
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

i-DarkVec: Incremental Embeddings for Darknet Traffic Analysis / Gioacchini, Luca; Vassio, Luca; Mellia, Marco; Drago,
Idilio; Ben Houidi, Zied; Rossi, Dario. - In: ACM TRANSACTIONS ON INTERNET TECHNOLOGY. - ISSN 1533-5399. -
ELETTRONICO. - 23:3(2023), pp. 1-28. [10.1145/3595378]

Original

i-DarkVec: Incremental Embeddings for Darknet Traffic Analysis

Publisher:

Published
DOI:10.1145/3595378

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981177 since: 2023-08-22T09:16:33Z

ACM Association for computer machinery

45

i-DarkVec: Incremental Embeddings for Darknet Traffic

Analysis

LUCA GIOACCHINI, LUCA VASSIO, and MARCO MELLIA, Politecnico di Torino, Italy

IDILIO DRAGO, Università di Torino, Italy

ZIED BEN HOUIDI and DARIO ROSSI, Huawei Technologies Co. Ltd, France

Darknets are probes listening to traffic reaching IP addresses that host no services. Traffic reaching a dark-

net results from the actions of internet scanners, botnets, and possibly misconfigured hosts. Such peculiar

nature of the darknet traffic makes darknets a valuable instrument to discover malicious online activities,

e.g., identifying coordinated actions performed by bots or scanners. However, the massive amount of packets

and sources that darknets observe makes it hard to extract meaningful insights, calling for scalable tools to

automatically identify and group sources that share similar behaviour.

We here present i-DarkVec, a methodology to learn meaningful representations of Darknet traffic.

i-DarkVec leverages Natural Language Processing techniques (e.g., Word2Vec) to capture the co-occurrence

patterns that emerge when scanners or bots launch coordinated actions. As in NLP problems, the embeddings

learned with i-DarkVec enable several new machine learning tasks on the darknet traffic, such as identifying

clusters of senders engaged in similar activities.

We extensively test i-DarkVec and explore its design space in a case study using real darknets. We show that

with a proper definition of services, the learned embeddings can be used to (i) solve the classification problem

to associate unknown sources’ IP addresses to the correct classes of coordinated actors and (ii) automatically

identify clusters of previously unknown sources performing similar attacks and scans, easing the security

analyst’s job. i-DarkVec leverages a novel incremental embedding learning approach that is scalable and

robust to traffic changes, making it applicable to dynamic and large-scale scenarios.

CCS Concepts: • Security and privacy → Network security; • Networks → Network management;

Network monitoring;

Additional Key Words and Phrases: Word2Vec, Network Measurements, darknet

ACM Reference format:

Luca Gioacchini, Luca Vassio, Marco Mellia, Idilio Drago, Zied Ben Houidi, and Dario Rossi. 2023. i-DarkVec:

Incremental Embeddings for Darknet Traffic Analysis. ACM Trans. Internet Technol. 23, 3, Article 45 (Au-

gust 2023), 28 pages.

https://doi.org/10.1145/3595378

The research leading to these results has been funded by the Huawei R&D Center (France) and the SmartData@PoliTO

center for Big Data technologies. This work was partially supported by project SERICS (PE00000014) under the MUR

National Recovery and Resilience Plan funded by the European Union - NextGenerationEU.

Authors’ addresses: L. Gioacchini, L. Vassio, and M. Mellia, Politecnico di Torino, Italy; emails: luca.gioacchini@polito.it,

luca.vassio@polito.it, marco.mellia@polito.it; I. Drago, Università di Torino, Italy; email: idilio.drago@unito.it; Z. B. Houidi

and D. Rossi, Huawei Technologies Co. Ltd, France; emails: zien.ben.houidi@huawei.com, dario.rossi@huawei.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1533-5399/2023/08-ART45 $15.00

https://doi.org/10.1145/3595378

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

https://orcid.org/0000-0001-8258-8626
https://orcid.org/0000-0002-2920-1856
https://orcid.org/0000-0003-1859-6693
https://orcid.org/0000-0003-1932-1261
https://orcid.org/0000-0002-7258-0919
https://orcid.org/0000-0003-3936-8876
https://doi.org/10.1145/3595378
mailto:permissions@acm.org
https://doi.org/10.1145/3595378
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3595378&domain=pdf&date_stamp=2023-08-21

45:2 L. Gioacchini et al.

1 INTRODUCTION

Darknets are sensors that observe traffic received by networks that are announced on the Internet
but host neither production services nor client hosts [31]. Such unsolicited packets represent a
privileged source of information for network security and debugging activities [30, 37], exposing
threats such as scans, brute-force attempts, and misconfigured hosts [24].

Darknets receive traffic from hundreds of thousands of sources targeting all TCP/UDP ports.
Each received packet can be mapped into three main dimensions: (i) the target service, coarsely
represented by the transport protocol and destination port; (ii) the time of arrival; and (iii) the
space, represented by the sender source IP address. All dimensions are highly variable, with new
sources arriving over time, others disappearing and reappearing with different ports as targets,
with different sending rates, and so on. Some sources are part of coordinated efforts to scan the
Internet, with groups of sources that take part in the same action. These groups include botnets look-
ing for vulnerable machines, scanners from security companies (and researchers) that build maps
of the Internet, and misconfigured hosts that contact the darknet in the search for a non-existent
service. In addition, attackers may use spoofed IP addresses—randomly picking addresses in the
darknet space—so the victims’ responses may reach the darknet. This superposition of patterns
makes it difficult to identify relevant events in such a diverse aggregate.

This article aims at automatically extracting actionable information from darknet traffic. We
present i-DarkVec,1 an improved version of DarkVec that we previously introduced in Reference
[34]. In a nutshell, i-DarkVec is a scalable and robust methodology to process darknet traffic and
automatically extract complex patterns from raw darknet packet traces, as illustrated in Figure 1.
It borrows techniques from Natural Language Processing (NLP), making the parallel between
words that co-occur in sentences and documents and sources that co-occur in time in the sequence
of packets received by a darknet. Specifically, we rely on a word embedding algorithm, which is
a recognised method to associate rich features to words in a language. By exploiting the mere co-
occurrence of words in a context, word embedding techniques can project such categorical variables
to a latent space, in which the words are arranged in an interesting syntactic and semantic way.
This rich representation allows one to exploit machine learning algorithms [41], e.g., to find words
with similar semantic, to translate texts, to suggest the next word in a sentence and so on [42].

In a similar way, i-DarkVec learns a representation for the darknet traffic, projecting sources
reaching the darknet in a latent space. i-DarkVec uses darknet traffic to define sentences as
temporal sequences of sender source IP addresses. The sender source IP addresses are treated as
words in sentences. Given a time interval, packets directed to different services form separated
sequences.

The set of all sequences defined by all services forms our corpus, which we process to create
our embeddings with the NLP algorithms. As for NLP applications, i-DarkVec opens the way for
the execution of several machine learning tasks in the embedded space, such as classifying and
clustering sources presenting similar behaviour, as well as identifying new sources that present
anomalous behaviour.

We systematically explore the design space of i-DarkVec and show its capabilities with a com-
prehensive set of experiments run using darknet traces. We find that the embeddings produced
by i-DarkVec map senders that perform similar activity in the same latent space regions. In detail,
we employ i-DarkVec embeddings in two specific machine-learning tasks. First, we show that
i-DarkVec is instrumental to solve a classification problem, i.e., i-DarkVec correctly assigns sources
to known groups with 96% accuracy. More newsworthy, we show that i-DarkVec embeddings
can be used for successfully identifying previously unknown clusters of sources that we identify

1i stands for incremental.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:3

Fig. 1. High-level view of i-DarkVec with two possible follow-up tasks.

as new groups of scanners. In a nutshell, i-DarkVec embeddings feed clustering algorithms that
uncover several novel groups of sources that were not reported in popular security databases.

Overall, we show how word embeddings shed light on noisy darknet traces. Beyond the darknet
traffic use case, we hope our results and methodological insights can inspire the application of
i-DarkVec to the analysis of other network traffic traces, too. For that, we release i-DarkVec source
code and an anonymised version of the dataset used in the article.2

As previously said, i-DarkVec extends our prior work [34] that explored the use of word embed-
dings to learn informative representations from noisy Darknet traffic. In this article, we (i) extend
the methodology to perform incremental training, with fast learning performance and without
loss in accuracy, which eases the application of i-DarkVec in practical scenarios; (ii) compare dif-
ferent corpus definitions, improving the performance when compared to Reference [34]; and (iii)
show the usefulness of i-DarkVec in supporting the security analyst’s job in the identification of
unknown coordinated actions; (iv) provide real use cases of exploration of clusters, shedding lights
on new senders’ activities in our darknet that were not previously documented in public security
feeds.

After discussing related work (Section 2) and the properties of observed darknet traffic
(Section 3), we describe i-DarkVec service and embedding definition (Section 4). We then show
how representative the embeddings are (Section 5) and how to extract clusters and new patterns
(Section 6). We conclude the article by summarising our findings (Section 7).

2 RELATED WORK

The literature is rife with studies that analyse darknet traffic for various purposes. Data coming
from darknets have helped profiling attack strategies [30, 37, 44, 53], detecting and characterising
Internet scans [28, 29, 48], and studying malware spread [54]. For instance, authors of References
[35, 55] rely on genetic algorithms to automatically modify the fingerprints of attacks and automat-
ically identify new variants. Such prior studies rely on ad hoc algorithms to characterise darknet
traffic and have repeatedly proved the value of such networks. Here, we extend our previously
proposed methodology [34] to automate such an analysis, applying word embedding to simplify
the uncovering of groups of senders contacting darknets. As introduced in the previous section,
we extend the methodology to increase its performance and make it incremental, allowing its ap-
plication in practical deployment scenarios.

Darknet traffic has been modelled using complex networks. Authors of References [39, 40] adopt
such an approach, modelling the traffic as a graph to detect transport-layer ports co-targeted by

2https://github.com/SmartData-Polito/darkvec.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

https://github.com/SmartData-Polito/darkvec

45:4 L. Gioacchini et al.

scanners. Authors of Reference [52] build a bipartite graph for representing darknet traffic and
then apply community detection to it, obtaining clusters of autonomous systems characterised by
similar behaviour.

Authors of References [38, 47] rely on deep autoencoders to represent darknet traffic sources
using internal darknet features (i.e., amount of generated traffic) and external information (i.e.,
querying Censys [8] online databases). They apply traditional clustering algorithms on the ob-
tained source representation to spot senders’ similarities. These approaches are complementary
to i-DarkVec, as they focus on particular traffic features. We propose an approach that puts to-
gether multiple dimensions, e.g., finding patterns characterised not only by the type of activity
performed by senders but also by the time and sequence such activities occur.

The closest to our work are DANTE [27], IP2VEC [50], and DarkVec [34]. All apply
Word2Vec [41, 43] to extract features from traffic traces. DANTE and DarkVec focus on darknets
as a traffic source, whereas IP2VEC is a more generic flow-level traffic analysis methodology.

DANTE exploits the sequence of ports that each sender targets within an observation window.
The authors treat the sequence of the ports reached by senders as a sequence of words in an NLP
problem. They then build a separate Word2Vec embedding for each port. Finally, each sender IP ad-
dress is associated with a vector by averaging the embeddings of the ports that the sender has con-
tacted. The outcome is analysed with standard clustering algorithms. In a similar yet more generic
direction, IP2VEC embeds IP addresses (and also ports and protocols) by building Word2Vec mod-
els that consider as words the sequence of flow-level variables, such as destination IP addresses,
port numbers, and the used transmission protocols.

In Reference [34], we already showed that DarkVec outperforms both DANTE and IP2VEC in
classification problems while reducing the computational time required to compute the embed-
dings (with DANTE not being even able to complete the embedding computation). Thanks to the
novel incremental approach we introduce here, i-DarkVec further reduces the computation time
needed to build the embeddings.

All in all, i-DarkVec makes it practical to apply Word2Vec to large darknet setups. Our thor-
ough exploration of word embeddings design space, including service definitions and the choice
of parameters, provides the guidelines for the application of word embeddings to other use cases
where the goal is to automatically learn from sequences of categorical variables (e.g., log events,
DNS queries, or HTTP requests).

3 DATASET AND BASELINE MODELS

We set up a /24 darknet in the IP range of a university campus network and use it for running
experiments. We focus on 30 days of traffic covering the period from 2021-03-02 to 2021-03-31, the
same we used in Reference [34] to simplify the comparison. In Table 1, we detail statistics about
the dataset. From the 30 days of data, we consider the first 29 for training algorithms and keep the
last day as an independent test set. The darknet observes several thousands of distinct sender IP
addresses that send several tens of millions of packets in total. We observe packets sent to all ports,
with a very skewed distribution in which the top targeted ports get a high percentage of packets,
from tens of thousands of sources.

3.1 Darknet Traffic Overview

Figure 2 gives an overview of the traffic the darknet observes along the (i) service, (ii) space, and (iii)
time dimensions. In detail, Figure 2(a) reports the Empirical Cumulative Distribution Function

(ECDF) of the number of packets received by each port in one month.3 As already observed, all

3UDP and TCP ports are added together for simplicity.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:5

Table 1. Single Day and Complete Dataset Statistics

Top-3 TCP ports

Dates Sources Packets Ports Port Traffic [%] Sources

30 days
[2021-03-02,
2021-03-31]

543,900 63,562,427 65,537
5555 7.43 20,844
445 7.09 73,665
23 4.07 209,396

Last day 2021-03-31 43,118 3,461,220 19,583
445 8.33 4,274
5555 8.15 1,522
23 3.54 16,102

Fig. 2. Darknet traffic overview.

ports get some unsolicited packets, and most traffic is directed to specific ports, as detailed in the
inset showing the top-14 ports—each easily linked to well-known services or vulnerabilities.4

Figure 2(b) showcases the activity of each sender over time. On the y-axis, each line represents
a given sender IP address, sorted by the timestamp of the first appearance in the trace. The x-axis
represents time. A dot is a packet received from a sender at a given time. In the first 10 days,
we observe more than 220,000 senders sending about 1M packets. As expected [31], we witness
a continuous growth of the number of senders over time. Some senders are persistently present
(long horizontal lines); some senders appear sporadically, then disappear and reappear (horizontal
segments); some senders are seldom visible (sparse dots).

To complete the overview, Figure 3(a) reports the ECDF of the total number of packets received
from each sender. The large majority of senders hits the darknet with few packets—36% are seen
just once in a month. These senders are likely victims of attacks with spoofed addresses—i.e., the
backscatter phenomenon [37, 49]. Yet, there exist many senders that are quite active. We keep in
our analysis only senders that send 10 or more packets to the darknet in the considered period. We
call them active senders, for which we have enough evidence to perform a reliable analysis. These
senders (20% of the total) are responsible for the majority of the darknet traffic.

At last, Figure 3(b) shows the count of distinct IP addresses seen over an increasing period of
time. On the first day, we observe about 40,000 distinct senders. This figure quickly grows over
time so after 30 days, we observe more than 500,000 unique senders. About 20% of them are active,
i.e., after 30 days, we collect enough data to characterise 100,000 active senders.

4Port 5555 is often scanned in the search for Android Debug Bridge (ADB) service.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:6 L. Gioacchini et al.

Fig. 3. Senders characterisation and filtering criteria definition.

Table 2. Ground Truth Classes—active senders Observed in the Last Day of the Collection

Label Source Senders Packets Ports Top-3 Ports (% Traffic)

GT1 Mirai-like [32] 7,351 88,192 75 23/TCP (89.6%), 2323/TCP(3.9%), 5555/TCP(1.7%)

GT2 Censys [8] 336 233,004 11,118 5060/TCP(3.4%), 2000/TCP(2.9%), 443/TCP(0.4%)

GT3 Stretchoid [22] 104 57,144 91 22/TCP(3.5%), 443/TCP(3.5%), 21/TCP(2.7%)

GT4 Internet Census [14] 103 9,396 231 5060/TCP(10.4%), 161/UDP(9.8%), 2000/TCP(7.7%)

GT5 BinaryEdge [7] 101 7,646 21 15/TCP(10%), 3000/TCP(9.6%), 4222/TCP(6.7%)

GT6 Sharashka [19] 50 5,436 485 5986/TCP(0.48%), 2103/TCP(0.48%), 2,052/TCP(0.44%)

GT7 Ipip [6] 49 17,342 41 5060/TCP(41.5%), ICMP(10.9%), 8000/TCP(2.3%)

GT8 Shodan [20] 23 13,566 349 443/TCP(0.9%), 80/TCP(0.9%), 2222/TCP(0.9%)
GT9 Engin-umich [15] 10 506 1 53/UDP(100%)
Unknown – 14,272 2,971,687 10,520 445/TCP(9.4%), 5555/TCP(9.4%), 1433/TCP(1.8%)

Total 22,399 3,403,959 19,882 445/TCP(8.3%), 5555/TCP(8%), 23/TCP(3.5%)

3.2 Ground Truth

One of the main difficulties in automating the analysis of darknet traffic is the lack of ground
truth for evaluating the results. i-DarkVec’s aim is to learn meaningful representations that allow
us to identify senders performing similar activities over time. We validate i-DarkVec using our
domain knowledge to label senders that perform coordinated activities that can be observed in the
darknet. In particular, we exploit two sources of data: (i) the presence of the widely known Mirai-
like malware(s) fingerprint [26, 32] in packets; (ii) our knowledge about security search engines and
research projects such as Shodan [20] and Sonar [17] that make publicly available the IP addresses
they use.

As said, in our 30-day-long dataset, we observe about 100,000 unique active senders. The manual
labelling of all of them is unfeasible. We thus focus on the most active senders that are present on
the last day of our collection, which we use as a labelled dataset in our validation. Here, we observe
22,399 active senders in total. Among these senders, we identify nine ground truth (GT) classes,
summarised in Table 2. We identify senders that are part of the Mirai-like botnet(s) with more than
7,300 hosts targeting a limited number of ports and services, i.e., Telnet (23/TCP and 2323/TCP)
or ADB (5555/TCP). Next, we identify senders that are part of well-known projects performing
Internet scans. The largest group includes 336 active senders of the Censys project [8] that target
more than 11,000 unique destination ports. The smallest groups include 10 senders of the Engin-
umich project [15] that perform scans focusing on DNS (port 53/UDP) only. About 2/3 of the active
senders remain Unknown. These senders may belong to other classes or even be part of some of
the known classes, which, however, we could not identify.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:7

Fig. 4. Fraction of daily packets sent to generic services, normalised by columns.

3.3 Baseline Definition

To motivate the need for advanced representations of the darknet traffic, we set up a simple classifi-
cation task that directly leverages traffic-related features to classify senders reaching the darknet.
We consider simple features, such as top-destination ports, numbers of packets, and others. In-
tuitively, one could argue that classifying senders using such features could already lead to the
identification of coordinated groups without the need of projecting senders in a latent space with
our proposed embeddings.

To illustrate and check this intuition, Figure 4 shows the fraction of daily packets sent by senders
of each ground truth class to generic services. Here, we identify a service (y-axis) from the ports
typically used by the service, e.g., we label traffic with destination ports {25, 110, 143, 587, 993, 995}
as “Mail,” while ports {80, 443, 8080} identify HTTP. Fractions in the heatmap are normalised by
column. The heatmap clearly shows that a naive port-based approach would not be able to classify
all traffic. Some services can be characterised by their focus on a single service, such as the Engin-
umich group, which generates only DNS traffic. Yet, other groups produce DNS traffic, too, and
these overlaps are hard to solve based only on such features.

Indeed, to check whether it would be possible to group senders with a supervised approach,
we design a classifier that uses as features the fraction of traffic each sender generates to top
destination ports. We take the last day of traffic and label senders according to the 10 classes in
Table 2, i.e., the 9 GT classes and the “Unknown” class. For each class, we extract the top-5 ports
in terms of packets and merge the obtained ports as features in a single set. We then project
each sender to the feature space by computing the percentage of traffic it sends to each selected
port.5

We use a k-Nearest-Neighbor (k-NN) classifier to assign a label to each sender according to
the labels of the majority of its k neighbours. We use the cosine distance to identify the k nearest
neighbours. Using a Leave-One-Out approach, for each sender, we compare the k-NN classifier
prediction with the original label and evaluate the accuracy of the classifier. We test values of
k ∈ {1, 3, 5, 7, 9, 11}, with best performance with k = 7. Table 3 details the results. Overall, the
performance is quite unsatisfactory. Only for the most popular class (Mirai-like) the classifier can

5We select the top-5 ports for each class to intentionally create a biased feature set that would favour the 9 classes in our

ground truth. In total, we obtain a space of 28 features for the 10 classes.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:8 L. Gioacchini et al.

Table 3. Baseline 7-NN Classifier Report

Precision Recall F-Score Support

Mirai-like 0.97 1.00 0.98 7,351
Censys 0.83 0.42 0.56 336
Stretchoid 0.43 0.03 0.05 104
Internet-census 0.50 0.67 0.57 103
Binaryedge 0.97 0.67 0.80 101
Ipip 0.00 0.00 0.00 49
Sharashka 0.94 0.32 0.48 50
Shodan 0.50 0.13 0.21 23
Engin-umich 0.71 1.00 0.83 10

Values below 0.50 are highlighted in red.

provide good results, but already for the Censys class—the second most popular one—the recall is
very low.

We have also tested other classification models, with similar unsatisfactory results [33]. This neg-
ative result strengthens the intuition that an approach based on simplistic features is insufficient.
We will show later that i-DarkVec approach, which exploits the temporal information present in
the data, can provide a better representation of the darknet traffic and enable the clustering of
senders on the obtained latent space.

4 I-DARKVEC

We now present i-DarkVec. We assume the reader is familiar with Word2Vec and provide some
context about it in Section A.1.

4.1 i-DarkVec in a Nutshell

To process the aggregate traffic received by a darknet, i-DarkVec leverages word embeddings.
Ubiquitously used in modern NLP tasks, word embeddings leverage the frequency and —most
important—the co-occurrence of words in sentences to project them in a high-dimensional latent
space, associating a rich feature vector to each word. Although they were built exploiting the co-
occurrence of words, these vectors end up encoding the semantics and syntactical properties of
words. They are used as input to other ML algorithms to perform various NLP tasks. We build on
the same idea to embed senders’ IP addresses into a latent space, thus mapping each sender’s IP
address to a vector in the embedding space.

Unlike natural language where a large corpus with all known words is used to pre-build word
embeddings in a single pass, i-DarkVec does not see all IP addresses at once, but incrementally
discovers them as they hit the darknet (e.g., new senders that start sending traffic or new threats
that emerge). In Reference [34], we introduced DarkVec, a single-iteration algorithm that builds a
single, static, and immutable embedding space from all the data observed in a darknet. This is what
is commonly done in natural language problems. The incremental version of DarkVec presented
in this article (i-DarkVec) instead builds and continuously updates the embeddings as new traffic
arrives. Figure 5 provides the high-level overview of both methods. In both cases, we first collect
packets from a darknet (the top part of the plots). Given packets observed during a time period,
we extract separate sequences of senders, considering the services they target. We identify senders
by their source IP addresses and define services based on destination ports in the packets. Next,
we use such sequences of senders per service to train a Word2Vec model. The original version of
DarkVec (Figure 5(a)) uses all data to define a corpus that is then used to build the embeddings

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:9

Fig. 5. Comparison of different approaches.

from scratch using the Word2Vec algorithm. The new i-DarkVec conversely receives as input new
batches of traffic as time evolves. After building the corpus for each new batch, it updates the
previous model to obtain the current embeddings (Figure 5(b)).

In both cases, we map the categorical IP addresses into a multidimensional space using tradi-
tional one-hot encoding to create independent input vectors. Sequences of senders thus become
sequences of vectors that define the corpus of the Word2Vec input to create the embeddings. The
resulting embeddings can be used to solve semi-supervised and unsupervised machine-learning
tasks that exploit the correlations in the embeddings.

More in detail, Figure 5(a) illustrates the case of a unique batch used for training DarkVec, which
aggregates the history of all the observation periodT = {t0, t1, . . . , tn }. To generate the embeddings,
DarkVec (i) generates a corpus that spans the entire period T and (ii) learns a single embedding
space with this entire dataset. Accordingly, generating an embedding for a new sample observed in
tn+1 would require retraining from scratch using the entire dataset. Figure 5(b) illustrates instead
the incremental strategy we adopt in i-DarkVec. In this case, at each timestep ti+1, we obtain a new
batch of data from which we generate the corpus and incrementally update the embeddings start-
ing from the weights computed at the ti timestep.6 This latter strategy has two main advantages:
(i) it significantly reduces the corpus size and thus speeds up the embeddings learning, and (ii) it
lets the system weigh newer information automatically.

We outline the pseudo-code of the incremental algorithm of i-DarkVec in Algorithm 1. Details
are explained in Sections 4.2 and 4.3.

4.2 Service and Corpus Definition

To build the embeddings, we need to create ordered sequences of words (i.e., documents) as origi-
nally done in Word2Vec [41, 43]. Here, we aim at finding similarities among senders’ activity con-
sidering packets they send to a darknet. We then consider each source IP address associated with
an incoming packet to be a word w and create documents as the sequence of IP addresses as they
appear in time. We define asV the vocabulary containing all sender IP addresses targeting darknets.

We also leverage the definition of services to coarsely separate senders into different semantic
groups. Note that the definition of the services is helpful to guide the training to consider the
different aims of the senders. Given a destination port p, with p ∈ P , P = {0, . . . , 65, 535}, we
characterise a service s by the set of ports used by services s = {p1, . . . , pn }. Hence, s results in a
partition of P , i.e., s ⊆ P , and we call S the set of all the services.

6At t0 i-DarkVec builds the embeddings from scratch starting from random weights.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:10 L. Gioacchini et al.

ALGORITHM 1: i-DarkVec embeddings generation through incremental training.

Function GenerateCorpus

Input: Observation sender sequenceW

1: W ←Filter(W) // Filter trace (see Section 3.1)

2: V ←GetSenders(W) // Extract the set of unique IP address senders

3: S ← GetServices(W) // Obtain the definition of services

4: for all s ∈ S do

5: W s ← GetSeqence(W , s) // Get the sequence of senders per service

6: end for

7: C ←Merge(W s1 , . . . ,W s |S |) // Get the final corpus as the union of sequences

8: return C , V

Procedure GenerateEmbeddings

Input: Observation sender sequencesW (t0), . . . ,W (tn)

9: C (t0),V (t0) ← GenerateCorpus(W (t0)) // Process observation sequenceW (t0)
10: д0 ← Train(C (t0)) // Train the embedder д0 on the corpus C (t0)
11: // Incremental training on observations

12: for i ∈ {1, . . . ,n} do

13: C (ti),V (ti) ← GenerateCorpus (W (ti))
14: дi ← Train(C (ti),дi−1) // Update embedder дi−1 on the new corpus C (ti)
15: end for

16: U (tn) ← дn (V (tn)) // Generate embeddings for all senders in tn
17: return U (tn)

For each observation timing ti and corresponding sender sequence W (ti) of senders V (ti), we
split its incoming packets into multiple sequences, one for each service. In detail, taking the se-
quence of sender IP addresses appearing in a given time interval, the sequenceW s (ti) of the service
s is the sequence of IP addresses sending packets to ports in s in observation time ti .

Finally, for each observation time ti , we build a corpus C (ti) as the union of the per-service
sequencesW s (ti):

C (ti) = ∪s ∈SW
s (ti).

We use the final corpus C (ti) to train Word2Vec embeddings. We outline in the pseudo-code of
Algorithm 1 the corpus definition in the function GenerateCorpus.

Figure 6 shows an example of the corpus definition. On the left, we have the sequence of
packets in a time window. There are only two services, 22/TCP (red) and 445/TCP (blue). IP
addresses of senders targeting those ports form sequences. Notice that the same sender IP address
may appear in different services, as “10.0.0.1” in the example that appears both in the port 22 and
445 services.

As we will see later, the definition of services (GetServices in line 3 of Algorithm 1) is funda-
mental for the construction of good embeddings. Here, we consider three alternatives:

• Single service (SS): All ports belong to a single service.
• Auto-defined services (AS): We take the top-n popular ports and create a specific service

for each of them. All remaining ports form the (n + 1)th service.
• Domain knowledge services (DKS): We manually assign ports to services based on domain

knowledge. Each service groups ports that are commonly used for popular applications. In
total, we create 15 services, as detailed in Table A.1 in the appendices.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:11

Fig. 6. i-DarkVec training for a single observation time: From the left, the corpus definition by services fol-

lowed by the skip-gram construction is used to build the embeddings. At the output, IP addresses are mapped

to a point in an e-dimensional space.

4.3 Building the Embeddings

Given the final corpus C (ti) for observation time ti , we build our embeddings. We employ the
skip-gram model (see Section A.1), which provides excellent results in NLP when looking for em-
beddings that efficiently predict the context of a word in a sentence. Given a specific word in the
middle of a sentence (the input word), look at the words nearby and pick one at random. The
network is going to tell us the probability for every word in our vocabulary of being the “nearby
word” that we chose.

Given a sequence W = [w1,w2,w3, . . . ,wn] of senders and a context window of size c , we
define the context of each wi as the sub-sequence of the c previous and c following words of wi ,
i.e., [wi−c , . . . ,wi−1,wi+1, . . . ,wi+c].

The central part of Figure 6 shows the skip-gram model for the sequences of the Port 22/TCP
service. The blue circles represent the target sender’s IP address, while the yellow circles represent
the context IP addresses to predict.

We build the embeddings using off-the-shelf Word2Vec where we consider also some negative
sampling [43]. It consists of giving an additional set of words that are never found in any context
window of the given word wi (thus, “negative” words). As said, the training of Word2Vec consists
in training a Neural Network (NN) that has the task of predicting the context window words
for a given target word. The NN is formed by three fully connected layers, and the weights of the
neurons that connect the input to the (hidden) second layer of e neurons build the embedding space
that maps each input word into an e-dimensional vector, i.e., д(wi) = ui ∈ Re . The dimension e of
the projection is a parameter that impacts the quality of the embeddings. Notice that the embedder
is a functionд from the space of observed sendersw ∈ V (ti) toRe . We call the set of all embeddings
U (ti) = {д(wi),wi ∈ V (ti)}.

We report the pseudo-code outline of the incremental embedding training in Algorithm 1. Refer
to Appendix A.1 for more details.

In our case, Word2Vec leverages the co-occurrence of the sender IP addresses targeting the
same port/service in a given time window. The resulting embeddings map those IP addresses that
frequently appear in the same context window into the same region in the e-dimensional space,
i.e., senders that perform similar patterns at a given time are mapped into a compact region.

For our experiments, we use the skip-gram-based Word2Vec Python implementation of Gen-
sim [12], which we modify to support the incremental updates of the weights. We make all our
source code and anonymised datasets available to the community to allow others to reproduce
results.7

7The repository for the code is available at https://github.com/SmartData-Polito/darkvec.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

https://github.com/SmartData-Polito/darkvec

45:12 L. Gioacchini et al.

Table 4. Comparison between i-DarkVec, DarkVec, IP2VEC, and DANTE

5 Day dataset (coverage: 82%) 30 Day dataset (coverage: 100%)
Corpus Epochs Samples ETA Acc. Samples ETA Acc.

DANTE Port-based 10 >7B >10 days – – – –
IP2VEC Flow-based 10 38M ∼60 min 0.67 – >10 h –
DarkVec DKS (c = 25, e = 50) 20 17M ∼14 min 0.93 486M ∼1.2 h 0.96
i-DarkVec AS (c = 5, e = 200) 1 4M ∼18 sec 0.97 21M ∼2 min 0.97

5 VALIDATION WITH SUPERVISED TASKS

We now validate the embeddings i-DarkVec creates by defining a supervised learning task in which
we use a simple k-NN classifier in the embedding space to label sender IP addresses. We compare
i-DarkVec to the original DarkVec proposal and to DANTE and IP2VEC.

We run all experiments on a high-end server equipped with 2 Intel Xeon Gold 6130 CPUs (each
with 16 physical cores at 2.10 GHz) and 256 GB of memory. We implement i-DarkVec and DANTE in
Python using the Gensim library, and IP2VEC in Keras, with parameters suggested in the original
papers. In contrast to the Gensim-based cases, IP2VEC can profit from a Tesla V100 GPU (16 GB
of memory) to speed up training.8

5.1 Comparison with DarkVec, DANTE, and IP2VEC.

We consider the traffic observed in our darknet for a period of 5 days (first scenario) and 30 days
(second scenario). For each scenario, we select the subset of active senders and create the embed-
dings for each case. We then run the same test done with the baseline classifier to check how
senders in the ground truth are projected into the embedding space. Intuitively, good embeddings
shall project IP addresses of the same ground truth class to compact regions in the latent space so
a k-NN classifier can recover the correct label.

Following a Leave-One-Out approach, we consider each IP address wi for which we have a
label and that results active in the considered dataset. Using the cosine similarity, we measure the
distance between wi and other IP addresses, i.e., cosine (ui ,uj) measures the similarity between
the projection vectors ui ,uj of wi and w j . Then, we extract the k-Nearest Neighbours of wi in the
embedding space and use majority voting to assign the predicted class to wi . At last, we compare
the predicted class against the wi ground truth class. If the predicted and actual class match, then
we have a correct prediction. By repeating the procedure for all labelled IP addresses, we compute
the average accuracy, i.e., the probability that an IP address gets associated with the correct class.
We consider only senders that belong to some ground truth class, i.e., GT1-GT9, skipping all IP
addresses of the Unknown class, since we do not know if they eventually belong to any of the GT
classes.

Given the large amounts of data to process, scalability is vital for practical implementations.
Thus, we compare the corpus size and the training time required to build the embeddings. We con-
sider DarkVec with best parameters as in Reference [34], i.e, with the domain knowledge service
definition, context window c = 25, and embedding dimension e = 50. We consider i-DarkVec with
the auto-defined services, context window c = 5, and embedding of e = 200 dimensions. We will
discuss the choice of i-DarkVec parameters in Section 5.2.

We summarise results in Table 4. Consider first the 5-day dataset. With i-DarkVec, we can predict
the correct class with a macro accuracy of 0.97, while with DarkVec single training approach,
we can reach an accuracy of 0.93. IP2VEC reaches only 0.67. Here, both the incremental training

8We migrate the original IP2VEC PyTorch-based implementation to Keras to optimise performance. Gensim does not sup-

port GPU offloading.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:13

and the flexible definition of services in i-DarkVec play a role, and we will discuss that in detail
next. Considering scalability, because of the incremental training approach, i-DarkVec is the most
scalable algorithm with a total training time of only 18 seconds—this is the time to process 5 batches
and model updates of about 4M samples each. Conversely, DarkVec produces a corpus of over 17M
sequences that require more than 14 minutes to complete the Word2Vec training. IP2VEC requires
about four times more time to complete the training. The additional complexity is also due to the
large usage of negative sampling suggested by authors. This negative sampling, together with a
custom definition of context, increases the number of training samples to 38 M, increasing the
training time.

DANTE does not scale, and after more than 10 days, we could not complete the training. This
happens because DANTE generates around 7B sequences during sequence creation. Recall that
DANTE associates each port to a word and generates a different sentence for each IP address. This
approach results unfeasible with hundreds of thousands of sources, each generating independent
sequences. The original paper presenting DANTE confirms the scalability problem. For the sake
of completeness, we perform an additional test, reducing the dataset size by considering only one
day of data. DANTE was finally able to complete the embeddings computations in about 2 minutes,
resulting in 0.47 average accuracy. i-DarkVec completed the training in just 1 second, reaching
0.64 in accuracy. On the one hand, this result testifies to the scalability issues of DANTE; on the
other hand, it shows the need to consider a big dataset to let the embeddings converge to a useful
representation.

Consider now the 30-day dataset. In this case, the number of active IP addresses grows by a
factor of 5, reaching about 100,000 IP addresses (cf. Figure 3(b)). More data allows us to build
embeddings that cover more IP addresses. In fact, the number of active senders found on the last
day and covered by the embeddings grows from 17,463 to 22,399. Restricting to those senders for
which we have a label, the embeddings built on 5 days of traffic cover 82% of senders and, by
construction, the coverage is 100% when using the 30-day dataset.

The increase in the data produces a sizeable increase in the number of sequences in the corpus.
Thanks to the incremental approach, i-DarkVec processes 29 batches of data, each containing 1
day of traffic, each time updating the ith embeddings to get the (i + 1)-th embeddings. i-DarkVec
training over the whole 30 days completes in 2 minutes, and we obtain 0.97 accuracy. When trained
using a single batch of 30 days, we obtain almost the same accuracy (0.96) using the original Dark-
Vec embeddings, but DarkVec takes 1.2 hours to complete the training. IP2VEC cannot complete
the word sequence creation process after more than 10 hours, producing more than 200M training
samples.

In sum, the incremental training approach and the simple word sequence creation of i-DarkVec
increase scalability. Its flexible service definition and incremental approach result also in embed-
dings that can be used to train more precise classifiers than the original DarkVec.

5.2 i-DarkVec Parameter Tuning

We perform a sensitivity analysis on i-DarkVec hyper-parameters. We again focus on the classifica-
tion task, verifying the accuracy following the same Leave-One-Out approach on the IP addresses
that are active on the last day of the trace. Here, we use the macro F-score as the main perfor-
mance indicator. It is a conservative metric that averages the per-class F-score to avoid the class
unbalance problem.

We vary the number of days used to train the Word2Vec model and the number of neighbours k ,
as well as we test the different service definition strategies. We then study strategies to reduce the
corpus size, as this is a key parameter for the scalability of i-DarkVec. Finally, we study the impact
of the embedding size e and the context window size c . Given the number of parameters to test,

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:14 L. Gioacchini et al.

Fig. 7. Grid search for training window length, k of k-NN classifier, and top-n ports used as services.

we cannot perform a complete grid search. Instead, we follow a greedy optimisation by varying
and choosing one parameter at a time. When not otherwise specified, we set e = 50 and c = 25, as
they are the best choices for the parameters in Reference [34]—we later optimise these parameters
for i-DarkVec, too. We train i-DarkVec on 30 batches, each corresponding to one day of traffic. At
each batch, we update the embeddings by performing a 1-epoch iteration.

5.2.1 Training Data Size. First, we check the impact of the training data size. Considering accu-
racy, we have already observed how training i-DarkVec with a 5-day- or a 30-day-long dataset let
the k-NN reach 0.97 of accuracy. However, the training data size has a significant impact on the
coverage, as depicted in Figure 7(a). Given that we restrict the embeddings constructions to those
IP addresses seen at least 10 times in the training period, the longer the period, the higher the
chance to collect enough observations to build an embedding for a given IP address. For instance,
Figure 7(a) shows that using a single day of data would allow us to build the embeddings for about
35% of the senders that could be covered when using 30 days of data.

As such, in our experiments, we fix the training period length to 30 days to maximise coverage.

5.2.2 Impact of k and Service Definition. We next choose the k parameter for the k-NN classifier.
Figure 7(b) shows the macro average F-score for increasing values of k . First, observe how the
Auto-defined Services (AS) model performs significantly better than the Domain Knowledge

Services (DKS) and Single Service (SS) models. Second, k ∈ [3, 7] offers the best performance.
Increasing k improves the average accuracy up to when the neighbourhood starts to include too
many samples. When k is too large, the classification becomes uncertain, because popular classes,
e.g., the “Unknown” and other classes, start to dominate the neighbourhood.

We thus select the AS model and fix k = 5.

5.2.3 Top-n Ports for Auto-Defined Services. We now observe the impact of the number of top-n
ports to generate sequences. We report results in Figure 7(c). The curve shows the average macro
F-Score and the dots depict the per-GT-class F-score. Overall, increasing n makes most GT classes
have larger F-Scores, with the best values when n ∈ [2,000, 2,500]. Here, we choose top-2,500 ports
for the Auto-defined Services.

5.2.4 Corpus Reduction and Training Approach. To speed up the training time, we investigate if
it is possible to reduce the number of training samples by removing duplicates in the sequences. Re-
call that we build the sequences as senders reach a particular service in the darknet. We frequently
observe multiple packets sent from the same sender to the same port in short time intervals. These
repetitions create sub-sequences where a single IP address appears multiple times. We thus check
the impact of replacing such sub-sequences with a single occurrence. Table 5 details the corpora

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:15

Table 5. Comparison of the k-NN Classifier Performance for

the Corpus Reduction

With duplicates Without duplicates

DKS AS DKS AS

Avg. Doc length 5,276 56 3,003 19
Max. Doc length 290,597 313,756 78,675 35,677

Runtime - 1 day 4.3 s 6.2 s 4.5 s 4.4 s
Runtime - 30 days 88 s 122 s 79 s 80 s

Macro F-Score 0.63 0.87 0.72 0.87

Fig. 8. Impact of embeddings parameter on classification F-Score and training runtime.

size, the embeddings training time, and the average macro F-score. For completeness, we report
results for both the DKS and AS definition. Again, AS outperforms the DKS.

As expected, removing duplicates in sequences reduces the average document length. It has little
impact on the training time, which is dominated by the back-propagation time during the training
of Word2Vec. The removal of duplicates causes marginal differences in performance. Even if the
benefits are limited, we create sequences with the duplicate removal strategy, given its marginal
benefits in the runtime of the algorithm.

5.2.5 Impact of c and e . We finally study the impact of the context window size c and the
number of dimensions of the embeddings e in i-DarkVec. Here, we consider both the model training
time—the shorter the training time, the better the performance—and the performance of the k-NN
classifier.

Figure 8 details results. Each matrix shows the impact of c ∈ [5, 75] and e ∈ [52, 200].9 F-score
tops to [0.89,0.90] when c = 5, with marginal impact of e . For large values of the context window
c , small values of e perform slightly better. This result suggests that low-dimensional embeddings
avoid the curse of dimensionality, simplifying the classification task.

Looking at the time to complete the training, small values of c and e correspond to a simpler NN,
which in turn makes the training faster. Based on these results, we set the context windows c = 5
and the dimension of the embeddings e = 200, which maximises the performance. Not reported
here, we repeated the grid search for the SS and DKS cases. Results are consistent with best figures
for small values of c and little impact of e .

9The Gensim library suggests using embeddings size that is multiple of 4 for efficiency in the calculation.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:16 L. Gioacchini et al.

Table 6. 5-NN Classifier F-Score

SS (c = 5, e = 52) DKS (c = 5, e = 152) AS (c = 5, e = 52)
Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score Support

Mirai-like 1.00 0.97 0.98 1.00 0.95 0.98 1.00 0.98 0.99 7,351
Censys 0.92 0.93 0.92 0.95 0.92 0.94 0.99 1.00 0.99 336
Stretchoid 0.80 0.04 0.07 0.53 0.09 0.15 1.00 0.31 0.47 104
Internet-census 0.97 0.92 0.95 0.97 0.98 0.98 0.98 0.99 0.98 103
Binaryedge 0.99 0.97 0.98 0.95 0.93 0.94 0.98 1.00 0.99 101
Sharashka 0.94 0.88 0.91 0.96 0.90 0.93 1.00 1.00 1.00 50
Ipip 0.55 0.76 0.64 0.56 0.76 0.64 0.78 0.57 0.66 49
Shodan 0.93 0.61 0.74 0.95 0.87 0.91 1.00 1.00 1.00 23
Engin-umich 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10
Macro avg. 0.90 0.79 0.80 0.87 0.82 0.83 0.97 0.87 0.90 8,127
Weighted avg. 0.99 0.95 0.96 0.99 0.94 0.96 1.00 0.97 0.98 8,127

Values below 0.50 are highlighted in red.

Fig. 9. Activity patterns for some GT classes.

5.3 Detailed Result Per Class

So far, we have reported only the F-score to summarise the results. The macro F-score, however,
weights the performance independently on the class support, thus giving equal importance to all
classes. In our case, we have a considerably unbalanced dataset with few classes with thousands of
senders (e.g., Mirai-like) and others with just a handful of senders (e.g., Engin-umich). To appreciate
in detail the per-class results, Table 6 summarises the Precision, Recall, and F-score for each GT
class. At the bottom, we summarise the average performance using both the macro average (i.e.,
dividing each metric by the number of classes) and weighted average (i.e., weighing the metric
by the support of each class). For the sake of completeness, we report results for all four service
definitions, highlighting in red those results that are particularly unsatisfying (<0.5) and in bold
the best performance in the F-score.

The Single Service embeddings result is particularly poor for this task. They work well for the
Mirai-like botnet(s) but fail in most other classes. Being the largest class, Mirai dominates the
weighted metrics. The AS and DKS help Word2Vec to obtain descriptive embeddings even for
minority classes. IP addresses of the same class are projected into the same portion of the space so
the majority of the k = 5 neighbours results of the same class.

Interestingly, the 10 Engin-umich senders (which target port 53 only) are projected into the
same portion of the embedding space so the k-NN correctly classifies all of them. Notice that
there are a lot of other senders that target port 53. Yet, the skip-gram model can perfectly capture
the coordinated and very impulsive action of the 10 Engin-umich senders, which we depict in
Figure 9(a).

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:17

The Stretchoid class results in the lowest performance metrics. Looking into its temporal pattern
in Figure 9(b), we observe a very irregular pattern, with few packets from each sender arriving at
irregular time intervals. Not having a similar context, Word2Vec likely projects these points at
random in the embedding space.

Finally i-DarkVec allows us to assign labels to previously unlabeled senders by adopting a
semi-supervised approach. Given the set of “Unknown” IP addresses classified as one GT class,
we sort them by increasing the average distance to their k-NN and manually check if the assigned
label could be correct. We stop when the average distance becomes higher than the maximum
average distance among senders of the given GT class. With this simple process, we identify
new senders performing scan patterns very similar to Shodan servers (confirmed by manual
investigation), other senders being very likely part of the Censys network, and so on. While
qualitative, this analysis lets us extend our knowledge about already known GT classes.

In the next section, we apply this rationale using an unsupervised approach to identify new
classes sharing similar activities.

6 UNSUPERVISED EMBEDDINGS ANALYSIS

i-DarkVec is able to project senders involved in similar activities into the same region of the latent
space. We now investigate how unsupervised approaches let us identify clusters of senders that
perform coordinated actions.

6.1 Clustering Methodology

Given the good properties exhibited by k-NN for classification, we design a graph-based clustering
for the unsupervised exploration of the embeddings. Given the space of all possible sendersV , we
define the set of senders for which we have an embeddingV ′ ⊆ V . Then, we build a directed graph
G (V ′,E), where we connect each vertex to its k ′ nearest neighbours:

E = {(wi ,w j),w j ∈ k’-NN(wi),∀wi ∈ V′}.
We assign to each edge (wi ,w j) a weight equal to the cosine similarity cosine (ui ,uj) between the
embeddings of the vertices wi and w j . Note that each edge (wi ,w j) is directed, since w j can be
among the k ′ nearest neighbours of wi , but w j can have k ′ different neighbours.

Given the graphG, we use the Louvain algorithm [25] to extract non-overlapping communities
or clusters. The algorithm maximises the modularity score of clusters, where the modularity—in
the range [-0.5,1]—quantifies the quality of an assignment of vertices to clusters. In a nutshell,
the algorithm evaluates how much more densely connected the vertices within a cluster are when
compared to how connected they would be in a random network with the same degree distribution.
The Louvain algorithm has been successfully used for cluster detection in social networks [45] and
even for darknet traffic analysis [52].

Among its advantages, the algorithm does not require a pre-defined number of clusters. More-
over, there exist several open-source and scalable implementations of the algorithm.

6.2 Choice of k
′

The only parameter for the graph-based clustering is k ′, the number of neighbours to each vertex
is connected to. Since we follow a completely unsupervised approach, the selection of k ′ cannot
be guided by our GT. As such, the k ′ leading to good clusters may be different from the k = 7 used
for supervised analysis.

We study the impact of k ′ considering the 30-day dataset and the corpus obtained through the
auto-defined services. We run i-DarkVec to build the embeddings, build the graph, and extract
clusters for different k ′. We show the number of clusters (left y-axis, solid red curve) and the

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:18 L. Gioacchini et al.

Fig. 10. Impact of k ′ in cluster detection.

modularity (right y-axis, blue dotted curve) in Figure 10. Intuitively, when k ′ = 1, we connect
each IP address to only the nearest point. This creates many disconnected components in the
graph, resulting in thousands of tiny clusters. With k ′ > 1, disconnected components start to get
connected, resulting in fewer clusters. Withk ′ = 3 (suggested by the elbow method [51]), we obtain
70 clusters with high modularity. Larger values of k ′ have little impact, only slightly decreasing
the overall modularity. As such, we use k ′ = 3 in the results that follow.

6.3 Comparison with Other Clustering Algorithms

Next, we compare the results of the Louvain clustering with traditional clustering algorithms. For
this analysis, we use silhouette. The silhouette measures how similar a sample in a cluster is to the
other samples in the same cluster (cohesion), compared to how dissimilar the sample is to samples
in the other clusters (separation). It takes values in the [−1,1] range. Positive values reflect good
cohesion, while negative values suggest possible wrong assignments.

We consider a simple k−Means algorithm and a hierarchical agglomerative algorithm [23]. In
both cases, we select parameters (the number of clusters for k−Means and the maximum linkage
threshold for the agglomerative clustering) by using the same elbow-based parameter selection.10

Figure 11 shows the average per-cluster silhouette for the three algorithms. All clusters tend to
have a positive silhouette. The hierarchical agglomerative clustering detects only 3 clusters, while
k−Means detects 12 clusters. Given we already know there are at least 10 groups of coordinated
sources in this dataset (9 GT classes + 1 unknown), we would expect a higher number of clusters if
the clustering algorithm is able to capture such behaviour from the embeddings. Manual inspection
shows that these clusters are very large, with samples from the GT classes that are spread in multi-
ple clusters. These results hint at poor clusters, which do not reflect groups of coordinated senders.
Instead, the Louvain algorithm on 3-NN Graph offers detects 70 clusters, and 80% of them have
positive silhouette values. In the following, we inspect these clusters to show how they represent
compact and homogeneous groups of senders.

6.4 Clusters Characterisation

Figure 12 shows the average silhouette per cluster with respect to the cluster size on the x-axis. In
general, we observe that the size of the clusters varies a lot (note the logarithmic x-scale). The small

10We have also tested DB-Scan, a density-based algorithm. Performance is much worse, facing the well-known curse of

dimensionality as well as difficult parameter convergence.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:19

Fig. 11. Clustering algorithms comparison. Louvain detects 70 clusters, k−Means 12 clusters, and

Hierarchical 3.

Fig. 12. Average cluster silhouette versus cluster size for the 70 clusters identified over the 3-NN graph.

clusters tend to have a high silhouette, resulting in compact and well-defined groups. For instance,
senders in the Shadowserver (green squares) or Censys (red points) classes clearly emerge as well-
separated clusters. This confirms that senders belonging to known classes are well-separated from
other senders in the embeddings space generated by i-DarkVec.

Interestingly, there are also some large clusters aggregating thousands of senders. For instance,
three clusters aggregate a lot of senders in the Mirai class with a positive silhouette (highlighted
with blue triangles). As several variants of the Mirai class exist, the identification of several clusters
of senders having the same Mirai signature is a sign that i-DarkVec can detect sub-classes of the
generic Mirai class. In the following, we analyse clusters with high silhouettes looking for insights
and possibly previously unknown classes of scanners.

We summarise the results of our manual analysis in Table 7. Similarly to the steps used to
build the GT, we rely on manual inspection, searching for explanations for the senders’ activity
in each group. To find evidence of the type of activity they perform, we collect reverse DNS
hostnames, consult the whois database, check public security repositories, and fire HTTP requests
to senders’ IP addresses to check for “abuse” pages redacted by people running legitimate
scanners. Here, the ability to work on groups of senders dramatically simplifies the analysis,
showing how i-DarkVec eases the work of the security analyst. We make publicly available the

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:20 L. Gioacchini et al.

Fig. 13. Patterns of five Censys sub-clusters. Fig. 14. Patterns of four Shadowserver sub-clusters.

clustering report11 i-DarkVec automatically generates, providing a brief characterisation of each
cluster.

All in all, i-DarkVec identifies (i) well-known Internet scan projects, including those listed in our
ground-truth, some not reported for brevity, (ii) Internet scanners from security services, which
were previously unknown to us, (iii) distributed scan events for which the observed patterns sug-
gest coordination from botnets.

6.4.1 Sub-Clusters of Known Scanners. Using a completely unsupervised approach, i-DarkVec
coupled with clustering identifies groups of senders already present in our ground truth. Interest-
ingly, it identifies sub-groups inside the set of senders belonging to the same scanner. For instance,
consider Censy’s service. Recall that Censys targets more than 11,000 ports (Table 2) with 336 IP
addresses seen in our data. i-DarkVec divides 144 of those senders into 7 groups.12

Figure 13 shows the temporal patterns of these clusters. For visualisation, we report only five
clusters. The x-axis represents the time, they-axis presents senders ordered by the cluster IDs, and
points mark the time in which the given sender is active. Colour identifies each cluster. Patterns
show that each group is formed by a similar number of IP addresses that are active in different
time periods. Not shown, each group targets a different set of ports, too. i-DarkVec highlights the
scan strategy employed by Censys, which deploys sets of scanners, each composed of a similar
number of hosts and each group searching for particular services on the Internet.

6.4.2 Disclosed Benign Scanners. i-DarkVec allows us to identify addresses belonging to Inter-
net security services like Shadowserver [18], which we initially were unaware of and, therefore,
did not include in our GT. The service performs scans from its networks and is listed in public
security databases [5, 11, 13].

We identify 345 Shadowserver senders belonging to the same /16 network that i-DarkVec di-
vides into 13 clusters. All senders belong to the Shadowserver Foundation, which runs the scans
for security purposes. Clusters, in this case, have less-evident temporal patterns (Figure 14) than
in the Censys case. Yet, i-DarkVec identifies that they target the same group of ports, but with
very different intensities (e.g., C3 focuses on port 3389/UDP, while C12 focuses on ports 17/UDP,
32414/UDP). Other notable examples of ground truth extension are the CSN cluster (C28) and the
Cortex Xpanse ones (C33, C61). The first contains 46 senders belonging to the Cloud System Net-

works (CSN) company [9]. They perform periodic scans on port 137/UDP, which is related to the
NetBios protocol. In the second case, i-DarkVec detected 38 senders belonging to Google CDNs

11https://github.com/SmartData-Polito/darkvec/blob/idarkvec/reports/cluster_report.pdf.
12The remaining Censys IP addresses have a more sporadic presence and remain in noisy groups with a low silhouette.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

https://github.com/SmartData-Polito/darkvec/blob/idarkvec/reports/cluster_report.pdf

i-DarkVec 45:21

Table 7. Summary of Clusters Exhibiting Strong Signs of Coordination

Type Cluster IPs Silhouette Ports Last day pkts. Description

Confirmed GT

C7 48 0.688 254 58k

Censys sub-clusters

C16 16 0.935 23 506
C20 16 0.916 27 506
C48 16 0.935 26 532
C52 16 0.904 20 506
C55 16 0.909 21 460
C60 16 0.902 26 1k

C44 119 0.688 245 11k
Binaryedge

C49 13 0.489 17 88

C5 23 0.469 712 20k Shodan

C27 12 0.593 355 3k Internet-census

Benign scanners

C3 14 0.738 39 784

Shadowserver sub-clusters

C10 16 0.826 40 1k
C12 15 0.905 40 1k
C32 14 0.836 41 1k
C34 16 0.869 42 2k
C50 18 0.772 46 2k
C63 15 0.794 40 1k
C64 61 0.724 40 3k
C65 14 0.849 39 1k
C66 7 0.494 39 1k
C68 13 0.78 36 1k
C69 16 0.857 40 1k
C67 126 0.051 36 5k

C28 48 0.971 2 486 CSN

C33 32 0.905 16 1k
Cortex Xpanse

C61 10 0.906 12 402

Suspicious

C0 965 0.337 109 92k MSSQL bruteforcer. SQL Slammer Worm-like
C47 12 0.34 8 2k Redis miner. RedisWannaMine-like
C53 14 0.944 1 5k Json RPC brute-forcers

C59 29 0.555 24 9k
Docker scanner. All senders target Docker ports.
Activity coherent with known botnets

ADB.Mirai C2 794 0.506 85 262k Mirai variant targeting Android debug bridge service

Mirai-like
C39 1,885 0.244 85 19k

Mirai-like bots targeting port 23/TCP and 2323/TCPC45 1,669 0.292 73 17k
C36 1,354 0.174 58 7k

Emerging campaign
C24 26 0.591 15 2k 4 common ports and unique /24 subnet
C58 128 0.227 24 117k SMB scanner

Unknown scanners

C30 14 0.669 35 5k All senders target the same 35 ports
C57 24 0.492 53 31k SIPVicious-like scanner
C59 29 0.555 24 9k Kubernetes exploiter
C43 28 0.94 5 342 Sequential ports scanner
C37 909 0.393 39 4k HTTP/Telnet scanner
C22 95 0.435 416 54k NSR Mixed scanner
C14 10 0.692 40 8k Kamatera Inc. scanner

hosting services from the Cortex Xpanse service [10] from Palo Alto Network. The senders are
grouped into two clusters according to both their activity and port patterns.

6.4.3 Uncovered Actors. i-DarkVec let us identify groups of senders that are not present in open
security databases or related search engines but whose activity patterns suggest the coordination
of a large number of IP addresses, sometimes displaying fingerprints that align with botnets. Hence,
since we cannot confirm the purpose of their actions, we qualitatively describe them, grouping
them into four classes: suspicious activities, emerging campaigns, Mirai variants, and other un-
known scanners. We provide more details about these groups in Table 7 and Appendix A.2.

Suspicious activities: We observe several groups of unknown senders whose intentions are
suspicious. We depict some notable activity patterns in Figure 15(a) and describe some of the
clusters below.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:22 L. Gioacchini et al.

Fig. 15. Examples of activity patterns of hosts in new clusters.

• Docker scanners. We detect a group of 29 unknown senders all targeting the same Docker
API ports.13 This group might be associated to botnets such as Graboid [3], and Kinsing [4].
• Json RPC brute-forcer. A cluster of 14 senders sending more than 5,000 packets towards the

Json RPC port 8545/TCP. The activity pattern of Figure 15(a) suggests a likely Json RPC
brute-force attack.
• Redis miner. We observe a group of unknown senders massively scanning for open Redis

instances on ports 6378/TCP, 6379/TCP, 6380/TCP, and 6381/TCP. Such suspicious activities
could be the first steps of a RedisWannaMine[1] attack.
• MSSQL brute-forcer. i-DarkVec detects a group of > 900 senders targeting MSSQL port

1433/TCP (88% of senders) and SMB port 445/TCP (60% of senders). Literature is rife with
examples of worms targeting the MSSQL port and probing the SMB one for spreading (e.g.,
Conficker [36]).

Novel emerging campaigns: Apart from the above suspicious activities, we observe emerging
scanning campaigns, such as cluster C58 (Figure 15(b)), where all the 128 senders target SMB port
446/TCP, and most of them become active only 24 hours before our last day of analysis.

Similarly, all 26 senders of cluster C24 target the same four ports: 5060/TCP, 22/TCP, 123/UDP,
and 80/TCP, and most of them share the remaining 11 ports. All senders in this cluster also abruptly
started their activities on the second to last day of our analysis. They all belong to the same /24

13Default Docker API port 10250/TCP, unencrypted Docker API port 2375/TCP, encrypted Docker API ports 8443/TCP and

2376/TCP, and Docker registry API port 4243/TCP.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:23

subnet, with reverse DNS pointing to bc.googleusercontent.com. This could be a new coordi-
nated scan activity run by some malicious user using virtual machines hosted in the Google cloud
infrastructure.

These examples show that i-DarkVec can ease the identification of emerging scans and attacking
campaigns once successfully deployed and possibly assist on the spot of zero-day threats if those
result in novel patterns in the darknet traffic.

Mirai variants: Other notable examples of coordinated senders uncovered by i-DarkVec are
the Mirai-like clusters (C39, C45, C36). The approximately 5,000 senders that generate the 80%
of traffic with the Mirai fingerprint are grouped in these three clusters. They differ by the ports
targeted by the senders in each cluster. In detail, 85% of their traffic is directed towards port 23/TCP.
The remaining 15% of the traffic is related to a different group of ports, suggesting three different
attack patterns or Mirai variants.

Notably, cluster C2 contains more than 704 senders massively scanning the Android Debug

Bridge (ADB) port 5555/TCP. Since they match the Mirai fingerprint, it is reasonable to assume
that i-DarkVec isolates an ADB.Mirai [2] cluster.14

Unknown scanners: Finally, manual analysis of detected groups reveals some clusters whose
senders’ activity patterns suggest coordination. One notable example is C30, containing 14 un-
known senders that sent the same portion of approximately 3,000 packets to 40 specific ports. As
shown in Figure 15(c), senders follow a temporal pattern in contacting the ports, with each sender
being active in a narrow time range and targeting all the shared ports once activated.

C57 is another example of sender coordination detected by i-DarkVec. Indeed, all the 24 un-
known senders generate a considerable amount of packets (more than 30,000 in the last day only)
towards the same ports 5060/UDP, 5080/UDP, 5062/UDP, 5069/UDP, and 8032/UDP. Those ports are
targeted by SIP traffic, and the senders’ activity shares similarities with the SIPVicious toolset [21].

While not exhaustive, this analysis shows the benefit of i-DarkVec in supporting the identifi-
cation of new groups of senders performing coordinated actions. Section A.2 discusses other ex-
amples. In a nutshell, i-DarkVec offers the security analyst the opportunity to analyse groups of
homogeneous senders, greatly easing the discovery of the actions the coordinated senders perform.

7 DISCUSSION AND CONCLUSIONS

We presented i-DarkVec, a system that relies on Word2Vec to build meaningful representations that
can be used to shed light on noisy darknet traces. Similarly to what is commonly done with word
embeddings for NLP, the embeddings built with i-DarkVec pave the way for advanced machine
learning tasks. In particular, we showed that i-DarkVec embeddings can be used to cluster senders
performing coordinated activities that would otherwise be hard to spot in darknet traffic. i-DarkVec
thus assists security analysts to extend their knowledge about scans and attacks.

i-DarkVec outperforms state-of-the-art alternatives, in particular, with faster learning times that
enable i-DarkVec application to large-scale scenarios. Beyond the darknet traffic use case, our
results and methodological insights can inspire the application of i-DarkVec to other sequences
of categorical variables often present in networking data, such as in honeypot traffic or network
monitoring data.

Compared to NLP algorithms [27, 41, 46] where the resulting embeddings are general, a
Word2Vec model trained with network data is hard to generalise. Indeed, i-DarkVec learns the
time relationships among co-occurring senders within a certain observation period. Given the
rapid changes in Internet traffic, senders’ behaviour, and targeted services, the learned embeddings
are expected to be very dynamic. On the contrary, embeddings generated from natural languages

14ADB.Mirai is a Mirai variant that targets IoT devices running the Android operating system.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:24 L. Gioacchini et al.

are generic, thanks to the intrinsic static nature of the language, where the semantics and usage
of words change slowly. i-DarkVec is a powerful analysis tool to shed light on darknet traffic
and, thanks to its incremental design, it can cope with the dynamism required in networking use
cases.

Many open questions remain, though. We will investigate whether the embeddings learned in
one darknet can be useful in other darknets or at different times. First, we will study the impact of
the size of the monitoring infrastructure. Here, we relied on a /24 darknet monitoring infrastruc-
ture. We expect larger darknet address space could accelerate the collection of data, thus enabling
quicker embedding computation (e.g., down to the hourly granularity) and calling for possible
fine-tuning of parameters (e.g., the threshold to consider a sender as active). We also envision a
federated-learning approach where multiple monitoring infrastructures collaborate to the building
of shared embeddings.

Other research directions involve the understanding of the transferability of the embeddings,
i.e., if embeddings learned in a network could be used to solve downstream tasks in other net-
works. While this is common in NLP, we expect the quickly evolving nature of darknet traffic
would hardly make it possible to transfer embeddings over multiple networks. The question thus
is whether a model trained for one task (e.g., classify sources) on the embeddings of one darknet
could successfully achieve the same task on other darknets. We plan to extend our results in these
directions in the future.

A APPENDIX

A.1 Word2Vec

Word2Vec [41, 43] is an NLP technique based on artificial neural networks. It allows mapping words
(tokens) of text sentences (corpora) into a latent space as a real-valued array (the embedding), such
that words belonging to similar contexts have similar embeddings.

The core element of the Word2Vec model is the context. It is defined as the sequence of words
surrounding the one for which the embedding must be generated. The number of words to con-
sider in the context is specified by the context window size c (see Section 4.3). For example, by
considering the sentence “Chicago is a great city,” if the word “a” is the target one and c = 2, then
the context for “a” is the list of the 2 previous and 2 following words of “a” :

“a” → (“Chicago,” “is,” “great,” “city”).

Fig. A.1. Word2Vec skip-gram architecture.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

i-DarkVec 45:25

To generate the embeddings, Word2Vec relies on two possible architectures: skip-grams and
Continuous Bag Of Words (CBOW). Since we work with the skip-gram architecture, for the
sake of simplicity, we omit the description of CBOW. By considering a corpus with N distinct
words, the model aims at predicting the probability of finding each one of the N words within the
context window of a given target word. In Figure A.1, we report an overview of the skip-gram
architecture. Each word of the sentences is fed as input to the model through a one-hot-encoded
input layer. The e-dimensional hidden layer links all the 2c context words to the target one. After
the model training, the embeddings are obtained from the weights matrix W ∈ RN×e . Each of the
i ∈ {1, . . . ,N } entries of W is the embedding in R1×e associated to the ith word.

Table A.1. Domain-knowledge-based Service Definition Used for Generating

the Word2Vec Corpus

Service Internet Port/Protocol

Telnet 23/tcp, 992/tcp

SSH 22/tcp

Kerberos
88/tcp, 88/udp, 543/tcp, 544/tcp, 749/tcp, 7004/tcp, 750/udp,
750/tcp, 751/tcp, 752/udp, 754/tcp, 464/udp, 464/tcp

HTTP 80/tcp, 443/tcp, 8080/tcp

Proxy 1080/tcp, 6446/tcp, 2121/tcp, 8081/tcp, 57000/tcp

Mail
25/tcp, 143/tcp, 174/tcp, 209/tcp, 465/tcp, 587/tcp, 110/tcp,
995/tcp, 993/tcp

Database
210/tcp, 5432/tcp, 775/tcp, 1433/tcp, 1433/udp, 1434/tcp,
1434/udp, 3306/tcp, 27017/tcp, 27018/tcp, 27019/tcp, 3050/tcp,
3351/tcp, 1583/tcp

DNS 853/tcp, 853/udp, 5353/udp, 53/tcp, 53/udp

Netbios 137/tcp, 137/udp, 138/tcp, 138/udp, 139/tcp, 139/udp

Netbios-SMB 445/tcp

P2P

119/tcp, 375/tcp, 425/tcp, 1214/tcp, 412/tcp, 1412/tcp, 2412/tcp,
4662/tcp, 12155/udp, 6771/udp, 6881/udp, 6882/udp, 6883/udp,
6884/udp, 6885/udp, 6886/udp, 6887/udp, 6881/tcp, 6882/tcp,
6883/tcp, 6884/tcp, 6885/tcp, 6886/tcp, 6887/tcp, 6969/tcp,
7000/tcp, 9000/tcp, 9091/tcp, 6346/tcp, 6346/udp, 6347/tcp,
6347/udp

FTP
20/tcp, 21/tcp, 69/udp, 989/tcp, 990/tcp, 2431/udp, 2433/udp,
2811/tcp, 8021/tcp

Unknown System All ports in the [0, 1023] range not classified as before

Unknown User All ports in the [1024, 49151] range not classified as before

Unknown Ephemeral All ports in the [49152, 65535] range not classified as before

A.2 Clusters

In this section, we provide further details about the data in Table 7 by reporting more examples of
the most notable clusters learned with i-DarkVec.

Here, we complete the description of the clusters uncovered by i-DarkVec that are formed by
scanners that we could not explain based on online security databases (cf. Section 6.4.3).

Kubernetes exploiter : All the 29 unknown senders target port 10250/TCP with >24k packets
(32.5% of the cluster traffic). The port is usually targeted to exploit Kubernetes vulnerabilities.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

45:26 L. Gioacchini et al.

Sequential ports scanner : 28 unknown senders. All of them are active in the same period and
target the same sequential ports 18081/TCP, 18082/TCP, 18083/TCP.

HTTP/Telnet scanner : More than 900 senders. The 80% of cluster traffic is directed to ports
81/TCP (99.6% of senders) and 23/TCP (94.6% of senders).

NSR Mixed scanner : Half of the 95 scanners belong to the Net System Research (NSR)

project [16] extending the ground truth, half of them are unknown. All the senders target the
same 416 ports with evident activity patterns.

Massive scanner : Ten unknown senders belonging to two contiguous /24 networks and generat-
ing 8k packets. They are active in the same period every 4/6 days targeting the same set of 40 ports.

REFERENCES

[1] 2018. RedisWannaMine Unveiled: New Cryptojacking Attack Powered by Redis and NSA Exploits. Retrieved from

https://www.imperva.com/blog/rediswannamine-new-redis-nsa-powered-cryptojacking-attack/.

[2] 2019. ADB.Mirai: New Mirai Botnet Variant Spreading via the ADB Debug Port. Retrieved from https://nsfocusglobal.

com/adb-mirai-new-mirai-botnet-variant-spreading-via-the-adb-debug-port/.

[3] 2019. Graboid: First-Ever Cryptojacking Worm Found in Images on Docker Hub. Retrieved from https://unit42.

paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/.

[4] 2020. Threat Alert: Kinsing Malware Attacks Targeting Container Environments. Retrieved from https://blog.

aquasec.com/threat-alert-kinsing-malware-container-vulnerability.

[5] 2021. AbuseIPDB - IP address abuse reports - Making the Internet safer, one IP at a time. Retrieved from https:

//www.abuseipdb.com/.

[6] 2021. The Best IP Geolocation Database: IPIP.NET. Retrieved from https://en.ipip.net/.

[7] 2021. BinaryEdge. Retrieved from https://www.binaryedge.io/.

[8] 2021. Censys. Retrieved from https://censys.io/.

[9] 2021. Cloud System Networks. Retrieved from http://cloudsystemnetworks.com/.

[10] 2021. Cortex Xpanse. Retrieved from https://docs-cortex.paloaltonetworks.com/r/Cortex-XPANSE/1.0/Cortex-

Xpanse-Assess-User-Guide/Data.

[11] 2021. FireHOL IP Lists - IP Blacklists - IP Blocklists - IP Reputation. Retrieved from http://iplists.firehol.org/.

[12] 2021. Gensim, Topic modelling for humans. Retrieved from https://radimrehurek.com/gensim/.

[13] 2021. GreyNoise. Retrieved from https://greynoise.io/.

[14] 2021. Internet Census Group. Retrieved from https://www.internet-census.org/home.html.

[15] 2021. Michigan Engineering - University of Michigan College of Engineering. Retrieved from https://www.engin.

umich.edu/.

[16] 2021. Net System Research. Retrieved from https://www.netsystemsresearch.com/.

[17] 2021. Project Sonar. Retrieved from https://www.rapid7.com/research/project-sonar/.

[18] 2021. The Shadowserver Foundation. Retrieved from https://www.shadowserver.org/.

[19] 2021. Sharashka Data Feeds - Security Data That Works. Retrieved from https://sharashka.io/data-feeds.

[20] 2021. Shodan, the search engine. Retrieved from https://www.shodan.io/.

[21] 2021. SIPVicious OSS toolset. Retrieved from https://github.com/EnableSecurity/sipvicious.

[22] 2021. Stretchoid Opt-Out. Retrieved from http://www.stretchoid.com/.

[23] Charu C. Aggarwal. 2015. Data Mining: The Textbook. Springer.

[24] K. Benson, A. Dainotti, K. Claffy, A. Snoeren, and M. Kallitsis. 2015. Leveraging internet background radiation for

opportunistic network analysis. In Proceedings of the ACM Internet Measurement Conference (IMC’15). 423–436. Re-

trieved from http://dl.acm.org/citation.cfm?doid=2815675.2815702.

[25] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast unfolding of commu-

nities in large networks. J. Statist. Mechan.: Theor. Exper. 2008, 10 (2008), P10008.

[26] Joao Ceron, Klaus Steding-Jessen, Cristine Hoepers, Lisandro Granville, and Cintia Margi. 2019. Improving IoT Botnet

investigation using an adaptive network layer. Sensors 19 (02 2019), 727. DOI:https://doi.org/10.3390/s19030727

[27] Dvir Cohen, Yisroel Mirsky, Yuval Elovici, Rami Puzis, Manuel Kamp, Tobias Martin, and Asaf Shabtai. DANTE: A

framework for mining and monitoring darknet traffic. 88–109. Retrieved from http://arxiv.org/abs/2003.02575.

[28] A. Dainotti, A. King, K. Claffy, F. Papale, and A. Pescape. 2015. Analysis of a “/0” Stealth scan from a Botnet. IEEE/ACM

Trans. Netw. 23, 2 (2015), 341–354.

[29] Z. Durumeric, M. Bailey, and J. Halderman. 2014. An internet-wide view of internet-wide scanning. In Proceedings of

the 23rd USENIX Conference on Security Symposium (SEC’14). 65–78. Retrieved from http://dl.acm.org/citation.cfm?

id=2671225.2671230.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

https://www.imperva.com/blog/rediswannamine-new-redis-nsa-powered-cryptojacking-attack/
https://nsfocusglobal.com/adb-mirai-new-mirai-botnet-variant-spreading-via-the-adb-debug-port/
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub/
https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability
https://www.abuseipdb.com/
https://en.ipip.net/
https://www.binaryedge.io/
https://censys.io/
http://cloudsystemnetworks.com/
https://docs-cortex.paloaltonetworks.com/r/Cortex-XPANSE/1.0/Cortex-Xpanse-Assess-User-Guide/Data
http://iplists.firehol.org/
https://radimrehurek.com/gensim/
https://greynoise.io/
https://www.internet-census.org/home.html
https://www.engin.umich.edu/
https://www.netsystemsresearch.com/
https://www.rapid7.com/research/project-sonar/
https://www.shadowserver.org/
https://sharashka.io/data-feeds
https://www.shodan.io/
https://github.com/EnableSecurity/sipvicious
http://www.stretchoid.com/
http://dl.acm.org/citation.cfm?doid=2815675.2815702
https://doi.org/10.3390/s19030727
http://arxiv.org/abs/2003.02575
http://dl.acm.org/citation.cfm?id=2671225.2671230

i-DarkVec 45:27

[30] C. Fachkha, E. Bou-Harb, and M. Debbabi. 2015. Inferring distributed reflection denial of service attacks from darknet.

Comput. Commun. 62, C (2015), 59–71.

[31] C. Fachkha and M. Debbabi. 2016. Darknet as a source of cyber intelligence: Survey, taxonomy, and characterization.

Commun. Surv. Tutor. 18, 2 (2016), 1197–1227.

[32] J. Fruhlinger. 2018. The Mirai botnet explained: How teen scammers and CCTV cameras almost brought down the in-

ternet. (03 2018). Retrieved from https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-

scammers-and-cctv-cameras-almost-brought-down-the-internet.html.

[33] Luca Gioacchini. 2021. Automatic Detection of Coordinated Events in Darknet Traffic. Master’s thesis. Politecnico di

Torino, Torino, Italy.

[34] Luca Gioacchini, Luca Vassio, Marco Mellia, Idilio Drago, Zied Ben Houidi, and Dario Rossi. 2021. DarkVec: Automatic

analysis of darknet traffic with word embeddings. In Proceedings of the 17th International Conference on Emerging

Networking EXperiments and Technologies. 76–89.

[35] Chansu Han, Jun’ichi Takeuchi, Takeshi Takahashi, and Daisuke Inoue. 2022. Dark-TRACER: Early detection

framework for malware activity based on anomalous spatiotemporal patterns. IEEE Access 10 (2022), 13038–13058.

DOI:https://doi.org/10.1109/ACCESS.2022.3145966

[36] Mikko Hypponen. 2009. The Conficker mystery. BlackHat (2009). https://www.blackhat.com/presentations/bh-usa-

09/HYPPONEN/BHUSA09-Hypponen-ConfickerMystery-PAPER.pdf.

[37] M. Jonker, A. King, J. Krupp, C. Rossow, A. Sperotto, and A. Dainotti. 2017. Millions of targets under attack: A

macroscopic characterization of the DoS ecosystem. In Proceedings of the ACM SIGCOMM Internet Measurement

Conference (IMC’17). 100–113. Retrieved from http://dl.acm.org/citation.cfm?doid=3131365.3131383.

[38] Michalis Kallitsis, Vasant G. Honavar, Rupesh Prajapati, Dinghao Wu, and John Yen. 2021. Zooming into the darknet:

Characterizing internet background radiation and its structural changes. ArXiv abs/2108.00079 (2021).

[39] Sofiane Lagraa, Yutian Chen, and Jérôme François. 2019. Deep mining port scans from darknet. Int. J. Netw. Manag.

29, 3 (2019), e2065. DOI:https://doi.org/10.1002/nem.2065

[40] Sofiane Lagraa and Jérome François. 2017. Knowledge discovery of port scans from darknet. In Proceedings of the

IFIP/IEEE Symposium on Integrated Network and Service Management (IM). IEEE, 935–940.

[41] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in

vector space. arXiv:cs.CL/1301.3781.

[42] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013. Exploiting similarities among languages for machine transla-

tion. arXiv preprint arXiv:1309.4168 (2013).

[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words

and phrases and their compositionality. arXiv:cs.CL/1310.4546.

[44] D. Moore, C. Shannon, D. Brown, G. Voelker, and S. Savage. 2006. Inferring internet denial-of-service activity. ACM

Trans. Comput. Syst. 24, 2 (2006), 115–139.

[45] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutarchos Spyridonos. 2012. Community detec-

tion in social media. Data Mining Knowl. Discov. 24, 3 (2012), 515–554.

[46] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word represen-

tation. In Proceedings of the Empirical Methods in Natural Language Processing Conference (EMNLP). 1532–1543. Re-

trieved from http://www.aclweb.org/anthology/D14-1162.

[47] Rupesh Prajapati, Vasant Honavar, Dinghao Wu, John Yen, and Michalis Kallitsis. 2021. Shedding light into the dark-

net: Scanning characterization and detection of temporal changes. In Proceedings of the 17th International Conference

on Emerging Networking EXperiments and Technologies (CoNEXT’21). Association for Computing Machinery, New

York, NY, 469–470. DOI:https://doi.org/10.1145/3485983.3493347

[48] E. Raftopoulos, E. Glatz, X. Dimitropoulos, and A. Dainotti. 2015. How dangerous is internet scanning? A measure-

ment study of the aftermath of an internet-wide scan. In Proceedings of the 7th Workshop on Traffic Monitoring and

Analysis (TMA’15). 158–172. Retrieved from http://link.springer.com/10.1007/978-3-319-17172-2_11.

[49] P. Richter and A. Berger. 2019. Scanning the scanners: Sensing the internet from a massively distributed network

telescope. In Proceedings of the Internet Measurement Conference (IMC’19). 144–157. Retrieved from http://dl.acm.org/

doi/10.1145/3355369.3355595

[50] Markus Ring, Alexander Dallmann, Dieter Landes, and Andreas Hotho. 2017. IP2Vec: Learning similarities between

IP addresses. In Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW). 657–666.

DOI:https://doi.org/10.1109/ICDMW.2017.93

[51] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. 2017. DBSCAN revisited, revisited:

Why and how you should (still) use DBSCAN. ACM Trans. Datab. Syst. 42, 3 (July 2017). DOI:https://doi.org/10.1145/

3068335

[52] F. Soro, M. Allegretta, M. Mellia, I. Drago, and L. Bertholdo. 2020. Sensing the noise: Uncovering communities in dark-

net traffic. In Proceedings of the Mediterranean Communication and Computer Networking Conference (MedComNet).

1–8. Retrieved from https://ieeexplore.ieee.org/document/9191555/.

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

https://www.csoonline.com/article/3258748/the-mirai-botnet-explained-how-teen-scammers-and-cctv-cameras-almost-brought-down-the-internet.html
https://doi.org/10.1109/ACCESS.2022.3145966
https://www.blackhat.com/presentations/bh-usa-09/HYPPONEN/BHUSA09-Hypponen-ConfickerMystery-PAPER.pdf
http://dl.acm.org/citation.cfm?doid=3131365.3131383
https://doi.org/10.1002/nem.2065
http://arxiv.org/abs/cs.CL/1301.3781.
http://arxiv.org/abs/cs.CL/1310.4546.
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3485983.3493347
http://link.springer.com/10.1007/978-3-319-17172-2_11
http://dl.acm.org/doi/10.1145/3355369.3355595
https://doi.org/10.1109/ICDMW.2017.93
https://doi.org/10.1145/3068335
https://ieeexplore.ieee.org/document/9191555/

45:28 L. Gioacchini et al.

[53] F. Soro, I. Drago, M. Trevisan, M. Mellia, J. Ceron, and J. J. Santanna. 2019. Are darknets all the same? On darknet

visibility for security monitoring. In Proceedings of the IEEE International Symposium on Local and Metropolitan Area

Networks (LANMAN). 1–6. Retrieved from https://ieeexplore.ieee.org/document/8847113/.

[54] S. Staniford, D. Moore, V. Paxson, and N. Weaver. 2004. The top speed of flash worms. In Proceedings of the ACM

Workshop on Rapid Malcode (WORM’04). Retrieved from http://portal.acm.org/citation.cfm?doid=1029618.1029624.

[55] Akira Tanaka, Chansu Han, Takeshi Takahashi, and Katsuki Fujisawa. 2021. Internet-wide scanner fingerprint iden-

tifier based on TCP/IP header. In Proceedings of the 6th International Conference on Fog and Mobile Edge Computing

(FMEC). IEEE, 1–6.

Received 21 July 2022; revised 14 March 2023; accepted 18 April 2023

ACM Transactions on Internet Technology, Vol. 23, No. 3, Article 45. Publication date: August 2023.

https://ieeexplore.ieee.org/document/8847113/
http://portal.acm.org/citation.cfm?doid=1029618.1029624

