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Solar energy is widely adopted today and produced by photovoltaic or concentrator solar power (CSP). Photovoltaic technology is
the most prevalent, thanks to its well-established technology and low costs. CSP technology, on the other hand, has received less
attention and interest, as it requires larger investments and a considerable surface. A relevant difficulty connected to the CSP is
decoupling solar randomness and energy production. This paper proposes an artificial neural network (ANN) which foresees
energy production using a solar parabolic dish installed at Politecnico di Torino (Energy Center Lab). The investigation was
performed using a backpropagation ANN. Different learning algorithms were used: Levenberg-Marquardt, Bayesian
regularization, resilient backpropagation, and scaled conjugate gradient. Seven atmospheric condition parameters were adopted
(humidity, temperature, pressure, wind velocity and direction, solar radiation, and rain), to calculate the receiver temperature
as an output. Bayesian regularization was found to be the optimal model for CSP energy production. The results of this
investigation suggest that the ANNs are a strong, reliable, and useful tool for predicting temperature in a CSP receiver that can
be of great value in the forecasting of energy production. The outcome of this investigation can simplify energy production
forecasting using readily available meteorological data.

1. Introduction

Today, energy production derives principally from fossil
fuels (i.e., oil, natural gas, and coal) and nuclear power.
Despite their wide use, they involve major environmental,
economic and social issues. Fossil fuels are responsible for
the majority of greenhouse gas (GHG) emissions, such as
CO2 emissions, determining the increase of the global mean
temperature, i.e., the global warming phenomenon [1]. The
development of renewable energy is therefore crucial in this
process. As the physicist Cesare Marchetti points out, “all
historical energy transitions occur with the parallel
improvement and diffusion of technological innovations”.
Furthermore, Marchetti notes that “the introduction of new

primary energies requires 10 to 20 years of observation before
understanding the long-term market behaviour” [2]. This
energy transition from nonrenewable energy forms to
renewable energy technologies is a priority of the European
Union (EU) [1]. EU policies are oriented toward renewable
energy valorization, promoting environmental sustainability
through large investments, including their diffusion and the
research of new and efficient technologies. For this purpose,
the European Green Deal [3] is aimed at making the conti-
nent climate-neutral by 2050.

Among renewable energies, solar energy is divided into
Photovoltaic and Concentrator Solar Power (CSP). Photo-
voltaic solar power is the most prevalent, thanks to a well-
established technology and a drastic reduction of costs
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allowing mass production. CSP, however, requires greater
funding and research and needs a considerable amount of
surface for its deployment. Nonetheless, the current progress
of research into Thermal Energy Storage (TES) systems is a
promising development for the improvement of CSP energy
production. These storage systems allow the decoupling of
solar randomness and intermittency, facilitating the contin-
uous energy production. In CSP plants, energy is generated
indirectly by concentrating solar radiation. These plants
are built using a variety of components including heliostats,
receivers, TES, and a source of energy generation, typically
turbines [4]. The power generation process consists of con-
centrating sunlight onto a receiver that carries a heat transfer
medium. This medium is heated to a high temperature and
later which later passes into a steam turbine. The most
common types of CSP are (i) solar parabolic dish (SPD),
(i) parabolic trough collectors (PTC), (iii) solar power tower
(SPT), and (iv) linear Fresnel reflectors (LFR).

The adoption of TES (Figure 1) in the CSP plant plays a
key role in addressing the duck curve [5, 6]. The final config-
uration is determined by the best trade-off between cost and
energy production; at the moment, the main costs of the
plants come from heliostats and the manufacturing com-
plexity. The challenge to keep low costs and maximize
efficiency is tackled with studies in the chemical and engi-
neering field. The latter field of study can be investigated
by focusing on the forecasting of thermal and energy pro-
duction into the receiver.

Artificial Neural Networks [7], developed from human
brain patterns, have been successfully applied in many dif-
ferent fields such as medicine, industry, stock markets, biol-
ogy, and electronic systems. During the last few decades, the
increased use of sensors and tools able to gather information
(data) from the environment has demonstrated the great
advantages and importance of ANNs. ANNs are data-
driven, self-adaptive methods that do not require any prior
assumptions. The first critical point needed for the correct
configuration of an ANN is the determination of the number
of neurons. Input and output parameters are given during
problem formulation; in contrast, hidden neurons are more
complex. A single hidden layer is sufficient to deal with non-
linear functions, while the use of multiple layers can provide
greater precision. There is no unambiguous methodology,
especially since each problem has its own set of attributes
and correlations. In the literature, it is common to find the
same problems with different models because of the high
variability and the hidden nonlinear relationships between
parameters. The second critical point is the activation (trans-
fer) function, which determines the relationship between
two adjacent layers and is intended to introduce the degree
of nonlinearity [8]. To ensure stability, these functions are
bounded, monotonically increasing, and differentiable. The
third critical point is the training algorithm. ANNs can also
be defined as an unconstrained nonlinear minimization
problem whose objective function is, generally, “mean
square error.” For this purpose, the weights and biases are
iteratively modified to minimize the global error. However,
it is difficult to find the global minimum that optimises the
objective function for nonconvex problems. The fourth

critical point is the normalisation of the data, whose normal-
isation range depends largely on the activation function.
Finally, the last critical point is performance measurement,
the most important parameter of which is prediction accu-
racy. Therefore, this study makes a major contribution to
research on CSP by demonstrating the ANNs used for
temperature forecasting using readily available meteorologi-
cal data.

2. Material and Methods

2.1. Solar Parabolic Dish. The solar parabolic dish, in
Figure 2, is composed of an aluminium paraboloid that is
completely coated by a polymeric film, characterized by a
high reflection efficiency; El.Ma. Srl (Riva del Garda, TN,
Italy). The plant comprises an automatic solar tracking sys-
tem with two independent axes to control the azimuth and
the elevation. The dish changes its orientation in real-time,
and it functions by calculating the hours, the date, latitude,
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Termal energy
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Figure 1: Thermal energy storage tanks.

Figure 2: Solar parabolic dish prototype installed at the Energy
Center rooftop.
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and longitude, with maximum theoretical accuracy (>0.015°).
It is possible to steer two different dishes by controlling one
axis while the other is kept fixed. All the features are reported
in Table 1.

2.2. Temperature Monitoring. A B-type thermocouple
(Tersid Srl, Milan, Italy) is placed in the focal point on the
receiver. Around the receiver and inside the receiver, other
three N-type thermocouples (Tersid Srl, Milan, Italy) are
inserted. The receiver is an Alumina (Al2O3) tube (Almath

Table 1: SPD specifics [9].

Name Expression Value Description

f 0:92m Focal length

φ 45 deg½ � 0:7854 rad Rim angle

d 4f csc φð Þ − cot φð Þð Þ 1:80m Dish diameter

A π d2/4 2:544m2 Dish-projected surface area

P sim 0:00465 rad Maximum solar disc angle

σ 0:00175 rad Surface slope error

I 0 800W/m2 Solar irradiance

FeedForward ANN Learning algorithm

BPANN

Levenberg-Marquardt
Bayesian regularization
Resilient propagation
Scaled conjugate gradient

ANN-based
estimation output

Updated weights and biases

+f b xiwi

x1w1
w2w2
w2w2

x2

xn
wn

n

i=1

Figure 3: BPANN schematics.
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Crucibles Ltd., Newmarket, UK). Data are sampled every
minute on different days from December 2019 to
March 2020.

2.3. Weather Station. The station consists of instruments for
the measurement of humidity (hygrometer) (%), tempera-
ture (thermometer) (°C), atmospheric pressure (barometer)
(mbar), wind speed (anemometer) (m/s), wind direction
(°), global solar radiation (pyranometer) (W/m2), and rain
(rain gauge) rain (mm) (STR-21G, EKO Instruments Ltd.,
Den Haag, NL). For reasons of accuracy, temperature and
humidity measurements are kept away from direct solar
radiation. A personal weather station includes a digital
console that provides Excel readings of the collected data
acquired every 15 minutes. Input variables were recorded, such
as relative humidity ∈½10 − 95�%, temperature ∈½1 − 23�°C,
atmospheric pressure ∈½840 − 1010�mbar, wind velocity
∈½0 − 9:5�m/s, wind direction ½0 − 360�°, and global radiation
½0 − 710�W/m2. The equipment produced 22166 samples for
each parameter during 2019-2020.

2.4. ANNs Configuration. Due to the large number of global
variables and hidden relationships, the literature cannot pro-
vide any a priori hypothesis as to which model, architecture,
or algorithm is best suited for the study. The investigation
was conducted through the back propagation artificial neu-
ral network (BPANN) by applying four different learning
algorithms: Levenberg-Marquardt (LM), Bayesian regulari-
zation (BR), resilient back propagation (RPROP), and scaled
conjugate gradient (SCG). The net was fed with seven atmo-
spheric parameters (humidity, temperature, pressure, wind
velocity, wind direction, global radiation, and rain) detected
by a weather station and produced as output the concentra-
tor temperature detected by a B-type thermocouple (Tersid
Srl., Italy), Figure 3. The thermocouple recorded tempera-
ture in the range ∈½50 − 660�°C.

To determine the best model, different architectures
were analysed, with one and two hidden layers. In the first
case, the hidden neurons ranged from one to twenty. See
Figure 4(a). In the second case, for every hidden neuron in
the first layer, there were three times as many in the second
hidden layer; see Figure 4(b).

The ANN network was built using MATLAB 2020b with
the Deep Learning Toolbox. The evaluation criteria, which
were used to rank the prediction accuracy and goodness of
the models, were root mean square error (RMSE), mean

absolute error (MAE), mean absolute percentage error
(MAPE), mean bias error (MBE), correlation coefficient
(R), R-squared (R2), processing time, and epochs.

2.4.1. Transfer Function and Normalization Interval. For this
work, the Tan-Sigmoid activation function was used. It was
chosen because it is mathematically equivalent to tanh (n)
but works faster [10]. The function is described in Figure 5.

Tansig nð Þ = 2
1 + e−2n

− 1: ð1Þ

The normalization of the data in this work was
optimized for this function by normalizing it in the range
½−1,+1�.
2.4.2. Levenberg-Marquardt. LM is an evolution of the
Gauss-Newton algorithm. To make sure that the approxi-
mated Hessian matrix JT J is invertible a μk factor is added:

Δwk = − JT wkð ÞJ wkð Þ + μkI
� �−1

JT wkð Þe wkð Þ: ð2Þ

By exploiting the direction of the gradient and recalcu-
lating the approximate performance index, if a smaller value
is obtained, then μk is divided by a factor θ > 1. Conversely,
if the value is not reduced, then μk is multiplied by θ. When
the combination coefficient μk is very small (nearly zero),
LM is approaching to the Gauss-Newton algorithm. When
the combination coefficient μk is very large, it can be

E E

Wt Wt

Wt+1Wt+1

W W

Figure 6: RPROP working principle.
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interpreted as the learning coefficient in the steepest descent
method: α = 1/μ [11, 12].

To develop this work, the data were divided into three sets:
training (70% = 15516 samples), validation (15% = 3325
samples), and testing (15% = 3325 samples). For the one-
layer configuration, the activation functions used were the
hyperbolic tangent from the inputs to the hidden layer and
the pure line from the hidden layer to the outputs. In the
configuration with two hidden layers, the sequence used was
a hyperbolic-hyperbolic-pure line.

2.4.3. Bayesian Regularization. ANNs are a powerful tool for
modelling nonlinear functions, but they can suffer from
overfitting or overtraining. It is clear that once a model loses
its predictability, it runs into validation and optimization
problems. The main advantages of the Bayesian Regulariza-

tion algorithm are the robustness and the unnecessary
validation process [13, 14]. Furthermore, their models are
difficult to be overtrained due to an objective criterion that
disables training. Overfitting is solved by calculating and
training on the actual number of parameters which are lower
than the number of weights. Essentially, Bayesian Regulari-
zation incorporates Occam’s razor as it discriminates against
complex models. The more complex the system, the faster
the number of parameters converges to a constant. The
algorithm is based on Bayes’ theorem, called the “inverse
probability law,” and the Gauss-Newton approximation to
the Hessian matrix leads to the Levenberg-Marquardt
algorithm. The most probable step size is

αMP =
γ

2EW wMPð Þ , ð3Þ
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Figure 8: Taylor diagram LM 1 HL.

Table 2: Performance LM 1 HL.

Model 15 16 17 18 19 20

RMSE 86.72 76.74 80.36 77.99 75.35 79.88

MAE 65.67 57.84 58.74 57.65 55.76 59.72

MBE -1.24 1.22 -0.21 -2.26 -0.28 -1.64

MAPE 8.33 5.87 6.95 6.97 6.01 7.02

R 0.80 0.85 0.83 0.85 0.86 0.84

R2 0.65 0.72 0.70 0.71 0.73 0.70
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where γ is the effective number of parameters and EW is “the
error of the weights.”

To develop this work, due to its capacity of nonvalida-
tion, the data were divided into 70% = 15516 samples for
training and 30% = 6650 for testing. For the one-layer con-
figuration, the activation function used was the hyperbolic-
pure line, while for the second configuration, it was
hyperbolic-hyperbolic-pure line.

2.4.4. Resilient Propagation. In the RPROP algorithm
(Figure 6), updates are made only from the signs of partial
derivatives, without considering the magnitude. The regula-
tion is made by changing the weights in opposition to the

direction of the derivative until a local minimum is found.
The dependence on the sign and not on the magnitude of
the derivative allows the network to grow and learn
equally [15].

To develop this work, the data were divided into 70% for
training, 15% for testing, and 15% for validating. For the
one-layer configuration, the activation function used was
the sigmoid-pure line, while for the second configuration,
it was sigmoid-sigmoid-pure line.

2.4.5. Scaled Conjugate Gradient. The idea of SCG is to
combine the Levenberg-Marquardt algorithm, the classical
conjugate gradient approach, and the second-order estimation

Test BPANN Levenber-Marquardt 2 HL
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Figure 9: Taylor diagram LM 2 HL.

Table 3: Performance LM 2 HL.

Model 15 16 17 18 19 20

RMSE 32.63 33.16 25.28 24.32 26.99 24.89

MAE 21.50 22.57 16.25 15.64 17.62 15.99

MBE -0.70 0.15 -0.22 -0.05 -0.65 -0.03

MAPE 1.16 1.07 0.57 0.54 0.84 0.53

R 0.98 0.97 0.99 0.99 0.98 0.99

R2 0.95 0.95 0.97 0.97 0.97 0.97
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used by Hestenes who introduced a nonsymmetric approxi-
mation by adding λk [16, 17].

sk = E′′ wkð Þpk =
E′ wk + σkpkð Þ − E′ wkð Þ

σk
+ λkpk: ð4Þ

The objective is to find a set of weight vectors for which H
becomes positive, defined very close to zero. To develop this
work, the data were divided into 70% for training, 15% for
testing, and 15% for validating. For the one-layer configura-
tion, the activation function used was the hyperbolic-pure line,
while for the second configuration, it was hyperbolic-
hyperbolic-pure line.

2.4.6. Taylor Diagram. All analyses were supported by Tay-
lor diagrams which enhance the architecture evolution

trends through graphs. This diagram is used to graphically
identify prediction models by considering the RMSE and
by quantifying the degree of similarity using a reference
model (Figure 7). The diagram is composed of two orthogo-
nal axes, which express the standard deviation and the cor-
relation coefficient expressed in azimuthal position [18].

In this work, both the number of inputs and outputs
have been modified to ensure greater loop variability. In par-
ticular, the unmodified, “Taylor diagram code” suffers from
a finite number of alphabet characters, altough the author
incorporated the ability to differentiate between upper and
lowercase characters into the code. To solve this problem,
a fourth input was added that stores the index of the “four
loop,” and thus the number of neurons in each loop as a
character. The coupling of “for loops” and “taylordiag”
makes it easier to identify the respective pattern and ensures
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Figure 10: Taylor diagram BR 1 HL.

Table 4: Performance BR 1 HL.

Model 15 16 17 18 19 20

RMSE 88.47 78.95 84.30 82.77 77.34 73.56

MAE 66.98 60.56 63.41 62.50 57.71 53.68

MBE -0.181 -0.028 1.329 0.777 1.303 1.535

MAPE 8.14 6.44 7.03 6.97 5.80 5.21

R 0.80 0.84 0.82 0.82 0.85 0.86

R2 0.63 0.71 0.67 0.68 0.72 0.75
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greater reliability. To increase the usefulness, three new out-
put colours have been implemented, which will become part
of the new input subset of the Taylor diagram.

3. Results

3.1. Levenberg-Marquardt. The performance of BPANN
with a hidden layer, trained by Levenberg-Marquardt, is
described in Figure 8. The Taylor diagram shows that the
increase in the number of neurons in the hidden layer is pos-
itive for the prediction model. The best result was obtained
with the 7-19-1-1 architecture. Due to its higher complexity,
the 17th architecture could be preferred. Despite the good

RMSE performance on the 16th, 18th, and 19th, they can
be discarded due to the MBE. The performance of all models
is shown in Table 2.

The addition of a hidden layer further improves perfor-
mance compared to the previous case. The results are shown
in Figure 9. This new configuration shows “constant”
improvement for all models. From 1 to 10, this is evident,
and the step is great. For models 11 to 20, the scaling up is
more difficult, and the trend indicates that it is converging.
Configurations 7-18-54-1-1, 7-19-57-1-1, and 7-20-60-1-1
are very promising in terms of forecasting capability
(Figure 9). As previously reported, the 7-18-54-1-1 architec-
ture is considered the best prediction model among the

Obs

Test BPANN Bayesian regularization 2 HL
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Figure 11: Taylor diagram BR 2 HL.

Table 5: Performance BR 2 HL.

Model 15 16 17 18 19 20

RMSE 27.25 22.35 23.38 22.18 18.03 19.68

MAE 18.01 15.15 15.27 14.56 11.85 12.51

MBE 0.07 0.61 -0.17 -0.07 -0.23 -0.62

MAPE 0.59 0.29 0.58 0.50 0.34 0.49

R 0.98 0.99 0.99 0.99 0.99 0.99

R2 0.97 0.98 0.97 0.98 0.99 0.98
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Levenberg-Marquardt models due to its complexity; see
Table 3 (See Supplementary materials – SM Table 1, SM
Table 2). Similar results were obtained by Yaïci et al. It was
studied the predictive performance of the solar energy
system using an ANN with 20 hidden neurons [19]. At the
same time, Mohd-Safar et al. identified LM as the best
learning algorithm for weather forecasting in tropical
climates [20]. The goodness of these models is reinforced
by the study of Farkas and Géczy-Víg, who modelled an
ANN on flat-plate solar collectors. In this case, the LM
algorithm proved to obtain the most accurate and valid
results [21].

3.2. Bayesian Regularization. Bayesian regularization with a
hidden layer behaves like LM analysis. The increase in neu-
rons favours the increase in performance which is depicted

in Figure 10. From the Taylor diagram, it is derived that
7-20-1-1 has the best performance, but due to the overesti-
mation, 7-16-1-1 may be preferred. All error performance
is shown in Table 4.

Increasing the number of layers improved the prediction
capability with this learning method; the cluster of architec-
tures in the Taylor diagram becomes longer and tends towards
the observed model (Figure 11). The best-performing architec-
ture among BR 2 HL is 7-19-57-1-1; see Table 5 (See
Supplementary materials – SM Table 3, SM Table 4). The
goodness of the BR algorithm was demonstrated by Khosravi
et al. in their study on wind characteristics in Iran. Among
the ANN learning algorithms, the results of BR are the best
in terms of RMSE and R, followed by LM, RPROP, and SCG
[22]. Yacef et al. studied the prediction of daily global solar
irradiation by comparing BR and LM. The former approach
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Table 6: Performance RPROP 1 HL.

Model 15 16 17 18 19 20

RMSE 99.86 96.06 100.25 103.66 103.73 99.13

MAE 78.99 75.50 79.36 83.07 83.08 78.57

MBE 0.511 0.959 -0.777 -0.567 -1.696 -0.978

MAPE 10.75 9.66 11.53 11.67 12.22 11.06

R 0.73 0.75 0.73 0.70 0.70 0.73

R2 0.53 0.57 0.53 0.49 0.49 0.54
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led to an increase in accuracy, with a decrease in RMSE and
MBE [23]. Similar results were obtained from the study by
Alomari et al. on energy production in photovoltaic systems.
The BR algorithm, with 27 hidden neurons, was the best
model that produced the lowest RMSE compared to LM
M [24].

3.3. Resilient Propagation. The performance of the BPANN
with only one hidden layer, trained with resilient propaga-
tion is shown in Figure 12 and Table 6. Compared to previ-
ous models, this algorithm does not improve “smoothly”
with the number of neurons, but the Taylor diagrams show
a high model density. Configuration 7-16-1-1 is the best-
performing.

The BPANN behaviours of two hidden layers, trained by
resilient propagation, are highlighted in Figure 13 and

described in Table 7. All the architectures exhibit poorer char-
acteristics than previous multilayer hidden architectures; see
Supplementary materials – SM Table 5, SM Table 6.

3.4. Scaled Conjugate Gradient. The performance of the
BPANN tests with a single hidden layer, with scaled conju-
gate gradient, is shown in Figure 14 and Table 8. The perfor-
mance of SCG is far from the observed model, and the best
architecture is represented by 7-8-1-1.

Multilayer architectures are characterized by many “mis-
behaviors.” In fact, 8, 11, 16, and 18 architectures have the
worst performances among all; see Figure 15. Furthermore,
architectures 2 and 5 are scaled compared to their relative
single-hidden-layer configurations. The best model, in terms
of performance, is represented by 7-19-57-1-1; see Table 9
(see Supplementary materials – SM Table 7, SM Table 8).
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Figure 13: Taylor diagram RPROP 2 HL.

Table 7: Performance RPROP 2 HL.

Model 10 14 15 16 18 19

RMSE 77.43 76.25 79.40 78.37 76.76 79.87

MAE 57.03 55.14 58.52 57.48 55.90 59.12

MBE 1.65 0.10 -0.06 1.05 0.26 0.51

MAPE 6.13 6.38 6.79 6.67 6.41 6.92

R 0.85 0.85 0.84 0.84 0.85 0.84

R2 0.72 0.73 0.70 0.71 0.72 0.70
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3.5. Time and Epochs Analyses. These results highlight the
better overall performance of BR 2 HL compared to the
other learning algorithms, with 7-19-57-1-1 being the best
of its architectures. However, these analyses are not weighted
in terms of the time and epochs required to achieve the goal.
Since single-layer architectures perform poorly, time and
epoch analyses were not considered. Figure 16 shows the
time, in seconds, of all architectures. In the case of BR 2
HL, the almost exponential dependence between the number
of neurons and the time required for processing is evident;
this analysis ends with 1500 seconds for the 7-20-60-1-1
architecture. In contrast, for LM 2 HL, the time required
for processing was very low for the range of architectures
from 7-1-3-1-1 to 7-16-48-1-1, the maximum being 84.544
seconds. Starting from the seventeenth architecture, there
was an increase in the resources required to complete the

analysis, and the time rose to 277.037 seconds. In terms of
time, SCG is the best.

Figure 17 shows the epochs of the multilayered models.
There are some concerns regarding BR and, similarly,
RPROP. Only in six cases out of twenty did the algorithm
not stop due to the epoch constraint, which is set to 1000
by default. The fact that these six cases are in the first ten
architectures means that in all subsequent architectures the
model could be even more accurate; increasing the number
of epochs can, and could, increase the time required for pro-
cessing. Since the latest models performed very well and the
rate of improvement is inversely proportional to complexity,
the study was not extended. While SCG stopped only once,
LM never stopped due to epoch constraints for any architec-
ture. The result showed that architectures with two hidden
layers can outperform their respective layered architectures,
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Figure 14: Taylor diagram SCG 1 HL.

Table 8: Performance SCG 1 HL.

Model 5 8 12 13 18 20

RMSE 110.13 106.84 107.36 110.41 108.16 111.91

MAE 88.50 85.10 86.15 89.29 87.57 90.99

MBE -2.14 -2.19 -0.61 -1.06 -0.91 -0.14

MAPE 13.49 12.71 12.29 13.67 12.68 13.58

R 0.66 0.68 0.68 0.65 0.67 0.64

R2 0.43 0.46 0.46 0.43 0.45 0.41
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Figure 15: Taylor diagram SCG 2 HL.

Table 9: Performance SCG 2 HL.

Model 2 5 12 13 14 19

RMSE 84.36 76.51 76.14 76.79 81.39 71.12

MAE 62.95 55.17 55.11 55.16 59.83 52.91

MBE -1.11 -0.39 0.45 -0.53 -0.60 0.29

MAPE 7.81 6.05 5.80 6.08 6.93 5.06

R 0.82 0.85 0.85 0.85 0.83 0.87

R2 0.67 0.72 0.73 0.72 0.69 0.76
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Figure 16: Processing time.
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Table 10: BR 7-19-57-1-1 characteristics.

Bayesian regularization 2 HL
N RMSE MAE MBE MAPE R R2

19 18.03 11.85 -0.23 0.34 0.99 0.99
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and among the algorithms, LM and BR are the most prom-
ising. The same result was emphasised by Khosravi et al.
[22]. Similar results were found by Mohd-Safar et al., whose
studies showed that LM MAE and RMSE are the lowest and
R the largest; SCG has the fastest time but did not produce
good convergence; despite this, BR took the longest time
[20]. Mohanraj et al. analysed the performance of a solar
heat pump with three different variants of the learning algo-
rithm (LM, SCG, and conjugate Pola-Ribiere gradient
(CGP)). The results showed the speed and accuracy of LM
with 10 hidden neurons, whose R2 = 0:999 is the maximum
and RMS is the minimum [25].

Table 11: b 1∈R
19x1, b2∈R

57x1, and b3∈R
1x1, b terms are defined as

biases of the predicted model equation.

b1 = 1.5773

b1 = 7.4748

b1 = 0.5720

b1 = -2.6027

b1 = 2.4145

b1 = -0.6941

b1 = 2.9302

b1 = -1.4683

b1 = 0.2512

b1 = 3.3465

b1 = 1.6637

b1 = -0.6885

b1 = -2.2299

b1 = -1.6546

b1 = 2.6345

b1 = -14.8070

b1 = 6.5923

b1 = -0.3518

b1 = 0.5946

b2 = 1.7690

b2 = -1.7807

b2 = -4.2605

b2 = 0.2809

b2 = 3.5743

b2 = 1.4917

b2 = 5.4587

b2 = 2.7441

b2 = 2.0470

b2 = -0.6138

b2 = 0.4630

b2 = 0.0946

b2 = -3.8647

b2 = -0.4668

b2 = 0.5917

b2 = 2.2129

b2 = 0.4894

b2 = 2.5866

b2 = -1.0896

b2 = -0.5213

b2 = 1.7523

b2 = -3.1299

b2 = -4.2745

b2 = 3.3654

b2 = -2.4878

Table 11: Continued.

b2 = 1.9359

b2 = 1.3570

b2 = -2.2896

b2 = -3.5932

b2 = 0.7066

b2 = 0.9675

b2 = -0.0655

b2 = 0.4406

b2 = 0.2166

b2 = 1.3100

b2 = 1.9875

b2 = -2.0036

b2 = -4.1472

b2 = -1.9795

b2 = 1.3173

b2 = 4.7772

b2 = -2.7572

b2 = -1.7666

b2 = -1.2642

b2 = 0.8795

b2 = -0.7912

b2 = -0.4316

b2 = -1.7747

b2 = 0.4242

b2 = -5.4087

b2 = 0.8790

b2 = -0.5303

b2 = 0.3762

b2 = -0.0253

b2 = 2.7785

b2 = 4.9585

b2 = 0.1278

b3 = 0.5638
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Despite the training speed of LM 7-18-1-1, the best
model to consider is BR 7-19-57-1-1 due to its accuracy;
see Table 10. Figure 18 shows the regression, and Figure 19
shows the prediction capability of the architecture.

4. Conclusion

This paper is aimed at providing an accurate artificial neural
network model for power generation in terms of tempera-
ture prediction in a solar disc concentrator. Due to the large
number of global variables and hidden relationships, the lit-
erature is unable to provide an a priori hypothesis on which
model, architecture, or algorithm is best suited for the study.
A back-propagation neural network was used with different
learning methods such as Levenberg-Marquardt, Bayesian
regularisation, residual backpropagation, and scaled conju-
gate gradient. To obtain a more conclusive result, different
forms of architecture were considered, from one to two hid-
den layers and one to twenty hidden neurons. The results
showed that increasing these two numbers can improve the
overall accuracy of all architectures. This behaviour is
reflected in Taylor diagrams, where single-layer architec-
tures are very close to each other and far from the observed
pattern. In contrast, bilayer architectures extend further and
can get closer to the target. The proposed ANNs were
trained with seven meteorological parameters: humidity,
air temperature, pressure, wind speed and direction, global
radiation and precipitation; all these meteorological parame-
ters were taken from the Energy Center in Turin, Italy. The
analysis of the most promising architecture was conducted
by observing established protocols and proper procedures
in the training, validation, and testing phases and normalis-
ing the data. To ensure the transparency of the prediction
framework, RMSE, MAE, MBE, MAPE, R and R2 errors,
algorithm stopping criteria, time, and epochs were taken
into account. The two most promising architectures are,
respectively, BR 2 HL, 7-19-57-1-1, and LM 2 HL, 7-18-
54-1-1. Despite the large amount of time needed for train-
ing, BR 2 HL has been demonstrated to be the most accurate
model. The testing phase is characterized by RMSE ≅ 18:034,
MAE ≅ 11:845, MBE ≅ −0:232, MAPE ≅ 0:337%, R ≅ 0:992,
and R2 ≅ 0:985. The overall results have suggested that arti-
ficial neural networks are a strong, reliable, and important
tool for prediction, and they may help researchers forecast
trends in their studies in many different fields. For the study

Table 14: W 3∈R
1×57, weights for the predicted model equation.

Transpose of W3 = -2.7564

-1.3198

1.5241

3.0179

0.7209

-1.4235

-0.8323

-1.0301

-0.5666

1.4632

-2.0223

1.4125

0.8587

-1.8701

1.6305

0.6014

0.7632

0.3544

1.1459

-0.7128

-4.9901

-2.0183

0.7694

1.0007

0.7772

0.5326

-2.5578

1.5997

-0.4803

-3.0153

-1.6598

0.4402

2.8230

-2.2065

1.0209

-1.4290

1.5113

-2.9249

-0.4835

2.6251

-2.0392

-0.5200

-0.5986

-2.7308

-1.1380

0.8267

1.7635

-0.7979

0.8878

Table 14: Continued.

0.4834

0.5783

1.3497

1.6008

0.3719

1.1295

1.2485

-3.0930

-8.3841
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of the solar dish concentrator located at the Energy Center,
BR 2 HL using the 7-19-57-1-1 architecture is the best pre-
diction model that may be used for conducting a limited
number of experiments, under specific input conditions.
The resulting equation to estimate the temperature at the
focal point is the following:

Tout =W3 ∗ tansig W2 ∗ tansig W1 ∗ Input + b1ð Þ + b2ð Þ + b3ð ,
ð5Þ

where W1 ∈ R19x7, W2 ∈ R57×19, W3 ∈ R1×57, b1 ∈ R19×1,
b2 ∈ R57×1, and b3 ∈ R1×1. Their values can be found in
Tables 11–14.

Acronyms

ANN: Artificial neural network
BPANN: Back propagation neural network
BR: Bayesian regularization
CSP: Concentrator solar power
EU: European union
GHG: Greenhouse gas
HL: Hidden layer
LFR: Linear fresnel reflectors
LM: Levenberg-Marquardt
MAE: Mean absolute error
MAPE: Mean absolute percentage error
MBE: Mean bias error
PTC: Parabolic trough collectors
PV: Photovoltaic
R: Correlation coefficient
R2: R-Squared
RMSE: Root mean square errors
RPROP: Resilient propagation
SCG: Scaled conjugate gradient
SE: Solar energy
SPD: Solar parabolic dish
SPT: Solar parabolic tower.

Nomenclature

E′: 1st derivative global error function
μk: Combination coefficient
pk: Conjugate system/search direction
d: Dish diameter
A: Dish projected surface area
γ: Effective number of parameters
EW : Error of the weights
σk: Factor 0 < σ k≪ 1
f : Focal length
J : Hessian matrix
I: Identity matrix
Psim: Maximum solar disc angle
wMP: Minimum point of the posterior density
sk: Objective function
φ: Rim angle
λk: Scaling factor
I0: Solar irradiance
eðwk Þ: Square function

αMP : Step size
σ: Surface slope error
wk: Weight.

Data Availability

Data is available on request, by contacting the corresponding
author and the first author.

Disclosure

A thesis has previously been published from the same
authors of this work. Ricci L., Prevision model for energy
production in solar concentrator using Artificial Neural
Network, DAUIN, Politecnico di Torino, 2020-21.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Information on funds received, the prototype test bench was
partially financed by the regional INFRA-P call of the Pied-
mont region.

Supplementary Materials

This article is enriched with supplementary material. The file
contains a total of eight tables with all the performance of each
training algorithm used in this article. In detail, it contains all
RMSE, MAE, MBE, MAPE, R, and R2 for all the three subsets
training, validation, and testing coupled with all the different
architectures single/double HL, one to twenty hidden neurons.
The tables are listed as follows: SM Table 1: Levenberg-
Marquardt performance with one hidden layer, 1st to 20th
architecture, subsets training, validation, and testing. SM Table
2: Levenberg-Marquardt performance with two hidden layers,
1st to 20th architecture, subsets training, validation, and testing.
SMTable 3: Bayesian Regularization performance with one hid-
den layer, 1st to 20th architecture, subsets training, validation,
and testing. SM Table 4: Bayesian regularization performance
with two hidden layers, 1st to 20th architecture, subsets train-
ing, validation, and testing. SM Table 5: resilient propagation
performance with one hidden layer, 1st to 20th architecture,
subsets training, validation, and testing. SM Table 6: resilient
propagation performance with two hidden layers, 1st to 20th
architecture, subsets training, validation, and testing. SM Table
7: scaled conjugate gradient performance with one hidden layer,
1st to 20th architecture, subsets training, validation, and testing.
SM Table 8: scaled conjugate gradient performance with two
hidden layers, 1st to 20th architecture, subsets training, valida-
tion, and testing. (Supplementary Materials)
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