
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A demonstration of VEREFOO: an automated framework for virtual firewall configuration / Bringhenti, Daniele; Sisto,
Riccardo; Valenza, Fulvio. - ELETTRONICO. - (2023), pp. 293-295. (Intervento presentato al convegno 2023 IEEE 9th
Conference on Network Softwarization (NetSoft 2023) tenutosi a Madrid (ES) nel 19-23 June 2023)
[10.1109/NetSoft57336.2023.10175442].

Original

A demonstration of VEREFOO: an automated framework for virtual firewall configuration

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NetSoft57336.2023.10175442

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980987 since: 2023-08-16T12:59:55Z

IEEE

A demonstration of VEREFOO: an automated
framework for virtual firewall configuration

Daniele Bringhenti, Riccardo Sisto, Fulvio Valenza
Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy, Emails: {first.last}@polito.it

Abstract—Nowadays, security automation exploits the agility
characterizing network virtualization to replace the traditional
error-prone human operations. This dynamism allows user-
specified high-level intents to be rapidly refined into the concrete
configuration rules which should be deployed on virtual security
functions. In this revolutionary context, this paper proposes
the demonstration of a novel security framework based on an
optimized approach for the automatic orchestration of virtual
distributed firewalls. The framework provides formal guarantees
for the firewall configuration correctness and minimizes the size
of the firewall allocation scheme and rule set. The framework
produces rules that can be deployed on multiple types of real
virtual function implementations, such as iptables, eBPF firewalls
and Open vSwitch.

Index Terms—network security, firewall, optimization

I. INTRODUCTION

Security misconfiguration reportedly represents a serious
problem for network management. According to the most
recent Data Breach Investigations Report produced by Veri-
zon1, misconfiguration is the most critical cause of breaches
for cyber security attacks, and it is mainly produced by the
same system administrators who should prevent them. Human
fallibility, increasing network size and complexity, function
heterogeneity are only few of the reasons why traditional
trial-and-error configuration approaches cannot work anymore.
Manual operations are not compatible with the dynamism in-
troduced by softwarization paradigms such as Network Func-
tion Virtualization, and cannot cope with the fast evolution
cyberattacks are undergoing.

Automation may be the best solution to improve the security
of the configuration of next-generation computer networks. In
the literature, the application of intent-based approaches for
security management has been recently gaining big traction,
thanks to the contribution of EU Projects such as SECURED2,
ANASTACIA3 and ASTRID4. After a human administrator
specifies high-level intents describing the expected security
behavior (e.g., to prevent future attacks or repair an existing
security flow), these intents are transformed into the actual
configuration rules and they are installed on the virtual func-
tions without requiring further human interventions [1]. A
security function that may particularly benefit from a similar
strategy is the distributed packet filtering firewall, the most

1https://www.verizon.com/business/resources/reports/dbir
2https://www.secured-fp7.eu/
3http://www.anastacia-h2020.eu/
4https://www.astrid-project.eu/

commonly used function for enforcing connectivity security
requirements [2]. However, most of the related work has
limitations that undermine its potentiality, e.g., [3] does not
provide a cost-efficient solution for minimizing resource con-
sumption, and [4] does not guarantee the correctness of the
firewall configuration.

This paper presents the demonstration of a framework,
called VErified REFinement and Optimized Orchestration
(VEREFOO), which surpasses these limitations. This frame-
work relies on a formal approach, initially shared in [5] and
later finalized in [6], which combines automation, formal
verification and optimization for the configuration of dis-
tributed firewalls. The objectives of this demonstration are
to show how: (i) VEREFOO improves the user experience
of security configuration throughout a user-friendly interface
for intent specification and virtual network description; (ii) it
computes the firewall allocation scheme and configuration in
an optimized and fast way, compatibly with the dynamism of
network virtualization; (iii) it can be easily used without the
requirement of knowing the syntax of the softwarized firewall
implementation (e.g., iptables, ipfirewall).

The remainder of this paper is structured as follows. Section
II described the high-level architecture of VEREFOO. Section
III details how the VEREFOO demonstration will be show-
cased. Section IV discusses future work.

II. ARCHITECTURE

VEREFOO is an automated framework that can compute
the firewall allocation scheme and configuration for a virtual
network, providing assurance of their correctness and optimiz-
ing their size. As shown in Fig. 1, the high-level architecture
of VEREFOO is organized in three main phases.

Network Description and Intent Specification: The hu-
man user specifies two inputs. The first input is the descrip-
tion of the virtual network topology where security must be
enforced. The topology description is a graph representing the
network functions, their interconnections and configurations
(e.g., the addresses that must be changed by a network
address translator). The second input is a set of security
intents expressing connectivity requirements, i.e., specifying
which traffic flows are allowed to reach their destination and
which other ones must be blocked. The network and intent
representations are expressed with a user-friendly language,
which represents a link between humans and the automated

Fig. 1: VEREFOO Architecture

process. This phase is the only one that requires active human
intervention.

Firewall Allocation and Configuration: After receiving
the input description, VEREFOO employs it for the formu-
lation of a constraint programming problem, called Maxi-
mum Satisfiability Modulo Theories (MaxSMT) problem. This
formulation enables both a-priori formal assurance that the
solution is correct and optimization [7]. After the problem
resolution, the computed firewall allocation scheme and con-
figuration are both guaranteed to satisfy the specified intents,
and they are composed of the minimum number of needed
firewall instances and rules. The representation of the output
rules is characterized by a generic syntax, which abstracts the
vendor-specific syntaxes of the different security solutions.

Low-Level Rules Generation: The output rules must be
converted to the specific syntax of the real firewalls deployed
in the network (e.g., iptables, Open vSwitch, eBPF-based
firewall). Therefore, VEREFOO embeds a translator, which
can automatically transform the vendor-independent represen-
tation into multiple syntaxes. Then, the user can install the
configuration files produced by VEREFOO on the firewalls, or
pass them to an orchestrator for their automated deployment.

This architecture has been designed for the automatic fire-
wall configuration, but it is flexible enough to be extended to
support other function types, e.g., VPN gateways [8] and SDN
switches [9]. The problem of automating the configuration
of firewalls and VPN gateways simultaneously has been also
addressed in a paper accepted for presentation in SecSoft 2023,
a workshop co-located with IEEE Netsoft 2023 [10].

III. DEMONSTRATION

VEREFOO is an open-source Java framework5, developed
as a Spring Boot application embedding the Apache Tomcat
server. When running, VEREFOO can be accessed by a user
in two ways: 1) by interacting with the REST APIs exposed
by the framework interface (e.g., through REST clients); 2)
by employing a user-friendly Graphical User Interface (GUI),
developed with the Javascript-based React library.

This demonstration is focused on the firewall configuration
and it is based on a specific version of VEREFOO, called
Budapest6. The demonstration simply requires the presenter’s

5https://github.com/netgroup-polito/verefoo.
6https://github.com/netgroup-polito/verefoo/tree/Budapest.

Fig. 2: Example of user-specified network topology

Fig. 3: Example of load balancer configuration

laptop, as every network component is softwarized. An exter-
nal monitor, a keyboard and a mouse can be useful to improve
the audience interaction with the framework.

The showcased operations correspond to the three phases
of the VEREFOO architecture. Here, we summarize how each
phase is planned to be demonstrated.

Network Description and Intent Specification: The user
employs the GUI to specify both the network description and
the security intents. The network topology can be intuitively
designed in the main page of the GUI through a drag-and-
drop mechanism (Fig. 2): the user can select the network
function type, position it in the network, and create the links to
other network elements. Clicking on each node of the network
topology opens a box that allows the user to set configuration
parameters (e.g., Fig. 3 shows that for a load balancer it is
possible to specify the IP addresses of the servers for which
traffic load balancing must be performed). Among the nodes
that compose the network, the user can also select Allocation
Places (APs), representing candidate positions for firewall
allocation. Additionally, the user can define the security intents
(Fig. 4), by specifying for each one the action that must
be applied on certain traffic (deny or allow), and the IP 5-
tuple values identifying that traffic (source and destination IP
address, source and destination port, transport-level protocol).

Fig. 4: Example of user-specified intent

Vendor -independent firewall configuration:

<node name ="192.168.56.6" functional_type =" FIREWALL">

<neighbour name ="192.168.56.3"/ >

<neighbour name ="192.168.57.4"/ >

<configuration name=" conf3" description ="b0">

<firewall defaultAction =" ALLOW">

<elements >

<action >DENY </action >

<source >145.23.3.1 </ source >

<destination >42.72.0.2 </ destination >

<protocol >TCP </protocol >

<src_port >80</ src_port >

<dst_port >*</dst_port >

</elements >

</firewall >

</configuration >

</node >

iptables configuration:

#!/bin/sh

cmd="sudo iptables"

${cmd} -F

${cmd} -P INPUT ACCEPT

${cmd} -P FORWARD ACCEPT

${cmd} -P OUTPUT ACCEPT

${cmd} -A FORWARD -p tcp -s 145.23.3.1

-d 42.72.0.2 --sport 80 -j DROP

Fig. 5: Example of output firewall configuration

All these pieces of information are locally stored as an XML
file, so that the user can later reload it to continue working on
a specific topology or set of security intents. Alternatively, the
user may decide to directly write this XML file by themselves.

Firewall Allocation and Configuration: When the user has
created all the inputs, the GUI or the REST Client sends an
HTTP Request to VEREFOO, including them in its body with
XML format. This allows the framework to validate the inputs
against an XML schema, checking their syntax and prevent-
ing the framework from failures due to bad requests. After
this initial check, VEREFOO internally builds the constraints
composing the constraint programming problem modeling the
firewall configuration problem. Then it employs a state-of-
the-art MaxSMT solver by Microsoft Research, called Z3,
to solve the MaxSMT problem. If a correct solution for the
built problem cannot be found (e.g., a user-specified intent
cannot be enforced in the corresponding topology), VEREFOO
raises an error to the user. Instead, it generates an XML file
describing the firewall allocation scheme and configuration,
and sends it back in an HTTP Response. The GUI parses it
and graphically shows the outputs, enabling the user to modify
them for a next run of the framework.

Low-Level Rules Generation and Deployment: In case
of positive outcome, VEREFOO also performs the conversion
of the XML representation of the firewall configuration to
the syntax of a specific firewall implementation selected by
the user (e.g., Fig. 5 shows this translation for an iptables
configuration). Then, the produced low-level configuration is
pushed in firewall containers deployed in a virtual network
orchestrated by Docker Compose. The user can thus test
the correctness of the generated rules, by pinging selected

10 20 30 40 50 60 70 80 90 100
0

50

100

150

Number of Allocation Places

C
om

pu
ta

tio
n

tim
e

(s
)

20 intents
40 intents
60 intents
80 intents

100 intents

(a) Allocation Places

10 20 30 40 50 60 70 80 90 100

0

50

100

150

Number of Security Intents

C
om

pu
ta

tio
n

tim
e

(s
)

20 APs
40 APs
60 APs
80 APs
100 APs

(b) Security Intents

Fig. 6: Scalability of VEREFOO [6]

endpoints to assess if the communications are blocked or
allowed.

All these operations are executed quickly, compatibly with
the dynamism of network virtualization. Fig. 6 illustrates the
scalability of VEREFOO with respect to the input APs and
security intents, and it confirms that the framework can be
efficiently applied to networks of considerable size.

IV. CONCLUSIONS AND FUTURE WORK

This paper describes the behavior and demonstration of
VEREFOO, where its React GUI is efficiently used to au-
tomate and optimize the configuration of virtual firewalls in
a formally correct way. This demonstration also shows how
VEREFOO hides the heterogeneity of firewall implementa-
tions by using user-friendly intent-based languages. Future
work envisions applying VEREFOO for the configuration
of other function types, so as to provide automation for a
complete security configuration.

REFERENCES

[1] R. Boutaba and I. Aib, “Policy-based management: A historical perspec-
tive,” J. Netw. Syst. Manag., vol. 15, no. 4, pp. 447–480, 2007.

[2] P. P. Mukkamala and S. Rajendran, “A survey on the different firewall
technologies,” Inter. J. of Engin. Appl. Scien. and Tech., vol. 5 (1), 2020.

[3] D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner, “The mathe-
matical foundations for mapping policies to network devices,” in Proc.
of the Inter. Joint Conf. on e-Business and Telecommunications, 2016.

[4] P. Verma and A. Prakash, “FACE: A firewall analysis and configuration
engine,” in Proc. of the IEEE/IPSJ Inter. Symp. on Applications and the
Internet, 2005.

[5] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated optimal firewall orchestration and configuration in virtu-
alized networks,” in Proc. of the IEEE/IFIP Network Operations and
Management Symp., 2020.

[6] ——, “Automated firewall configuration in virtual networks,” IEEE
Trans. Dependable Secur. Comput., vol. 20, no. 2, pp. 1559–1576, 2023.

[7] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and
J. Yusupov, “Improving the formal verification of reachability policies
in virtualized networks,” IEEE Trans. Netw. Serv. Manag., vol. 18 (1),
2021.

[8] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Short paper:
Automatic configuration for an optimal channel protection in virtualized
networks,” in Proc. of the ACM Work. on Cyber-Security Arms Race,
2020.

[9] D. Bringhenti, J. Yusupov, A. M. Zarca, F. Valenza, R. Sisto, J. B.
Bernabé, and A. F. Skarmeta, “Automatic, verifiable and optimized
policy-based security enforcement for sdn-aware iot networks,” Comput.
Networks, vol. 213, p. 109123, 2022.

[10] D. Bringhenti, R. Sisto, and F. Valenza, “Automating the configuration
of firewalls and channel protection systems in virtual networks,” in Proc.
of 9th IEEE International Conference on Network Softwarization, 2023.

