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ABSTRACT 

This study regards the evaluation of the failure probability of a symmetrical 2D reinforced concrete 

frame composed of 4 spans and 5 floors, in case of an accidental event which causes the central base 

column loss. The frame is an internal one of a typical building designed in a highly seismic area, 

characterised by a high ductility class. The frame is modelled in the non-linear finite elements 

software Atena 2D, accounting for both geometrical and material non-linearities. The uncertainties 

relevant to the problem are included by sampling both material and action variables, adopting the 

Latin Hypercube Sampling technique. To compute the failure probability associated to the accidental 

scenario, two sets of analyses are considered: the first set to compute the capacity of the structure 

against the column removal by means of displacement-controlled pushdown analysis; the second set 

to evaluate the demand in terms of external loads, properly combined within the accidental 

combination according to the codes. The external load is then amplified in order to include the 

dynamic effects characterising a scenario of a structural member loss. Finally, the probability of the 

demand exceeding the capacity is evaluated.  

 

Keywords: low-probability high-consequence events, NLFE pushdown analysis, probabilistic 

analysis, reinforced concrete frame, column loss, static approach. 

 

1 INTRODUCTION 

Nowadays structural engineering community is facing the need of developing adequate tools to deal 
with extreme events that, in the past, were not considered in performing structural analysis. Those 
events, which are also defined as low-probability high-consequence (LPHC) events, are capable of 
determining critical conditions for structures and infrastructures, implying tremendous losses of 
human, environmental and economic nature. Risk analysis should become part of the strategies for 
collapse prevention against those events, in order to investigate both socially acceptable and 
technically feasible solutions [1]. 
To evaluate the level of safety associated to LPHC events, quantitative risk analysis in probabilistic 
terms is considered to be a reliable methodology, since it allows to deal with the uncertainties that 
affect the engineering problems [2]. For example, in [3] a sensitivity analysis to evaluate the bearing 
capacity of different reinforced concrete (RC) structural members against the removal of a central 
support is performed. The uncertainties in the collapse demands and resisting capacities of the 
connections in moment-resisting steel frames is evaluated in [4]. The probability of exceedance of 
different damage states given a column loss scenario for RC buildings are evaluated in [5], by 
performing fragility analyses. Global variance-based sensitivity analysis is elaborated in [6], in order 
to study the major sources of uncertainties in the response of RC structures subjected to sudden 
column removal. A reliability-based index of structural collapse in case of extreme events is 
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computed in [7], for 2D linear elastic truss systems with random strengths and loads. A probabilistic 
risk assessment is used in [8] to evaluate the risk of terroristic attacks as different blast scenarios 
involving built infrastructures, studying their effects on structural and load-capacity systems.  
Currently, the traditional design of RC structures does not account for the strength reserves when 
large deformation and non-linearities are involved due to the occurrence of extreme events which 
cause the loss of a bearing structural element.  
Hence, this paper deals with the evaluation of the probability of failure of a 2D RC frame, designed 
in seismic area, in case of an event of accidental nature which causes the loss of the central base 
column. The cause of this collapse scenario can be of different nature: e.g., gas explosion, fire, 
foundation failure due to natural event. After having defined the geometrical, mechanical and 
detailing characteristics, the frame has been modelled in the finite element method (FEM) software 
Atena 2D. Then, a probabilistic sampling with the Latin Hypercube Sampling method has been 
performed in order to compute the probability of failure associated to the accidental event. In 
particular, the number of samples has been assumed equal to 100 and both material (i.e., concrete and 
steel) and actions (i.e., permanent and variable loads) variables are sampled. Thus, two sets of 
analyses are considered: the first set of 100 non-linear displacement controlled pushdown analyses to 
compute the capacity of the structure against the removal of the central base column; the second set 
of 100 non-linear static analyses to evaluate the external actions, properly combined according to the 
accidental code combination, evaluated in the point of column removal. Finally, the probability of 
the capacity exceeding the demand (i.e., the external action) is computed.  
 

2 DESIGN AND FINITE ELEMENT MODELLING OF THE RC FRAME 

This study is based on the analysis of a 2D RC frame composed of 4 spans and 5 storeys. The frame 
is an internal one of a typical building located in a highly seismic area, i.e., L’Aquila (Italy), 
characterized by a ductility class “A”. The frame is regular in elevation and symmetrical and is 
characterised by 5 meters spans and 3 meters inter-storey height (Fig. 1). The influence width in 
transverse direction is equal to 5 meters.  
The design of the structure follows the prescriptions of NTC2018 [9] and EC8 [10]. In particular, 
according to the combination of gravity loads, live loads, variable loads (including wind and snow) 
and seismic actions and considering serviceability limit states (SLSs), ultimate limit state (ULSs) and 
the capacity-design principles, the following geometrical and mechanical characteristics of the frame 
have been obtained.  
All the beams have cross sections of 40x50 cm2, while all the columns cross sections are of 60x60 
cm2. As for the materials, C25/30 concrete is used while B450C steel is adopted for the reinforcement. 
The beams are reinforced with ϕ18 for the longitudinal bars and ϕ8 for the transverse reinforcement. 
In particular, the dissipative area (i.e., close to the beam-column nodes) of the beams are arranged 
with two legs stirrups having 10 cm steps, and the non-dissipative area with two legs stirrups having 
15 cm steps. Furthermore, the columns are arranged with 12ϕ20 for the longitudinal reinforcement 
and ϕ8 four-legs stirrups with 10 cm steps shear reinforcement, except for the beam-column nodes 
where ϕ10 four-legs stirrups with 5 cm steps are arranged. All the structural elements have a concrete 
cover of 3.5 cm. The detailing of the longitudinal and transverse reinforcement for the beam is shown 
in Fig. 2. 
The FEM software ATENA 2D [11] is used to model the 2D RC frame. Specifically, four-node 
quadrilateral iso-parametric plane stress finite elements are used, with linear polynomial interpolation 
and 2x2 Gauss points integration scheme. The adopted element thickness (in the transverse out-of-
plane direction) is equal to 60 cm for the columns and 40 cm for the beams and the mesh size of the 
elements is in the range 5-10 cm. The non-linear system of equations is solved by means of a linear 
approximation hypothesis with the standard Newton-Raphson iterative procedure. 
The concrete is modelled as SBeta Material. The behaviour in tension accounts for the tension 
stiffening effect by means of a linear post-peak branch up to zero strength, while in compression the 
non-linear response is assumed considering the Saatcioglu and Razvi stress-strain law [12], to include 
the confinement of concrete. In addition, a reduction of compressive strength and of shear stiffness 
due to cracks is considered.   



The steel is modelled by a bi-linear with hardening constitutive law both in tension and in 
compression.  
Both longitudinal and shear reinforcement is modelled by discrete elements. Geometrical non-
linearities are included and perfect bond between concrete and steel is accounted for.  
 

 
Fig. 1 Lateral view of the frame. 

 

 

 
Fig. 2 Longitudinal and transverse reinforcement of the beam. The units of measure are in cm.  

In Fig. 3 the geometrical characteristics of the frame as modelled in the FEM software are shown, 
including the FE nodes, the macro elements and the longitudinal and shear reinforcement 
configuration. The geometrical scheme adopted provides a subdivision of beams, columns and beam-
column nodes, separating for each of them the confined and the unconfined parts as well as the 
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dissipative and the non-dissipative areas of the beams. Finally, fixed constraints are applied to the 
lines constituting the bases of the columns. 
 

 
Fig. 3 Representation of the 2D FEM model. 

 

3 PROBABILISTIC ANALYSIS 

The rebars detailing of the 2D RC frame is modified before the probabilistic analysis. Indeed, the 
continuity of the longitudinal rebars at each floor is adopted as useful recommendation suggested in 
[13]-[15]. 
The probabilistic analysis of this work is based on two sets of analyses: 

- a set of 100 displacement-controlled push-down non-linear FEM analyses to obtain the 
capacity curves. From these analyses, the maximum internal reaction given by the structure at 
the point of the column removal is assessed. This maximum value is herein identified as 𝑃𝑚𝑎𝑥.  

- a set of 100 non-linear FEM analyses where the design actions (permanent structural and non-
structural loads and variable loads) are applied, properly combined adopting the accidental 
combination according to the current codes [16]. From these analyses, the external action, 
computed as the reaction to the external loads at the point of column removal, is evaluated. 
This external action is herein indicated as 𝑃𝑒𝑥𝑡. 

Then, the two values have to be compared according to the static approach prescribed in [17],[18]. In 
detail, the external load should be amplified by means of a dynamic amplification factor (DAF) that 
ranges in between 1.0-2.0, to account for the dynamicity associated to the sudden loss of a structural 
member. In the following, a DAF of 1.2 is adopted in line with other studies [19],[20], since the 
maximum value of 2.0 is considered too conservative. In this work, the comparison is elaborated 
within a probabilistic analysis in order to evaluate the safety associated to the structure in case of 
accidental column removal.  

3.1 Probabilistic Sampling 

A probabilistic sampling is conducted on 10 basic variables Xi. Specifically, it is accounted for the 
aleatory nature of both the actions and material properties. For the former, the random variables are: 
self weight of the structural elements ρ (i.e., specific weight of reinforced concrete), permanent 
structural load G1; permanent non-structural load G2; floor live loads Qf; roofing live loads Qr. For 
the latter, the random variables are: reinforcing steel elastic modulus 𝐸𝑠; reinforcing steel yielding 
strength fy; reinforcing steel ultimate strength fu; reinforcing steel ultimate strain εsu; concrete 
compressive strength fc. It is worth noting that each numerical model is subjected to epistemic 
uncertainty which in this work are not included [21]. 
In this work, a Latin Hypercube Sampling technique has been adopted, where each variable is 
sampled from its probabilistic distribution and, subsequently, it is randomly combined with the others. 



Then, 100 different structural models are obtained by changing 100 times the sampled basic variables. 
In particular, a Normal distribution is assumed for the permanent loads, a Gumbel distribution for the 
variable loads [22] while both Lognormal and Normal distributions are considered for the material 
properties [23]. 
The coefficients of variation of the random variables have been included in line with [23]-[24]. As 
concerns the mean values, the design values coming from the computation of the influence area have 
been assumed for the loads, while the mean properties according to the current codes are considered 
for the materials. Table 1 represents a summary of the statistical parameters regarding the 
distributions of the different random variables.  
In addition, the correlation among variables is included [16]. In particular, the yielding strength fy and 
the ultimate strength fu are correlated adopting a coefficient of 0.75, the yielding strength fy and the 
ultimate strain  εsu have a correlation coefficient of -0.45 and, finally, the ultimate strength fu and the 
ultimate strain  εsu are correlated by means of a coefficient of -0.60. The correlation coefficients are 
shown in Table 2. 
 

Table 1 Statistical parameters and probabilistic distribution of the random variables. 

 Distribution Mean value Coefficient of variation [-] 

𝜌 Normal 25 [𝑘𝑁/𝑚3] 0.05 

𝐺1 Normal 16 [𝑘𝑁/𝑚] 0.05 

𝐺2 Normal 13 [𝑘𝑁/𝑚] 0.05 

𝑄𝑓 Gumbel 6.5 [𝑘𝑁/𝑚] 0.20 

𝑄𝑟  Gumbel 1.6 [𝑘𝑁/𝑚] 0.20 

𝐸𝑠 Lognormal 210000 [𝑁/𝑚𝑚2] 0.03 

𝑓𝑦 Lognormal 488.57 [𝑁/𝑚𝑚2] 0.05 

𝑓𝑢 Lognormal 561.86 [𝑁/𝑚𝑚2] 0.05 

𝜀𝑢 Lognormal 0.14 [-] 0.09 

𝑓𝑐 Lognormal 31.86 [𝑁/𝑚𝑚2] 0.15 

 
 

Table 2: Correlation coefficients among steel basic variables. 

 𝑓𝑦 𝑓𝑢 𝜀𝑢 

𝑓𝑢 1 0.75 -0.45 

𝑓𝑢 0.75 1 -0.60 

𝜀𝑢 -0.45 -0.60 1 

 

3.2 Pushdown analyses and evaluation of the capacity 

In this section, the first set of analyses is described. In particular, 100 non-linear FEM pushdown 
analyses have been computed by varying materials characteristics. To evaluate the capacity of a 
structure against the loss of a supporting element, displacement-controlled pushdown analyses are 
effective since they allow the computation of the corresponding displacement-force curves [25],[26]. 
Hence, the structure is modelled without the accidentally lost column (i.e., the central base column) 



and an increasing vertical displacement is applied at the top of the lost structural element. For each 
step, the reaction at the point of application of the imposed displacement is computed. In this way, 
the load-displacement or capacity or pushdown curves are computed for each one of the 100 aleatory 
combinations. In this phase, no other external loads are applied.   
      

     

 

s 
 

Fig. 4 Scheme of the first set of non-linear static analyses: pushdown analysis. 

In the following, the results in terms of capacity curve are shown for the 100 non-linear FEM analyses 
(Fig. 5). For all the capacity curves, three stages can be recognised:  

- the first stage (flexural stage), which lasts up to the first peak (hereafter indicated as Pflex,peak), 
is characterised by a response that remains in the linear elastic field until non-linear material 
behaviour becomes dominant. In the last phase of this stage the compressive axial effect 
governed by concrete properties and due to cracks openings guarantees a certain resistance 
reservoir which is capable to bear the load until the maximum flexural behaviour is reached; 
the first stage peak represents the condition in which the maximum flexural resistance is 
reached.  

- the second stage (softening stage) occurs after the first peak, where plastic hinges form and the 
compressive axial effects decrease, implying a drop in resistance followed by a constant 
reaction. This stage is defined as softening stage.  

- the third and last stage (catenary stage), implies  a recovery in resistance. This behaviour is 
due to the tensile axial actions to which the beams are subjected thanks to the presence of the 
longitudinal reinforcement which behaves as a tie. This plateaux stage continues until the 
ultimate resistance is reached.  

In Fig. 5 results in terms of capacity curves are shown. In particular, in Fig. 5(b) the loads have been 
normalized with respect to the value of the first peak Pflex,peak, while the displacements have been 
normalized with respect to the value of the imposed displacement corresponding to that peak.  
In the majority of the cases the maximum load Pmax (i.e., black stars of Fig. 5) is reached in 
correspondence of the peak of the first stage Pflex,peak, and during the softening stage the eventual 
recovery in resistance does not lead to an overcome of the first resistance peak. However, there are 
certain cases where the ultimate resistance before failure overcomes the initial peak. These cases are 
registered when the sampled ultimate strains of the steel reinforcement are quite large with respect to 
the mean value (i.e., 0.14), since the catenary behaviour is favoured by a more ductile reinforcement 
response. The maximum load Pmax, that is the maximum value of the capacity curve obtained from 
each of the 100 simulations, oscillates between a minimum of 1198 kN and a maximum of 1554 kN. 
In general, the minimum of these loads is obtained when there is a combination of poor characteristics 
of both concrete and steel material properties, while the opposite occurs for the larger values. The 
Pmax parameter has a mean value of 1349 kN and a standard deviation of 64.42 kN.  
A statistical inference analysis has followed to evaluate which type of distribution best fits the data 
obtained in terms of Pmax. In particular, the Normal, Lognormal and Gumbel distributions have been 
tested by applying both the Chi-Square and the Anderson Darling tests with significance level of 5%. 



The lognormal distribution has been selected as the proper probabilistic distribution since it has 
passed the goodness of fit test with the largest p-value of 0.67 among the three distributions. In Fig. 
6 the results of the statistical inference are shown. In particular, the probability plot (Fig. 6(a)) of the 
logarithm of the data shows that data are aligned on a straight line confirming the goodness of the 
tests. In Fig. 6(b) the Lognormal Probability Distribution Function (PDF) is plotted together with the 
histogram of the data.  
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Fig. 5 Results of the 100 non-linear pushdown analyses: a) load-displacement capacity curve; b) normalized load-displacement 

capacity curve. 
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Fig. 6 Probabilistic evaluation of Pmax: a) probability plot; b) histogram and probability density function. 

 

3.3 Evaluation of the demand 

The second step of this study consists in computing the external load, by assuming that it coincides 
with the reaction due to the external loads (combined according to the accidental combination 
[9],[16]) at the point where the column is accidentally lost. These reactions can be calculated 
considering the actions sampled through the LHS procedure.  
      

      

 

G+ψQ 

 
Fig. 7 Scheme of the second set of non-linear static analyses. 



 
The value of the external load Pext ranges from a maximum value of 1186 kN, to a minimum value of 
976 kN, the mean is equal to 1061 kN, while the standard deviation equals 41.27 kN. Of course, the 
maximum value of the external load is obtained when there is a combination of large values of actions 
from the LHS sampling. 
Also for the external load, a statistical inference analysis has been applied. In particular, the Normal, 
Lognormal and Gumbel distributions have been tested by applying both the Chi-Square and the 
Anderson Darling tests with significance level of 5%. The lognormal distribution has been selected 
as the proper probabilistic distribution since it has passed the goodness of fit test with the largest p-
value of 0.79 among the three distribution. In Fig. 8 the results of the statistical inference are shown. 
In detail, the probability plot (Fig. 8 (a)) of the logarithm of the data shows that data are aligned on a 
straight line confirming the goodness of the tests. In Fig. 8 (b) the Lognormal Probability Distribution 
Function (PDF) is plotted together with the histogram of the data.  
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Fig. 8 Probabilistic evaluation of Pext: (a) probability plot; b) histogram and probability density function. 

According to the static approach [17],[18], the external load is amplified through a dynamic 
coefficient equal to 1.2, in order to account for moderate dynamic effects. In the following, the 
amplified external load is identified as Pext,ampl. 
 

3.4 Computation of the probability of failure associated to the accidental scenario 

To formulate the structural reliability problem, the uncertain variables have been modelled as n=10 
basic random variables. The space governed by these input variables is divided by the limit state 
function into two regions: a safe and an unsafe region. The limit state function Z identifies the 
condition beyond which the structural system does not satisfy one of its performance requirements 
[27],[28]. The safe region is the space where Z is positive or equal to zero, while the failure region 
elsewhere. Thus, the probability of failure Pf  is the probability that the limit state function is negative. 
An alternative measure of the structural reliability can be expressed by the reliability index β, 
formulated as the negative value of the inverse of the standard normal variable evaluated in 
correspondence of the probability of failure Pf  [29]-[30].   
In this work, the limit state function can be formulated as the difference between the capacity R and 
the demand A. In our problem formulation, the capacity is intended as the internal reaction given by 
the structure in the event of the accidental column removal (i.e., Pmax), while the demand is the 
reaction due to the external loads at the same point, amplified by the dynamic amplification 
coefficient (i.e., Pext,ampl). Thus, the limit state function can be written as:  
 

 
,

 
max ext ampl

Z R A P P= − = −  (1) 

From this formulation, it follows that the probability of failure associated with the accidental scenario 
can be computed as: 
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where Φ is the cumulative density function of the standard distribution, μZ and σZ are, respectively, 
the mean and the standard deviation of the limit state function computed as: 

 
,Z Pmax Pext ampl

  = −   ;  2 2
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assuming that the two variables Pmax and Pext,ampl  are independent and are described by corresponding 
Lognormal distributions.  
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Fig. 9 Computation of the failure probability: a) comparison between the probability density functions of both the capacity (i.e., Pmax) 

and demand (i.e., Pext and Pext,ampl); b) limit state function and unsafe region. 

By applying the formula in (2), the probability of failure associated with the loss of the central base 
column of the frame is equal to 1.75∙10-1. This large value of failure probability can be graphically 
understood by looking at the probability density functions of the demand and the capacity in Fig. 9(a) 
and the graphical representation of the limit state function in Fig. 9(b). Indeed, the distribution of the 
demand (in terms of amplified external load) is close to the distribution of the capacity, leading to a 
large value of the associated failure probability. This results should be compared with a de minimis 
risk (i.e., an acceptable risk level), established of the order between 10−2/year and 10−1/year [31], if 
identified in terms of conditional probability of collapse (i.e., given that the loss of the bearing column 
has occurred). It is worth to note that a strong influence is due to the dynamic effects involved in such 
a problem [32]. At the same time, this probability of failure should be analyzed in a wider context of 
risk management [31]. Furthermore, the 2D RC frame is not designed considering particular 
suggestions to improve the mechanical response when a column is removed. 
 

4 CONCLUSIONS  

In this work it is evaluated the probability of failure of a symmetrical 2D reinforced concrete frame 

composed of 4 spans and 5 floors, in case of an extreme event which causes the central base column 

loss. The structural system is an internal frame of a typical building designed in a highly seismic area 

in Italy, considering a high ductility class. After having performed the design of the structure 

considering ultimate limit state, serviceability limit state and capacity design verifications, the frame 

is modelled in the FEM software Atena 2D, where it is accounted for geometrical and material non-

linearities. With the scope of performing a full-probabilistic analysis, the Latin Hypercube Sampling 

technique is adopted. In particular, material (i.e., yielding strength, ultimate strength, ultimate strain 

and elastic modulus of reinforcing steel and concrete compressive strength) and actions (i.e., self 

weight, permanent structural and non structural loads and live loads) variables are randomly sampled, 

considering a number of sampling equal to 100. Then, two sets of analyses are considered: the first 

set of 100 non-linear FEM pushdown analyses to evaluate the capacity of the structure against the 

column removal and the second set of static non-linear analyses to calculate the demand in terms of 



external action, combined within the accidental combination prescribed in current codes, at the point 

of the column removal. By performing a statistical inference, both capacity and demand has resulted 

to be lognormally distributed with mean 1349 kN and 1061 kN, respectively, and standard deviation 

of 64.42 kN and 41.27 kN, respectively. According to the static approach, the demand in terms of 

external load is amplified by a dynamic coefficient equal to 1.2 in order to include moderate dynamic 

effects. Finally, the probability of failure associated to the probability of the demand exceeding the 

capacity is computed and equals 1.75∙10-1. Future works should consider the fact that the result is 

strongly affected by the dynamic amplification factor used to amplify the demand as well as 

suggestions to improve the mechanical response when a column is removed.  
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