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1. Introduction

Collaborative robots, also known as cobots, are emerging as
a promising technology in the field of robotics. These robots are 
designed to work alongside humans and are capable of 
performing a wide range of tasks, from simple pick-and-place 
operations to complex assembly tasks [1]. Due to their ability 
to work safely and efficiently alongside human workers, cobots 
have become increasingly popular in the manufacturing 
industry. In particular, they are widely used in product 
assembly where their use leads to increased productivity, 
improved quality and reduced costs [2].

Human-robot collaboration (HRC), or the collaboration 
between cobots and human operators, is one of the cornerstones 
of both Industry 4.0 and Industry 5.0, which focus on 
integrating digital technologies into the manufacturing process
[3]. In these new industrial paradigms, there is a rising need for 
flexible and agile production systems that can quickly adapt to 

changes in demand and product design. In fact, in today's 
market, there is a growing demand for short runs of a wide 
variety of products. This is due to increasing customer demand 
for customisation, which is leading to an increase in the number 
of variants of the same product [4,5]. This approach, called 
mass customisation, involves the use of flexible manufacturing 
processes that can quickly and cost-effectively adapt to the 
specific needs, preferences and requirements of customers [6].

Collaborative robots are well suited to these needs, as they 
can be easily programmed and reconfigured to perform a wide 
range of tasks and can work alongside human workers to 
improve overall efficiency and productivity. In addition, cobots 
can provide real-time data and feedback that can be used to 
optimise production processes and improve product quality. 
The ability to collect data in real time also allows cobots to be 
integrated into the digital twin of the entire production system
[7], that is essential for the continuous monitoring of production 
processes and machine diagnostics.
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Another key aspect in a competitive market is product 
quality. To achieve business success, it is essential to 
implement and improve quality control procedures [8]. The 
need for quality control in all production systems is to prevent 
non-conforming products from reaching the end customer or 
end-user [9]. Collaborative robots are increasingly used in 
quality control, as their ability to accurately perform repetitive 
and monotonous tasks can ensure the consistent production of 
high-quality products. Furthermore, the use of cobots can also 
reduce the risk of injury or strain to human workers, resulting 
in increased productivity and a safer working environment. As 
a result, the adoption of cobots for quality control is a promising 
solution for improving product quality and competitiveness.

In this context, the present paper proposes a preliminary 
investigation of productivity and quality of an intelligent 
collaborative assembly of electronic boards. Using a camera, 
the cobot is able to self-detect the components positioned 
within the workspace. Accordingly, it is not necessary to 
position the parts in specific locations, but their presence within 
a circumscribed area is sufficient. The main two research aims
of this paper are (1) to analyse the relationship between 
assembly time and in-process errors with assembly complexity 
in the collaborative assembly of electronic boards and (2) to 
compare these results with two different assembly strategies 
(fully manual and collaborative assembly without a camera).

The remainder of the paper is organised into five sections. 
Section 2 describes the application of cobots in assembly 
processes. Section 3 analyses and model the different 
complexity factors in an assembly process. Section 4 introduces 
the case study and the experimental setup. Section 5 describes 
the main results of the study. Section 6 concludes the paper.

2. Human-robot collaborative assembly

Assembly processes involve the joining of several 
components to form a final product. These processes can be 
highly repetitive and require a high degree of precision, making 
them suitable for automation [10]. Traditional assembly 
processes have relied on industrial robots, which require 
significant safety measures such as physical barriers and cages 
to prevent injury to human operators. However, cobots offer a 
more flexible and safer option for assembly processes, which 
has led to a rapid increase in their use in the assembly process 
over the past few years.

Accordingly, one of the key benefits of collaborative robots 
is their ability to work in close proximity to human operators 
without the need for safety barriers [1]. This makes them ideal 
for assembly processes where HRC is required. In this context, 
cobots can assist with tasks such as picking and placing 
components, screwing and fastening, and quality control. This 
collaborative approach allows the entire assembly line to be 
optimised, with cobots taking over repetitive and time-
consuming tasks, freeing up human workers to focus on more 
complex and creative tasks.

For instance, in the automotive industry, collaborative 
robots have been used to assist in the assembly of engines and 
transmissions [11]. These cobots work alongside human 
operators to assist with tasks such as tightening bolts, installing 
seals and fitting bearings. The use of collaborative robots has 

led to improvements in efficiency, quality and safety, while 
reducing the risk of repetitive strain injuries for human 
operators. Another example is the application of HRC in the 
electronics industry, where cobots have been used to assist in 
the assembly of circuit boards [12]. These cobots work 
alongside human operators, placing components on the board 
and soldering them in place. The use of cobots has led to 
improvements in efficiency and quality, while reducing the risk 
of errors and rework.

However, even in assembly processes, cobots are mainly 
used for pick-and-place operations. In most of today's 
applications, cobots pick up parts from a pre-defined position 
and bring them to the assembly station where the human 
operator assembles the various components [13]. In the present 
paper, a collaborative system for intelligent assembly was 
developed. The cobot, equipped with a camera, is able to 
identify the workpiece and pick it up according to a predefined 
sequence. This innovative system overcomes the limitations of 
positioning parts in a specific location for picking [13], using 
recognition systems that allow the different parts to be clearly 
distinguished.

3. Complexity of product assembly

The type of product to be manufactured, and in particular its 
assembly complexity, has a significant impact on the human 
and process performance factors that need to be monitored 
during the manufacturing process [14]. Using the structural 
complexity paradigm, each product assembly was assigned a 
complexity level [15]. This approach, which only considers the 
structural elements of the product and its assembly process, is 
easy to use in the early stages of product design when there is 
a lack of substantial or readily available operator perception 
data [14]. This structural complexity paradigm was originally 
designed for manual assembly but can be applied with a few 
adjustments to HRC assembly scenarios, where the cobot 
mainly performs organisational and logistical tasks, such as
selecting the components to be assembled in a certain order and 
handling them to the human operators.

According to Sinha [15], assembly complexity 𝐶𝐶 is defined
as:  

𝐶𝐶 = 𝐶𝐶1 + 𝐶𝐶2 ∙ 𝐶𝐶3 (1)

where 𝐶𝐶1 , 𝐶𝐶2 and 𝐶𝐶3 represent parts, connections, and 
topological complexity, respectively.

The technological challenge of controlling and interacting 
with the product parts in isolated circumstances is represented 
by the sum of part complexity, i.e., 𝐶𝐶1. A Design For Assembly 
(DFA) methodology is used to assess part complexity and to 
obtain a normalised handling index [16]. The physical 
characteristics of size, weight, handling difficulties and 
orientation (alpha and beta symmetry) are used to generate this 
value.

The sum of the complexities of the pairwise connections 
found in the product structure is the complexity of connections, 
i.e., 𝐶𝐶2. The normalised fitting index calculated using the Lucas 
Method [16] can be used to measure the complexity of 
connections. By penalising the physical characteristics (such as 
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part placement, part attachment, mating direction, visibility, 
alignment and resistance to insertion) that influence pairing
difficulty, the fitting index predicts the difficulty of mating an 
assembly.

The average of the singular values in the product's adjacency 
matrix, i.e., 𝐶𝐶3, which measures the topological complexity of 
the finished product's architectural pattern, increases as the 
system topology changes from centralised to more distributed 
architectures [15].

This method of defining assembly complexity was used to 
identify the most appropriate electronic boards for the case 
study, trying to select products covering a wide range of 
assembly complexity.

4. Human-robot collaborative assembly system 

4.1. Electronic boards

In this study, six different electronic boards (ID1 - ID6) were 
assembled using ARDUINO UNO starter kits (ARDUINO®).
The choice of assembling electronic boards was made because 
the kits’ components can be used to create customised products 
with different levels of complexity. Furthermore, these boards
allow real-time verification of the correct functioning of the 
product and, thus, of its assembly process. The selected starter 
kit includes the microcontroller, the components (e.g. wires, 
buttons, resistors etc.) and the breadboard, which serves as the 
basis for building the circuit. This breadboard has rows and 
columns of holes that conduct electricity through connectors, 
eliminating the need for welding. Indeed, the ARDUINO UNO 
Breadboard is defined as 'seamless' as the components do not 
need to be welded but simply inserted into the holes, Fig. 1(a)
shows an example of assembled electronic board (product 
ID6).

Fig. 1. (a) Example of assembled electronic board (ID6); (b) HRC 
workstation.

In each of the six selected products, the breadboard is 
connected to different components in varying numbers in order 
to cover a wide range of assembly complexity, as above 
mentioned [15]. The type and quantity of components required 
for each of the six electronic boards are listed in Table 1. The 
complexity was calculated according to the criteria defined in 
Section 3. 

Table 1. Characteristics of the six electronic boards assembled (ID 1 - ID 6).

ID 1 ID 2 ID 3 ID 4 ID 5 ID 6

Breadboard 1 1 1 1 1 1

Long wires - 1 2 8 9 13

Short wires 1 3 5 3 6 4

Resistors 1 1 4 6 2 2

Pushbuttons - 2 4 - 2 1

LED 1 1 - 1 - -

Photoresist - - - 3 - -

Potentiometer - - - - 1 1

Piezo - - 1 - - -

LCD - - - - - 1

Battery snap - - - - 1 -

DC Motor - - - - 1 -

H-bridge - - - - 1 -

N° of parts 4 9 17 22 24 23

C1 1.64 3.12 5.35 6.59 7.49 6.97

C2 2.90 5.89 10.03 13.39 15.83 18.24

C3 0.75 0.57 0.45 0.40 0.37 0.39

C 3.80 6.50 9.83 11.95 13.37 14.12

4.2. Cobot and camera vision system

The assembly of the six electronic boards was conducted 
using a UR3e cobot (Universal Robots™). The assembly 
process was facilitated by the OnRobot™ RG6 gripper, a 
flexible and adaptable tool designed to handle small objects.
Table 2 shows the cobot and gripper parameters used during 
the collaborative assembly. Especially, the collaborative robot 
uses two types of movement: MoveJ and MoveL. The MoveJ 
movement moves each joint simultaneously to the desired 
position, resulting in a curved path for the tool. The MoveL 
movement moves the tool linearly between waypoints. For both 
movements, the identifying parameters are the speed and 
maximum acceleration of the joint. On the other hand, for the 
gripper, the main parameters are the distance between the 
fingers when the gripper is open and the gripping force when 
the gripper is closed.

Table 2. Cobot, gripper and camera parameters.

Cobot Gripper Camera

MoveJ speed [°/s] 200 - -

MoveJ acc. [°/s2] 200 - -

MoveL speed [mm/s] 200 - -

MoveL acc. [mm/s2] 200 - -

Distance [mm] - 25 -

Force [N] - 80 -

Exposure [%] - - 14

White balance [%] - - 20

Light [%] - - 50

The cobot was equipped with OnRobot™ Eyes, an 
integrated vision system that enables part recognition. As 
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shown in Fig. 2(b), the camera was positioned externally to the 
cobot. This was necessary due to the space limitations of the 
workstation, which did not allow the camera to be positioned
on the cobot’s wrist. For the same space reasons, and in order 
to limit accidental collisions between the cobot and the camera, 
the cobot operated at 50% speed.

The OnRobot™ Eyes system required a first stage of camera 
calibration. In particular, as shown in the last three rows of 
Table 2, it is necessary to define the exposure level, the white 
balance and the intensity of the light emitted by the camera.  
Indeed, the camera is equipped with an autonomous lighting 
system, which is useful to make the system independent from
the lighting of the external environment. The values chosen for 
the experiments are the default values defined in the 
OnRobot™ Eyes manual.

After the calibration phase, the camera was instructed to 
detect the parts. The Eyes Locate function was used to define 
the part detection area and the detection modes. In the case 
study, the Location by Outline and Location by Colour and Size 
modes were used. The first mode allows parts to be detected
based on their shape and was used for large parts such as the 
breadboard, LCD, battery snap and DC Moto. For all other 
parts, the Location by Colour and Size mode was used, where 
recognition is based on the colour and size of the part.

The cobot is able to pick up all the parts placed in the 
workstation for which the camera was instructed during the 
recognition phase. Using the Eyes Get Workpiece and Eyes 
Pick functions, the camera sends the cobot the spatial 
coordinates of the parts to be assembled. Then the cobot, 
moving with the parameters listed in Table 2 (with speeds 
reduced to 50%), picks up the parts identified by the camera 
and transports them to the human operator for assembly. When 
two identical parts were available for picking, the cobot always 
picked the leftmost part first.

4.3. Experimental procedure

The experiment consisted of two phases: the assembly phase 
and the quality control phase. In the assembly phase, six 
experienced operators were responsible for assembling the six 
different structures with the help of the cobot. The six 
structures were assembled in random order by each operator to 
avoid any learning effect. At the end of the assembly of each 
board, there was a quality control phase in which an external 
expert operator checked the correct functioning of the 
assembled board.

During the assembly phase, the UR3e assisted the operator 
by providing the necessary components for the electronic board 
assembly. The product components were arranged in random 
order at the workstation near the operator. Using the external 
camera vision system, the cobot was able to detect the parts in 
the work area, pick them up and deliver them to the human 
operator. The order in which the cobot picked up the 
components was predetermined according to circuit theory 
[17]. After each part was passed by the cobot, the human 
operator assembled the component on the breadboard. The 
cobot's functioning was always controlled by the operator, who 
activated it by pressing a button to perform logistical tasks.
During the tests, information was collected on assembly times 

and process errors, i.e. errors that occurred in the assembly 
phase. In particular, incorrect component, unpicked 
component, slipped component and defective component were 
identified as cobot errors, while misplaced component and 
improperly inserted component were identified as human 
errors.

Despite its potential, it has to be remarked that the new 
collaborative camera system has some limitations. One 
limitation is the recognition system's dependence on 
surrounding light. This caused some difficulties during the part 
recognition phase, where the system was unable to distinguish 
long wires from short wires, for example. Therefore, in this first
preliminary experiment, it was necessary to position the short 
wires to the left of the long wires, so that the camera would not 
confuse the components to be picked up. As it will be discussed 
in the next Section 5, these limitations led to an increase in in-
process errors compared to different assembly strategies (fully 
manual and collaborative assembly without a camera).

5. Results and discussion

5.1. Experimental results

As mentioned in Section 1, the first research aim of the 
present paper was to study the trend of assembly times and in-
process errors in relation to the complexity of assembled 
electronic boards. Fig. 2(a) represents the two-term power 
curve fitting relating assembly time and electronic board 
assembly complexity. This is the best fitting model compared 
to various models defining the relationship between assembly 
time and assembly complexity, considering the goodness of fit 
statistics and residual analysis [18]. Specifically, the form of 
the function is 𝑌𝑌 = 𝑎𝑎 ∙ 𝐶𝐶𝑏𝑏 , where 𝑌𝑌 is the response, 𝐶𝐶 is the 
assembly complexity (see Eq. (1)), and 𝑎𝑎 and 𝑏𝑏 are the two 
regression coefficients. The results indicate that the time 
required for product assembly has a super-linear relationship 
with assembly complexity. This suggests that the cognitive 
effort and deliberation time required for assembly operations 
increases significantly as assembly complexity increases. Fig. 
2 also shows the confidence and prediction intervals at 95% 
confidence level, which indicate that the regression lines 
closely follow the curvature of the points and that there are no 
systematic deviations from the fitted lines (see also Tables 3
and 4). It has to be noted that 95% confidence and prediction 
intervals are limited to zero (for both assembly times and
errors) since time and errors cannot assume negative values.

Fig. 2. Experimental values, regression curve, 95% Confidence Intervals (CI) 
and Prediction Intervals (PI) for (a) assembly time vs assembly complexity 

and (b) in-process errors vs assembly complexity.
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On the other hand, Fig. 2(b) shows the relationship between 
in-process errors and assembly complexity. Poisson regression 
model was used to analyse and model this relationship. 
Different models for Poisson regression were compared to find 
the best fitting model using Akaike's Corrected Information 
Criterion (AICc), Bayesian Information Criterion (BIC), 
goodness-of-fit tests (deviance and Pearson tests), and 
deviance residual plots [19]. The square root link function was 
found to be the most appropriate one, resulting in a model in 
the form 𝑌𝑌 = (𝑑𝑑 ∙ 𝐶𝐶)2 , where 𝑌𝑌 is the response, 𝐶𝐶 is the
assembly complexity (see Eq. (1)), and 𝑑𝑑 is the regression 
coefficient. 

5.2. Comparison with alternative assembly strategies

The second research aim of the paper mentioned in Section 
1 was to compare the above-described experiment (label as
Cobot1) with two alternative strategies for assembling the six 
electronic boards. The first strategy involved the use of a cobot 
without a camera (label as Cobot2), while the second was a 
completely manual assembly of the electronic boards (label as 
Manual). It should be noted that in the alternative strategies, the 
six electronic boards assembled are the same, as well as the 
predetermined assembly sequence. The three assembly 
strategies are compared in terms of assembly time and in-
process errors, as described in Section 5.1.

In the Cobot2 strategy, the same collaborative assembly 
system used for Cobot1 strategy, described in Section 4.2, was 
used, without the help of the camera. The board components 
were placed in pre-defined positions in the workstation and the 
cobot picked up the parts according to the pre-defined assembly 
sequence. The operator was always in control of the task, using 
a button to control the cobot. In this case, there were no space 
problems due to the camera, so the cobot operated at 100% 
speed using the parameters shown in Table 2. 

On the other hand, in the Manual strategy, the operators 
independently selected the parts from the ARDUINO kit to be 
assembled on the breadboard, following the predefined order. 
Thus, in this experimental campaign, the operators had no help 
from the cobot.

The results of the comparison between the three assembly 
strategies in terms of assembly time and in-process errors are 
shown in Fig. 3. 

Fig. 3. Comparison between Cobot1, Cobot2 and Manual strategies on (a) 
assembly time and (b) in-process errors.

Regarding assembly time, it increases more than linearly 
with assembly complexity in all the three strategies, i.e. the 
form of the function is always  𝑌𝑌 = 𝑎𝑎 ∙ 𝐶𝐶𝑏𝑏. Fig. 3(a) shows an 
overlap of the confidence intervals of the three regression 

curves for assembly times vs assembly complexity. 
Accordingly, at a 95% confidence level, no differences 
between the three experimental campaigns in terms of 
assembly times are highlighted.

Table 3 reports the main results of the regression between 
assembly times and in-process errors for the three assembly 
strategies. Looking at the last columns of Table 3, there is 
numerical evidence that the confidence intervals of the 
parameters overlap at the 95% confidence level.

Table 3. Main outputs from non-linear regression for assembly time vs 
assembly complexity.

Strategy a SE(a) b SE(b) 95% CI (a) 95% CI (b)

Cobot1 0.344 0.099 1.373 0.115 (0.185,0.591) (1.157,1.619)

Cobot2 0.123 0.085 1.787 0.272 (0.020,0.448) (1.275,2.490)

Manual 0.279 0.190 1.447 0.270 (0.052,0.915) (0.970,2.105)

On the other hand, as far as in-process errors are concerned, 
in all three assembly strategies the errors follow the same trend 
as a function of assembly complexity, i.e. a Poisson model with 
a square root link function 𝑌𝑌 = (𝑑𝑑 ∙ 𝐶𝐶)2. However, it can be 
seen at the 95% confidence level that the Cobot1 strategy has a 
significantly higher level of in-process errors than the Cobot 2 
and Manual strategies. Figure 3(b) shows that there is no 
overlap between the 95% confidence intervals of the Cobot1 
strategy and those of the Cobot2 and Manual strategies. Table 
4 reports the same results from a numerical point of view. 

Table 4. Main outputs from Poisson regression for in-process errors vs 
assembly complexity.

d SE(d) 95% CI (d)

Cobot1 0.224 0.006 (0.211,0.237)

Cobot2 0.128 0.005 (0.117,0.137)

Manual 0.122 0.010 (0.099,0.141)

This significant difference in in-process errors is due to a 
still unstable camera vision system, which does not always 
allow for the correct recognition of the parts to be assembled
that the cobot must pick up. On the contrary, in the Manual and 
Cobot2 strategies, the operator and the cobot typically picked 
up the correct parts as they were placed in specific positions.
Therefore, by refining the vision system, it will conceivably be 
possible to reduce these errors in part recognition.

6. Conclusions and future works

Collaborative robots have become popular in assembly 
processes because they can work alongside human workers to 
perform repetitive tasks without interruption or fatigue, 
increasing the efficiency of the production process. They also 
create a safer working environment by performing hazardous 
tasks that could put human workers at risk. 

This paper investigates the effect of assembly complexity on 
assembly time and in-process errors in collaborative assembly.
Specifically, an experimental campaign was conducted on the 
collaborative assembly of six different electronic boards. The 
results showed that the time required to assemble an electronic 
board has a super-linear relationship with its assembly
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complexity. With regard to in-process errors, experimental 
results showed that as assembly complexity increases, errors 
tend to occur more frequently, and that this relationship follows 
a non-linear pattern.

The results of the described experimental campaign (called 
Cobot1) were compared with that of two alternative assembly 
strategies (called Cobot2 and Manual). Cobot2 strategy has the 
same configuration as Cobot1, but without the use of the 
camera (parts are picked up at specific positions), while Manual 
strategy involves a completely manual assembly without cobot 
support. The results showed that assembly time increased with 
increasing complexity, with the same type of power-law trend 
for all three experiments, and that there was no significant 
difference in assembly time between the three strategies at a 
95% confidence level. Even for in-process errors, these 
increased super-linearly with increasing assembly complexity.  
However, the cobot with the camera (Cobot1) had a 
significantly higher level of in-process errors than the two 
alternative strategies due to the high number of parts not 
detected by the camera.

In conclusion, the Cobot1 vision system provides a powerful 
solution for the assembly process, eliminating the need to 
retool the workstation each time and minimising the time and 
effort required for part selection (as with the Cobot2 and 
Manual strategies). This is particularly beneficial for 
components that are very similar and require customisation for 
a large number of variants. However, this study has identified 
a limitation of the system, i.e. an immature camera vision 
system. As a result, the system struggles to clearly distinguish 
between different parts, particularly small components such as 
cables, leading to a higher average level of in-process errors 
compared to the Cobot2 and Manual strategies. Thus, future 
research will focus on refining the camera vision system and 
evaluating additional parameters such as the stress perceived 
by the human operator. With these improvements, the Cobot1 
strategy has the potential to improve the assembly process, 
increasing efficiency and quality.
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