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Abstract We present the analysis of a bistable piezo-
electric energy harvester with matched electrical load,
subject to random mechanical vibrations. The match-
ing network optimizes the average energy transfer to
the electrical load. The system is described by a set of
nonlinear stochastic differential equations. A perturba-
tion method is used to �nd an approximate solution
of the stochastic system in the weak noise limit, and
this solution is used to optimize the circuit parame-
ters of the matching network. In the strong noise limit,
the state equations are integrated numerically to deter-
mine the average power absorbed by the load and the
power ef�ciency. Our analysis shows that the applica-
tion of a properly designed matching network improves
the performances by a signi�cant amount, as the power
delivered to the load improves of a factor about 17 with
respect to a direct connection.
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1 Introduction

Energy harvesting is a promising solution to enable the
self-powering of a wide range of Internet of Things
applications, of course with reference to systems
requiring a small enough amount of electrical energy
for their operation [1]. Many ambient energy sources
are currently under consideration, from mechanical, to
electromagnetic and to thermal gradients [2�6]. Ambi-
ent mechanical vibrations are considered promising [2]
because of their ubiquity, relatively high power density,
and easy conversion into electrical power exploiting
different physical transduction principles [7].

One of the main performance limitations for a piezo-
electric energy harvester is the sub-optimal energy
transfer from the mechanical source to the electri-
cal load, a condition that can be conveniently repre-
sented as an impedance mismatch between the elec-
trical equivalent of the entire electro-mechanical sys-
tem, and the load. This suggests to interpose a proper
matching network between the harvester and the load
to eliminate such mismatch [8�10].

In the simplest case of purely sinusoidal vibra-
tions, i.e. when their energy is concentrated at a sin-
gle frequency, a relatively straightforward analysis of
the harvester is possible [8]. However, a more physi-
cally sound description considers the vibration energy
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spreading on a relatively wide frequency spectrum, thus
requiring the use of a stochastic process description
that, for a negligible noise correlation time, can be
conveniently modeled through a white Gaussian noise
forcing term [11].

In this contribution, we model a bistable piezoelec-
tric energy harvester subject to random mechanical
vibrations, and present novel results through analytical
and numerical analysis. Bi-stability is introduced by
means of magnetic repulsion and, as a consequence,
nonlinearities are included in the mechanical elastic
potential [12,13]. The mathematical model is derived
from the properties of the mechanical part, from the
constitutive equations of linear piezoelectric materials,
and from the circuit description of the electrical load.

Inspired by our recent work on the application of
circuit theory to improve the ef�ciency of energy har-
vesting systems, we apply a low-pass L matching net-
work to the load [8,10,14]. As the main contribution
of the work, we assess the advantage offered by the
modi�ed load in terms of output average voltage, out-
put average power and power conversion ef�ciency. In
particular, we show that the application of the match-
ing network increases the output average power by a
factor 17 with respect to the simple resistive load, with
a further more than 21% improvement with respect to
other, previously proposed, solutions.

The equations of motion for the energy harvester are
nonlinear stochastic differential equations (SDEs). The
determination of the matching network�s parameters
that maximize the output average voltage and power
conversion ef�ciency, requires to solve the equations of
motion for all values of the parameters, a computation-
ally heavy and time consuming task. As a second main
contribution, we develop a technique for the match-
ing network optimization, based on an analytical, albeit
approximate, calculation of the output average voltage,
output average power and power ef�ciency. The tech-
nique is based on the determination of the SDEs solu-
tion in the weak noise limit, through a power series
expansion, that can be used for an easy calculation of
the quantities of interest for all values of the parame-
ters. In the large noise limit, we solve numerically the
SDEs for the set of parameters� values found in the
previous step, showing that the matching network still
offers signi�cantly better performances with respect to
other setups.

The paper is organized as follows: In Sect. 2 we
present the harvester model and we derive the equa-

tions of motion for three different loads: a simple
resistive load, a power factor corrected load, and the
matched load. Section3 presents a systematic proce-
dure to derive dimensionless SDEs, from a given SDEs
system. This permits to obtain equations that are sim-
pler to handle, and to reduce numerical issues during
numerical simulations. Section4 is devoted to the pre-
liminary analysis of the equations of motion. In particu-
lar, in Theorem 1 we determine the equilibrium points
and their stability for the energy harvester models in
the absence of external perturbations. This result pro-
vides the foundation for the following analysis. Theo-
rem 2 de�nes the relationship between average output
power, power ef�ciency and second order moments of
the SDE solution. In Sect. 5 we discuss the power series
expansion method for the analysis and design of the
harvester models, and for the matching network in the
weak noise limit. The method allows to determine an
analytical, albeit approximate, solution of the SDE sys-
tem. Using the results of Sects. 3 and 4, in Theorem 3
we give a set of formulae to calculate all terms of the
power series expansion representing the approximate
solution. These terms permit to evaluate the average
output power and the power ef�ciency, further used to
optimize the matching network. Section6 presents the
application of the methodology to the optimization of
the energy harvesting system. We use numerical simu-
lations to solve the SDE system for relatively large val-
ues of the noise intensity, as a validation of the power
series approximation and showing that the optimized
matching network gives higher average output power
and better power ef�ciency also in this noise range.
Finally Sect. 7 is devoted to conclusions.

2 System description and modeling

Irrespective of the working principle, energy harvesters
for ambient mechanical vibrations are composed by
an oscillating structure, that is responsible for cap-
turing the kinetic energy made available by ambient
vibrations, by a transducer, that converts kinetic energy
into usable electrical power, and by an electrical load,
that uses the electrical power, or stores it for later use
(namely, a battery).

Energy harvesting systems that exploit nonlinear
phenomena such as stochastic resonance and multi-
stability, have been extensively studied in recent years
[15�19]. A schematic representation of a single degree
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Stochastic analysis of a bistable piezoelectric energy 16993

of freedom, bistable piezoelectric energy harvester is
shown in Fig. 1. The oscillating structure is represented
by a cantilever beam, �xed at one end to a vibrating sup-
port, and with a magnet of mass m at the opposite end to
amplify oscillations. A layer of piezoelectric material
covering the beam represents the transducer. Vibrations
of the support induce oscillations of the beam, produc-
ing mechanical stress and strain in the piezoelectric
layer that, in turn, are converted into electrical power.

Nonlinearity is introduced in the design by the tip
magnet, that is �xed to a support in front of the inertial
magnet with opposed polarities, so as to create a biased
inverted pendulum with magnetic repulsive force. If
the distance between the magnets is large enough, the
magnetic repulsion becomes negligible with respect to
the extermal force due to mechanical vibrations and
to the elastic force of the beam. If nonlinear effects
in the beam stiffness are neglected, the system is sub-
ject to a quadratic elastic potential and the cantilever
beam behaves as a linear oscillator. In the absence of
external forcing, the harvester exhibits a single stable
equilibrium point, corresponding to the vertical rest
position. Conversely, if the distance between the two
magnets is so small that the magnetic repulsion can-
not be neglected, the system is subject to a nonlinear
elastic force. Magnetic repulsion forces the beam to
the left or to the right of the vertical position. The two
vertically tilted positions of the beam correspond to
two stable equilibrium points, that are separated by
an unstable saddle point, corresponding to the verti-
cal position. Each stable equilibrium point has its own
basin of attraction. For external forcing of small mag-
nitude, the beam is expected to oscillate either around
the left or the right equilibrium point, depending on the
initial condition. The system can still be described in
terms of a linear oscillator, with a resonant frequency
higher than in the previous case [13], and the stationary
distribution shows two marked peaks located around
the stable equilibrium points. When the magnitude of
the external forcing exceeds a critical threshold, oscil-
lations around each of the two equilibrium points are
expected to alternate with large excursions from one
basin of attraction to the other. Correspondingly, the
two peaks in the stationary distribution are expected
to merge together and partially overlap. The irregular
large excursions correspond to oscillations with larger
amplitudes, that induce higher deformation of the beam
producing more energy. For high noise intensity, the
system is expected to exhibit more and more frequent

Inertial
magnet

Clamped
end

support
V ibrating

P iezoelectric
layer

Cantilever
beam

lo
ad

T ip
magnet Oscillation

Fig. 1 Schematic representation of a piezoelectric cantilever
beam energy harvester

excursions from the basin of attraction of one equi-
librium to the other, with a motion that resembles a
random wandering around the unstable saddle.

The governing equations for the piezoelectric can-
tilever beam energy harvester can be derived from clas-
sical mechanics, from the characterization of piezo-
electric materials, and from the circuit description of
the electrical load [8,10]. For the mechanical part, the
equation of motion is

m ¤x + � �x + U �(x) + ftr(e, I ) = fext(t) (1)

where x(t) represents the displacement of the inertial
mass m from the vertical rest position, � is the internal
friction constant, U (x) is the elastic potential of the
beam, ftr(e, I ) is the force exerted by the transducer
on the mechanical part due to the electrical variables
e(t), I (t), and fext(t) is the external force due to the
vibrating support. In (1), dots denote derivation with
respect to time, while symbol � denotes derivation with
respect to the argument. We shall assume that mechani-
cal vibrations can be modelled as white Gaussian noise.
White noise is characterized by a �at power spectrum,
that cannot exist in the real world, because it would
imply an in�nite power content. However white noise
is a reasonable approximation whenever the energy of
the stochastic process is distributed over a wide enough
frequency interval. For the elastic potential, we shall
assume U (x) = �k1 x2/2 + k3 x4/4, where k1 and k3
are the linear and the nonlinear elastic stiffness, respec-
tively, to account for the bi-stability.
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Fig. 2 Two-port network representation of a transducer
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Fig. 3 a Resistive load. b Power factor corrected load for a
piezoelectric energy harvester. c An example of matched load:
load with low-pass L-shaped matching network

A transducer is responsible for converting mechan-
ical quantities, like force and velocity, into electrical
quantities, e.g. voltage and current. It can be repre-
sented as the electro-mechanical two-port shown in
Fig. 2, with the mechanical variables at the input (left
port) and the electrical variables at the output (right
port). For a linear piezoelectric transducer, the govern-
ing equations can be derived from the characterization
of piezoelectric materials [20�22], given by

ftr(e, I ) = � e(t) (2a)
q(t) = � x(t) � Cpz e(t) (2b)

where � is the electro-mechanical coupling constant
(in N/V or As/m), Cpz is the electrical capacitance of
the piezoelectric layer, q(t) is the electrical charge, and
I (t) = �q(t), e(t) are the output current and voltage of
the piezoelectric transducer, see Fig. 2.

Finally we consider the electrical load. Loads are
electrical elements that absorb power from the rest
of the circuit, therefore they are typically modeled as
resistors, as shown in Fig. 3a. For the resistive load,
application of Ohm�s law gives I = GL e, where GL =
R�1

L is the load conductance. Combining Eqs. (1), (2)
and the Ohm�s law, and rewriting as a system of �rst
order SDEs (see Sect. 3), yields:

dx = y dt (3a)

dy =
�

�
1
m

U �(x) �
�
m

y �
�
m

e
�

dt +
�
m

dWt (3b)

de =
1

Cpz
(�y � GL e) dt (3c)

where dWt is a scalar white Gaussian noise and � � R+

is a parameter that measures the noise intensity. Such a
model, with white Gaussian noise, possibly replaced by
a periodic forcing, has been extensively studied in the
past, see for instance [9,23�28], and it has been val-
idated by numerous experiments [26,29�32]. Further
details about the structure and materials used for the
harvester can be found in the aforementioned papers.

One of the most important limiting factors of
energy harvesting systems, is the impedance mismatch
between the electro-mechanical harvester and the elec-
trical load. To illustrate the problem, consider a linear
harvester subject to a periodic mechanical excitation.
The maximum power transfer theorem states that the
load absorbs maximum average power if its impedance
is the complex conjugate of the harvester�s impedance.
For the resistive load case, this requires the harvester
to work at the resonant frequency, and the load�s resis-
tance must be equal to the harvester�s resistance. In
general, neither condition can be satis�ed in real world
applications because, for example, the frequency of
ambient vibrations may change in time. This problem
can be partially solved designing systems capable to
self adapt, i.e. adjust their resonant frequency to that
of the external stimulus [33�36]. However, in the vast
majority of practical applications the load resistance
is �xed a priori, and cannot be adjusted to match the
harvester resistance.

A possible solution is based on the power factor cor-
rection, i.e. in connecting a reactive element (an induc-
tor or a capacitor) in parallel with the resistive load, to
compensate the time lag between the load current and
voltage [8,9,25,28], as shown in Fig. 3b. For the power
factor corrected setup, application of Kirchhoff current
law gives I = IL + GL e, while the characteristic rela-
tionship of the inductor is �IL = e/L . Combining these
equations with (1), (2), and rewriting as a system of
�rst order SDEs yields:

dx = y dt (4a)

dy =
�

�
1
m

U �(x) �
�
m

y �
�
m

e
�

dt +
�
m

dWt (4b)

de =
1

Cpz
(�y � IL � GL e) dt (4c)
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d IL =
1
L

e dt (4d)

An alternative, more advanced solution amounts to
interpose a matching network between the energy har-
vester and the resistive load [10,14]. A matching net-
work is composed of reactive elements, that do not
absorb average power and therefore do not impair the
ef�ciency of the harvester. Conversely, they reduce the
impedance mismatch between the harvester and the
load, thus improving the power absorbed by the latter.
Perfect matching can be obtained only at a single fre-
quency. Nevertheless, broadband matching networks
can be designed that achieve partial load matching over
a relatively large frequency interval, maximizing the
power transfer also for power sources with distributed
energy spectra. An example of matching network is
shown in Fig. 3c. It is composed by an inductor and
a capacitor connected to form an L-shaped structure.
Because at very low frequencies the inductor is equiv-
alent to a short circuit, the network is called low-pass.
This is a convenient feature for harvesting ambient
mechanical vibrations since, in general, most of the
energy is concentrated at low frequencies.

For the matching network shown in Fig. 3c, combin-
ing Kirchhoff current and voltage laws with the charac-
teristic relationships of inductors and capacitors gives

�IL + CP �vo + GLvo = 0

LS �IL + vo � e = 0

Combining these equations with (1) and (2) yields the
following SDE system

dx = y dt (5a)

dy =
�

�
1
m

U �(x) �
�
m

y �
�
m

e
�

dt +
�
m

dWt (5b)

de =
1

Cpz
(�y � IL) dt (5c)

d IL =
1

LS
(e � vo) dt (5d)

dvo =
1

CP
(IL � GL vo) dt (5e)

3 Dimensionless equation system derivation

Ambient dispersed vibrations can be of a very differ-
ent nature, from shock/impact force [37�41], to peri-

odic forcing [29,30,42,43]. In a complex environment,
ambient vibrations are the result of the superposition
of different sources and mechanisms, resembling a ran-
dom signal [10,13,15,16,18,23,28,44,45]. The ran-
dom nature of ambient vibrations in complex environ-
ments, therefore, implies that they are best described
as stochastic processes.

The theory of stochastic processes and stochastic
differential equations is well developed in the literature
[46,47]. Let (�, F , P) be a probability space, where �
is the sample space, F = (Ft )t�0 is a �ltration, e.g. the
� -algebra of all the events, and P is a probability mea-
sure. A vector valued stochastic process X t is a vector
of random variables, sampled from �, and parameter-
ized by t � T . The parameter space T is usually the
half-line [0,+�[. Alternatively, the stochastic process
can be thought of as the function X t : �×T �� Rd . We
adopt the standard notation used in probability: Cap-
ital letters denote random variables, while lower case
letters denote their possible values.

Let Wt = W (t) be a one dimensional Wiener
process, characterized by E[Wt ] = 0 (symbol E[Xt ]
denotes expectation of the stochastic process Xt with
respect to the measure P), covariance cov(Wt , Ws) =
E[Wt Ws] = min(t, s) and Wt � N (0, t), where sym-
bol � means �distributed as�, and N (0, t) denotes the
normal distribution, centered at zero. A d-dimensional
system of SDEs driven by the one-dimensional Wiener
process Wt reads

d X t = a(X t )dt + B(X t )dWt (6)

where X t : � × T �� Rd is a vector valued stochas-
tic process. The vector valued functions a : Rd ��
Rd , B : Rd �� Rd , are called drift and diffusion,
respectively. They are measurable functions satisfying
a global Lipschitz condition, to ensure the existence
and uniqueness solution theorem [47]. If the function
B(X t ) is constant, noise is called un-modulated or
additive, otherwise it is modulated or multiplicative.

SDEs can be interpreted following two main inter-
pretations: Statonovich and Itô [46,47]. In this work
we shall adopt Itô interpretation, because it simpli�es
some calculations, in particular for expected quanti-
ties. However, we stress that because (3)�(5) are char-
acterized by an un-modulated noise, all the results are
independent on the interpretation adopted.

It is sometimes convenient to work with a scaled ver-
sion of the original equations, for example introducing
dimensionless variables through a linear transforma-
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tion. In the following, we give a systematic procedure to
derive scaled and/or dimensioneless version of a given
SDE system.

The SDEs (3)�(5) can be written in the form

d Zt =
�

�A Zt + �n(Zt )
�

dt + �B dWt (7)

where �A � Rd,d , �n : Rd �� Rd collect the linear and
nonlinear terms of the drift, respectively, and �B � Rd is
the constant diffusion vector. Consider a linear transfor-
mation y = P z, where P � Rd,d is a constant regular
matrix. For dimensionless variables, matrix P is diago-
nal with entries represented by normalizing parameters.
Using Itô rule [46,47], the following SDE system for
the stochastic processes y is obtained:

dY t =
�

P �AP�1Y t + P �n(P�1Y t )
�

dt+ P �B dWt

(8)

A linear change of time in SDEs, and in particular a
time scaling, is obtained introducing a new time vari-
able �(t) = � t , with � > 0. If Y t solves (8), then Y �
solves the SDE system

dY � =
1
�

�
P �AP�1Y � + P �n(P�1Y � )

�
d�

+ P �B dWt (9)

The change of time theorem for Itô integrals (see [47],
page 156) implies that

W�(t) �
�

� �(t) Wt =
	

� Wt (10)

where symbol � means, again, �distributed as�. Denot-
ing by X� the solution to the SDEs system

d X� =
1
�

(AX� + n(X� )) d� +
1

	
�

B dW� (11)

where A = P �AP�1, n(x) = P �n(P�1x), and B =
P �B, it follows that X� � Y � , because they are solu-
tions for the same SDEs system, but for two different
realizations of the Wiener process.

In most practical applications, the knowledge of the
probability distribution, and/or of the �rst few moments
of such distribution, is more important than �nding the
explicit solution of the SDEs for a speci�c realization
of the Wiener process.

Hereafter, we shall consider the SDEs (5) only. The
method described can also be applied, mutatis mutan-
dis, to the SDEs (3) and (4), that will be used as a refer-
ence to assess the advantage provided by the matching
network.

We shall assume that the inertial and the tip mag-
nets are so close that the magnetic repulsion cannot be
neglected. The nonlinearity and the bistability due to
the magnetic force will be accounted for by the non-
linear elastic potential. The dimensionless version of
the SDE system is obtained introducing the diagonal
matrix:
P = diag[l�1

0 , T l�1
0 , CpzQ�1

0 , T Q�1
0 , CpzQ�1

0 ] (12)
where l0, Q0 are normalizing constants equal to one,
with dimensions of a length and a charge, respectively,
and T = 1/� =

	
m/k1 is a normalization time. The

following SDE system for the dimensionless variables
is obtained
d X t = (AX t + n(X t )) + BdWt (13)
where X = [X1, X2, X3, X4, X5]T is a vector of
stochastic processes, and

A =

�

����
	

0 1 0 0 0
1 �	 �
 0 0
0 � 0 �1 0
0 0 µ 0 �µ
0 0 0 � ��




����
�

(14)

n(x) = [0,�x3, 0, 0, 0]T (15)
B = [0, �, 0, 0, 0]T (16)

with parameters

 =
k3

k1
, 	 =

�
	

mk1
, 
 =

�
Cpzk1

, µ =
m

k1 Cpz LS

� =
Cpz

CP
, � =

GL

CP


m
k1

, � =
�
m

�
m
k1

� 3
4

(17)

Note that, by de�nition, all parameters are positive.

4 Preliminary system analysis

We begin the analysis considering the underlying deter-
ministic system, i.e. the system obtained setting � = 0
in the SDE system (5) or, equivalently, setting � = 0 in
the dimensionless SDE system (13). In particular, we
shall consider the dimensionless version.

The following theorem establishes the existence,
position and stability of the equilibrium points for the
energy harvester with matching network. This result is
instrumental for further analysis, and in particular for
the application of the power series expansion method
and the calculation of expected quantities provided in
Theorem 3.

123



Stochastic analysis of a bistable piezoelectric energy 16997

Theorem 1 The ODE system

�x = Ax + n(x) (18)

where A and n(x) are given by (14) and (15), respec-
tively, has an unstable equilibrium point at the origin,
and two asymptotically stable equilibrium points at

x

– =

�

–


1


, 0, 0, 0, 0

�T

.

Proof It is straightforward to verify that x = x

0 = 0

and x = x

– are equilibrium points of (18). To verify

that the origin is unstable, consider the Jacobian matrix
J = A + �n(x)/�x, evaluated at x = x


0. The charac-
teristic polynomial for this Jacobian matrix is

P(s) = s5 + (� + 	)s4 + (µ + �
 + �µ + �	)s3

+ (�µ � � + µ	 + �
� + �µ	)s2

+ (�µ	 � �µ � µ + �
�µ)s � �µ (19)

Given that all parameters in (17) are positive, it fol-
lows from the necessary condition of Routh�Hurwitz
stability criterion that the origin is unstable.

Next we prove that x

+ is asymptotically stable. Sta-

bility of x

� is proved analogously, considering that the

system is invariant under the transformation x � �x.
First we move the equilibrium point to the origin

with the change of variables x = x � x

+. The new

variables satisfy the ODE system (written in compo-
nents)

�x1 = x2 (20a)
�x2 = �U �(x1) � 	x2 � 
x3 (20b)
�x3 = �x2 � x4 (20c)
�x4 = µ (x3 � x4) (20d)
�x5 = �x4 � �x5 (20e)

where

U (x1) = �
1
2

�

x1 +


1


�2

+
1
4


�

x1 +


1


�4

(21)

Consider function V (x) � C1

V (x) =
1

4
+ U (x1) +

1
2

x2
2

+
1
2



�

�
x2

3 +
1
µ

x2
4 +

1
�

x2
5

�
(22)

Clearly, V (0) = 0 and V (x) > 0 for x �= 0. Moreover

�V (x) = �	 x2
2 �

�

��

x2
5 < 0 (23)

Therefore V (x) is a strict weak Liapunov function [48],
and the origin is an asymptotically stable equilibrium
point. �

To determine the power performance of the energy
harvester, relations are needed for the output average
power and the power ef�ciency. For this derivation, it
is easier to consider the original system (5).

Theorem 2 (Power balance equation) Consider the
SDE system (5). The average power exchanged is

E
�

d E(t)
dt

�
= �� E

�
y2(t)

�
� GL E

�
v2

o(t)
�

+
�2

2m
(24)

where E(t) is the total energy stored in the system.

Proof The total energy stored in the system is the sum
of the mechanical energy, of the energy stored in the
piezoelectric transducer, and of the energy stored in the
reactive components of the electrical part. The mechan-
ical energy is the kinetic energy of the mass, plus
the elastic potential energy of the beam: Emec(t) =
my2/2 + U (x). For the energy stored in the trans-
ducer, with reference to Fig. 2, the instantaneous power
absorbed by the two port network, using the passive
sign convention, reads ptr(t) = ftr �x � e �q . Using (2)
we obtain ptr(t) = Cpz e �e, and the stored energy is

Etr(t) =
�

ptr(t) dt =
1
2

Cpze2 + K (25)

where K is an arbitrary constant. Finally, the energy
stored in the reactive components of the load, including
the matching network, is Eel(t) = LS I 2

L/2 + CPv2
0/2.

Taking the differential of the total energy, using (5)
and Itô lemma yields:

d E = my dy + U �(x)dx + Cpze de + LS IL d IL

+ CP vo dvo +
1
2

m(dy)2

=
�

�� y2 � GLv2
o +

�2

2m

�
dt + � y dWt (26)

Taking expectations on both sides and using the mar-
tingale property of Itô integrals, the thesis follows. �

123



16998 K. Song et al.

It is worth noticing that the same Power Balance
Equation is obtained for both the harvester with resis-
tive load and with the power factor corrected load. In
fact, it is well known in circuit theory that reactive ele-
ments like capacitors and inductors do not absorb aver-
age power, but only reactive power.

The power balance equation implies that the sys-
tem eventually reaches a steady state, where the power
injected by the noise is partially dissipated by the inter-
nal friction, and partially absorbed by the load.

Corollary 1 At steady state, the power absorbed by
the load and the power efficiency are given by

PL = GLE[v2
o] (27)

�E =
2 m GL

�2 E[v2
o] (28)

Proof It follows directly from the power balance equa-
tion, and the de�nition of power ef�ciency as the ratio
between input and output average powers. �

5 Power series analysis and moment calculation

Corollary 1 shows that, in order to maximize the aver-
age power absorbed by the load and the power ef�-
ciency, the matching network must be designed to max-
imize E[v2

o]. The value of E[v2
o], can be found from

the stationary distributions for the stochastic processes
that, in turn, require to either solve analytically the
SDE system (5) (or the equivalent dimensionless ver-
sion (13)), or the associated Fokker�Planck equation
[46,47]. Both problems are very challenging and, in
practice, neither can be solved for nonlinear systems
of high order. Alternatively, expected quantities can be
calculated solving numerically the SDE systems, and
averaging over long simulated times. This approach
rapidly becomes extremely expensive, especially when
the numerical simulations have to be repeated for many
different parameter values.

In this work we propose a different approach. We
use a power series expansion to �nd an approximate
solution of the SDE system. The approximate solution
is then used to calculate the desired expected quantities
for any value of the parameters, thus making possible to
�nd the parameter values that maximize the harvested
power and the power ef�ciency.

5.1 Power series expansion

Consider a d-dimensional system of SDEs driven by
the one-dimensional Wiener process Wt

d X t = a(X t )dt + �B(X t ) dWt (29)

For small values of �, the solution can be expanded in
power series of the same small parameter

X t = X0 + �X1 + �2 X2 + • • • (30)

Similarly, the drift vector is expanded in Taylor series
as (the t dependence is dropped in Xk , k = 0, 1, 2, for
the sake of notation simplicity)

a(X) = a(X0) + A1(X0)(�X1 + �2 X2)

+ �2 A2(X0, X1) + O(�3) (31)

where A1(X0) = �a/�x
��
X0

is the Jacobian matrix of
a(x) evaluated at X0, and A2(X0, X1) is the vector
made of the components

A2,i (X0, X1) =
1
2

XT
1 H i (X0)X1 (32)

being H i the Hessian matrix H i (X0) = �2ai/�x2��
X0

evaluated at X0.
Similarly, Taylor expanding the diffusion vector

yields

B(X) = B(X0)+B1(X0)(�X1+�2 X2)+O(�2) (33)

where B1(X0) = � B/�x
��
X0

.
Substituting (30), (31) and (33) into (29), and equat-

ing the coef�cients of the same powers of �, yields the
hierarchy of equations

�0 : d X0 = a(X0)dt (34a)

�1 : d X1 = A1(X0)X1dt + B(X0)dWt (34b)

�2 : d X2 = (A1(X0)X2 + A2(X0, X1)) dt
+ B1(X0) X1dWt (34c)

These differential equations are completed by a set of
appropriate initial conditions: X0(0) = x0, X1(0) =
X2(0) = 0, so that the solutions X0(t), X1(t), and
X2(t) become unique.

The zeroth order equation (34a) is a system of
ordinary differential equation (ODEs) describing the
�underlying� deterministic problem. Without loss of
generality, the initial condition can be chosen such
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that x0 corresponds to an asymptotically stable equi-
librium point, therefore X0(t) = x0 for all t . The
�rst order SDE system (34b) describes X1(t) as an
Ornstein�Uhlenbeck process [46,47], whose expres-
sion can be found analytically. Finally, the second order
SDE system (34c) describes a linear system of non-
homogeneous SDEs.

5.2 Moment calculation

First order moments are found taking expectations in
(30), yielding:

E[X t ] = X0 + �E[X1] + �2E[X2] + O(�3) (35)

Concerning second order moments, using again (30)
we �nd

X t XT
t = X0 XT

0 + �
�

X0 XT
1 + X1 XT

0

�

+ �2
�

X0 XT
2 + X1 XT

1 + X2 XT
0

�
+ O(�3)

(36)

Taking expectations

E[X t XT
t ] = X0 XT

0 + �
�

X0 E[XT
1 ] + E[X1]XT

0

�

+ �2
�

X0 E[XT
2 ]+E[X1 XT

1 ]+E[X2]XT
0

�

+ O(�3) (37)

Therefore, the �rst and all the second order moments
are approximated as linear combinations of the �rst
order moments E[X1], E[X2], and of the second order
moment E[X1 XT

1 ].
In the following theorem, we give analytical formu-

lae to calculate all the required expectations.

Theorem 3 Consider the Itô SDE system (29), and let
x0 be an asymptotically stable equilibrium point for the
ODE system �x = a(x). Then the hierarchy equation
system (34) gives asymptotically for t � +�:

(a) E[X1] = 0.
(b) E[X2] = �A�1

1 (X0)h(X0, X1), where vector
h(X0, X1) has components hi (X0, X1) = tr�
H i (X0)�X1 X1

�
, and �X1 X1 = E[XT

1 X1].
(c) The covariance matrix �X1 X1 is the unique solution

of the stationary Liapunov equation

A1(X0)�X1 X1 + �X1 X1 AT
1 (X0) + B0 BT

0 = 0

Proof Taking stochastic expectations on both sides of
(34), and using the martingale property of Itô integrals
gives

d
dt

E[X1] = A1(X0) E[X1] (38a)

d
dt

E[X2] = A1(X0) E[X2] + E[A2(X0, X1)] (38b)

Because x0 is asymptotically stable, choosing X0(0) =
x0 implies that the Jacobian A1(X0) has negative real
part eigenvalues. Therefore (38a) implies E[X1] � 0
for t � +�, i.e. point (a).

For E[X2], we have at steady state

E[X2] = �A�1
1 (X0) E[A2(X0, X1)] (39)

where E[A2(X0, X1)] is calculated as follows. Taking
into account that XT

1 H i (X0)X1 is a scalar, we have

E[XT
1 H i (X0)X1] = tr

�
E[XT

1 H i (X0)X1]
�

= tr
�

H i (X0) E
�
X1 XT

1

��
(40)

where we used to cyclic property of the trace, and the
fact that H i is symmetric. Taking into account that
asymptotically E[X1] = 0, it follows that E[X1 XT

1 ] =
�X1 X1 that proves (b).

To prove (c), we use (34b) to obtain

d(XT
1 X1) = (A1 X1 XT

1 + X1 XT
1 AT

1 + B0 BT
0 )dt

+ (B0 XT
1 + X1 BT

0 )dWt (41)

Taking expectation on both sides yields the Liapunov
equation

d�X1 X1

dt
= A1 �X1 X1 + �X1 X1 AT

1 + B0 BT
0 (42)

Considering that A1 is stable and that B0 BT
0 is sym-

metric, the steady state solution

lim
t�+�

�X1 X1

is unique, and it satis�es the Liapunov equation in point
(c). �

Using the results of theorem 3, it is possible to calcu-
late each term of (35) and (37), �nding the approximate
�rst and second order moments for the stochastic pro-
cess X t .

123



17000 K. Song et al.

Table 1 Values of the energy harvester parameters

Parameter Value

� 6.9366 Ns/m
k1 0.170 • 106 N/m
k3 0.170 • 106 N/m3

m 1 Kg
Cpz 80.08 nF
R 1 M�
� 0.0267 N/V (As/m)

6 Results and discussion

We have applied the method derived in Sect. 5 to the
analysis and design of the piezoelectric energy har-
vesters described in Sect. 2. We have used Theorem 3 to
calculate the approximate second order moments given
by (37), that in turns permits to determine the average
harvested power and power ef�ciency thanks to Corol-
lary 1.

To assess the advantage provided by the match-
ing network, we have applied the method also to the
energy harvester with the simple resistive load, and
to the power factor corrected load. For the harvester
with matching network and with power factor corrected
load, we have calculated the harvested power and power
ef�ciency for all values of the circuit parameters in the
electrical part (LS and CP for the former, L for the
latter) in a given range, in order to �nd the values that
correspond to the maximum output average power.

The values of the other parameters used in our anal-
ysis are summarized in Table 1. With these values, the
Jacobian matrix evaluated at x


– has one real negative
eigenvalue, and two pairs of complex conjugate eigen-
values, all with negative real parts, con�rming that the
two equilibrium points are both stable, of focus type.
Conversely, the Jacobian matrix evaluated at x


0 has one
real positive eigenvalue, two real negative eigenvalues,
and one pair of complex conjugate eigenvalues with
negative real parts, con�rming that that the origin is an
unstable equilibrium point, of saddle�focus type.

Figure4 shows the root mean square of the output
voltage vo(rms) =

�
E[v2

o(t)], versus the parameters
of the matching network LS and CP . The strength of
mechanical vibrations is set to � = 20 mN. The out-
put voltage is maximum for LS = 162.4545 H, and
CP = 22.273 nF. It is worth noticing that the rela-

Fig. 4 Root mean square value of the output voltage vo(rms) =�
E[v2

0(t)] vs. parameters of the matching network LS and CP

tively high value of the inductance (and of the root mean
square output voltage) is a consequence of the normal-
ization imposed on the harvester mechanical mass, as
discussed in [10,14].

For comparison, Fig. 5 shows the root mean square
of the output voltage for the energy harvester with
power factor corrected load (4), versus the inductance
L . Again, the output voltage shows a maximum at
L = 36.69 H.

A comparison between the power performance for
the three load setups is summarized in Table 2. Our
analysis shows that for the energy harvester with the
resistive load, the load absorbs a very limited aver-
age power and thus the system offers a very limited
power ef�ciency. Application of a power factor cor-
rection improves signi�cantly both the output average
power and the power ef�ciency. However, the matched
load setup provides a better average harvested power
and a higher ef�ciency, even with respect to the power
factor corrected load.

In general, it is impossible to prove that the approxi-
mate solution obtained through the power series expan-
sion converges to the true solution, but there is a large
amount of evidence that the error becomes negligi-
ble for � � 0. To validate the accuracy of the the
power series expansion method, we compare theoret-
ical predictions with results from numerical simula-
tions. We have performed Monte Carlo simulations,
integrating numerically the SDE systems (3)�(5) for
different values of �, and we calculated the corre-
sponding output voltage, average output power and
power ef�ciency. The numerical integration has been
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Table 2 Average harvested power and power ef�ciency for the energy harvester with the three different load setups

Con�guration Maximum power (µW) Ef�ciency (%)

Resistive load 8.78 4.4
Power factor corr. 127.34 63.7
Matched load 148.71 74.4

Theoretical predictions are obtained using the method of Sect. 5, and validated against Monte Carlo simulations. Noise intensity is set
to � = 20 mN

Fig. 5 Root mean square value of the output voltage vo(rms) =�
E[v2

o(t)] vs. inductance L for the power factor corrected load

performed using as integration schemes both Euler�
Maruyama and stochastic Runge�Kutta with strong
order of convergence equal to one. For both methods,
the integration length was set to �t = 104 s, with an
integration step �t � 30 µs. Given the small value of
�t , no signi�cant differences between the two numer-
ical schemes were observed. To obtain more accurate
results, for each set of parameter values, we did run 20
simulations, with 20 different realizations of the Wiener
process, and we averaged the results after eliminating
the transient portion of the solution.

Figure6 shows the relative error between theoret-
ical predictions and numerical simulations, as a func-
tion of the noise intensity, for the energy harvester with
matched load. The relative error for both the root mean
square output voltage (red diamonds), and the power
ef�ciency (black circles) are shown. The relative error
is evaluated as the difference between theoretical pre-
dictions and numerical simulations, normalized to the
latter:

�xrel =
|xth � xsim|

xsim
(43)

Fig. 6 Relative error between theoretical predictions power
series expansion method and Monte-Carlo simulations versus
the noise intensity, for the root mean square output voltage (red
diamonds), and the power ef�ciency (black circles). (Color �gure
online)

As expected, the relative error is negligible for � � 0,
and it increases along with the noise intensity. The error
becomes rapidly signi�cant when the beam begins to
jump between the two potential wells.

Figures 7 and 8 show one realization of the dis-
placement x(t) as a function of time, obtained through
numerical simulations, for the resistive and for the
matched load case, respectively. We show results for
two values of the vibration intensity: � = 200 mN
(above), and � = 500 mN (below). In the �rst case
the cantilever beam vibrates around one of the stable
equilibrium points (which one, depends on the initial
condition), while in the second case excursions from
the basin of attraction of one equilibrium point to the
other occur.

Figure9 offers an alternative visualization of the
same process. It shows the asymptotic probability dis-
tribution for the position x(t), for the two different
noise intensities above. The probability to �nd the sys-
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Fig. 7 Displacement x(t) versus time for the harvester with
resistive load. Top: Noise intensity � = 200 mN. Bottom: Noise
intensity � = 500 mN

tem in the state x+dx has been evaluated as the number
of samples in that interval, normalized to the total num-
ber of samples. For noise intensity � = 200 mN, the
system is trapped in the basin of attraction of one equi-
librium point, that corresponds to one potential well
of U (x) = �k1x2 + k3x4/4 (top). For a noise inten-
sity � = 800 mN, the system wanders from one well
to the other, because the two wells are equally deep,
the probability distribution also tends to be symmetric.
If the noise intensity is large enough, the two peaks
of the probability distribution merge together partially
overlapping.

Finally, Fig. 10 shows a comparison of the root mean
square output voltage versus the vibration intensity for
the energy harvester with the simple resistive load, the
power factor corrected load, and the matched load.
The power factor corrected load offers higher output
average voltage, and therefore higher power ef�ciency

Fig. 8 Displacement x(t) versus time for the harvester with
matched load. Top: Noise intensity � = 200 mN. Bottom: noise
intensity � = 500 mN

with respect to the simple resistive load. In particular,
the power factor corrected load offers more than 14
times the power harvested by the simple resistive load,
increasing the ef�ciency from less than 5% to almost
64%. Application of the matching network increases
the output voltage by almost 17 times with respect to
the resistive load, boosting the ef�ciency to more than
74%.

7 Conclusions

In this contribution we have presented a comprehensive
modeling approach for a bistable piezoelectric energy
harvester subject to random mechanical vibrations.
The model combines the description of the mechan-
ical oscillator, of the linear description of the piezo-
electric transducer, and of the possible inclusion of a
reactive matching stage interposed between the piezo-
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Fig. 9 Asymptotic probability distribution for the position x(t).
Top: noise intensity � = 200 mN. Bottom: Noise intensity � =
800 mN

Fig. 10 Root mean square of the output voltage versus vibra-
tion intensity for the harvester with simple resistive load (black
circles), power factor corrected load (blue squares), and with
matched load (red diamonds). (Color �gure online)

electric transducer and the electrical load. Nonlinear-
ity is included in the mechanical elastic potential. The
resulting equations of motion form a system of nonlin-
ear SDEs.

As the main contribution, we have shown that inter-
posing a matching network between the transducer
and the load signi�cantly increases the output aver-
age power and the power ef�ciency. In fact, a prop-
erly designed matching network reduces the impedance
mismatch between the harvester and the electrical load,
increasing the average power absorbed by the latter.
Although perfect matching is possible only for a lin-
ear harvester and at a single frequency, a broadband
matching network can be designed that achieves par-
tial matching over a wide frequency interval.

To design the optimal matching network, one should
solve the SDE system for all values of the circuit param-
eters, a computationally heavy and time consuming
task. As a second contribution, we have developed
a methodology to determine the ideal matching net-
work parameters. The technique is based on �nding an
approximate solution to the SDE system in the weak
noise limit, using a power series expansion method.
The approximate solution is then used to calculate the
�rst moments for the stochastic processes, in particular
the average output voltage.

Monte Carlo numerical simulations con�rm that
application of the matching network offers higher aver-
age output voltage and power ef�ciency also for mod-
erately high noise intensity, even with respect to other,
previously proposed, load setups.
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