
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Stepping forward with interpolates in unbounded model checking / Cabodi, Gianpiero; Murciano, Marco; Nocco, Sergio;
Quer, Stefano. - (2006), pp. 772-778. (Intervento presentato al convegno 2006 International Conference on Computer-
Aided Design, ICCAD tenutosi a San Jose, CA (USA) nel 2006) [10.1109/ICCAD.2006.320119].

Original

Stepping forward with interpolates in unbounded model checking

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICCAD.2006.320119

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981106 since: 2023-08-16T14:34:01Z

IEEE/ACM

Stepping Forward with Interpolants in
Unbounded Model Checking

Gianpiero Cabodi Marco Murciano Sergio Nocco Stefano Quer
Politecnico di Torino

Dip. di Automatica e Informatica
Turin, ITALY

ABSTRACT
This paper addresses SAT-based Unbounded Model Check-
ing based on Craig Interpolants. This recently introduced
methodology is often able to outperform BDDs and other
SAT-based techniques on large verification instances. Based
on refutation proofs generated by SAT solvers, interpolants
provide compact circuit representations of state sets, and
abstract away several details non relevant for proofs. We
propose three main contributions, aimed at controlling in-
terpolant size and traversal depth. First of all, we introduce
interpolant-based dynamic abstraction to reduce the sup-
port of the computed interpolant. Second, we propose new
advances in interpolant compaction by redundancy removal.
Both techniques rely on an effective application of the in-
cremental SAT paradigm. Finally, we also introduce inter-
polant computation exploiting circuit quantification, instead
of SAT refutation proofs. Experimental results are specif-
ically oriented to prove properties, rather than disproving
them (bug hunting). They show how the methodology is
able to extend the applicability of interpolant based Model
Checking to larger and deeper verification instances.

1. INTRODUCTION
SAT-based Bounded Model Checking (BMC) has been

shown to be more robust and scalable than symbolic model
checking methods based on Binary Decision Diagrams (BDDs).
Unlike BDD-based methods, BMC focuses on finding bugs of
bounded length, successively increasing the bound, to search
for longer traces. Given a design and a correctness property,
it generates a Boolean formula by unrolling the design for
k time frames so that the formula is satisfiable if and only
if there is a counter-example of length k. Although BMC
can find bugs in larger designs than BDD-based methods,
verification is not complete, as the correctness of a property
is guaranteed only for the given bound.

To extend the methodology to full verification, a com-
pleteness check was proposed by Sheeran et al. [1], provid-
ing a proof of correctness for safety properties based on the
longest loop-free path between states. Unfortunately, the
longest loop-free path can be exponentially longer than the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

diameter of the reachable state space.
To overcome this problem, McMillan [2] adopted quanti-

fier elimination, through the enumeration of SAT solutions
(all-solutions SAT), achieved by the introduction of the so-
called “blocking clauses”. For each new solution, a blocking
clause is added to the original problem database. This pre-
vents the SAT-solver to run twice into the same solution.

Ganai et al. [3] replaced blocking clauses by cofactorized
circuits, i.e., they adopted a circuit graph representation to
capture a larger set of states for each SAT solution.

McMillan [4] recently proposed a novel and quite promis-
ing Model Checking approach, based on Craig interpolants.
Modern SAT solvers are able to generate proofs of unsat-
isfiability (refutation proofs) which can be used to produce
over-approximations of the reachable state space of the sys-
tem. Given the above possibility, the basic idea is to exploit
refutation proofs of (unsatisfied) BMC checks, in order to
compute over-approximate state sets. The approach can be
viewed as an iterative refinement of proof based abstractions
to narrow down a proof to relevant facts. Its convergence is
bound by the diameter of the state graph, and experimental
results on large circuits showed impressive results in several
cases.

On the same path, Silva [5] proposed some effective com-
paction optimizations for interpolant based traversals.

Our initial experiences with interpolants in Model Check-
ing showed that they can be very effective whenever sym-
bolic traversals are able to converge at low depths (number
of reachability iterations), and interpolant sizes stay within
tractable ranges. Unfortunately, this is not always the case.
We thus propose three main contributions, under the general
idea of compacting interpolant sizes and reducing traversal
depths:

• A dynamic abstraction procedure, based on identify-
ing optimal subsets of state variables, to be safely ab-
stracted before each reachability step. The proposed
abstraction generally reduces the amount of iterations,
thus anticipating the convergence of the process.

• An interpolant circuit optimization technique, based
on redundancy removal under Observability and Ex-
ternal Don’t Care conditions. The strategy we pro-
pose is applied on top of other optimization techniques,
see [6], and effectively exploits the benefits of incre-
mental SAT.

• Interpolant computation based on circuit based quan-
tification, rather than on refutation proofs. We intro-
duce this technique (combined with dynamic abstrac-

tion) in backward reachability, where circuit based quan-
tification is more effective.

The main intuition under dynamic abstraction is that vari-
able quantification projects traversals over subspaces (of non
quantified variables). Over-approximations are generally
stabler than SAT based interpolants, and produce shorter
traversals. Our techniques are implemented by successfully
exploiting incremental SAT, i.e., by properly formulate a set
of SAT problems which are able to share large portions of
their clause database. The main idea of incremental SAT is
to forbid clause removal (and just allow the addition of new
clauses) across different SAT solver runs.

Our experimental results concentrate on proving correct
properties, and showing that the proposed method improves
the original one by making it faster, more robust and scal-
able. We show experiments where we are able to complete
difficult instances, not achievable without our techniques.

2. BACKGROUND
The sequential systems we address are usually modeled

either as Finite State Machines (FSMs), or as the more gen-
eral Kripke Structures.

A Kripke structure is defined as a 4–tuple M = (S, I, T,
L), where: S is the set of states, I ⊆ S is the set of initial
states, T ⊆ S × S is the transition relation between the
states, L: S → 2A is the function that labels each state with
a set of atomic propositions. We will use x for present state
variables, the primed notation (x′) for next state variables,
and Tk to indicate a combinational unrolling of T of depth
k.

An invariant property P over a sequential model is checked
by attempting to prove (or disprove) the reachability of its
complement F (the target state set, F = ¬P) from I.

Given two inconsistent formulas A and B (A ∧ B = 0),
the interpolant C is a formula such that: (1) it is implied by
A, (2) it is inconsistent with B, and (3) it is expressed over
the common variables of A and B.

Starting from a refutation proof RP of A ∧ B (easily ob-
tained from a SAT solver), the interpolant C = Itp (A, B)
is an AND/OR circuit that can be computed from RP. Al-
beit the computation can be performed in linear time with
respect to the size of RP, the size of RP itself can be expo-
nential compared to A and B.

An over-approximate image Img
+ is such that, for all state

sets S, Img (T, S) implies Img
+ (T, S). A k–adequate over-

approximate image Img
+
Adq (T, S, F, k) is an Img

+ (T, S)
that does not intersect any state on paths of length k to F.
Img

+
Adq (T, S, F, k) is undefined iff

Img (T, S) ∧ Tk ∧ F �= 0.

A possible way of computing Img
+
Adq is interpolation:

Img
+
Adq (T, S, F, k) = Itp (S ∧ T, Tk ∧ F)

An image is called adequate if it is k–adequate for any k,
i.e., no path of any length can lead from a state within the
image to states in F. Since the model is finite, a k–adequate
image is adequate if k ≥ d, where d is the diameter of the
state transition graph.

Working with increasing values of k and with the k–ade-
quate (interpolant-based) image operator, McMillan [4] in-
troduces a finite, fully SAT, algorithm for unbounded model
checking. The algorithm is sketched in Figure 1.

InterpolantMC (I, T, F)
k = 0
repeat

res = FiniteRun (I, T, F, k)
k = k + 1

until (res �= undecided)

FiniteRun (I, T, F, k)
if (SAT (I ∧ Tk ∧ F))

return (reachable)
R = I
while (true)

to = Img
+
Adq (T, R, F, k)

if (to = undefined)
return (undecided)

if (to ⊆ R)
return (unreachable)

R = R ∨ to

Figure 1: Interpolant based Verification.

For each value of k, starting from 1, function FiniteRun

is called. It first solves a BMC problem of bound k, to
tentatively prove F reachable. If this is not the case, it per-
forms an approximate traversal until a fixed point (property
proved), or F is reached by over-approximate state sets (in-
terpolant undefined).

Since k increases at every iteration, if I and F are mutually
unreachable, eventually k ≥ d. In such a case, Img

+
Adq is

adequate, hence we terminate. For smaller values of k, a
k–adequate set can produce a non k–adequate image.

According to [5], in order to avoid a quadratic number
of image computations, the depth of the last FiniteRun

execution can be used to increment k.

3. DYNAMIC ABSTRACTION
Let us start from the observation that interpolation basi-

cally provides an over–approximate image, k–adequate with
respect to a given target set F, or, in other words, guaran-
teed not to reach F through paths of length k.

Two nice effects are related to the use of Craig inter-
polants in verification: (1) they achieve over-approximation
and variable existential quantification (i.e., image compu-
tation) at the same time, and (2) the over-approximation
process is based on the property under check, so that the
abstraction concentrates on relevant facts.

At the opposite side of the spectrum, problems may arise
due to:

• Deep traversals. Let d+ be the sequential depth
of the over-approximate FiniteRun procedure, and d
the diameter of the state transition graph. In general,
d+< d, i.e., over-approximate “bypasses” long state
transition paths and converges faster than exact reach-
ability. Nevertheless, d+>d is also possible, whenever
interpolants trigger long walks over chains of “unreach-
able” but “adequate” states.

• Interpolant size. The size of interpolants is gen-
erally difficult to predict, as interpolant circuits come
from refutation proofs, and their initial size is strongly
related to the SAT solving process. It has been ob-
served [4, 5] that interpolants are highly redundant.
Furthermore, different refutation graphs are possible

for a given proof, producing different interpolant cir-
cuits. McMillan [7] explores a full range of refutation
graph transformations, and the resulting interpolant
circuits, basically looking for tighter over-approxima-
tions.

In order to face the above problems, we exploit abstraction,
as a well known (and successful) way of analyzing over-
approximate behaviors, by removing some details and/or
mutual dependencies, such that the proof is still achievable.

Although interpolation itself can be viewed as an abstrac-
tion technique, we specifically consider over-approximation
by state variable (existential) abstraction. Our aim is to find
a subset α of the x state variables, whose abstraction still
guarantees k–adequacy. We consider abstraction itself as an
interpolation procedure, able to produce k–adequate over-
approximations. We call our abstraction process dynamic,
as we restart abstraction before each image computation, in-
stead of keeping a given abstraction over an entire traversal
(as in standard abstraction–refinement methods [8, 9]).

Given α ⊆ x, we compute the abstract transition relation

Tα = ∃α′ T

by existentially quantifying out the α′ variables in the next
state space.

The abstraction is k–adequate iff

Img (T, S) ∧ Tk ∧ F= 0 ⇒ Img (Tα, S) ∧ Tk ∧ F= 0

A k–adequate abstraction can be used within the FiniteRun

procedure, either as a preprocessing step of interpolant based
image, or as the only over-approximate operator, followed by
exact image (using the abstract Tα).

The main advantages we expect from such an abstraction
are: (1) a minimal set of support variables, and hopefully a
minimal circuit size, of the image state set, and (2) shorter
reachability depths d+.

Intuitively, we start from the observation that minimal
support is often related to lower circuit size. SAT solvers
are unlikely to achieve minimum support of the refutation
proof by themselves, as the heuristics driving them are based
on different targets. Although we generally expect that refu-
tation proofs do not include variables that are not relevant
for a proof, we don’t expect minimal support interpolants.

A specifically targeted abstraction, paying some overhead,
is more likely to get to such a minimal support interpolant.
Moreover, shorter traversal depths come from abstraction
by variable quantification, that projects the state transition
graph over a subspace. This tends to produce more compact
graphs and shorter state transition paths.

3.1 Selecting the Abstraction
Let us consider now the process of finding the α set of

variables. Minimum–Cost Unsatisfiability proof should be
considered, in order to address this particular issue. Unfor-
tunately (to the best of our knowledge), just Minimum–Cost
Satisfiability Tools (MinCostSAT) [10] have been studied,
not the former ones.

This is an optimization problem, that we can face by trad-
ing off performance for optimality. Iterating through all can-
didate subsets, in order to find k–adequate abstractions, and
select the optimal one, is clearly too expensive. We chose a
sub–optimal greedy approach that incrementally builds the
α set by looping through all next state variables. Figure 2

DynAbstr (S, T, F, k)
// k–adequacy check for exact image
if (SAT(S ∧ T∧ Tk ∧ F) �= 0)

return (undecided)
α = {}
foreach next state var x′

i

α = α + x′
i

// k–adequacy check for abstract image with Tα

if (SAT(S ∧ Tα ∧ Tk ∧ F) �= 0)
// Not adequate: undo abstraction
α = α - x′

i

return (α)

Figure 2: Dynamic Abstraction.

shows the procedure. The generic x′
i variable is tentatively

added to the abstraction set α (initially empty), and vali-
dated for k–adequacy. The result is sensitive to the chosen
variable order. Given a state set S and a transition relation
T, k–adequacy of their image w.r.t. F is tested by a SAT
check:

Img (T, S) ∧ Tk ∧ F�= 0 ⇔ SAT (S ∧ T∧ Tk ∧ F) �= 0

This is done by a preliminary test with T (to filter out unde-
fined interpolants), then repeated for all candidate abstract
transition relations Tα.

The process requires a linear (in the number of state vari-
ables) number of SAT calls, which can still be too expen-
sive. To further reduce the cost of the iterated k–adequacy
SAT checks, we adopted incremental SAT , a well known
approach for multiple, though related, SAT calls.

Let x′ be the set of (common) next state variables shared
by Tα and Tk. In order to relationally express different
Tα (with different α sets), we use wire cutting instead of
explicit existential quantification. We generate two sets of
fresh variables x̂ and γ. Variable x̂i replaces x′

i in Tα, so
that now Tα and Tk do not share state variables any more.
Conditional variable sharing is captured by an additional
term

^

i

(γi ⇒ (x̂i ⇔ x′
i))

where γi = 1 means wire connection between x̂i and xi,
γi = 0 means no wire connection (no relation) between
them. In other words, γi = 0 is equivalent to the exis-
tential quantification of x′

i in Tα (as x̂i is an unconstrained
free variable). We now express Tα as follows:

Tα(x′/x̂) ∧
^

i

(γi ⇒ (x̂i ⇔ x′
i))

We now load all terms (including Tα in relational form) once
and for all into the SAT solver (in terms of CNF clauses).
The generic SAT call, to test k–adequacy of a given α set,
is done incrementally:

Assumeα =
V

i (γi = ¬(xi ∈ α))
SATAssumeα (A ∧ B)

Each SAT call is performed exploiting incremental learning
and assuming proper values for all γ variables. Any γi is
set to 0 if xi belongs to the α set, 1 otherwise. A further
improvement we adopted (omitted here for sake of simplic-
ity) is the introduction of a time bound on SAT calls. This
improves scalability, but leaves undecided k–adequacy tests.

The undecided variables are further refined by a second loop,
starting from the assumption that all undecided variables
are abstracted. This set is then refined until the abstraction
is proved k–adequate.

4. CIRCUIT COMPACTION
Circuit compaction is another way to attack the size of

interpolant representations, as interpolants are potentially
highly redundant.

Among the available possibilities, we concentrated on re-
dundancy removal, whose basic steps consist in identifying
circuit nodes replaceable by constant nodes. Although test-
ing techniques have been successfully applied in this frame-
work [11], as redundancies are related to untestable stuck–at
faults, we resorted to SAT-based algorithms [12, 13]. We ex-
pected major improvements from the recent developments
in the SAT technology, the incremental approach, and an
aggressive use of don’t care based simplifications.

First of all, we looked at incremental SAT, as redundancy
removal is essentially a set of SAT checks over several cir-
cuit nodes, to prove/disprove candidate substitutions with
constant nodes. Given a circuit f (identified by the set of
its outputs), and a subset N of its nodes (to be checked for
redundancy) we build up a product machine PM for each
redundancy test, comparing the (outputs of the) original f
with the new one (with constant injected). More formally,
let ni ∈ N be the node to be checked for 0–redundancy, we
do the following check:

SAT (f �= f(ni/0)) = 0 ⇒ ni is 0 − redundant

Where the f(ni/0) expression means that the ni node is
assigned the 0 constant value, and the dependency from its
fanin circuit is removed. Dually for 1–redundancy. In order
to guarantee incrementality for the SAT calls over the set
of N nodes, we basically need to express every constant
injection in terms of just variable decisions. So for each
ni ∈ N , we generate two new variables: ci, selecting the
proper constant value (0 or 1), and γi, selecting between non
redundancy (γi = 1, ni connected to its original fanin) and
redundant behavior (γi = 0, ni fed by ci). So all ni nodes
in N are replaced by ITE (γi, ni, ci). Now each redundancy
check over N can be achieved incrementally, through proper
assumptions on the γ and c variables.

We experimentally found that it was not worthwhile to
work with too large N sets, e.g., the whole set of f nodes.
Not only different redundancies are related/implied each–
other (so it might be unnecessary to prove all of them), but
a given circuit can be recomputed and highly compacted,
after a subset of ITE redundancies is known. So we decided
to work with “clusters” of nodes for the N set. Nodes are
added to the N cluster following their topological depth, and
a cluster size threshold. Limiting the size of N allows us to
control the overall amount of variables for the SAT problem,
and to rebuild f after redundancies over N are found, yet
exploiting incremental SAT for all checks on a given N .

Our redundancy removal procedure is shown in Figure 3.
Let f be the function (represented by a combinational net-
work) we want to optimize, and Care be an External Care
condition. The RedRemoval procedure loops through suc-
cessive redundancy removal iterations, each one considering
a wider set of candidate nodes. We sort nodes by topolog-
ical level, and we first consider nodes near the inputs. The

RedRemoval (f , Care)
Th = minTh
repeat

f̂ = f

N = SelectCluster (f̂ , Th)
for each node ni ∈ N

replace ni with ITE (γi, ci, ci)
// Initially no redundancy assumed
Assumeγi = 1

PM = (f̂ �= f) ∧ Care
for each node ni ∈ N

Assumeγi = 0 // Try redundancy
Assumeci = 0 // Constant 0
if (¬SATAssume (PM))

// Redundancy found
Set ni = 0 in f

else
Assumeci = 1 // Constant 1
if (¬SATAssume (PM))

// Redundancy found
Set ni = 1 in f

else
Assumeγi = 1 // Not redundant

RecomputeAIG (f)
Th = Th · 2

until ((N > maxTh) ∨ (No Redundancy Found))

Figure 3: Redundancy Removal under external care
conditions.

procedure loops until no redundancy is found, or the upper
bound (maxTh) on tested nodes is reached.

A relevant contribution for stronger optimizations is pro-
vided by a careful and effective use of don’t cares, that quite
often allow finding far more redundancies than with the orig-
inal circuit alone.

We exploit External Don’t Cares (EDC) optimization with
the idea that already reached states can work as EDC con-
ditions for further reachability steps (Care = ¬EDC =
¬Reached). The above simplification was key for advances
in BDD–based reachability, where the “restrict” cofactor
was used to minimize the size of reachable state sets feeding
image operators.

We then implicitly take into consideration both Input
Don’t Cares (IDC) and Output (or Observability) Don’t
Cares (ODC), within our product machine model. Histor-
ically, most practical redundancy removal approaches are
quite often limited to Input Don’t Cares (IDC), as redun-
dancy removal under IDCs preserves the circuit function: a
node is replaced with a constant node whenever it is con-
stant under all allowed inputs. Practically speaking, the
product machine includes a comparison output exactly on
the redundant node ni.

ODC conditions take into account more aggressive node
transformations: they allow different node values, for a given
node, from the original and the transformed circuit, pro-
vided that they are not observable on the checked outputs.
The main problem with this kind of redundancies is that two
ODC based redundancies are not mutually unrelated (any
accepted redundancy modifies the circuit for next redun-
dancy checks). This makes simulation based preprocessing
less effective, and efficient SAT processing crucial. Further-
more, the overall result depends on the ordering of the re-

dundancy checks. Incremental SAT is key to effectively han-
dle ODC conditions, as it allows different checks to exploit
common ODC conditions (and the related conflict clauses).
Concerning the order of checks, we presently rely on topolog-
ical heuristics, though we expect that further improvements
are possible.

5. FORWARD/BACKWARD VERIFICATION
It is well known that forward and backward reachability

can be selectively applied to get better results, as each one
can beat the other depending on the model under check.

FiniteRunF wd (I, T, F, k)
if (SAT (I ∧ Tk ∧ F))

return (reachable)
R = From = I
while (true)

α = DynAbstr (From, T, F, k))
if (SAT (α) = undecided)

return (undecided)
to = Img

+
Adq (Tα, From, F, k)

if (to ⊆ R)
return (unreachable)

From = RedRemoval (to, ¬R)
R = R ∨ to

Figure 4: Forward traversal.

The advantage of either approach can rely on the depth of
forward/backward reachability, and the ease to express the
corresponding state sets. We implemented both forward and
backward reachability in our interpolant based framework.
The two approaches are quite similar, and both correspond
to the main traversal scheme represented in Figure 1.

Forward verification is shown in Figure 5. Whenever the
transition relation comes from a circuit, it can be repre-
sented as:

T =
^

i

(x′
i ⇔ δi)

This means that existential quantification of next state vari-
ables is straightforward: It is done by removing the corre-
sponding component in T. We exploit this fact while gener-
ating the abstract transition relation Tα, by simple compo-
nent elimination from T.

Backward reachability is similar, as the roles of the initial
(I) and target (F) states are swapped, and the pre–image
operator uses the transition relation in the reverse direction.
Anyway, it is possible to exploit different optimizations (see
Figure 5).

We cannot generate Tα by component removal, as true
quantification (before or within pre-image computation) is
required. Nevertheless, we can apply state variable quantifi-
cation by composition within the pre–image computation.
This can drastically reduce the amount of variables to be
quantified in pre–image, and allows us to (at least partially)
adopt exact pre–image (using) Tα. The LazyPreImg pro-
cedure performs exact circuit quantification, for primary in-
puts and α variables, whenever convenient (otherwise the
variable is kept) with a method inspired to [14] and [15]. If
we are able to fully complete exact pre-image with Lazy-

PreImg, then we avoid SAT based over–approximation by
interpolant, thus providing a tighter pre–image. Otherwise
we interpolate.

FiniteRunBwd (I, T, F, k)
if (SAT (I ∧ Tk ∧ F))

return (reachable)
R = From = F
while (true)

α = DynAbstr (From, T, I, k)
if (α = undecided)

return (undecided)
to0 = LazyPreImg (Tα, From)
if (more variables to quantify)

to = Itp (to0, I ∧ Tk)
if (to ⊆ R)

return (unreachable)
From = RedRemoval (to, ¬R)
R = R ∨ to

Figure 5: Backward traversal.

The peculiar aspect of the above procedure is to often
achieve full interpolation by dynamic abstraction and circuit
quantification, without resorting to SAT–based Craig inter-
polants. Even though less general, the procedure showed
very good results in some experimental cases, where it was
able to outperform forward interpolation.

6. EXPERIMENTAL RESULTS
We compare interpolant based Model Checking, with and

without the optimizations described in this paper. Our pro-
cedures are implemented on top of the Minisat [16] SAT
tool. We also use our own implementation of an AIG li-
brary, and we exploit the ABC tool [6] for different kinds of
logic synthesis optimizations.

Our experiments ran on a Dual Core Pentium IV 3 GHz
Workstation with 3 GByte of main memory, running Debian
Linux. We performed extensive experiments on selected
benchmarks, with both forward and backward interpolation,
by specifically addressing proofs of correctness.

We present results on:

• Some standard benchmarks belonging to the VIS dis-
tribution.

• The Sun PicoJava II microprocessor as presented in [4].
It includes 20 true safety properties with a number
of state variables (after cone of influence reduction)
ranging from about 50 to 350.

• The IBM Formal Verification Benchmark Library [17].
This library includes 75 circuits, each one with one
property, with a size ranging from 95 to 917 memory
elements.

• Some industrial circuits coming from STMicroelectron-
ics.

Table 1 includes detailed data comparing the running time
of the different strategies implemented. Among all the pre-
viously indicated problems, we only consider the ones which
needed more than 20 second of CPU time, and that we were
able to complete, with at least one strategy, in less than
1800 seconds. Each line reports data on one single prop-
erty. More lines labeled with the same circuit name indicate
that more properties are verified on the same circuit. The
table reports the number of memory elements for each cir-
cuit (after COI extraction), and the verification time for the

Model # FF Fwd Fwd+DA Fwd+DA+RR Bwd+DA+RR Fwd+DA+RR-IS

Ns21 67 − − − 101 −
Ns22 67 639 − − 48 −
Ns23 67 726 42 111 130 −
PicoJava5 88 83 42 22 20 −
Blackjack 103 976 − 265 793 1687
31 2 batch 1 122 1249 57 78 − −
Soap1 140 − − − 268 −
Soap2 140 − − − 205 −
Soap3 140 − − 1535 − −
Industrial1 186 64 50 25 55 586
Industrial2 202 − − 280 321 1567
PicoJava16 290 61 85 63 − 132
Feistel 296 722 199 311 748 −
PicoJava6 322 118 1122 81 − −
PicoJava15 364 44 50 49 − 55

Table 1: CPU Time (in seconds) for the different strategies. − means time out after 1800 seconds.

different interpolation strategies. The bottom-line strategy
is represented by Fwd, where we indicate the time for the
original interpolation method [4] re-implemented in our tool.
+DA presents results by adopting dynamic abstraction, and
+RR indicates the presence of redundancy removal. Finally,
Bwd shows the strategy in the backward direction, and -IS
the results without incremental SAT. Notice that in all the
strategies we adopted synthesis optimization techniques as
delivered by the ABC tool [6].

Notice that the last column clearly witnesses the relevant
role of incremental SAT. Forward reachability is generally
better, though in a few cases the backward approach is the
key to complete otherwise not achievable problems. Redun-
dancy removal has a larger impact on backward reachability.
In the forward direction it represents, at least in some cases,
just an overhead. We are often able to attain low state set
AIG sizes in problems where they grow much larger with
the original procedure. After all, we were able to complete
5 problems that were not achievable with the original ap-
proach.

Figure 6 and 7 show data on the 20 properties of PicoJava
II. Notice that in [4] all properties could not be verified by
standard symbolic model checking, within a limit of 1800
seconds and that one property was not achievable by any
technique. We were able to complete all 20 properties in a
total time of 528 seconds, and a maximum time (for property
6) of 118 seconds.

Figure 6 reports some data concerning the number of
reachability iterations (within the FiniteRun procedure) for
the Fwd+DA+RR method against the Fwd strategy. The fig-
ure plots the number of FiniteRun calls (external interpo-
lation loop) and the number of FiniteRun inner iterations
(inner interpolation loop). For the last one, we report both
the maximum value (maximum number of inner iterations
on all main iterations) and the total value (total number of
inner iterations performed on all main iterations).

Figure 7 reports the maximum size of the support of the
to set, for the same two strategies compared in Figure 6.

A direct comparison between the original and the pro-
posed method shows that the latter one is able to reduce
both the amount of traversal iterations and the support of
the computed state sets, supporting the original claims of
the paper.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

O
p
t
i
m
i
z
e
d

[
#
I
t
.
]

Original [#It.]

FiniteRun Calls
Max FiniteRun Inner Iterations

Total FiniteRun Inner Iterations

Figure 6: Number of FiniteRun calls (external in-
terpolation loop) and number of FiniteRun inner it-
erations (maximum and total values): Fwd+DA+RR
method against Fwd.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

O
p
t
i
m
i
z
e
d

[
#
V
a
r
.
]

Original [#Var.]

Figure 7: Maximum support of the to set along
the whole traversal process: Fwd+DA+RR method
against Fwd.

7. CONCLUSIONS
This paper shows how Craig interpolants, derived from

SAT proofs, can be further optimized by (1) extending the
idea of interpolation to variable abstraction, (2) by effec-
tively exploiting redundancy removal under External and
Observability Don’t Care conditions, and (3) circuit based
quantification adopted in the backward direction.

Our optimizations heavily rely on an efficient use of incre-
mental SAT, that allows grouping several related problems
with common learning.

To conclude, the interpolation approach still shows its
main limits with sequentially deep verification instances cor-
related with large interpolant circuits. Solving the above
problems seem to be the main challenge for future works in
interpolant based verification.

Another interesting option is to better integrate and com-
bine interpolant verification with other state-of-the-art meth-
ods such as abstraction–refinements, inductive verification
and automated generation of lemmas.

8. ACKNOWLEDGMENTS
The authors would like to thank K. L. McMillan for the

source descriptions of the Sun PicoJava II microprocessor,
and the VTT group of the STMicroelectronics, Agrate, Italy,
for their industrial benchmarks.

9. REFERENCES
[1] M. Sheeran, S. Singh, and G. St̊almarck. Checking

Safety Properties Using Induction and SAT Solver. In
W. A. Hunt and S. D. Johnson, editors, Proc. Formal
Methods in Computer-Aided Design, volume 1954 of
LNCS, pages 108–125. Springer-Verlag, November
2000.

[2] K. L. McMillan. Applying SAT Methods in
Unbounded Symbolic Model Checking. In
Ed Brinksma and Kim Guldstrand Larsen, editors,
Proc. Computer Aided Verification, volume 2404 of
LNCS, pages 250–264, Copenhagen, Denmark, 2002.

[3] M. K. Ganai, A. Gupta, and P. Ashar. Efficient
SAT-based Unbounded Symbolic Model Checking
Using Circuit Cofactoring. In Proc. Int’l Conf. on
Computer-Aided Design, San Jose, California,
November 2004.

[4] K. L. McMillan. Interpolation and SAT-Based Model
Checking. In Warren A. Hunt Jr. and Fabio Somenzi,
editors, Proc. Computer Aided Verification, volume
2725 of LNCS, pages 1–13, Boulder, CO, USA, 2003.

[5] J. Marque-Silva. Improvements to the implementation
of Interpolant–Based Model Checking. In D. Borrione
and W. Paul, editors, Proc. Computer Aided
Verification, volume 3725 of LNCS, pages 367–370,
Edimburgh, Scotlan, UK, 2005.

[6] Berkeley Logic Synthesis and Verification Group.
ABC: A System for Sequential Synthesis and
Verification,
http://www.eecs.berkeley.edu/∼alanmi/abc/.

[7] K. L. McMillan and R. Jhala. Interpolation and
SAT-Based Model Checking. In Proc. Computer Aided
Verification, Edimburgh, Scotlan, UK, 2005.

[8] B. Lin, C. Wang, and F. Somenzi. A
Satisfiability-Based Approach to Abstraction

Refinement in Model Checking. In BMC’03: First
International Workshop on Bounded Model Checking,
Boulder, Colorado, July 2003.

[9] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith,
and D. Wang. Automated Abstraction Refinement for
Model Checking Large State Spaces Using SAT Based
Conflict Analysis. In M. D. Aagaard and J. W.
O’Leary, editors, Proc. Formal Methods in
Computer-Aided Design, volume 2517 of LNCS, pages
35–51, November 2002.

[10] V. Manquinho and J. Marques-Silva. Search Pruning
Techniques in SAT–based Branch-and-Bound
Algorithms for the Binate Covering Problem. IEEE
Trans. on Computer-Aided Design, 21:505–516, 2002.

[11] M. Berkelaar and K. van Eijk. Efficient and Effective
Redundancy Removal for Million-Gate Circuits. In
Proc. Design Automation & Test in Europe Conf.,
pages 1088–1088, Paris, France, March 2002.

[12] A. Mishchenko and R. K. Brayton. Scalable Logic
Synthesis using a Simple Circuit Structure. In Proc.
Int’l Workshop on Logic Synthesis, Lake Tahoe,
California, May 2006.

[13] A. Mishchenko and R. K. Brayton. Improvements to
Combinational Equivalence Checking. In Proc. Int’l
Conf. on Computer-Aided Design, San Jose,
California, November 2006.

[14] P. A. Abdulla, P. Bjesse, and N. Een. Symbolic
Reachability Analysis based on SAT-Solvers. In
TACAS 2000 - Tools and Algorithms for the
Construction and Analysis of Systems, Lecture Notes
in Computer Science 1785, Springer Verlag, pages
411–425, Upsala University, Prover Technology,
Chalmers University, Sweden, April 2000.

[15] G. Cabodi, S. Nocco, and S. Quer. Circuit Based
Quantification: Back to State Set Manipulation within
Unbounded Model Checking. In Proc. Design
Automation & Test in Europe Conf., Munich,
Germany, March 2005.

[16] N. Eén and N. Sörensson. Minisat SAT Solver,
http://www.cs.chalmers.se/Cs/Research/Formal-
Methods/MiniSat/.

[17] IBM Formal Verification Benchmark Library.
http://www.haifa.il.ibm.com/projects/verification/-
rb homepage/fvbenchmarks.html.

