
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Incremental re-encoding for symbolic traversal of product machines / Quer, Stefano; Lavagno, Luciano; Cabodi,
Gianpiero; Sentovich, Ellen; Camurati, Paolo Enrico; Brayton, R. K.. - STAMPA. - (1996), pp. 158-163. (Intervento
presentato al convegno Proceedings of the 1996 European Design Automation Conference with EURO-VHDL'96 and
Exhibition tenutosi a Geneva (Switz.) nel 16-20 September 1996).

Original

Incremental re-encoding for symbolic traversal of product machines

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©1996 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981107 since: 2023-08-16T14:45:49Z

IEEE

Incremental Re-encoding for
Symbolic Traversal of Product Machines

Stefano Quer † ∗ Gianpiero Cabodi ‡ Paolo Camurati %

Luciano Lavagno # Ellen Sentovich $ R. K. Brayton †

† UCB
Dept. of EECS
Berkeley, CA

(USA)

‡ Politecnico di Torino
Dip. di Automatica e Informatica

Turin, ITALY

% Università di Udine
Dip. di Matematica e Informatica

Udine, ITALY

Politecnico di Torino
Dip. di Elettronica

Turin, ITALY

$ Ecole des Mines de Paris
Centre de Mathématiques Appliquées

Sophia–Antipolis, FRANCE

Abstract

State space exploration of finite state machines is used
to prove properties. The three paradigms for exploring
reachable states, forward traversal, backward traversal
and a combination of the two, reach their limits on large
practical examples. Approximate techniques and combi-
national verification are far less expensive but these im-
ply sufficient, not strictly necessary conditions. Extend-
ing the applicability of the purely combinational check
can be achieved through state minimization, partition-
ing, and re-encoding the FSMs to factor out their dif-
ferences. This paper focuses on re-encoding presenting
an incremental approach to re-encoding for sequential
verification. Experimental results demonstrate the effec-
tiveness of this solution on medium–large circuits where
other techniques may fail.

1 Introduction

An FSM is identified by its Boolean input and out-
put domains, its initial state set, and its next state and
output relations.

Many properties are related to the composite behavior
of two FSMs. This behavior is captured by the product
machine, which is an FSM composed of the two. The
inputs are shared and a single output is created that

∗Stefano Quer is also with the Politecnico di Torino, Diparti-
mento di Automatica ed Informatica, Turin, ITALY.

records the differences between the output signals of the
two.

A common problem is that of comparing two machines
that are behaviorally equivalent but structurally differ-
ent, for example when one FSM has been obtained from
the other by means of sequential optimization (such as
partial or total re-encoding, retiming and resynthesis,
sequential redundancy removal, etc.). In this case the
equivalence check is used to verify the validity of man-
ual synthesis and optimization steps, or to find bugs in
the synthesis algorithms. Equivalence checks can be per-
formed on a local basis, by traversing the state space of
the product machine and verifying the property on each
state.

State–space traversal is typically performed via sym-
bolic exploration of the state transition graph (STG)
using BDDs to represent the next–state functions and
reachable state sets.

We propose a technique to simplify equivalence checks
by re-encoding. One machine is re-encoded to make it
structurally more similar to the other, and hence exploit
the underlying correspondence. This makes traversal–
based verification more efficient, and in the limit permits
using purely combinational verification. The techniques
are applicable when the machines are very different, but
the results will be best for similar machines with a non
explicit correspondence (which is often the case in logic
synthesis). Just as dynamic variable reordering allows
one to change the shape of the canonical BDD while
building it, dynamic re-encoding allows one to change

the shape of the reached state set while building it. The
re-encoding function in product machine traversal plays
a role analogous to the variable ordering in the BDD.
With the increasing size of the machines to be verified,
this degree of flexibility must be exploited. Experimen-
tal evidence of the effectiveness of these techniques on
medium–large circuits is shown.

The remainder of the paper is organized as follows.
We assume a basic knowledge of FSMs, FSM equiva-
lence and graph isomorphism, BDDs, and image compu-
tation of sets of states. In Section 2, we analyze the re-
quirements of re-encoding and its complexity. Section 3
describes the verification strategy based on re-encoding
and combinational verification. We give some experi-
mental results in Section 4 to justify the feasibility of
this approach. Conclusions are given in Section 5.

2 Verification by Re-encoding

The overall algorithm for verification works as follows.
We begin with two FSMs M1 and M2. If they are al-
ready combinationally equivalent (next state and output
functions are equal), the process terminates. Otherwise
a re-encoding function ρ is computed and used to trans-
form M1 into an equivalent FSM M∗. The process can
be iterated replacing M1 with M∗. This iteration yields
a sequence of FSMs that hopefully converges from M1

to M2. The representation of the re-encoding charac-
teristic function is directly related to the reachable state
set of the product machine M1 ×M2.

Disregarding the trivial case in which the initial FSMs
M1 and M2 are already combinationally equivalent, the
two may be related in one of the following ways: 1) M1

and M2 are equivalent and their STGs are isomorphic,
2) M1 and M2 are equivalent but their STGs are not
isomorphic, and 3) M1 and M2 are not equivalent.

In the first case there exists some 1 : 1 re-encoding
function that can produce combinationally equivalent
FSMs (when both are restricted to the reachable state set
or to an over-estimation of it). In the second one we can-
not deal specifically with this problem because the final
equivalence check cannot be performed combinationally
when only 1 : 1 re-encoding functions are considered. In
the final case the re-encoding function does not exist.
and to determine that the machines are not equivalent,
a traversal–based verification is necessary. However in
the last two cases standard traversals are performed on
re-encoded and more similar machines. This traversal
is possibly much simpler than with the original M1 and
M2. The traversal–based verification may also happen
when the ρ re-encoding exists but is too complex or dif-
ficult to obtain and we resort to a converging sequence
of re-encodings.

Re-encoding FSMs for more efficient state–space
traversal requires some support algorithms:

� Heuristics for FSM decomposition and product ma-
chine correspondence recognition. These are impor-
tant for reducing the cost of traversal and increasing
accuracy of approximate traversal.

� Exact and/or approximate product machine traver-
sal, carried out as long as the representation of the
reachable states remains simple. The reached states
of the product machine are used as a starting point
in generating the re-encoding function.

� Extending partial re-encodings and/or reducing n:m
relations to 1 : 1 functions. This step is the compu-
tational framework for handling incomplete or over-
estimating re-encoding informations.

� Constraining the product machine state space dur-
ing traversal. This is mandatory to reduce the com-
plexity of approximate and exact traversals, and to
reduce the complexity of the re-encoding function.

State minimization of the initial machines in some cases
results in machines with isomorphic STGs and is an or-
thogonal technique [?] that will not be discussed here.

2.1 Transforming FSMs

An FSMM is given byM = (I,O, S, δ, λ, S0), where I
is the set of input variables, O the set of output variables,
S the set of states, δ the set of next–state functions, λ the
set of output functions, and S0 the set of initial states.
The input, output, and state variables sets are denoted
x, z, and s. The reachable state set is denoted R, where
R ⊆ S; an over-estimation of this set is denoted R+,
where R ⊆ R+; the product machine of M1 and M2 is
denoted Mp. Machine equivalence is denoted M1 .

= M2;
equivalence means identical input/output behavior from
the initial state set.

The re-encoding is denoted by ρ(s1, s2) to indicate
the characteristic function of the 1 : 1 mapping, and
by the pair ρv(s1) and ρv−1(s2) to indicate the Boolean
functional vectors that re-express s2 in terms of s1 and
vice-versa.

Re-encoding transforms M1 into M∗ and should pre-
serve the input/output behavior of M1:

(M∗ = ρ(M1)) ⇔ (M1 .
= M∗)

The goal of the transformation is to make M∗ similar
to M2, where similarity is a measure of the number of
equivalent states that have identical encodings. M∗ is
used as the new M1 for the next re-encoding iteration.
Among many equivalence–preserving re-encodings, we
select ρ to be a 1 : 1 mapping from S1 to S∗ = S2,
possibly restricted to either R1 or R1+.

Once the characteristic function of the 1 : 1 mapping
ρ(s1, s2) is known two Boolean function vectors ρv(s1)
and ρv−1(s2) are generated. The next–state and output
functions of M∗ are computed as follows:

δ∗(s∗, x) = ρv(δ1(ρv−1(s∗)), x)
λ∗(s∗, x) = λ1(ρv−1(s∗), x)

Consequently we obtain M∗ = (I,O, S∗, δ∗, λ∗, S∗
0). The

transformation only affects the state variables, so the
equivalence ofM1 andM∗ is guaranteed by the existence
of the inverse ρv−1 of ρv (since ρv is a 1 : 1 function,
ρv−1 exists).

The one step re-encoding function ρ might be too
complex to represent and/or to apply. Then we try to
find a sequence of simpler re-encodings.

Another possible technique to decrease the complexity
of ρ, is to re-encode a subset of the state variables at a
time. This strategy is particularly suited for networks of
interacting FSMs or systems composed by control unit
and data path, where independent encodings are applied
to disjoint subsets of state variables. Let us partition
the s1 and s2 variables into two subsets s1a, s1b and s2a,
s2b. This is easily generalized to an arbitrary number of
partitions. Let us express ρ(s1, s2) as:

ρ(s1, s2) = ρa(s1a, s2a) · ρb(s1b, s2b)

If ρa and ρb are 1 : 1, so is ρ.
The complexity is further reduced by observing that

a partitioned re-encoding can be applied in two steps

ρ1(s
1, s2) = ρa(s1a, s2a) ·

∏|sb|
i=1(s

1b
i = s2bi)

ρ2(s
1, s2) = ρb(s1b, s2b) ·

∏|sa|
i=1(s

1a
i = s2ai)

which ensure a smaller size of the intermediate BDDs,
because part of the re-encoding is simply the identity
function.

3 The Verification Procedure

Verification is done by using partial state–space explo-
ration to iteratively compute a sequence of re-encoding
functions. The goal is to use low–cost traversals and
yet obtain enough information to compute a useful re-
encoding function.

A simplified version of the code is shown in Fig. ??.
Two traversal methods are used:

� i steps of exact forward traversal ofMp, with imuch
less than the index of the fixed–point. This compu-
tation returns Rp

i .

� an approximate forward traversal of Mp, possibly
stopping before a fixed–point is reached. This com-
putation returns an overestimation of Rp, Rp+.

It is also possible to compute a mix of exact but partial
information (Rp

i) and complete but approximate infor-
mation (Rp+).

A new re-encoded machine is generated in each itera-
tion of the outer loop. The loop terminates when equiv-
alence is determined (a complete re-encoding function
was found) or the number of allowed iterations is ex-
ceeded. In the latter case, the final re-encoded machine
is used in the subsequent product machine traversal for
determining equivalence.

Traversing a product machine’s state space is more
costly than for a single FSM. In principle the state space
increases linearly in the product of the cardinalities of
the state spaces. Fortunately, this is not the case in prac-
tice since the component machines are strongly coupled
by primary input sharing, and they evolve in lockstep
during traversal. Furthermore, if the component ma-
chines are “similar”, they have similar reached state sets
which implies a smaller reached state set in the product
machine. One of the main issues is to try and keep corre-
sponding next–state functions and variables interleaved.

To identify permutations of state variable names, we
follow a heuristic approach inspired by Chen et al. [?]
that computes signatures associated to input variables.
We modify the method applying it to state variables.
The algorithm is implemented in the pm heuristic
function.

This corresponds to an initial decomposition and re-
ordering of Mp. The re-encoding is generated and up-
dated in the inner loop. At each iteration, a forward
traversal of Mp is performed using either exact or ap-
proximate techniques. This generates the set reached
(equal to Rp

i or Rp+
i). If the state graphs of the two

FSMs are isomorphic, Rp
i represents a 1 : 1 correspon-

dence. In the general case both Rp
i and Rp+

i are an m : n
state correspondence.

Let ρ− be a 1 : 1 under-estimation of ρ (initially,
ρ− = ∅), and let ρ+ be am : n over-estimation of ρ (ρ+ =
reached). Information is successively added to ρ− from
ρ+, while keeping the result 1 : 1 (function extend re-
encoding in Fig. ??). This is done at the fixed point or
periodically during traversal (when ++level MOD step
= 0 is true in the pseudo-code), allowing the inner steps
to have more information in computing the function. ρ−

is then extended to encompass all state pairs (s1, s2) of
Rp (function complete re-encoding in Fig. ??). This
last procedure, for the sake of simplicity, extends the
encoding to the whole state space, but in practice this is
limited to an over-estimation of the reachable states. At
the end of each cycle, the function re-encode computes
the re-encoded machine M∗ using the previous version
and the ρ mapping.

3.1 Extending a partial 1 : 1 re-encoding

Suppose we are given A1 ⊆ S1 and A2 ⊆ S2 of equal
cardinality, and a 1 : 1 re-encoding ρ− that re-encodes a
subset of A1 in a subset of A2. If a complete re-encoding
is required for A1, ρ− must be extended to the whole A1

set.
If A1 and A2 have equal cardinalities, we first extract

the subsets of A1 and A2 included in the ρ− function,
A1

ρ− and A2
ρ− . Then we consider ρ+−(A1

ρ−×A2)−(A1×
A2

ρ−) that indicates all possible re-encodings for states,

in S1 and S2 that have been reached during traversal
and which do not appear in the re-encoding function
ρ−. We apply the 1 : 1 reduction procedure presented
in ?? to that relation. The result is OR-ed with ρ− to
produce a 1 : 1 function from A1 to A2. (This proce-
dure is guaranteed to find a complete encoding given a
complete graph.)

If A1 and A2 have different cardinalities, we look for
a 1 : 1 mapping of the smaller set onto a subset of the
larger one and then extend it according to the above
procedure.

The pseudo-code is shown in Fig. ??. extend re-
encoding extends ρ− using ρ+. It restricts ρ+ to states
not in ρ−, uses the reduction procedure of Fig. ?? to
reduce ρ+ to a 1 : 1 function, and adds ρ+ to ρ−. ρ+

contains, in general, an over-estimation of the state cor-
respondence which loses accuracy as the traversal pro-
ceeds; we heuristically avoid re-considering states that
have already been matched. complete re-encoding
uses extend re-encoding to extend ρ− to the whole
space of Mp.

3.2 Reducing a re-encoding from m : n to
1 : 1

The last algorithm to be described is that of reducing
an m : n re-encoding ρ+ ⊆ A1 ×A2 to 1 : 1 ρ+1:1.

The relation is given in implicit form and can be repre-
sented by a bipartite graph. Then the problem is equiv-
alent to solving a perfect bipartite matching problem.

If a perfect matching exists, it is also a maximum
one, and well–known algorithms for maximum match-
ing based on the min–cut max–flow theorem (or their
symbolic versions [?]) could be used. Unfortunately
the matching problem is in the inner loop of our algo-
rithm, so exact algorithms, would still require an exces-
sive amount time.

We propose a quick heuristic algorithm, based on
Lin’s et al. compatible projection operator without guar-
antee of maximality.

The pseudo-code is shown in Fig. ??. Let σ be a set
of literals in the product machine state space (initially
the special minterm for minimum distance selection).

After testing terminal recursion cases the procedure
select literal selects a splitting literal (v) from σ and
uses it for recursive traversal of (in theory, all) paths
from the root to a 1 leaf. Each path represents an en-
coding for s1 and a corresponding state s2. Recursion
proceeds on the two cofactors of ρ+ with respect to the
splitting literal, producing the then (T) and else (E)
components of the result. The reduction is guaranteed
to be 1 : 1 by an existential quantification on ρ+v , before
computing the E component that prevents the re-use of
mapped states. If v ∈ A1, existentially quantifying all
s1 results in P , i.e., all the states in A2 in the subspace
that have already been considered. The state in P should
therefore not be further considered. Random choices are
made in selecting a 1 : 1 function contained in ρ+.

4 Experimental Results

The verification by re-encoding technique has been
implemented in a program prototype written in C. We
report the results of the experiments performed on a
DEC ALPHA 7000 with 256MByte of memory. The
circuits used are taken from the well known ISCAS’89
(with the ’93 addendum) and MCNC set.

We do not include data about small FSMs, because
exact traversal techniques are sufficient in these cases.

In all the following tables # FF indicates the number
of state variables, # P indicates the number of parti-
tions used in approximate traversal (# P = 1 indicates
exact traversal). Level is the number of traversal steps
(image computations), R shows the number reachable
states, and # Cycle is the number of re-encoding steps
performed until equivalence is proved. Time is the CPU
time in seconds.

In Table ?? we list four experiments in which we
perform self-verification after manually shuffling prod-
uct machine variable ordering (to emulate the case of
unknown correspondence), the goal of re-encoding be-
ing to find the exact variable correspondence. |ρ| rep-
resents the size of the re-encoding function in terms of
BDD nodes. With the addition of the pruning constraint
(λ1 = λ2) the Rp+ computed is 1 : 1 and contains the
exact re-encoding. In the Time column CPU times in
brackets refer to the cost of applying ρ to transform the
initial machine in the re-encoded one: this appears to
be a relevant phase in the overall process, except for cir-
cuit s713, in which the coupling heuristic was enough for
combinational equivalence, and our re-encoding based
verification was not necessary. With circuit s1423, the
initial manual variable shuffling was limited (not far from
ideal interleaving), because due to the size of the circuit
we were not able to deal with a more general variable
ordering. Lines s1423a and s1423b (concerning the same

starting problem) differ in the accuracy of approximate
traversal, and demonstrate that a looser traversal may
sometimes provide an exact re-encoding in less time.

Table ?? presents the verification of medium–large
machines composed of smaller FSMs. We used equiv-
alent but not equal circuits (like s344 and s349) or cir-
cuits with different state assignments obtained using SIS
[?]. In the latter case we start from the STG of the ma-
chine in kiss format, and we synthesize it with different
state assignment strategies (i.e. different options for the
state assign command of Nova [?] are used to obtain
equivalent machines). Using SIS implies dealing with
small circuits: then we adopt serial (+) and parallel (∥)
composition to build larger FSMs. Column |ρ|avg reports
the average size of the applied re-encoding functions.

In Table ?? we list some examples of independent en-
codings for sub-blocks of a large circuit. Given a FSM,
we randomly re-encode subsets of the state variables,
and check the new circuit against the original one. In
the verification phase, we exploit the advantage of itera-
tive re-encoding (see section 2.1) by restricting some re-
encoding steps to subsets of the state variables. Column
Re-encoding list the sizes of the re-encoded sets of state
variables: e.g. 7, 7 with 28 flip-flops means that two sets
of 7 state variables each are re-encoded, while 14 state
variables keep their original coding. In the case of sbc, we
compare the single step re-encoding (sbca) with a three
step one (sbcb), and the advantage of the latter is clear in
term of both size of re-encoding and CPU time. Circuits
s1269 and s1512 are selected among those that we cannot
traverse exactly: the ratio of re-encoded state variables
is low, but the experiments prove the ability of dealing
with large circuits, provided that a proper decomposi-
tion can be found for re-encoding. At present we have
no exact or heuristic method for re-encoding oriented
circuit decomposition, thus we used for the above exper-
iments manual decomposition, exploiting knowledge of
the partitioning used to randomly encode circuits.

Possible tunings for all these experiments involve
varying the accuracy of the approximate traversal
and the number of times the procedure extend re-
encoding is used during traversal. The experimental
data result from a trade-off between accuracy and cost.
The level of accuracy in the approximate forward traver-
sal was biased to guarantee satisfactory guesses for re-
encoding, while keeping the traversal time low.

5 Conclusions

We presented an incremental approach to re-encoding
one FSM composing a product machine. This technique
is based on an approximate forward traversal of the prod-
uct machine to obtain information for re-encoding. The

re-encoding functions allow us to extend the applicability
of combinational checks and, in case they fail, to make
traversals more efficient.

References

[1] D.I. Cheng, M. Marek–Sadowska, “Verifying Equiv-
alence of Functions with Unknown Input Corre-
spondence,” in Proc. EDAC’93, February 1993,
pp. 81–85

[2] G. Hachtel, F. Somenzi, “A Symbolic Algorithm for
Maximum Flow in 0–1 Networks,” in Proc. IEEE
ICCAD’93, November 1993, pp. 403–406

[3] B. Lin, A. Richard Newton, “Implicit Manipula-
tion of Equivalence Classes Using Binary Decision
Diagrams,” in Proc. IEEE ICCD’91, October 1991,
pp. 81–85

[4] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan,
R.K. Brayton, A. Sangiovanni–Vincentelli, “SIS: A
system for sequential circuit synthesis,” Technical
Report UCB/ERL M92/41, U.C. Berkeley, May
1992

[5] T. Villa, “NOVA. State assignment of finite state
machines for optimal two–level logic implementa-
tions,” in Proc. ACM/IEEE DAC’89, June 1989,
pp. 327–332

verify by re-encoding (M1, M2, step, max iterations)
{
M∗ = M1;
n iterations = 0;
while (1)

{
if (M2 .

= M∗)
return (∅, equivalent);

Mp = build pm (M2, M∗);
if (++n iterations > max iterations)

/* Mp must be verified by traversal */
return (Mp, aborted);

/* initializations */
level = 0;
ρ− = 0;
from = reached = new = Sp

0 ;
/* Mp traversal */
Mp = pm heuristic (Mp);
while (new != ∅)

{
to = image (Mp, from);

new = to · reached;
reached = reached + new;
if (++level MOD step == 0)

ρ− = extend re-encoding (Mp, ρ−, reached);
}

ρ− = extend re-encoding (Mp, ρ−, reached);
ρ = complete re-encoding (Mp, ρ−);
M∗ = re-encode (M∗, ρ);
}

}

Figure 1: Re-encoding–based verification.

extend re-encoding (Mp, ρ−, ρ+)
{
assert (is 11 (ρ−));
s1 = first machine state vars (Mp);
s2 = second machine state vars (Mp);
/* restrict ρ+ to states not in ρ− */

ρ+ = ρ+ · ∃s1(ρ−);

ρ+ = ρ+ · ∃s2(ρ−);
/* 1 to 1 filter */
ρ+1:1 = reduce (Mp, ρ+, s1 + s2);
/* extend ρ− */
ρ− = ρ− + ρ+1:1;
return ρ−;
}

complete re-encoding (Mp, ρ−)
{
Sp = machine state space (Mp);
/* complete by extension */
return extend re-encoding (Mp, ρ−, Sp);
}

Figure 2: Pseudo-code to extend the re-encoding func-
tion.

reduce (Mp, ρ+, σ)
{
/* testing terminal cases */
if (ρ+ == 0)

return 0;
if (empty (σ))

{
assert (ρ+ == 1);
return 1;
}

s1 = first machine state vars (Mp);
s2 = second machine state vars (Mp);
/* recursion */
v = select literal (σ);
T = reduce (Mp, ρ+v , σv);
if (v ∈ s1)

P = ∃s1 T;
else

P = ∃s2 T;

E = reduce (Mp, ρ+
v

· P , σv);
return (build bdd (v, T, E));
}

Figure 3: Pseudo-code to reduce the re-encoding func-
tion.

Circuit # FF Verify by Exact Forward Traversal Verify by Re-encoding
Level R Time # P |ρ| # Cycle Time

s400 21 151 8865 13 3 689 1 7.3 (3.7)

s713 19 7 1544 2 - 0 0 0.5 (0)

s1423a 74 - - - 16 723 1 347 (113)

s1423b 74 - - - 8 1014 1 520 (187)

Table 1: Experimental results on large FSMs with manual re-encoding. - means unknown, i.e. overflow in BDD
nodes.

Circuit1/Circuit2 # FF Verify by Exact Forward Traversal Verify by Re-encoding
Level R Time # P |ρ|avg # Cycle Time

(s344+s510ie)
(s349+s510ig) 21 20 17249 19.8 3 244 1 3.7 (1.0)

s510ioh+(s641∥s820ia)
s510iov+(s713∥s832ie) 30 47 1.814·106 145 3 987 1 85 (57)

(s344+s510ie)∥s1488ia
(s349+s510ig)∥s1494ih 27 25 7.77·105 423 3 734 3 39 (27)

s298ig∥s820ia∥(s344+s420ioh)
s298ih∥s832ie∥(s349+s420iov) 50 - - - 5 1232 3 234 (115)

Table 2: Experimental results on large composed FSMs. - means unknown, i.e. overflow in BDD nodes. ig, ih, ioh,
etc. indicate different options for the state assign command of SIS, using Nova.

Circuit # FF Re-encoding Verify by Exact Forward Traversal Verify by Re-encoding
Level R Time # P |ρ|avg # Cycle Time

s400 21 11, 10 151 8865 7.3 3 316 3 32.2 (21.2)

s713 19 10, 9 7 1544 5.1 4 139 3 23.2 (16.5)

sbca 28 7, 7 10 154592 600 2 698 1 302 (197)

sbcb 28 7, 7 10 154592 600 2 187 3 101 (61)

s1269 37 5 - - - 13 231 2 72 (43)

s1512 57 5 - - - 12 257 4 231 (123)

Table 3: Experimental results on large FSMs with random encoding. - means unknown, i.e. overflow in BDD nodes.

