
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards Security Automation in Virtual Networks / Bringhenti, Daniele; Sisto, Riccardo; Valenza, Fulvio. -
ELETTRONICO. - (2023), pp. 326-331. (Intervento presentato al convegno 2023 IEEE 9th Conference on Network
Softwarization (NetSoft 2023) tenutosi a Madrid (ES) nel 19-23 June 2023) [10.1109/NetSoft57336.2023.10175459].

Original

Towards Security Automation in Virtual Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NetSoft57336.2023.10175459

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980988 since: 2023-08-16T13:00:52Z

IEEE

Towards Security Automation in Virtual Networks
Daniele Bringhenti, Riccardo Sisto, Fulvio Valenza

Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy, Emails: {first.last}@polito.it

Abstract—Nowadays virtual computer networks are character-
ized by high dynamism and complexity. However, these features
made the traditional manual approaches for network security
management error-prone, unoptimized and time-consuming. This
paper discusses the research carried out during my Ph.D. pro-
gram on network security automation. In particular, it presents
an approach based on constraint programming that combines
automation, formal verification, and optimization for network
security management. This approach has been proved to be
general enough by means of multiple applications that have
been developed. In particular, this paper describes VEREFOO, a
framework for the automatic configuration of security functions,
and FATO, a framework for the automatic orchestration of
security transients. This methodology is extensively evaluated
using different metrics and tests, and it has been compared to
state-of-the-art solutions and to the requirements of dynamic
virtual networks.

Index Terms—network security, network virtualization, au-
tomation, formal verification, optimization

I. INTRODUCTION AND MOTIVATION

Computer networks have been undergoing an incessant
evolution since the beginning of the last decade. Network
softwarization, declined in technologies such as Software-
Defined Networking (SDN) and Network Functions Virtual-
ization (NFV), simplified the network management operations.
As a consequence, the size of modern computer networks is
constantly increasing, because of the tendency to virtualize
every activity and give it access to a network. Besides, the
employed functions are becoming more heterogenous among
them, and they are usually more complex than the old corre-
sponding physical middleboxes. All these trends are confirmed
by the characteristics of modern industrial networks, of the
emerging Internet of Things (IoT) paradigm [1], and of Time-
Sensitive SDN [2].

Nevertheless, the introduction of new advantages is typically
accompanied by the presence of inevitable drawbacks. As
computer networks are becoming bigger and more complex,
new opportunities have arisen for cyber attackers to intrude
on them, and the number of breaches dramatically increased.
Unfortunately, the aforementioned agility and dynamism could
not directly benefit network security management. The main
reason is that security management is an activity that tradi-
tionally used to be performed manually with a trial-and-error
approach. Administrators used to configure Network Security
Functions (NSFs) such as firewalls or intrusion detection sys-
tems according to their initial expectation of possible attacks.
If later a cyber attack had occurred, they would have simply
modified the behavior of the function that could not block it,
so as to avoid a possible repetition. However, such an approach

could work only with small-sized networks, where everything
was almost static and under the direct control of a human user,
and where all the network accesses could be easily known.
Instead, softwarized networks have opposite characteristics,
i.e., big size, heterogeneity, dynamicity, and complexity [3].

For these reasons, security automation has been proposed as
a possible solution to this urgent pending problem. The idea is
that, if human users cannot cope with the security management
of the whole network by themselves, they can be assisted
by automated tools or frameworks, in charge of replacing
the traditional manual security operations. In this context, the
Policy-Based Management (PBM) paradigm [4] is a popular
approach for automatic security. In a PBM-based approach,
administrators should simply define the security requirements
by means of a set of business-level statements, the security
policies, which are commonly expressed in natural languages,
so as to guarantee high usability and user-friendliness. Then,
the policies are automatically transformed into low-level se-
curity management operations (e.g., the decision of where
NSFs should be allocated in the network, and where, and
the generation of their low-level configuration) through an
operation named policy refinement.

Even if automation brings over great opportunities for
network security, the state-of-the-art approaches that have
been proposed in literature still have several shortcomings. In
particular, two features that could enhance security automa-
tion but that are rarely included are formal verification and
optimization. On the one hand, providing formal assurance
that the results computed by an automated tool are really
correct may be essential for the security of safety-critical
systems. On the other hand, optimizing those same results
may improve network security efficiency (e.g., if a firewall
has only the minimum number of rules that are really required
to enforce all the security policies specified by the security
manager, then its filtering operations take less time because
fewer comparisons between rule conditions and packet fields
need to be performed). Despite the relevance of these two
features, several state-of-the-art approaches do not exploit
them, because their introduction is considered too challenging
for keeping good performance.

In light of these motivations, during my Ph.D. program
I have faced the challenge of investigating and formulating
automated, fast, and provably correct techniques for network
security management, with the final aim of improving the
dependability and resilience of next-generation computer net-
works to cyber attacks. In fact, a central objective of the
program has been to propose the first security management

approach in literature to combine full automation, formal
verification and optimization. In the definition of such an
approach, a first challenge has been to define formal models
of modern virtualized networks, such that they capture all
the required information for automated security management,
without impacting on performance excessively. Another chal-
lenge has been pursuing “security by construction” by means
of lightweight correctness-by-construction approaches, where
automated solvers can find a solution to the security manage-
ment problem that does not require a traditional a-posteriori
formal verification step, and, at the same time, fulfilling opti-
mality criteria (e.g., to improve the efficiency of the security
operations and to minimize resource consumption).

The remainder of this paper is structured as follows. Section
II discusses the state of the art of network security automation,
highlighting its limitations. Section III proposes a novel ap-
proach based on constraint programming to automate network
security management. Section IV describes how some applica-
tions of this approach have been implemented and validated.
Finally, Section V outlines the most relevant outcomes and
discusses future work.

II. STATE OF THE ART

In literature, there are no approaches that combine au-
tomation, formal verification and optimization for network
security management operations, such as configuration and
orchestration.

Network security configuration comprises two main tasks:
security service composition and function rule set definition.
However, automatic approaches have usually been investigated
for these tasks separately. On the one hand, [5], [6] just
investigate how a security service can be designed automati-
cally in an SDN-based network, whereas [7], [8] address that
problem for NFV environments. Even if sometimes optimiza-
tion criteria related to networking are embedded in some of
these studies,they are not paired with security-oriented criteria.
On the other hand, other studies just deal with establishing
a configuration for specific NSF types, e.g., firewalls [9]–
[11], VPN gateways [12], SDN switches [13]. There, even if
formal verification is paired with automation more often than
for security service composition methodologies, optimization
is instead usually neglected. The only two state-of-the-art
approaches which introduce automation for both tasks are [14],
[15], but they have several limitations. Both of them can only
design service function chains, even though the topology of
modern virtualized computer networks is commonly a rami-
fied graph. Moreover, the approach described in [14] is just
designed for Android applications connected to SDN-based
networks. Instead, [15] proposes optimization techniques that
overlook security-oriented objectives, and that do not provide
formal correctness assurance.

Network security orchestration comprises a large number
of sub-tasks, such as NSF selection, their deployment, and
mitigation of cyber attacks. A relevant problem related to
attack mitigation is guaranteeing that connectivity policies
(i.e., isolation and reachability policies) are still valid during

the reconfiguration of a distributed NSF, required to face
an on-going attack. However, approaches for automating the
process of orchestrating the reconfiguration transient have been
investigated only for distributed SDN switch architectures,
e.g., [16]–[18]. However, these studies address security issues
concerning the violation of connectivity policies only partially,
because the configuration of SDN switches is mainly defined
to address networking issues with respect to firewalls. They
also overlook the impact that the behavior of other networks
or security functions, which are present in the network, may
cause to the reconfiguration transient. Moreover, optimization
criteria (e.g., maximization of the secure transient states de-
pending on the importance of each connectivity policy) should
be enforced as well. Therefore, focusing exclusively on SDN
switches is a limitation that should be overcome by addressing
the transient management problem for more general distributed
packet filtering firewalls. Integrating formal verification and
optimization would also enhance the automatic techniques that
may be proposed to address this problem.

III. THE PROPOSED APPROACH

Combining automation, formal verification and optimization
for network security management has been possible by pur-
suing approaches based on mathematical constraint program-
ming. In particular, the security configuration and orchestration
problems have been formulated by means of Maximum Sat-
isfiability Modulo Theories (MaxSMT) problems. Differently
from traditional Satisfiability (SAT) problems, the language
used for the formulation of MaxSMT problems is the first-
order logic, which includes the boolean operations as a specific
case, but it can use several other theories, such as theories of
real numbers, integers, lists, arrays, bit vectors and many other
data structures. As such, a MaxSMT problem is composed of
a set of predicates, where each predicate is a binary function
defined over non-binary variables. Consequently, its language
is much richer than the SAT language, and it allows to express
more complex models.

A particular MaxSMT version that has been employed is
the partial weighted one. This version is characterized by two
kinds of constraints. On the one hand, some clauses named
hard constraints always require satisfaction so as to achieve
a correct solution to the problem. On the other hand, some
clauses named soft constraints are given a weight and they do
not strictly require satisfaction. Indeed, when solving a partial
weighted MaxSMT problem, the goal is to find an assignment
of the variables that satisfies all hard constraints, and that
maximizes the sum of the weights assigned to the satisfied
soft constraints.

The partial weighted MaxSMT formulation is key to jointly
achieve all the three main objectives of full automation,
optimization, and formal correctness for network security
management. Full automation is achieved because a MaxSMT
problem can be solved without human intervention, except
for the input specification. Optimization can be achieved
by expressing the optimization objectives by means of soft

constraints, and formal correctness can be achieved by express-
ing the formal correctness requirements as hard constraints.
Adopting this formal correctness-by-construction approach is
beneficial not only because it improves the assurance and
confidence that the computed solution is correct, but also
because it avoids performing a-posteriori formal verification.
Indeed, the solution can already be considered formally correct
as far as all problem components are correctly modeled, being
fundamental that such models capture all the information that
may influence the correctness of the solution. Specifically,
such models must capture both the security requirements and
the forwarding behavior of the network where they must be
enforced. At the same time, the number and complexity of
constraints in the MaxSMT problem must be kept limited, in
order to make the approach scalable. For all the above reasons,
the modeling of the problem components, when formulating
the MaxSMT problem, represented a big challenge.

Such approach based on constraint programming has been
leveraged during the Ph.D. program to solve multiple problems
related to network security management, such as NSF configu-
ration and security transient orchestration. Here, I will present
two relevant applications of this approach, respectively named
VEREFOO and FATO, to address the two above mentioned
problems.

A. VEREFOO

VErified REFinement and Optimized Orchestration (VERE-
FOO) is the first approach in literature to combine automa-
tion, formal verification and optimization to simultaneously
solve the allocation and configuration problems for NSFs in
virtual computer networks. The VEREFOO approach follows
a Policy-Based Management paradigm, and therefore it works
as illustrated in Fig. 1.

First, it requires the specification of two inputs: a Service
Graph (SG) and a set of Network Security Policies (NSPs).
An SG is the logical topology of a virtual network, i.e.,
an interconnection of service functions and network nodes
providing a complete end-to-end network service. It represents
a generalization of a Service Function Chain because the
functions can be organized within a complex architecture
where the traffic can flow through alternative paths. The SG
provided by the user is automatically processed to create
an internal representation called Allocation Graph (AG). For
each link between any pair of network nodes or functions, a
placeholder element, called Allocation Place (AP), is gener-
ated. Each AP represents a possible position for the allocation
of an NSF instance. Instead, the NSPs describe the security
requirements that must be enforced in the network. The user
of the VEREFOO approach can specify them with a medium-
level language, which abstracts from the vendor-dependent
characteristics of the NSF implementations.

After receiving the AG and the NSPs, VEREFOO builds
a MaxSMT problem representing the security allocation and
configuration problem to be automatically solved. On the one
hand, hard constraints are used to formally express the behav-
ior of network functions composing the SG, the way traffic

Fig. 1: The VEREFOO approach

flows can cross the network, and the required satisfaction of all
NSPs. On the other hand, soft constraints are used to express
two main optimization objectives, i.e., the minimization of the
number of allocated NSFs and of configured rules. Then, an
automated MaxSMT solver is fed with all the constraints, and
it searches for an optimal correct solution.

In case of positive outcome, the provided result is composed
of (i) the allocation scheme of the NSFs in the input SG; (ii)
the configuration of each allocated NSF. The NSF allocation
scheme specifies the APs where each NSF has to be allocated,
as it can be seen in the example reported in Fig. 1. The
configuration of each allocated NSF specifies its configuration
rules (e.g., the filtering rules for a firewalls, or the communi-
cation protection rules for a VPN gateway). The allocation
scheme contains the minimum number of NSFs required
to enforce all NSPs, so minimizing resource consumption,
while the configuration of each allocated NSF contains the
minimum number of configured rules, thus minimizing the
amount of memory needed to store them and maximizing the
NSF performance. The allocation scheme is only generated
at the logical abstraction level represented by the SG, as the
output solution can be later deployed automatically into the
virtual network by means of existing technologies. Instead, if
no solution to the problem can be found, a non-enforceability
report is generated for the user, who can try to guess why it
has not been possible to enforce the NSPs.

The VEREFOO approach is designed to be a general
method, which can be applied to any NSF type. As examples,
it has been successfully applied for the configuration of
packet filtering firewalls [19], [20], VPN gateways [21], SDN
switches [22], and smart home devices [23]. Each application
tackles with specific problems related to the corresponding en-
vironment, e.g., the management of blacklisting and whitelist-
ing approaches for packet filters, the existence of multiple
technologies and protocols for VPNs, and bandwidth and
latency requirements in IoT-based SDN networks. Moreover, a
peculiar application of VEREFOO is to employ this approach
just to formally verify an already existing network security
configuration [24].

B. FATO

FirewAll Transients Optimizer (FATO) is the first approach
in literature to combine automation, formal verification and
optimization to orchestrate a reconfiguration transient for
virtual distributed packet filtering firewalls [25].

initial Security
Service Graph

target Security
Service Graph

user

optimization
profile

target Network
Security Policies Ranking Generator

MaxSMT Problem

ranking of the
security policies

solution
found?

yes

no

scheduling of firewall
configuration changes

non-enforceability
report

FATO

Fig. 2: The FATO approach

When a new firewall configuration is computed, it differs
from the initial configuration for at least one of the two
management aspects: the allocation scheme might have been
changed (e.g., a new firewall instance has been introduced, or
an existing one has been removed), or the firewall rules might
have been adjusted to be compliant with new connectivity
policies. Therefore, the security service must be updated ac-
cordingly, by applying a series of operations of different types:
deployment of a new virtual firewall, removal of an existing
firewall, update of the filtering rules of a firewall, deviation
of a traffic flow. The firewall reconfiguration transient consists
of a specific ordering of these operations, so that the global
configuration is changed from the initial state to the target
one. FATO aims to compute automatically the scheduling of
these operations that minimizes the number of intermediate
unsecure states where some security policies are not satisfied.

In order to accomplish this objective, the FATO approach
works as illustrated in Fig. 2.

First, it requires the specifications of four inputs. The
first and second inputs are the initial and target security
SGs, which respectively include the description of the initial
configuration of the distributed firewall (i.e., the start state of
the reconfiguration transient) and target configuration of the
distributed firewall (i.e., the final state of the reconfiguration
transient). The second input is a set of target connectivity
policies expressing the requirements that must be satisfied by
the target configuration, defining which traffic flow must reach
their destination, and which ones must instead be blocked. The
fourth input is an optimization profile, which represents a com-
pact indication about the relative priority of the connectivity
policies. For example, the user may request that the isolation
policies must have higher priority than the reachability policies
(security-max profile) or vice versa (service-max profile). They
may also specify other optimization objectives in additional to
the basic one, e.g., to maximize the number of policies that
are satisfied in each intermediate state (policy-max profile).

After receiving these inputs, from the specification of the
optimization profile, FATO defines a ranking for the input
policies (with the exclusion of the persistent policies, because
they must be enforced in any intermediate state), as it comes
handy for the definition of the optimization problem. Then, the
initial and target security SGs with the firewall configurations,
the target policies and their ranking are used by FATO to

10 20 30 40 50 60 70 80 90 100
0

50

100

150

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

20 NSPs
40 NSPs
60 NSPs
80 NSPs

100 NSPs

(a) Scalability versus APs

10 20 30 40 50 60 70 80 90 100

0

50

100

150

Number of Network Security Policies

C
om

pu
ta

tio
n

tim
e

(s
)

20 APs
40 APs
60 APs
80 APs

100 APs

(b) Scalability versus NSPs

Fig. 3: VEREFOO Time Scalability

formulate a MaxSMT problem. After solving this optimization
problem, FATO identifies the optimal order of reconfiguration
changes, in such a way that the optimization fulfills the criteria
derived from the ranking. This scheduling can be followed by
a human who manages the virtual network, or a state-of-the-art
orchestrator can exploit it to perform the required actions.

IV. IMPLEMENTATION AND VALIDATION

Both the VEREFOO and FATO approaches have been
implemented by means of Java frameworks, which exploit
the APIs offered by the open-source Z3 solver by Microsoft
Research to formulate and solve the MaxSMT problem. The
frameworks are accessible through its REST APIs, so that
they can be exploited by external tools as a component of
a more complex architecture, or through their GUI for human
users. Besides, the code of the application of the VERE-
FOO approach to firewall configuration is already publicly
available at the following link: https://github.com/netgroup-
polito/verefoo/tree/Budapest.

A series of validation tests have been carried out on an 8-
core Intel Core i7-10700E CPU @ 2.90GHz workstation with
32 GB RAM to assess all the features provided by these “se-
curity by construction” approaches: scalability, optimization,
formal correctness. Here, due to space limitation, the most
relevant results only about time scalability are presented.

1) VEREFOO Time Scalability: The charts in Fig. 3 present
the results of tests performed to evaluate the time scala-
bility of the VEREFOO approach, when applied to firewall
configuration, versus number of APs and NSRs. For each
test case with a given number of APs and NSRs, 100 runs
have been executed. Fig. 3a and Fig. 3b show the average
computation time of each test case. From these two charts,
the most important result is that, even though the MaxSMT
problem belongs to the NP-complete class in terms of com-
putational complexity, the computation time does not increase
exponentially. According to such results, the framework can
manage AGs with up to 100 APs and 100 NSRs in less than
200 seconds. This result can be motivated by three reasons.
First, NP-completeness only implies exponential time for the
worst case, but the actual time for solving a MaxSMT instance
is often less than the worst case time, also depending on
which theories are used in the formulas [26]. Second, formal
models have been defined so as to capture all the required

Approach Alloc. Config. Formal Optimal Scalability
[7] X(SG) X X X 20FW - 80s

[15] X(SFC) X X X 20FW - 4s
[9] X X X X No Info

[10] X X X X 5FW - 50s
[14] X(SFC) X X X No Info
[8] X(SG) X X X 60FW

VEREFOO X(SG) X X X 100FW - 90s

TABLE I: Comparison with most related approaches

aspects, but avoiding excessive complexity in the actual SMT
problem to be solved (e.g., avoiding redundancy in variables
and constraints, avoiding quantifiers). Leveraging this trade-
off between expressiveness and complexity was a key factor
that enabled the achievement of such scalability results. Third,
state-of-the-art solvers like Z3 employ internal strategies that
are quite efficient in exploring the solution space.

TABLE I shows a comparison of the VEREFOO approach
with the most related state-of-the-art approaches available
in the literature. The table confirms that no other existing
approach jointly computes the firewall allocation scheme and
the configuration starting from a provided SG, as the VERE-
FOO approach does. Also, no prior work achieves all the
three features of full automation, optimization, and formal
correctness, with the exception of [7], which, however, sup-
ports only the automatic generation of the firewall allocation
scheme. Therefore, looking at the “ Scalability” column, the
VEREFOO framework proves to be competitive with respect
to the other relevant works in terms of scalability, especially
considering the added value of the results achieved.

Besides, in Fig. 3a and 3b, a baseline (red dotted horizontal
line) is introduced, in order to have a reference: it is the
Deployment Process Delay (DPD) introduced by a well known
orchestrator (Open Source MANO) for deployment. DPD is
the time the orchestrator takes to deploy and instantiate a VNF
within an already booted VM and setup an operational network
service. According to [27], this time is 134ms. The figures of
these experiments show that the time taken by the framework
to automatically allocate and configure firewalls in SGs with
up to 100 APs and with up to 80 NSRs does not exceed the
DPD, so being acceptable even in highly dynamic situations.

2) FATO Time Scalability: Fig. 4 reports the results of
time scalability tests for the FATO approach. First, Fig. 4a
analyzes the performance of the implementation when the
number of transient states progressively increases. For those
tests, each scenario characterized by a certain number of
transient states is based on a topology of corresponding size
(e.g., when the number of states is 20, in the security SG the
number of firewalls subject to configuration changes is 20).
The enforcement of a congruent number of network security
policies is requested as well. Second, Fig. 4b analyzes how
the framework behaves for increasing sizes of the network
on which it is applied, while keeping the number of transient
states fixed to 20 and the number of policies fixed to 50. Third,
Fig. 4c evaluates scalability versus the number of network

5 10 15 20 25

0.01

0.1

1

10

100

Number of transient states

C
om

pu
ta

tio
n

tim
e

(s
)

(a) Transient states

20 40 60 80 100

1

10

100

Number of nodes in GU

C
om

pu
ta

tio
n

tim
e

(s
)

(b) Network nodes

20 40 60 80 100

1

10

100

Number of network security policies

C
om

pu
ta

tio
n

tim
e

(s
)

(c) Security policies

Fig. 4: FATO Time Scalability

security policies that should be enforced in the reconfiguration
transient, while keeping the number of transient states fixed to
20 and the network size fixed to 50 nodes. The plotted results
show that the proposed approach can successfully manage
fairly big networks while checking the satisfaction of a large
set of policies. Scalability with respect to network size and
policy set cardinality is even better than scalability with respect
to the number of transient states. This is due to the fact that
the increment of soft constraints in the formulation of the
MaxSMT problem is lower.

Time scalability is also in line with the times that are re-
quired by state-of-the-art approaches for performing manage-
ment tasks related to a security reconfiguration. For example,
[28] underlines that establishing the embedding scheme of
10 virtual functions on a physical network composed of 50
nodes can be up to 1400 s. [29] experimentally checked that
the instantation time of a network security service takes more
than 100 seconds, when the service is composed of around
30 virtual functions, for the Virtual Infrastructure Managers
of both Open Source MANO and Openstack. Again, [27]
states that DPD time related to the deployment of a single
virtual function is 134s (reported as baseline). If these numbers
are combined, the time introduced by the FATO framework
does not represent a high delay, as the scheduling of the
reconfiguration changes may be easily computed while another
step, such as the service instantation, is performed.

V. OUTCOMES AND FUTURE WORK

This paper presented a possible approach, based on con-
straint programming, to automate network security manage-
ment. This approach represents a major novelty in literature,
as it is the first one to combine automation, formal verifi-
cation and optimization. It is also general enough to allow
applications related to multiple management operations, such
as configuration and orchestration. In particular, VEREFOO

has been defined to automatically allocate and configure NSFs
in virtual networks, while minimizing their allocation scheme
and configuration rule sets. Instead, FATO has been defined to
automatically compute the optimal scheduling of the changes
occurring in a security reconfiguration transient, so as to
minimize the number of unsafe transitory states. In both cases,
the formal models that have been defined for representing
network components and security policies have been proved
to represent a good trade-off between expressiveness and com-
plexity, and this resulted into good performance and scalability
of the frameworks implementing such approach.

Nonetheless, the proposed approaches still have limitations
that may be overcome as future work. A first limitation
is related to how the VEREFOO approach can solve the
configuration problem. Currently, the VEREFOO approach
can only work on a service graph devoid of network security
functions, thus creating the security configuration from scratch
even when it is not necessary, e.g., when a distributed firewall
is already configured and only some of the user-specified
security policies are modified. Therefore, a possible future
research direction is the study of an optimized version of
the VEREFOO approach, which can manage the reconfigu-
ration of distributed security functions in an optimized way.
Instead, another limitation is related to the performance of the
MaxSMT formulation. Even if the validation of the VERE-
FOO and FATO approaches show that they can scales to large
networks, it cannot manage the largest networks composed of
tens of thousands nodes. Therefore, a heuristic algorithm will
be investigated to be used as an alternative strategy.

Finally, other future work is planned to further contribute
to the research area of network security automation. On the
one hand, the MaxSMT formulation is flexible enough to
be extended to support even other NSF types, such as web-
application gateways, anti-spam filters, intrusion detection
systems, stateful security functions and more. On the other
hand, reaction and mitigation strategies can be investigated
for a possible integration with this approach and network
orchestrators, with the aim of making further steps in the
direction of full autonomy in network security management.

REFERENCES

[1] G. Mei, N. Xu, J. Qin, B. Wang, and P. Qi, “A survey of internet of
things (iot) for geohazard prevention: Applications, technologies, and
challenges,” IEEE Internet Things J., vol. 7, no. 5, pp. 4371–4386, 2020.

[2] D. Bringhenti and F. Valenza, “A twofold model for VNF embedding
and time-sensitive network flow scheduling,” IEEE Access, vol. 10, pp.
44 384–44 399, 2022.

[3] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A
survey,” in IEEE SDN for Future Networks and Services, SDN4FNS
2013, Trento, Italy, November 11-13, 2013. IEEE, 2013, pp. 1–7.

[4] R. Boutaba and I. Aib, “Policy-based management: A historical perspec-
tive,” J. Netw. Syst. Manag., vol. 15, no. 4, pp. 447–480, 2007.

[5] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville,
“Refining network intents for self-driving networks,” in Proc. of the
Workshop on Self-Driving Networks (SelfDN18), 2018.

[6] N. Schnepf, R. Badonnel, A. Lahmadi, and S. Merz, “Automated
factorization of security chains in software-defined networks,” in Proc.
of the IFIP/IEEE (INM19), 2019.

[7] M. A. Rahman and E. Al-Shaer, “Automated synthesis of distributed
network access controls: A formal framework with refinement,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, 2017.

[8] M. Yoon, S. Chen, and Z. Zhang, “Minimizing the maximum firewall
rule set in a network with multiple firewalls,” IEEE Trans. Comput.,
vol. 59, no. 2, 2010.

[9] J. Govaerts, A. K. Bandara, and K. Curran, “A formal logic approach
to firewall packet filtering analysis and generation,” Artif. Intell. Rev.,
vol. 29, no. 3-4, 2008.

[10] D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner, “The mathe-
matical foundations for mapping policies to network devices,” in Proc.
of the 13th Intern. Joint Conf. on e-Business and Telecommunications,
2016.

[11] D. Ranathunga, M. Roughan, and H. X. Nguyen, “Verifiable policy-
defined networking using metagraphs,” IEEE Trans. Dependable Secur.
Comput., vol. 19, no. 1, 2022.

[12] L. Firdaouss, A. Bahnasse, B. Manal, and Y. Ikrame, “Automated VPN
configuration using devops,” in Proc. of the Inter. Conf. on Emerging
Ubiquitous Systems and Pervasive Networks, 2021.

[13] A. Lara and B. Ramamurthy, “Opensec: Policy-based security us-
ing software-defined networking,” IEEE Trans. Netw. Service Manag.,
vol. 13, no. 1, 2016.

[14] N. Schnepf, R. Badonnel, A. Lahmadi, and S. Merz, “Rule-based
synthesis of chains of security functions for software-defined networks,”
ECEASST, vol. 76, 2018.

[15] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. P. Perales,
“Adding support for automatic enforcement of security policies in NFV
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, 2019.

[16] J. Hua, X. Ge, and S. Zhong, “FOUM: A flow-ordered consistent update
mechanism for software-defined networking in adversarial settings,” in
Proc. of the 35th IEEE Inter. Conf. on Computer Communications,
(INFOCOM16), 2016, pp. 1–9.

[17] P. Cerný, N. Foster, N. Jagnik, and J. McClurg, “Optimal consistent
network updates in polynomial time,” in Proc. of the 30th Inter. Symp.
Distributed Computing, DISC16. Springer, 2016, pp. 114–128.

[18] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure,
“Safe update of hybrid SDN networks,” IEEE/ACM Trans. Netw., vol. 25,
no. 3, pp. 1649–1662, 2017.

[19] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated optimal firewall orchestration and configuration in virtu-
alized networks,” in NOMS 2020 - IEEE/IFIP Network Operations and
Management Symposium, Budapest, Hungary, April 20-24, 2020. IEEE,
2020, pp. 1–7.

[20] ——, “Automated firewall configuration in virtual networks,” IEEE
Tran. on Dep. and Sec. Comp., pp. 1–18, 2022.

[21] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Short paper:
Automatic configuration for an optimal channel protection in virtualized
networks,” in CYSARM@CCS ’20: Proceedings of the 2nd Workshop on
Cyber-Security Arms Race, Virtual Event, USA, November, 2020. ACM,
2020, pp. 25–30.

[22] D. Bringhenti, J. Yusupov, A. M. Zarca, F. Valenza, R. Sisto, J. B.
Bernabé, and A. F. Skarmeta, “Automatic, verifiable and optimized
policy-based security enforcement for sdn-aware iot networks,” Comput.
Networks, vol. 213, p. 109123, 2022.

[23] D. Bringhenti, F. Valenza, and C. Basile, “Toward cybersecurity person-
alization in smart homes,” IEEE Secur. Priv., vol. 20, no. 1, pp. 45–53,
2022.

[24] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and
J. Yusupov, “Improving the formal verification of reachability policies
in virtualized networks,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 1,
pp. 713–728, 2021.

[25] D. Bringhenti and F. Valenza, “Optimizing distributed firewall reconfig-
uration transients,” Comput. Networks, vol. 215, p. 109183, 2022.

[26] R. Robere, A. Kolokolova, and V. Ganesh, “The proof complexity of
SMT solvers,” in Computer Aided Verification. Springer International
Publishing, 2018.

[27] G. M. Yilma, F. Z. Yousaf, V. Sciancalepore, and X. P. Costa, “Bench-
marking open source NFV MANO systems: OSM and ONAP,” Comput.
Commun., vol. 161, pp. 86–98, 2020.

[28] S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pickavet, and
P. Demeester, “Network service chaining with optimized network func-
tion embedding supporting service decompositions,” Comput. Networks,
vol. 93, pp. 492–505, 2015.

[29] I. Pedone, A. Lioy, and F. Valenza, “Towards an efficient management
and orchestration framework for virtual network security functions,”
Secur. Commun. Networks, vol. 2019, pp. 2 425 983:1–2 425 983:11,
2019.

