PINN to synthetic
data and show that it can provide a higher accuracy velocity model
compared with FWI.

First-break picking

First-break picking, often used for traveltime tomography, is a
crucial step of the seismic exploration workflow to image the com-
plex near surface and compute the corresponding statics. Many
data-driven semiautomatic approaches have been introduced that
consider various features of the raw trace to pick the first arrivals.
Nevertheless, these methods often involve a hyperparameter setting
based on the geologic properties of the site and the S/N of the data
for a successful implementation.
First-break picking is inherently a binary problem. In most ML-

based applications, patches of the seismic data, in contrast to a single
trace, are considered as the input and the output label is again a 2D
matrix with the same size as the input that represents a segmentation
mask separating the noise (the recorded data before the first arrivals)
and data (e.g., Tsai et al., 2018; Xie et al., 2018; Yuan et al., 2019). In
other applications, the feature of a single trace or set of traces such as
the short-term average (STA), long-term average (LTA), and Fourier
transform is used as the input (e.g., Song et al., 2011; Maity et al.,
2014; Mezyk, and Malinowski, 2018; Luo and Zhu, 2020). In rare
applications, small windows of single traces are considered as the
input and the output labels contain one if the window contains a first
break and zero for a nonfirst break (Loginov et al., 2019).
Most ML-based first-break applications are implemented in the

scheme of CNN models (Hollander et al., 2018; Loginov et al., 2019;
Ma et al., 2019, 2020; Yuan et al., 2019; Zhang et al., 2020a). The
CNN-based first-break picking models in Wu et al. (2019a) and Luo
and Zhu (2020) show superior performance compared with traditional
STA/LTA automatic algorithms. Cova et al. (2020) show that CNN
can be very effective for first-break picking even in the presence of
sharp elevation contrasts but can be challenging for the portion of the
data with a low S/N. Other algorithms such as SVR (Yalcinoglu and
Stotter, 2018) and LSTM-RNN (Kirschner et al., 2019) are rarely ap-
plied to first-break picking.

VMB from groundroll

Surface waves, also known as groundroll, are dominant in land
seismic data. They contain valuable information about the near-sur-
face. The dispersion curve of surface waves is manually picked in

the spectral domains, such as f-v, f-k, and τ − p, and these dispersion
curves are inverted individually or simultaneously to obtain a near-
surface S-wave velocity model, and in rare cases, a P-wave velocity
model (Socco and Comina, 2017). Nevertheless, for large-scale
field data, the manual picking of the dispersion curves can become
unrealistic. In addition, given that dispersion curve inversion is
strongly a nonlinear problem, the inversion may require a priori
and calibration of the hyperparameters to converge to the global
minimum and lead to a realistic model.
Most ML-based dispersion-picking algorithms focus on the fine

tuning of an automatically picked dispersion curve using unsuper-
vised algorithms such as density-based spatial clustering of appli-
cations with noise (DBSCAN), K-means, principal component
analysis (PCA), or combinations of these algorithms (Masclet
et al., 2019; Kaul et al., 2020; Rovetta et al., 2020; Yao et al.,
2021). In other more sophisticated ML implementations, the fre-
quency-wavenumber representation of the data is used as the input
and the mask representing the dispersion curve is considered as the
output for the CNN model (Kaul et al., 2021b; Ren et al., 2021).
Some rare but innovative approaches aim at bypassing the
dispersion picking step and estimating the S-wave velocity model
from the raw surface wave data in the frequency-wavenumber do-
main (Yablokov and Serdyukov, 2020; Aleardi and Stucchi, 2021).

Passive seismic data

With the growth of fiber-optic distributed acoustic sensing (DAS),
the acquisition of passive monitoring data has been significantly
boosted and has created the necessity to develop fully automatic
data-driven signal detection and event location detection approaches.
A comprehensive overview of the current ML-based passive seismic
data tasks can be found in Anikiev et al. (2023). Most ML-based
passive signal detection methods consider CNN models (Binder
and Chakraborty, 2019; Stork et al., 2020; Rajeul, 2021). In these
approaches, usually the patches of the seismic data are created as
the input, and binary labeled output is considered to define whether
the patch contains microseismic signal or not. Binder and
Chakraborty (2019) train a CNN model to detect time windows of
signals using a combination of simulated and real patches of DAS
data. The application of the trained model to real DAS data showed
better results compared with the STA/LTAmethod. Stork et al. (2020)
train the YOLOv3 model to detect signals in DAS data using syn-
thetic samples. The trained model was tested on real DAS data and
outperformed the STA/LTA method. Zhang et al. (2020a) show that
continuous wavelet transform CNN performs better than the MLP
model, although it can be trained faster with lower computational
requirements. Alternatively, Qu et al. (2018) consider features of
the passive data that are selected by a random forest model as the
input to the support vector machine (SVM) algorithm.
Another group of ML-based passive applications is focused on lo-

cating the passive events. Most of the ML models for locating micro-
seismic events consider CNN models (Rodriguez, 2021; Wang and
Alkhalifah, 2021; Wang et al., 2021). Wang and Alkhalifah (2021)
use two CNN models, one for detecting the events and another for
locating the seismic event. Using a similar model, Wang et al. (2021)
apply the trained model to recorded data during the hydraulic frac-
turing process of a shale gas play. Their comparison of the results
with traditional time-reversal imaging showed faster prediction
and similar accuracy. Gu et al. (2019) consider Bayesian CNN
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and implement a stochastic regularized technique to quantify the un-
certainty of the ML-based seismic location estimation.

SEISMIC ATTRIBUTES IN ML-BASED
INTERPRETATION APPLICATIONS

Seismic attributes are obtained through the mathematical
manipulation of seismic data, and they aim to highlight various
physical, petrophysical, and geologic properties. Each attribute is
usually defined to highlight a specific property
in the seismic data. As a result, numerous seismic
attributes have been defined over the years to im-
prove various interpretation tasks (Chopra and
Marfurt, 2007). Many of the ML-based methods
such as encoder-decoder architectures follow a
similar strategy. In the training stage of these
methods, the encoder is trained to encode the in-
put data (seismic data) to useful, informative, and
compact intermediate features, and the decoder is
trained to use these intermediate features to pre-
dict the results (interpretation task). If instead of
processed seismic data suitable attributes are
considered as the input data, the performance
of the ML model can significantly improve,
and the training time can be reduced. We insist
on the use of suitable attributes because: (1) not
all attributes are rich with information about the
target interpretation task, (2) the use of correlated
attributes can significantly bias the ML model,
and (3) the use of multiple attributes as input in-
stead of seismic data significantly increases the
memory requirements. The attribute selection al-
gorithms decrease the dimensionality of the data
space into useful attributes with reduced correla-
tion. Hence, the process of attribute selection
plays a crucial role in tailored attribute-based
ML-based interpretation applications.
More than half of the current attribute-based

ML seismic interpretation applications suffer
from a lack of a criterion for selecting the attrib-
utes (Figure 9). PCA is the most common
method for dimensionality reduction of the
attribute space. Other methods such as the ran-
dom forest, probabilistic neural network (PNN),
Gaussian mixture model (GMM), and maximal
coefficient mixture have also shown promising
results in reducing the dimensionality of the
attribute space without disregarding useful infor-
mation. Zhao et al. (2015a) provide a compre-
hensive review and comparison of various
unsupervised algorithms for attribute selection.

SEISMIC INTERPRETATION

According to the literature, ML methods are
heavily applied to seismic interpretation tasks,
mainly due to the similarity of computer vision
ML methods that are adaptable to seismic inter-
pretation tasks and also because of the necessity
for the automation of these tasks. We analyzed

the publications within the framework of three main categories
of structural interpretations, lithologic interpretations, and petro-
physical/rock properties estimation, each including many applica-
tions (Figure 10). The ML implementations are mainly focused on
fault detection (23%) and lithofacies identification (22%).
The CNN algorithm is commonly used in seismic processing and

interpretation tasks (Figures 6 and 11). Nevertheless, more diverse
algorithms are exploited for seismic interpretation tasks (Figure 11).
This aspect can be mainly observed in lithofacies classification

Figure 9. The share of various methods used for attribute selection.

Figure 10. The fraction of each interpretation category among the reviewed ML-based
literature materials (inner pie) and each specific application (outer pie).
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applications for which a broad range of supervised and unsuper-
vised algorithms are considered. Nevertheless, CNN as yet remains
the most common model for most applications.

Structural interpretations

Structural interpretation is a highly subjective task, which con-
siderably depends on the domain knowledge and experience of
the interpreters. In this section, we focus on ML implementations
for three main structural interpretation applications, fault detection,
salt and geobody identification, and horizon picking.

Fault detection

Almost all ML-based implementations for fault detection are in a
supervised manner and rarely are in a semisupervised manner. Su-
pervised CNN and MLP are the popular techniques for ML-based
fault detection (Araya-Polo et al., 2017; Huang et al., 2017; Ma
et al., 2018; Maniar et al., 2018; Wang et al., 2018c; Xiong

et al., 2018; Zhao and Mukhopadhyay, 2018; Wu et al., 2019c;
Zheng et al., 2019; Yang et al., 2020). Another common method
for fault detection is SVM (Di et al., 2017, 2019; Guitton et al.,
2017; Du et al., 2019). In other less common applications, the
GAN algorithm is used (Lu et al., 2018; Durall et al., 2021). Un-
certainty quantification is an important task in interpretation appli-
cations such as fault detection. The uncertainty can be divided into
aleatoric and epistemic uncertainties. The former refers to the un-
certainty related to the randomness of the data, which is signifi-
cantly highlighted when the developed model is applied to
unseen data. The epistemic uncertainty captures the uncertainty re-
lated to the standard deviation of the network parameters. Unlike
aleatoric uncertainty, the epistemic one can be improved by increas-
ing the number of samples. Bayesian CNN is a probabilistic ML
model based on Bayesian principles that allow the quantification
of both uncertainties. Feng et al. (2021) and Mosser et al.
(2020) show the application of Bayesian CNN and quantification
of the uncertainties for fault detection.
Fault detection is always treated as a binary problem, in which

the output is either fault or no fault. The input patches of stacked
seismic data are introduced to the ML model in various manners.
Maniar et al. (2018), Lu et al. (2018), and Zhang et al. (2014) con-
sider 2D seismic data (patches) as the input, whereas Huang et al.
(2017), Wu et al. (2019c), and Yang et al. (2020) use 3D (small
cubes) input data. Alternatively, Ma et al. (2018) and Xiong
et al. (2018) define the input as tree channel seismic sections in
X, Y, and time directions, which significantly reduces the memory
demand of the training process compared to the use of 3D cubes as
the input. Xiong et al. (2018) consider small slices in x, y, and time
directions, each 24 × 24, within a CNN architecture to extract fea-
tures, followed by two layers of a conventional neural network for
classification. The application of the ML model to a big data set can
still be time consuming. In the experiment of Xiong et al. (2018),
the trained model was able to predict fault probabilities of a
1000 × 655 × 1083 field seismic data set within 2.5 h using a
20-node computer cluster, each node equipped with 20 CPU cores.
The results showed higher resolution compared to the seismic co-
herence attribute, especially in detecting channels (Figure 12).
In approximately 15% of the ML applications for fault detection,

seismic attributes with or without seismic stacked data are considered
as the input. Some of these applications manually select the relevant
attributes for ML implementation. Huang et al. (2017) consider nine
attributes that are known to carry useful information about the faults
(e.g., fault likelihood attributes and curvature shape index) and pre-

pare the input data as nine channel patches of 2D
sections. Di et al. (2017) define 19 attributes of
each seismic pixel as the input to the neural net-
work. In other attribute-based fault detection
methods, the attributes are selected according to
a criterion to eliminate the correlation between
them, which also reduces the data space and com-
putational capability requirement. Jiang and
Norlund (2020) consider the random forest model
to rank the importance of 30 seismic attributes in
building a fault probability map, and among them,
four attributes were selected for the CNN model
training. The small 3D cubes of the attributes were
assembled to create the multichannel input data
for fault detection.

Figure 12. Fault probabilities from the CNN-based model in (a) compared with seismic
coherence in (b). The figures are reproduced from Xiong et al. (2018).

Figure 11. The ML algorithms used for most common interpreta-
tion applications. The three gray circles show the relationship be-
tween the size of the circles and their fractions in the applications.
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Horizon picking

Similar to many traditional horizon-picking algorithms, ML-based
methods also consider seed points to track the horizons (Peters et al.,
2019; Shi et al., 2020; Ferdinand Fernandez et al., 2021). In these
applications, the target of the ML implementation is not to obtain
a global model (GM) that can be applied to unseen data. In contrast,
reliable seed points (labels) are associated with the input traces and
used as the training data. The rest of the data are then inserted into the
ML model to predict the horizon. In some applications (e.g., Wu and
Zhang, 2019; Guillon et al., 2020), the training data are segmented to
obtain the seed points for various horizons. Most horizon-picking
ML-based applications use CNN models (Gramstad and Nickel,
2018; Wu and Zhang, 2019; Guillon et al., 2020). To quantify the
probability of the horizon associated with the predictions, Siahkoohi
et al. (2020) consider Bayesian CNN. In an innovative application,
Shi et al. (2020) consider an unsupervised autoencoder model to en-
code the cropped short waveforms into encoded latent space. Then,
the waveform patches that have a similar vector of
features compared with the known seed points are
identified as the horizons.

Salt and geobody identification

In ML applications, the geobody detection
problem is viewed as a horizon picking (Gramstad
and Nickel, 2018; Kaul et al., 2021a) and segmen-
tation problem (Waldeland and Solberg, 2017; Shi
and Wu, 2019; Di and AlRegib, 2020). In former
applications, the principles explained in the pre-
vious section are used to pick the top and bottom
horizons of the salt body. In contrast, the segmen-
tation approach aims at classifying each pixel of
seismic data and/or seismic attributes into salt
or no-salt categories. Most applications for geo-
body (salt) identification consider CNN networks
(Gramstad and Nickel, 2018; Wang et al., 2018b).
Di and AlRegib (2020) compare the efficiency of a
CNN model with MLP in predicting salt bodies
and they conclude that the CNN model is much
more efficient and can provide reliable results even
without seismic attributes. Waldeland and Solberg (2017) consider
small cubes of seismic stacked data (65 × 65 × 65) as the input. They
consider three convolutional layers and an average pooling to extract
40 features (attributes) from the cube, followed by a set of conven-
tional fully connected layers for classification (Figure 13a). In con-
trast to common neural network applications that consider the
rectified linear unit (ReLU) operator to include nonlinearity in the
problem, they use the exponential linear unit (ELU) operator, which
can, in certain conditions, speed up the learning stage. In this survey,
they train the data on a single section of the Norwegian continental
shelf data set and use it to label the rest of the data. Figure 13b and 13c
shows the training section and example of the delineated salt from the
test set, respectively. To account for epistemic and aleatoric uncertain-
ties, Mukhopadhyay and Mallick (2019) and Zhao and Chen (2020)
consider the Bayesian CNN algorithm to identify the salt.

Lithologic interpretations

In the following, we investigate in detail the ML-based lithofacies
classification and stratigraphic sequence identification applications.

Lithofacies classification

The manual lithofacies interpreters are usually experts in
detecting useful features that others cannot identify. These experts
take advantage of the seismic stacked section and various attributes
to identify the lithofacies. Still, the manual approach can be very
expensive and time consuming when large data sets are considered.
Alternatively, many unsupervised, supervised, and semisupervised
ML-based algorithms have been introduced for lithofacies classifi-
cation (Figure 14).
The use of attributes for ML-based lithofacies classification is

very common. Almost 66% of these applications consider seismic
attributes with or without seismic amplitude as the input. Thirty-
eight percent of the attribute-based applications consider the already
available attributes or manually select the appropriate attributes for
the lithofacies classification (Zhao et al., 2015b; Sacrey and Roden,
2018a). The rest of the applications consider a criterion such
as PCA (Roden et al., 2015; Abd-Elfattah and Fahmy, 2017;

Figure 13. The CNN-based salt identification (reproduced fromWaldeland and Solberg,
2017). (a) The architecture of CNN followed by two fully connected layers, (b) an
example of training data, where the green and red were labeled as nonsalt and salt,
respectively, and (c) an example of a predicted salt zone from the test data sets.

Figure 14. The ML algorithms applied to lithofacies classification
divided into supervised, unsupervised, and semisupervised catego-
ries.
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Sacrey and Roden, 2018b; Ha et al., 2021; Hussein et al., 2021),
wrapper analysis (Kim et al., 2019), PNN (Lubo-Robles et al.,
2019), genetic algorithm (Kuroda et al., 2016), maximal informa-
tion coefficient (Liu et al., 2019b), step-wise regression method
(Keynejad et al., 2020), and GMM (Qi et al., 2020) to select the
most suitable attributes.
The ML-based models for seismic facies classification are usu-

ally trained specifically for a single data set as the lithology of the
data sets can be much different. The CNN algorithm is the most
common supervised method (26% of the total) for lithofacies clas-
sification (Alaudah et al., 2019; Liu et al., 2019a; Pires de Lima
et al., 2019), which is sometimes also implemented in a probabi-
listic manner using Bayesian inference to obtain the uncertainties
associated with the estimated facies (Mosser et al., 2019;
Mukhopadhyay and Mallick, 2019; Xie et al., 2021). Zhang
et al. (2021) compare the conventional CNN with the U-Net and
DeepLabv3+ encoder-decoder architectures, which shows that
the encoder-decoder architectures provide more consistent results,
and among them, DeepLabv3+ is more accurate (Figure 15). In ad-
dition, DeepLabv3+ uses pointwise separable convolution instead
of 2D convolution which is computationally more efficient. The
models were trained assuming nine possible classes according to
the characteristics of the Netherlands F3 block data set.
Similar to the encoder-decoder architecture of the U-Net,

Alaudah et al. (2019) develop an open-source model that considers
the patches of the seismic stacked data as the input and provides the
facies as the output (same size as the input). Salvaris et al. (2020)
develop ML-based seismic classification algorithms (so-called
DeepSeismic) based on multiple architectures (U-Net, SEResnet,
and HRNet) that are available online. Mosser et al. (2019) consider
less than 1% of the Dutch NLOG data set as the labeled training set
in the Bayesian CNN framework but are able to estimate the facies
and associated uncertainty for the rest of the data set with good
approximation. In other supervised applications for facies classifi-
cation, SVM (Zhao et al., 2015a), MLP (Kuroda et al., 2016; Liu
et al., 2017a), RNN (Lei et al., 2019; Grana et al., 2020) and PNN
(Abd-Elfattah and Fahmy, 2017; Lubo-Robles et al., 2019), and ran-
dom forest (Kuhn et al., 2018; Zhang et al., 2018b) are considered.

Zhao et al. (2015a) compare the application of SVM and artificial
neural networks (ANN), which suggests a more accurate classifica-
tion of the facies by SVM but with a much higher computa-
tional cost.
Unlike other seismic applications, ML-based lithofacies classifi-

cations are commonly implemented in an unsupervised manner
(33%; Figure 14). Among them, the self-organizing map (SOM)
(Roden et al., 2015; Chopra and Marfurt, 2018), K-means (Qian
et al., 2018), and generative topographic map (GTM) (Qi et al.,
2020) are commonly used. SOM is a data visualization technique
that reduces high-dimensional data space and classifies similar pat-
terns in the data. The output of the SOM is defined as a 2D mesh
(e.g., 8 × 8) that each stands for a cluster that is correlated through
a color scale. The SOM algorithm is a very powerful tool for litho-
facies classification, and the model can usually be used for various
data sets. Nevertheless, sometimes the output mesh size should be
calibrated to be suitable for the lithology of the site. Similar to
SOM, GTM assumes that the attributes can be expressed by N-di-
mensional Gaussian distribution, where N is the number of attrib-
utes for each sample. The algorithm transforms the original plane of
the data into a 2D plane that best reflects the N-dimensional space.
In an innovative approach, Qian et al. (2018) use an autoencoder
unsupervised neural network to extract features of the data in latent
space, and they use a K-means unsupervised algorithm to cluster the
features from the autoencoder. Zhao et al. (2015a) compare the per-
formance of the four unsupervised algorithms (PCA, K-means,
SOM, and GTM) and two supervised ones (ANN and SVM) for
the estimation of the lithofacies. They conclude that K-means is
the simplest and easiest to apply an ML-based algorithm for non-
complex geology; SOM provides a color map that is much more
interpreter friendly than K-means; GTM is complicated as it relies
on a probability distribution, which is usually not accessible; and
the supervised SVM and ANN algorithms require much more ex-
pertise to optimize the computational cost and can better perform
when constrained by preresults from unsupervised algorithms.
Semisupervised facies classification schemes are rarely imple-

mented and most of them are based on GAN (Liu et al., 2019a;
Kim and Byun, 2020; Singh et al., 2021). The comparison of

Singh et al. (2021) between the performance
of GAN and CNN suggests that, in the abun-
dance of labeled data, the CNN model provides
more accurate results, whereas GAN is prefer-
able and more accurate when limited labeled data
are available.

Stratigraphic sequence identification

Similar to ML-based lithofacies classification,
the ML-based stratigraphic sequence identifica-
tions are usually implemented on a single data-
set, using a portion of the same data to train the
model. Most ML-based stratigraphic sequence
estimations use CNN models (Huot et al.,
2019; Li et al., 2019; Di et al., 2020). Di et al.
(2020) consider an ML network consisting of
an unsupervised autoencoder and a supervised
CNN network. The autoencoder extracts many
features from the data that are the input to the
supervised CNN model. They consider three sce-
narios for creating the output labels: (1) a 1D

Figure 15. Lithofacies classification (reproduced from Zhang et al., 2021). (a) The
labels and (b–d) the results from conventional CNN, U-Net, and DeepLabv3+, respec-
tively.
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stratigraphy profile, (2) a 2D patch of the stratigraphy with the same
size as the input, and (3) paint-brush labels that highlight the target
seismic sequences. The paint-brushing approach gives the inter-
preter flexibility in annotating any zone of interest in a seismic data
set. In other supervised implementations, Li et al. (2018b) and
Kuroda et al. (2016) consider RNN and MLP algorithms, respec-
tively. Among the unsupervised algorithms, DBSCAN (Corlay
et al., 2020) and SOM (Laudon et al., 2019) are also used for strati-
graphic sequence identification. Bugge et al. (2019) compute an
attribute vector for each small cube of seismic data and use the
DBSCAN algorithm to cluster them into a stratigraphic sequence.

Petrophysics, rock physics, and inversion

We divide the ML-based inversion tasks into petrophysical and
rock properties estimates, impedance estimates, and 4D data inter-
pretations.

Petrophysical and rock properties

ML algorithms are used for various petrophysical and rock
properties estimations (Figure 16). The ML applications mainly
focus on the estimation of porosity (Kuroda et al., 2016;
Yenwongfai et al., 2019; Feng et al., 2020), density (Alfarraj
and AlRegib, 2018; Priezzhev and Stanislav, 2018; Biswas et al.,
2019), brittleness (Zhao et al., 2015b; Mlella et al., 2020), VP/VS

(Mosser et al., 2020; Li et al., 2021a), and Vshale/Vclay (Muradov and
Shahtakhtinskiy, 2017). In many of the implementations, the same
ML architecture is separately trained for the prediction of various
petrophysical and rock properties (e.g., Das and Mukerji, 2020;
Zhang et al., 2020c). In ML-based applications, usually the proc-
essed seismic data or corresponding attributes are considered as
the input, and well-log data are used as the desirable targets. Sim-
ilar to lithofacies identification, most applications take advantage
of manually or experimentally selected seismic attributes (Zhao
et al., 2015b; Iturrarán-Viveros et al., 2018; Mlella et al., 2020).
Alternatively, some publications select the attributes from an
attribute space using various methods such as the genetic algo-
rithm (Kuroda et al., 2016), multilinear regression (Feng et al.,
2020), gradient boosting (Roy et al., 2020), and PCA (Abd-
Elfattah and Fahmy, 2017).
Most applications consider the CNN model to estimate the

properties (Das and Mukerji, 2020; Downton et al., 2020;
Jaglan et al., 2021). Unlike other CNN applications that are imple-
mented in a supervised manner, Feng et al. (2020) develop an un-
supervised CNN scheme, in which the model aims at estimating
high-resolution porosity to be added to the low frequency a priori
porosity. The output porosity is used in the framework of convolu-
tional 1D modeling to simulate the seismic data, and the loss is
automatically computed between the real and synthetic seismic
data. Choi et al. (2020) and Mosser et al. (2020) consider a Baye-
sian CNN that allows the quantification of the uncertainty for the
estimation of density and VP/VS, respectively. Several examples of
SVR (Jiang et al., 2020), MLP (Muradov and Shahtakhtinskiy,
2017), and PNN (Malik, 2019; Mohamed et al., 2020) for petro-
physical and rock properties estimations exist. Zhao et al. (2015b)
consider five manually selected attributes to estimate the brittle-
ness index in the framework of proximal support vector regres-
sion. Jiang et al. (2020) compare the performance in predicting
the porosity of synthetic data using random forest, MLP, SVR,

and PNN, which showed that the former three methods provide
higher accuracy compared with the PNN. In another real experi-
ment, Ore and Gao (2021) compare the performance of
MLP, SVR, and gradient boosting in estimating the brittleness;
gradient boosting provided superior results compared with the
other two.

Impedance and elastic parameters

The ML-based applications are more focused on acoustic imped-
ance estimation (71%) rather than elastic impedance estimations.
Some of the ML-based applications focused on elastic properties
aim at obtaining elastic impedance as defined by Connolly
(1999) (e.g., Alfarraj and AlRegib, 2019a), the rest aim at estimat-
ing the elastic parameters, S-wave velocity, P-wave velocity, and
density (e.g., Biswas et al., 2019; Choi et al., 2020).
Almost all ML-based impedance estimation methods consider

pre- or poststack seismic data as the input and not seismic attributes.
The ML-based impedance estimation is usually coupled with pet-
rophysical and rock properties estimations, either in a single ML
network (e.g., Das and Mukerji, 2020) or separate ones (e.g., Down-
ton et al., 2020). The impedance inversion is usually implemented
in the framework of CNN algorithms (Biswas et al., 2019; Das and
Mukerji, 2020). Das and Mukerji (2020) consider cascade CNNs
with two CNN networks in a Bayesian framework. First, the net-
work considers the seismic data as the input and provides the acous-
tic impedance and VP/VS. The outputs of the first network are then
used as inputs to the second CNN model that estimates porosity and
shale volume. Biswas et al. (2019) compare the performance of con-
ventional CNN and physics-guided CNN in estimating the elastic
parameters. In both cases, they use seismic angle stack gathers as
the input to the network and S- and P-wave velocities and density as
the three channels of the output. In contrast to the conventional
CNN that requires labeled data, the physics-guided framework is
implemented in an unsupervised manner. The outputs of the model
are automatically used to generate synthetic convolutional seismic
data to be compared with the input data, based on which the update

Figure 16. The ML-based applications focused on various petro-
physical and rock properties.
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of the weights is performed. The comparison between the perfor-
mance of the models to a synthetic data set showed similar accuracy
for the S- and P-wave velocities but higher accuracy of the conven-
tional CNN in predicting density. Figure 17 shows an example of
the comparison between the results of the two models and the differ-
ence compared with the true model in one of the sections from the
3D data set.
In other CNN-based works, Das et al. (2019) and Choi et al.

(2020) use Bayesian CNN to quantify the uncertainty of the acous-
tic impedance and elastic properties estimations, respectively.
Alfarraj and AlRegib (2019b) use a semisupervised CNN-RNN net-
work that considers seismic data and acoustic impedance as the in-
put and output time series. The conditional GAN (cGAN) model
has also been shown to be very effective in acoustic impedance es-
timation (Wang et al., 2019b; Cai et al., 2020). Synthetic tests of Cai
et al. (2020) suggest better performance of the cGAN with the Was-
serstein loss function and gradient penalty loss compared with con-
ventional cGANs.

4D data

Some of the ML-based applications for processing the 4D data
aim at estimating pressure, water content, and gas content changes
within the same ML architecture (Dramsch et al., 2019; Côrte et al.,
2020; Alali et al., 2022). Other applications such as the ones in Xue
et al. (2019) focus on the mapping of the water content changes
only. Kaur et al. (2020) use the GAN model to monitor the CO2

saturation from the 4D data in the framework of carbon storage
in the reservoir. Most of the ML-based 4D data processing consider
deep neural networks (Côrte et al., 2020) and CNN (Weinzierl and
Wiese, 2020). Xue et al. (2018) consider 4D attributes, porosity,

net-to-gross, and water content baseline as the input to predict
the water content changes. Their comparison between the perfor-
mance of MLP and many other ML algorithms such as random for-
est, decision tree, and SVR suggests that the MLP and random
forest provide the highest accuracy. In traditional FWI of time-lapse
data, it is important to incorporate the well data into the inversion. Li
et al. (2021c) develop an MLP-assisted regularization technique to
enhance the resolution of the FWI and increase accuracy. Babalola
(2019) considers the mixture density neural network to estimate the
changes in water content and pressure.

DISCUSSION

We reviewed the implementation of the ML algorithms for vari-
ous seismic processing and interpretation tasks. To evaluate the
efficiency, applicability, and effectiveness of the current ML im-
plementation for each seismic task, we define certain indices based
on parameters that can be extracted from the statistical data col-
lected from the published material. We consider data preparation
simplicity (DPS) and computational power requirements as indica-
tors of the efficiency of ML-based applications. We also consider
fractions of the real data test (RDT) and fractions of the GM es-
timation for any unseen data as indicators of applicability. Finally,
we consider the diversity index (DI) as an indicator of effective-
ness. In the following, we describe in detail these indices. To de-
fine the indices, we used only information that was available in the
publications. This created a significant constraint on the analysis
because some parameters that would have been ideal indices for
efficiency, applicability, and effectiveness had to be ignored due to
the lack of such information from the publication. For example,
accuracy is an important index to evaluate the applicability of a

proposed ML implementation. Nevertheless,
many of the publications included only a quali-
tative analysis of accuracy, and the ones that
performed a quantitative analysis used specific
metrics, making it impossible to draw statistical
information.
In general, depending on the application, raw

data, prestack/poststack migrated data, and seis-
mic attributes are used as the input. The migrated
data can be simulated using the 1D convolutional
model. As a result, we assigned the DPS index a
value of three (3) (easiest) to synthetic migrated
data. Raw data are usually available in abundance
but synthetic simulation (i.e., finite difference and
finite elements) of the raw data requires significant
computational power. As a result, we assigned the
DPS index a value of two (2) (medium) to the ap-
plications requiring raw (prestack) data. Attributes
can be computed from the synthetic stacked sec-
tion/cube. Nevertheless, as was mentioned, nu-
merous attributes have been defined and usually
a criterion should be considered to reduce the
attribute space. Consequently, we assigned the
data preparation index a value of one (1) (hardest)
to the attribute-based applications that require an
extra step for selecting the suitable attributes for
the applications. Given n publications for each
ML-based processing and interpretation task,
we compute the average DPS index as

Figure 17. Comparison between model-based and physics-guided CNN in predicting
P-wave velocity from synthetic seismic data (reproduced from Biswas et al., 2019).
Predicted P-wave velocity from (a) conventional CNN and (b) physics-guided CNN.
The differences of the models in (a and b) with respect to the true model are shown
in (c and d), respectively.
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DPS ¼
P

n
i¼1 DPSi
n

: (1)

The approximation of the computational power requirement is
very challenging because very limited information is disclosed in
publications. An important indicator for the computational power re-
quirement of an ML model is the number of trainable parameters.
Nevertheless, the publications were not abundantly forthcoming
about the architecture of the models, and as a result, many publica-
tions lacked information on the number of trainable parameters. In-
stead, statistical data regarding the number of training samples were
available as well as the dimensions of the input and output data. In
general, these parameters often correlate well with the number of
trainable parameters and computational requirements. We define
the computational power efficiency (CPE) using these parameters as

CPE ¼ 1

n

Xn

i¼1

ðNiðdiminput;i þ dimoutput;iÞÞ−1; (2)

where diminput;i and dimoutput;i are the dimensions of the input and
output data as the number of pixels used in the ML model, respec-
tively, and Ni is the number of training samples considered in the
applications. Of course, the defined CPE, which is based on the
extractable metadata from the publications, does not fully reflect
the computational requirement of the applications but is an accept-
able proxy of it.
We consider two indices to measure the applicability of the ML-

based applications. In the first one, we compute the fraction of the
publications that considered RDT to evaluate the ML model. In the
second indicator, we consider the GM ratio as the fraction of pub-
lications that aim at providing a GM to process any unseen data set.
These models are opposed to ones that are trained separately for
each real data using a portion of the data as the training data:

RDT ¼ NRDT

N
; GM ¼ NGM

N
: (3)

We take into consideration the DI of the implemented ML algo-
rithms for a single seismic application as an indicator of its effec-
tiveness. We consider the Simpson DI (Simpson, 1949) given by

DI ¼ 1 −
Pq

i¼1 miðmi − 1Þ
mðn − 1Þ ; (4)

where i is the index of each algorithm used for the application
(e.g., CNN and GAN), mi is the number of times (publications) that
this algorithm is used, and n is the total number of the considered
publications for the seismic task. We want to stress that the DI gen-
erally must be analyzed with measurements of accuracy to provide a
full view of the efficiency. Nevertheless, statistical data from the pub-
lications were not sufficient to be realistically used in this analysis.
We normalize all indices between zero and one using a range

normalization while discriminating between the processing and in-
terpretation tasks. For example, we normalize the DI of a processing
task (DIi) as

DInorm;i ¼
DIi −minðDIÞ

maxðDIÞ −minðDIÞ : (5)

In Tables 1 and 2, we report the results of the computed indices
for processing and interpretation applications, respectively. The
attributes or features are rarely used for seismic processing appli-
cations. For trace interpolation, frequency extrapolation, VMB from
raw data, and first-break picking, only the raw data are considered.
As a result, these applications have the lowest DPS index. In con-
trast, denoising ML-based applications are regularly applied to raw
and migrated seismic data, which leads to the highest DPS among
processing applications. Nevertheless, denoising requires high com-
putation power (low CPE index). VMB from raw data is a very in-
teresting application that bypasses many of the traditional seismic
application steps to directly provide elastic properties from the raw
data. Nevertheless, it is still in the theoretical stage as most appli-
cations only consider synthetic testing (low RDT). QC is one of the
most promising applications that has high RDT, GM, and DI indices
but requires high computational power during the training stage.
Among interpretation applications, ML-based horizon picking,

impedance inversion, and fault detection mostly consider a seismic
stacked section/cube that resulted in higher DPS compared with
other ML-based interpretation applications such as lithofacies clas-
sification or petrophysical and rock properties estimation that rely
on seismic attributes. Nevertheless, horizon picking and fault detec-
tion with low CPE are computationally demanding interpretation

Table 1. The efficiency, applicability, and effectiveness of ML-based processing applications.

Applications

Efficiency Applicability Effectiveness

DPS CPE RDT GM DI

Denoising 1 0 0.67 0.65 0.27

QC 0.51 0.01 1 1 1

Trace interpolation 0 0.11 0.77 0.42 0.54

Event separation 0.47 0.32 0.81 0 0

Frequency extrapolation 0 1 0.14 0.37 0.6

VMB from raw data 0 0.033 0 0.76 0.71

First-break picking 0 0.19 0.91 0.06 0.46

The indices are DPS, CPE, RDT rate, GM rate, and algorithm DI.
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ML-based tasks. In contrast, ML-based petrophysical and rock
properties, despite the low DPS, rank very high for other indicators,
making them one of the most promising ML-based interpretation
applications. However, it should be noted that the low CPE of these
applications is also caused by limited available log data (labeled
data) for petrophysical and rock properties and further evaluation
of the accuracy is required for more comprehensive analysis. In con-
trast, the low DI of fault detection is mainly due to the consolidation
of the CNN model for fault detection that has been evaluated by
numerous quantitative and qualitative measurements. In addition,
many fault detection CNN-based open-source models are available
and can be tested by unseen data.

CONCLUSION

ML algorithms are actively applied to almost all stages of seismic
processing and interpretation. The current state of ML implemen-
tations shows significant achievements in the automation of individ-
ual processing and interpretation tasks, resulting sometimes in even
better outcomes compared with classical methods. Except for a few
attempts that aim at bypassing intermediate processes of the tradi-
tional seismic exploration workflow, most ML-based applications
focus on improving the efficiency and effectiveness of individual
processing and interpretation tasks aligned with the traditional ex-
ploration workflow. At this stage, ML-based seismic exploration
has not reached its holy grail yet, with an ultimate target to provide
the raw data to the algorithm and to obtain the subsurface models
and petro/rock physical properties. Nevertheless, the evolution of
ML implementation in other sectors, such as autonomous driving
and natural language processing, has shown that the development
of individual ML-based tasks is an essential step for reaching end-
to-end comprehensive ML models. We believe that the research on
ML-based seismic exploration is only at the early stage of its devel-
opment. Reaching the holy grail requires further research, and more
importantly, abundant labeled data that could only be achieved by
an open-access data campaign. The research on ML-based seismic
exploration has increased exponentially in the past few decades and
is expected to expand even more in the upcoming years with more
focus on developing comprehensive models, getting closer and
closer to the holy grail.
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