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Abstract—Survival analysis studies time-modeling techniques
for an event of interest occurring for a population. Survival analy-
sis found widespread applications in healthcare, engineering, and
social sciences. However, the data needed to train survival models
are often distributed, incomplete, censored, and confidential. In
this context, federated learning can be exploited to tremendously
improve the quality of the models trained on distributed data
while preserving user privacy. However, federated survival analy-
sis is still in its early development, and there is no common bench-
marking dataset to test federated survival models. This work pro-
vides a novel technique for constructing realistic heterogeneous
datasets by starting from existing non-federated datasets in a
reproducible way. Specifically, we propose two dataset-splitting
algorithms based on the Dirichlet distribution to assign each data
sample to a carefully chosen client: quantity-skewed splitting
and label-skewed splitting. Furthermore, these algorithms allow
for obtaining different levels of heterogeneity by changing a
single hyperparameter. Finally, numerical experiments provide
a quantitative evaluation of the heterogeneity level using log-
rank tests and a qualitative analysis of the generated splits. The
implementation of the proposed methods is publicly available in
favor of reproducibility and to encourage common practices to
simulate federated environments for survival analysis.

Index Terms—datasets, federated learning, survival analysis

I. INTRODUCTION

Survival analysis [1], [2] is a subfield of statistics focused
on modeling the occurrence time of an event of interest for a
population. In particular, its goal is to exploit statistical and
machine learning techniques to provide a survival function,
i.e., a function that estimates the event occurrence probability
with respect to time for an individual. Survival analysis has
been successfully applied in many healthcare, engineering,
and social science applications [3]. However, the data to train
survival models are often distributed, incomplete, inaccurate,
and confidential [4], [5]. On top of that, survival data may
include a considerable portion of censored observations, i.e.,
instances for which the event of interest has yet to occur. In
censored samples, the observed time is an underestimation
of the actual occurrence time of the event. As a result,
data scarcity, censorship, and confidentiality can hinder the

applicability of survival analysis when addressing real-world,
large-scale problems.

In this context, Federated Learning (FL) [6], [7] holds
tremendous potential to improve the effectiveness of survival
analysis applications. FL is a subfield of distributed machine
learning that investigates techniques to train machine learning
models while preserving user privacy. In FL, data information
never leaves the device in which it is produced, collected, and
stored. FL allows for training on large-scale data, improving
the quality, fairness, and generalizability of the resulting
models with respect to the non-distributed counterparts.

Federated survival analysis studies the relationship between
federated learning and survival analysis. In particular, survival
models present structural components that make their inclusion
into existing federated learning algorithms non-trivial [4], [8]–
[10]. Since this field is in its early development, reproducible
and standardized simulation environments are paramount for
the comparability of results. Simulation environments mimic
one or many aspects of real-world federations, such as
client availability, communication constraints, computation
constraints, and data heterogeneity. Some existing works pro-
vide simulation environments for standard federated learning
applications [11], [12]. However, these environments have no
direct support for survival analysis problems. Other works
implement algorithms for non-federated survival models [13]–
[16] based on centralized survival datasets [17]. Recently, a
benchmarking suite for federated healthcare problems has been
developed, including a single federated survival dataset with
a predefined data split among 6 clients [18].

The goal of this work is to extend the benchmarking ground
for federated survival models. To this end, we present a novel
technique for constructing realistic federated datasets from
existing non-federated survival datasets in a flexible and re-
producible way. Realistic federated datasets mimic real-world
heterogeneity by exhibiting non-identically distributed (non-
IID) data among clients. More specifically, we provide two
algorithms for assigning each data sample from a centralized
survival dataset to a carefully chosen client. The proposed



algorithms are based on the Dirichlet distribution [19], [20],
as it can induce distribution skewness by tuning a single
parameter. The first algorithm focuses on building federated
datasets with a non-uniform number of samples. We call this
algorithm quantity-skewed splitting. The second one, instead,
builds client datasets with different label distributions. We call
this algorithm label-skewed splitting. The heterogeneity level
introduced by each algorithm in the resulting data assignments
can be tuned with a parameter α > 0, such that for α → 0
data are more skewed, while for α → ∞ data are more
uniform. The ability to tune the heterogeneity level allows for
federated simulations with different environmental conditions.
This aspect is essential to test the resilience of federated
survival models to non-IID realistic data distributions.

The presented techniques have been tested on a collection
of datasets for survival analysis, providing visual insights
about the level of heterogeneity induced in each setting. Also,
the level of heterogeneity is numerically investigated with
log-rank tests [21] within client distributions. The experi-
mental evaluation demonstrates that the proposed techniques
are able to build heterogeneous federated datasets starting
from non-federated survival data. Moreover, the numerical
analysis shows how the α parameter can effectively control
the heterogeneity level induced by each split.

The implementation of quantity-skewed and label-skewed
splitting is publicly available [22] in favor of reproducibility
and to encourage the usage of common practices in the
simulation of federated survival environments.

II. BACKGROUND AND RELATED WORKS

This section summarizes the main aspects of survival anal-
ysis and federated learning and reviews the state-of-the-art on
federated survival analysis.

A. Survival Analysis

Survival analysis, also known as time-to-event analysis, is
a statistical machine learning field that models the occurrence
time of an event of interest for a population [2]. The distinctive
feature of survival models is the handling of censored data.
With censored data, we refer to samples for which the event
occurrence was not observed during the study. A survival
dataset D is a set of N triplets

(xi, δi, ti), i = 1, . . . , N s.t.

• xi ∈ Rd is a d-dimensional feature vector, also called
covariate vector, that retains all the input information for
a sample;

• δi is the event occurrence indicator. If δi = 1, then the i-th
sample experienced the event, otherwise the i-th sample
is censored and δi = 0;

• ti = min {tei , tci} is the minimum between the actual
event time tei and the censoring time tci .

This setting refers to right-censoring [23], where the censoring
time is less than or equal to the actual event time. This is the
case, for instance, of disease recurrence under a certain treat-
ment [24] or patient death [25]. Indeed, right-censoring is the

most common scenario in real-world survival applications [2].
Therefore, we limit the discussion to the right censoring setting
for the rest of the paper.

The goal of survival analysis is to estimate the event
occurrence probability with respect to time. In particular, the
output of a survival model is the survival function

S(t|x) = P (T > t|x).

Survival models are classified into three types: non-
parametric, semi-parametric, and parametric [2]. In this work,
we include non-parametric models in the analysis of the pro-
posed data splitting algorithms, as these are the only models
that make no assumption about the underlying event distri-
bution over time. Moreover, non-parametric models are well-
suited for survival data visualization. Indeed, non-parametric
models encode the overall survival behavior of a population by
predicting a survival function Ŝ(t) which is not conditioned
on x.

Non-parametric models are Kaplan-Meier (KM) [26],
Nelson-Aalen [27], [28], and Life-Table [29]. Among those,
the KM estimator is the most widely spread in survival
applications due to its intuitive interpretation. The KM es-
timator starts from the set of unique event occurrence times
TD = {tj : (xi, δi, tj) ∈ D}. Then, for each tj ∈ TD it
computes the number of observed events dj ≥ 1 at time tj
and the number of samples rj that did not yet experience an
event. The KM estimator is computed as

Ŝ(t) =
∏

j:tj<t

(
1− dj

rj

)
.

B. Federated Learning

Federated Learning (FL) [6], [7] is a machine learning
setting in which a set of agents jointly train a model without
sharing the data they store locally. FL algorithms rely on a
central server for message exchange and agent coordination.
A federation is composed of K clients, each holding a private
dataset Dk, k = 1, . . . ,K. The goal of a FL algorithm is to
find the best parameters w that optimize a global loss function
L:

min
w

L(w) = min
w

K∑
k=1

λkLk(w).

Lk is the local loss function computed by client k. λk is a
set of parameters weighting the contribution of each client to
the global loss. Usually, λk is proportional to the number of
samples on which each client k evaluated Lk(w) locally. This
weighting strategy favors contributions from clients holding
more private data, which are more likely to be representative
of the entire data distribution.

Federated Averaging (FedAvg) [30] is the first algorithm
developed to minimize L. It relies on iterative averaging of
model parameters trained locally on random subsets of clients.
However, FedAvg is not always suited to face system security
and confidentiality preservation challenges in real-world appli-
cations [31], [32]. Moreover, real-world applications present



multiple levels of heterogeneity. First, system heterogeneity
constraints FL algorithms to comply with the hardware limita-
tions of the network channel and the clients’ devices. Second,
datasets are not guaranteed to contain identically distributed
data. In fact, in most real-world scenarios data are likely to
be non-IID. In order to handle data heterogeneity in federated
environments, several non-survival federated algorithms have
been proposed [33]–[35].

C. Federated Survival Analysis

Federated learning provides key advantages for the future
of healthcare applications [5]. In particular, federated survival
analysis investigates the opportunities and challenges related
to the integration of federated learning into survival analy-
sis tasks. However, few works specifically tackle federated
survival analysis applications. Some works [4], [8] provide
solutions for the non-separability of the partial log-likelihood
loss, used to train Cox survival models [36]. Indeed, non-
separable loss functions are not suited for federated learning
algorithms, as their evaluation requires access to all the
available data in the federation. Other works [9], [10] provide
federated versions of classical survival algorithms asymptoti-
cally equivalent to their centralized counterparts. Within these
works, data federations are built with uniform data splits or
with entirely simulated datasets.

D. Federated Datasets

Concerning the available datasets for federated simulation,
LEAF [37] is the most widely spread dataset collection for
standard federated learning applications. It provides several
real-world datasets covering classification, sentiment analysis,
next-character, and next-word prediction. Secure Generative
Data Exchange (SGDE) [38] is a recent framework to build
synthetic datasets in a privacy-preserving way. SGDE provides
inherently heterogeneous datasets composed of synthetic sam-
ples provided by client-side data generators. Currently, SGDE
has been applied to classification and regression problems
only. Other studies [19], [20] investigate the taxonomy of
data heterogeneity and provide techniques to emulate non-
IID data splits starting from centralized classification datasets.
Recently, FLamby [18] provided a set of benchmarking
tools for cross-silo federated applications concerning health-
care. Among those, Fed-TCGA-BRCA is a federated survival
dataset collecting the data of 1066 patients geographically
grouped into 6 clients.

To the best of our knowledge, Fed-TCGA-BRCA is the only
federated survival dataset proposed to date. Moreover, existing
data-splitting techniques are tailored for non-survival problems
only. This is the first study extending data-splitting techniques
to survival analysis, providing greater flexibility for modeling
simulated survival environments.

III. METHOD

This paper presents a set of techniques to split survival
datasets into heterogeneous federations. We start from a sur-
vival dataset D and a number of clients K. The goal is to

assign to each sample in D a client k ∈ {1, . . . ,K}, such that
federated survival algorithms can leverage the set of Dks to
simulate heterogeneous learning scenarios. The work proposes
two splitting techniques: quantity-skewed and label-skewed
splitting.

A. Quantity-Skewed Splitting

Quantity-skewed splitting pertains to a scenario where the
number of samples for each client k, represented as |Dk|,
varies among clients. In such a scenario, clients with a limited
number of samples may generate gradients that are inherently
noisy, which can impede the convergence of federated learning
algorithms. This is due to the fact that clients with a smaller
number of samples tend to exhibit higher variance in their gra-
dients, leading to instability in the federated learning process
and hampering convergence rate.

Simulation of quantity-skewed scenarios is essential in
assessing the robustness of federated survival algorithms. It
enables researchers to evaluate the algorithm’s ability to handle
the imbalance in sample distribution across clients and its
impact on algorithm performance.

Similarly to [19], [20], the proportion of samples p to assign
to each client follows a Dirichlet distribution

p ∼ D(α · 1K).

Here, 1K is a vector of 1s of length K. p ∈ [0, 1]K such
that ⟨1K ,p⟩ = 1. α > 0 is a similarity parameter controlling
the similarity between client dataset cardinalities |Dk|. For
α → 0, the number of samples for each Dk are heterogeneous.
Conversely, for α → ∞, the number of samples for each
Dk tends to be similar. With quantity-skewed splitting, each
sample (xi, δi, ti) is assigned to a client dataset Dk with
probability

P ((xi, δi, ti) ∈ Dk) = p[k].

B. Label-Skewed Splitting

Label-skewed splitting pertains to scenarios in which the
distribution of labels differs among client datasets. This type
of distribution heterogeneity is commonly encountered in real-
world federated learning scenarios. The non-IID distribution
can be attributed to various factors, including variations in data
collection and storage processes, the use of different acquisi-
tion devices, and variations in preprocessing or labeling tech-
niques. Additionally, clients may have different label quantities
due to domain-specific factors. For instance, in a federated
healthcare scenario for treatment risk assessment, one client
may have a dataset of records from a rural hospital, while
another client may have data from an urban hospital. These
datasets from different locations may exhibit heterogeneous
label distributions due to disparities in patient demographics
and healthcare access.

To produce a label-skewed data split, first, the timeline of
the original survival dataset is divided into B bins, obtaining
a set of time instants {τ0, . . . , τB}. The bin identification
can be uniform or quantile-based, as in [39]. Then, each
sample (xi, δi, ti) is assigned a class that corresponds to



TABLE I
SURVIVAL DATASETS INVOLVED IN THE EXPERIMENTS.

Dataset Samples Censored Features

GBSG [24] 686 44% 8
METABRIC [40] 1904 58% 8
AIDS [41] 2839 62% 4
FLCHAIN [42] 7874 28% 10
SUPPORT [43] 9105 68% 35

the b-th bin, such that ti ∈ (τb−1, τb]. Following [19], [20],
the Dirichlet distribution is used to identify heterogeneous
splitting proportions according to the sample class as

p1 ∼ D(α · 1K)
...

pB ∼ D(α · 1K)

Finally, each sample (xi, δi, ti) assigned to label b is added to
Dk with probability

P ((xi, δi, ti) ∈ Dk) = pb[k].

The α parameter controls the level of similarity between label
distributions. For α → ∞, client label distributions are similar,
while for α → 0 label distributions differ. The numerical
dependency between α and the data heterogeneity level is
discussed in detail using log-rank tests [21] in Section IV.

IV. EXPERIMENTS

This section presents the experiments carried out to evaluate
the proposed methods for building heterogeneous datasets for
federated survival analysis.

A. Datasets

Each of the experiments involves the following sur-
vival datasets: the German Breast Cancer Study Group 2
(GBSG2) [24], the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) [40], the Australian
AIDS survival dataset (AIDS) [41], the assay of serum-
free light chain dataset (FLCHAIN) [42], and the Study to
Understand Prognoses Preferences Outcomes and Risks of
Treatment (SUPPORT) [43]. The dataset summary statistics
are collected in Table I.

B. Visualizing Splitting Methods

This section describes the visual results obtained from the
splitting methods under different α parameters. In particular,
Figure 1 shows the results of the quantity-skewed splitting
algorithm described in Section III-A. Splits are generated for
a federation of 10 clients (K = 10), each identified by a
different color in the plots. In Figure 1, each row corresponds
to one of the example datasets described in Section IV-A.
Columns, instead, refer to different values of the similarity
parameter α, ranging from α = 1000 (low heterogeneity)
to α = 0.5 (high heterogeneity). Each plot shows the client
dataset cardinalities |Dk| with respect to clients k = 1, . . . , 10.
By looking at the plots on the left of Figure 1, higher

values of α tend to produce similar dataset cardinalities |Dk|.
Conversely, for lower α values, |Dk|s considerably differ
between clients. This trend is confirmed for all the datasets
involved in the experiments.

Figure 2 shows the results of the label-skewed splitting
algorithm described in Section III-B. Each plot shows the
Kaplan-Meier estimators Ŝk(t) of each client dataset Dk,
k = 1, . . . , 10. The KM estimator an excellent tool for survival
function visualization, as it encodes the summary information
concerning the survival labels in the dataset. Following the
structure of Figure 1, in Figure 2 each row corresponds
to a specific dataset from Section IV-A and each column
corresponds to an α value, decreasing from 1000 to 0.5. From
the left column to the right column, the KM estimators of each
client tend to separate, as α decreases. This is expected, as for
lower α values, the Dirichlet distribution assigns non-uniform
proportions of samples from each time bin to the clients. In
this way, decreasing the α parameter results in heterogeneous
federated distributions.

C. Numerical Analysis of Heterogeneity

This section provides the quantitative analysis carried out to
evaluate the level of heterogeneity induced by each splitting
method. A high level of data heterogeneity entails different
client data distributions, which leads to more realistic federa-
tions. We use the log-rank test [21] to determine whether the
event occurrence distribution is the same for two clients. This
test verifies the null hypothesis that there is no statistically
significant difference between the survival distributions of
two given populations. We consider the distribution difference
between two clients k1, k2 statistically significant if the p-value
pk1,k2

resulting from the test is ≤ 0.05.
In order to summarize the results for a federation, we define

the heterogeneity score h of a federation as the fraction of
client pairs P = {(k1, k2 : k1 < k2 ∧ k1, k2 = 1, . . . ,K)}
for which the distribution difference is statistically significant,
i.e.,

h =
1

|P|
∑

(k1,k2)∈P

1(pk1,k2
≤ 0.05).

Table II collects the h values for quantity-skewed and label-
skewed splits under several K and α values. Each result is
averaged over 100 runs.

Concerning quantity-skewed splitting, each setting presents
an average heterogeneity score smaller than 5%. In other
words, quantity-skewed survival data does not present statisti-
cally significant label distribution differences when comparing
pairs of client datasets. This implies that quantity-skewed
splitting is well suited to test the resilience of a federated
algorithm to data imbalance, but not to heterogeneous data
distributions.

Conversely, label-skewed splitting exhibits noticeable dif-
ferences in h scores depending on the value of α. In fact,
for all the tested datasets, the h score with α = 1000 is
almost zero, and decreasing α affects the number of different
label distributions among clients. For datasets with smaller
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TABLE II
HETEROGENEITY SCORE h FOR SEVERAL K AND α. h VALUES ARE AVERAGED OVER 100 RUNS AND SCALED BY 100 FOR BETTER READABILITY.

Quantity-Skewed Split, K = 5

Dataset α = 1000.0 α = 100.0 α = 10.0 α = 1.0 α = 0.5 α = 0.1

GBSG2 2.6±6.0 3.1±7.1 3.4±8.2 2.1±5.9 4.3±9.3 2.2±6.6
METABRIC 2.8±7.3 3.3±7.9 3.1±7.6 2.9±8.3 1.5±5.4 2.2±7.5
AIDS 1.4±5.3 2.8±6.5 2.1±5.0 4.6±10.5 4.6±9.8 2.3±5.8
FLCHAIN 1.9±4.6 3.2±6.9 2.3±6.0 3.8±8.4 2.9±9.8 2.6±6.8
SUPPORT 3.0±6.9 2.0±4.7 2.5±6.7 3.3±7.4 3.7±9.4 0.3±2.2

Quantity-Skewed Split, K = 10

Dataset α = 1000.0 α = 100.0 α = 10.0 α = 1.0 α = 0.5 α = 0.1

GBSG2 4.1±4.8 3.9±5.0 3.0±4.9 3.0±4.3 3.0±4.5 1.9±3.3
METABRIC 3.6±5.3 4.7±6.0 4.4±5.9 3.5±5.6 3.6±4.7 1.7±4.0
AIDS 4.1±5.6 4.5±5.5 3.8±5.4 4.5±6.4 4.5±6.3 2.3±3.6
FLCHAIN 3.7±4.8 3.4±5.0 3.6±4.5 5.5±6.7 4.2±6.2 2.3±4.0
SUPPORT 4.1±5.8 3.4±4.6 4.0±4.8 3.9±5.7 4.2±6.5 1.0±2.3

Quantity-Skewed Split, K = 50

Dataset α = 1000.0 α = 100.0 α = 10.0 α = 1.0 α = 0.5 α = 0.1

GBSG2 3.9±2.0 3.4±1.8 3.5±2.0 3.0±1.8 2.6±1.7 1.6±1.0
METABRIC 4.6±2.3 4.7±2.6 4.4±2.0 3.9±2.1 3.2±1.8 1.5±1.1
AIDS 4.5±2.2 4.9±2.5 4.4±2.1 4.6±2.4 4.2±2.4 2.0±1.1
FLCHAIN 4.8±2.4 5.0±2.4 4.6±2.2 4.7±2.6 4.8±2.7 2.1±1.5
SUPPORT 4.5±2.2 4.5±2.3 4.8±2.3 3.9±2.1 3.4±2.1 0.8±0.8

Label-Skewed Split, K = 5

Dataset α = 1000.0 α = 100.0 α = 10.0 α = 1.0 α = 0.5 α = 0.1

GBSG2 0.2±2.0 0.1±1.0 5.8±9.4 46.7±20.9 58.2±17.0 73.8±18.2
METABRIC 0.0±0.0 0.5±2.2 20.9±17.2 66.1±19.0 76.7±14.5 82.3±13.3
AIDS 0.3±1.7 3.1±7.2 37.5±21.9 75.1±16.2 81.5±14.4 86.6±11.3
FLCHAIN 0.3±1.7 12.6±14.9 58.8±17.6 83.9±12.4 88.0±11.4 94.1±7.0
SUPPORT 0.5±2.2 29.6±20.8 74.3±15.7 91.3±9.7 92.5±7.4 94.0±6.4

Label-Skewed Split, K = 10

Dataset α = 1000.0 α = 100.0 α = 10.0 α = 1.0 α = 0.5 α = 0.1

GBSG2 0.4±1.5 0.6±1.5 2.8±4.3 32.2±11.7 43.7±11.5 63.2±12.9
METABRIC 0.1±0.4 0.2±1.0 10.6±8.4 54.6±13.6 66.5±10.1 76.7±8.7
AIDS 0.3±1.0 1.4±2.7 24.7±12.6 68.1±9.0 74.0±9.1 77.7±8.4
FLCHAIN 0.4±1.2 4.2±5.5 42.8±13.0 78.2±8.8 84.9±5.6 89.3±5.8
SUPPORT 0.1±0.4 14.7±9.7 63.2±10.5 87.0±4.9 88.5±4.7 89.7±6.1

Label-Skewed Split, K = 50

Dataset α = 1000.0 α = 100.0 α = 10.0 α = 1.0 α = 0.5 α = 0.1

GBSG2 0.5±0.6 0.6±0.6 0.5±0.6 5.7±2.2 10.8±3.3 23.8±4.2
METABRIC 0.2±0.3 0.3±0.5 1.3±1.2 21.7±4.5 33.1±5.2 48.8±5.5
AIDS 0.6±0.5 0.8±0.8 4.5±2.3 34.6±5.2 45.3±4.4 49.8±4.9
FLCHAIN 0.2±0.3 0.6±0.6 10.6±3.7 55.4±4.1 64.8±2.6 72.4±3.6
SUPPORT 0.0±0.0 0.5±0.6 29.0±5.5 69.9±2.7 75.5±2.3 73.4±4.2

total cardinalities (GBSG2, METABRIC, and AIDS) α must
be smaller than 10 in order to detect noticeable differences
between client distributions. Instead, datasets with more total
samples (FLCHAIN and SUPPORT) present high heterogene-
ity even for α = 100. For all the dataset splits in small
federations (K = 5 and K = 10), α values smaller than 1
result in h > 50%. The trend does not apply to federations
with more clients (K = 50), where even α = 0.1 is not enough
to obtain h > 50%.

V. CONCLUSION

This paper proposes two algorithms to simulate data hetero-
geneity in survival datasets for federated learning. Federated
simulation is an important step in survival analysis toward
the implementation and production of more accurate, fair, and
privacy-preserving survival models. The presented splitting
techniques are based on the Dirichlet distribution. Quantity-
skewed splitting produces datasets with variable cardinalities,
while label-skewed splitting relies on time binning to split
samples according to different label distributions. Visual in-
sights are provided to show the behavior of the proposed



methods under hyperparameter change. Moreover, log-rank
tests are reported to provide a quantitative evaluation of
the degree of heterogeneity induced by each data split. To
encourage the adoption of common benchmarking practices
for future experiments on federated survival analysis, we make
the source code of the proposed algorithms publicly available.
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