
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Novel Control Flow Checking Implementations for Automotive Software / Cosimi, Francesco; Sini, Jacopo; Arena,
Antonio; Violante, Massimo. - (2023), pp. 1-4. (Intervento presentato al convegno 19th International Conference on
Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD) tenutosi a Funchal,
Madeira, Portugal nel 03-05 July 2023) [10.1109/SMACD58065.2023.10192166].

Original

Novel Control Flow Checking Implementations for Automotive Software

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/SMACD58065.2023.10192166

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980940 since: 2023-08-04T13:49:44Z

IEEE

Novel Control Flow Checking Implementations for
Automotive Software

Francesco Cosimi
Huawei Research Center

and University of Pisa
Pisa, Italy

francesco.cosimi@phd.unipi.it

Jacopo Sini
Control and Computer Eng.

Politecnico di Torino
Turin, Italy

jacopo.sini@polito.it

Antonio Arena
Functional Safety Team
Huawei Research Center

Pisa, Italy
antonio.arena1@huawei.com

Prof. Massimo Violante
Control and Computer Eng.

Politecnico di Torino
Turin, Italy

massimo.violante@polito.it

Abstract—Safety-critical applications shall be implemented on
highly dependable systems, and a part of their reliability is
based on checking if the software is executed correctly. Various
techniques are available for this purpose, like Control Flow
Checking (CFC). Many CFC algorithms can be found in the
literature, but their detection performances are assessed in
theoretical scenarios, when implemented in Assembly language.
The international standard on functional safety for automotive
applications is ISO26262. It mandates to develop using high-level
programming languages and the computation of the Diagnostic
Coverage (DC). The DC measures the effectiveness of the
chosen hardening method, in order to detect various Failure
Modes (FMs). This paper discusses two alternative solutions, one
software-only, and the other involving customized hardware, for
these concerns: (i) address the FMs affecting the computation
units described by Table 30 of part 11 of the ISO26262 (ii)
guarantee the Freedom From Interference between the hardening
method and the monitored entity.

Index Terms—Functional Safety, Control Flow Check, Hard-
ware Acceleration, Interference, ISO26262

I. INTRODUCTION

Every modern vehicle is equipped with many electronic
systems, and due to the complexity of the application, it
is necessary to analyze the potential risk of malfunctioning.
Since 2018, a new version of ISO 26262 has regulated safety
of onboard electronic devices [1]. This Standard classifies
Functional Safety (FuSa) risks through an Automotive Safety
Integrity Level (ASIL).
The execution of a safety-related task on the processing unit
of an Electronic Control Unit (ECU) can be supported by
peripherals that cover certain FuSa aspects. For example, a
Performance Monitoring Unit (PMU) and Error Management
Unit (EMU) [2], may be useful to monitor the health of the
hardware (HW) and tasks recovery action when/where needed.
On the other hand, Execution Tracing Unit [3] might help
to reconstruct the flow of the task and to perform timing
validation even for multi-core applications. Moreover, if a
semiconductor component is developed as a part of an item
compliant to the ISO 26262, it shall be implemented on the
base of hardware safety requirements, derived from the top-
level safety goals of the item, through the technical safety
concept [4].
In particular, if the safety-related functionality requires to
implement ASIL-D software (SW) safety requirements, usu-
ally the corresponding hardware, where the code is executed,
shall fulfill requirements with the same ASIL against system-
atic hardware faults. By the way, the absence of systematic
defects is not the only target of FuSa, even the possibility

of Random Hardware Failures (RHFs), due to the physical
failure of hardware elements, has to be considered. The FuSa
standard requires avoiding the presence of systematic defects
by application of a formal development process, called ”safety
life-cycle”, and the provision of mechanisms to detect and
mitigate RHFs. However, traditional automotive multi-core
microcontrollers do not guarantee the same ASIL level; thus,
the integrator shall find some countermeasures to run ASIL-D
software requirements on cores with lower ASIL.

This paper proposes a novel strategy based on ASIL-
Decomposition of Technical Safety Requirements (TSRs)
aimed at controlling semiconductor failure modes through
software safety mechanisms. In particular, the ISO26262 Part-
11 table 30 has been taken as reference, where failure modes
affecting digital components are listed and categorized by the
part/subpart they involve [4].

Among the various RHFs detection techniques available
in the literature, for those faults affecting the control flow
of embedded automotive software, Control Flow Checking
(CFC) is considered one of the most effective ones. CFC is
aware of which are the correct transitions between regions
of instructions called Basic Block (BB) and can verify if
possible hazards are caused by failures occurring in safety-
related systems.

This paper contains two novelties:
• A software-only solution implemented in the C language.

For this case, ISO26262-compliant results on its effective-
ness have been obtained thanks to the testbench presented
in [12] in a realistic automotive scenario.

• A hardware accelerated solution (with an external cus-
tom peripheral) to improve performance and guarantee
Freedom From Interference (FFI).

Both the solutions are implementation of Yet Another Control-
Flow Checking using Assertions (YACCA) [5] algorithm,
based on comparing the value of the signatures computed at
run-time with their expected values assigned to each Basic
Block (BB) at the design or compile-time.

The paper is organized in six sections. First section
(this) gives an introduction about Functional Safety devel-
oping methods. Section II introduces CFC techniques. Sec-
tion III shows how CFC can be applied, through ASIL-
Decomposition. Then, Section IV presents a SW-only im-
plementation for a Parking Pawl and its results. Section V
is about a hardware acceleration of YACCA algorithm with
a dedicated peripheral. Section VI concludes the paper and
introduces future works.

II. BACKGROUND

A. Software-based hardening techniques
The main idea beyond the CFC logic is to verify if the

program performs tasks (and/or instructions) in the correct
order. It is based on signature monitoring, and it does not
require special hardware or operating system. The idea is to
insert some redundant instructions into the source code; this
makes it low cost and adaptable to any Commercial Off-The-
Shelf (COTS) device. These inserted instructions increase the
execution time, and their effects on real-time application shall
be assessed.
If we analyze the theoretical aspects, CFC relies on the concept
of Control Flow Graph (CFG). CFG is an oriented graph,
composed of a set of vertices, each one representing a BB,
and a set of edges, representing the legal transitions between
the BBs. BBs are defined as regions of the code without any
branch or jump instructions except for the last one. If, at run-
time, a transition not present in the transitions-set, happens,
we are in presence of a Control Flow Error (CFE), detected
by CFC. To harden a piece of code with CFC, we need three
steps:

• CFG is generated.
• At compile-time (a-priori) values of signatures are as-

signed to each BB.
• Real-time signature computation and comparison meth-

ods are added to the original application.
During hardened software component execution, the signature
values computed at run-time are compared with the compile-
time ones. In the case a CFE is detected, an error variable is
set, allowing to trigger possible mitigation strategies.

B. Common Control Flow Check Algorithms
Common CFC algorithms are Enhanced Control Flow

Checking using Assertions (ECCA) [6], CFC by Software Sig-
nature (CFCSS) [7] and Yet Another Control-Flow Checking
using Assertions (YACCA) [5]. The essential difference among
these techniques is how signatures are computed, and how
checks are performed. The methods mentioned above update
signature only before performing a BB transition, limiting
them to detect only CFEs causing illegal transitions between
them (this is called inter-block detection).
In order to obtain more coverage for these methods, detect-
ing if some of the BB instructions are skipped or repeated
(intra-block detection), new algorithms can be introduced.
Relationship Signatures for Control Flow Checking (RSCFC)
[8], Software Implemented Error Detection (SIED) [9], and
Random Additive Control Flow Error Detection (RACFED)
[10] update their signatures after each statement, allowing to
check if they are executed in the correct order.

III. ROAD TO CFC AND SOME SOLUTIONS

In the scenario of a multi-core microcontroller, in which
each core can have a different ASIL, decomposition might be
applied, by splitting the Technical Safety Requirements (TSRs)
with highest ASILs in two: the computing-intensive part on
lower integrity cores, and the checking of the latter proper
functionality on higher-integrity ones.
This strategy is aimed to cover the failure modes of digital
components with lower ASIL as specified in ISO 26262-
11 Table 3, by introducing software safety mechanisms. The

idea is to decompose the TSR in hardware and software
requirements, assuming that all the validation and testing
activities are applied by the integrator.

The considered application to be hardened, as explained in
the subsections III-B and III-C, is in charge to control the
steering lock of a car. Since an engagement of the steering
lock during the driving can provoke an accident, the steering
lock functionality is safety related and classified as ASIL-D.

A. Technical Safety Concept (TSC) example
This section provides an example of TSC, assuming that an

ASIL-D TSR is allocated to the system under analysis. The
generic TSR can be specified as follows:
TSR: In case of failure, the system shall apply the safety
related function within 100ms, ASIL-D.
By following the usual requirements deployment process [11],
the corresponding HW and SW Safety Requirements (HWSR
and SWSR) inherit the same ASIL of parent TSR. The objec-
tive is to be able to satisfy the TSR, and the corresponding
hardware and software requirements, also in those scenarios
where, because of task mapping constraints, the safety related
function cannot be completely executed on cores with the
highest safety integrity (e.g. no lockstep cores).

B. Dedicated CPU Approach (Multi-core)
This scenario assumes that multiple safety related func-

tionalities are already allocated to the core(s) with highest
integrity, and that other safety related requirements cannot be
allocated on those. The strategy is to apply ASIL decomposi-
tion on TSR mentioned in Section III-A and obtain:

• HWSR1: The MicroController Unit (MCU) shall detect
failures of the hardware elements involved in the execu-
tion of the task, ASIL-X(D).

• HWSR2: The MCU shall detect failures of the hardware
elements involved in the Outbound External Communi-
cation MCU Function, ASIL-X(D).

• SWSR1: The application SW shall detect unintended
output and shall react within 100ms, ASIL-D.

• SWSR2: The Basic Software (BSW) shall detect MCU
failure modes, listed in ISO26262-11 Table 30, ASIL-
Y(D).

• TSR2: Sufficient independence shall be demonstrated
between the elements implementing SWSR2, HWSR1
and HWSR2, ASIL-D.

where ASIL-X + ASIL-Y = ASIL-D.
Thus, the proposal is to allocate the SWSR1 to the core with
lower integrity (ASIL-X). On the other hand, SWSR2 shall be
allocated on cores with higher integrity in order to fulfill the
independence constraints. At the same time, the two HWSR
are fulfilled by the core with lower integrity. This solution
is feasible provided that the effectiveness of the SW safety
mechanisms, allocated on the core with the highest integrity,
complies with the initial safety requirements.

C. Use a Dedicated Hardware Peripheral
In this solution we assume that the ASIL decomposition

applied in the previous chapters is implemented by a dedicated
HW peripheral. This scenario may happen in those cases
where a customized hardware can be developed or modified
during the design of the system. The increasing trend of RISC-
V architectures for automotive applications opens the door

to modifying the host hardware accordingly to needs to (i)
achieve the requested safety integrity level and (ii) minimize
the performance overhead. The safety requirements HWSR1,
HWSR2 and SWSR1 are still the same as in subsection III-B.
Instead, HWSR3 replaces SWSR2 as follows:

• HWSR3: The MCU shall detect MCU failure modes as
described in ISO26262-11 Table 30, ASIL-Y(D).

• TSR2: Sufficient independence shall be demonstrated
between the elements implementing HWSR1, HWSR2
and HWSR3, ASIL-D.

where ASIL-X + ASIL-Y = ASIL-D.
To maximize the performance and obtain a fully-integrated

device, the HWSR3 can be allocated to the CFC peripheral and
can be sided by the implementation of custom instructions.

IV. YACCA FOR FFI APPROACH

This section describes the results obtained by the imple-
mentation of the TSC discussed in the subsection III-B, on
an emulation of a RISC-V RV32I microcontroller. The used
testbench has been described in [12]. It comprises a Fault
Injection Manager in charge of injecting the faults in the
memory and register file. Moreover, it features a classifier that,
by comparing each fault-affected run with the fault-free, labels
each run to fill in the simulation results as in Table I.

TABLE I
ISO26262-11 SIMULATION RESULTS.

Failure mode Injected
faults

Detected Detection
Coverage

CPU FM2: un-
intended instruction(s)
flow executed

1000 230 23%

CPU FM3: incorrect
instruction flow timing
(too early/late)

964 219 22.7%

CPU FM4: incorrect
instruction flow result

36 11 30.6%

These data came out by performing 1000 injections, on a
random bit from the 16th to the 4th of the Program Counter
(PC), to be sure that the fault will modify the program’s flow.
Repeating the same experiment is needed to obtain a figure of
the Diagnostic Coverage (DC) YACCA algorithm can achieve
in a realistic automotive scenario.

A. Criticisms on FFI

As shown in the experimental results, the DCs are low,
and this is particularly critical considering that the nominal
functionality (the steering lock) is safety related. Another
point of concern regards the necessity to guarantee real-
time performances. This aspect is twofold: (i) the CFC does
not have to interfere with the real-time performances of the
application/system and (ii) the CFC is generally not capable
by itself to detect failures that increase the execution time. To
address these concerns, in Section V, we propose the use of
the HW peripherals.

V. YACCA DEDICATED HARDWARE PERIPHERAL

This section is about the implementation of the TSC de-
scribed in III-C, by realizing a custom HW peripheral based
on YACCA algorithm. Here we highlight the improvements
brought by hardware acceleration and the correlated weak-
nesses. Following list tries to evaluate which are the main
advantages of HW-acceleration:

• Test and Set functions in RISC-V can be atomic, reducing
timing overhead, because the bits in the masks can be set
without protection.

• Ease time measurement between consecutive Test and Set.
On the other hand, implementing new transistors and con-

nections brings disadvantages:
• Extend area/power overhead, and higher RHF probability.
• Limit the maximum number of monitorable tasks and

nodes, according to the size of the ID/bitmask (i.e.
YACCA) or the amount of monitoring blocks.

A way to mitigate these issues is showed in the next section.

Fig. 1. Block diagram of a CFC peripherals with N controllers and a
Controller’s Management block.

A. YACCA Architecture

The aspects of hardware custom implementation we are
more interested in are the capability of covering CFE, the re-
duction of time overhead and guarantee independence between
monitor and monitored items. Figure 1 shows the top-level
architecture using a block diagram. In the picture we can see
N blocks performing YACCA algorithm and a Management
supports supervision, control and management of settings of
sub-blocks. Each controller contains the sub-blocks shown in
Fig. 3. YACCA equation (1) is implemented in combinatory
logic.

error = [(ID&(∼ predecessors mask)) > 0]?1 : 0 (1)

In a software implementation of CFC the mask and the ID
may assume any size, according to monitored application’s
number of BBs. The hardware in this case has harder con-
straints, but it can be adapted adding some logic. As shown in
Fig. 2 we can add more replicas of the same logic (X1, X2,
X3...) and allow the selection of the right ones, corresponding
to the maximum number of Basic Blocks in the widest task.
In Fig. 2 we can allow a maximum of “n-bit X Cn” BBs for
a “X Cn” selection, where Cn is the number of replicas, and
n-bit is the number of bits contained in each of them. For
example, a typical automotive implementation has about 200
BBs, which means we have to implement a minimum of Cn
= 25 blocks of combinatory YACCA 8-bit logic (8-bit X 25).

Fig. 2. Block diagram of the logic needed to change the maximum number
of BB allowed in the monitored application.

In Fig. 3 the device detects the Set and Test functions’
outputs. Every time one of the functions is executed and
detected the counters are increased by +1. Control Logic is
enabled and start checking only if the values of the two
instructions’ counters match. The timer has nearly the same
function of a Window Watchdog, if there is a mismatch
between the the counters for too long (timeout) Error is set.

Fig. 3. This picture shows how the function detection mechanism, the
WhatchDog Timer and the Control Logic are linked inside a controller.

B. A Solution to the Number of Monitorable Tasks Constraint
To overcome problems due to peripheral size, and allow

the monitoring of more tasks than the number of controller in
Fig. 1, we can add dynamism to the way the Controllers are
managed. In fact the N controllers in the device can be divided
in two categories: fixed ones and dynamic ones. The fixed
controllers will always check the same tasks, never changing.
The dynamic ones’ control registers will be updated at every
context change, cooperating with the scheduler.

C. Analysis of Failure Coverage for YACCA peripheral
The identified Failure Modes No Annotation/Mask trans-

ferred as requested, Annotation/Mask transferred when not

requested, Annotation/Mask transferred too early/late are cov-
ered by timer/watchdog detecting a non-negligible delay (time-
out) between Annotation/Mask updates. Moreover, Failure
Mode Annotation/Mask transferred with incorrect value is
mitigated by the Control Logic, which detects the mismatch
between the Mask and the wrong Annotation [4].

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents two alternative Technical Safety Con-
cepts, one software-only, the other with custom hardware,
aimed to detect the Failure Modes of computation units
described in Table 30 of ISO26262 part 11. For the first
proposal are also reported data about its Diagnostic Coverage.
Two main reasons lead to develop hardware implementations,
when customization is an option: (i) implement the Freedom
From Interference by design, to perform ASIL- decomposition,
and (ii) reduce the time overhead, particular concern in real-
time applications.

In future works, the following aspects will be considered:
• Measure of the DC of YACCA in AUTOSAR scenarios

by performing fault injection on COTS microcontrollers.
• Comparison between the DCs obtained with HW-based

and SW-only implementations.
• Complement CFC with data hardening techniques.

REFERENCES

[1] A. Ismail, W. Jung, “Research Trends in Automotive Functional Safety”,
2013 International Conference on Quality, Reliability, Risk, Mainte-
nance, and Safety Engineering (QR2MSE), Chengdu, China

[2] F. Cosimi, F. Tronci, S. Saponara and P. Gai, ”Analysis, Hardware
Specification and Design of a Programmable Performance Monitoring
Unit (PPMU) for RISC-V ECUs,” 2022 IEEE International Confer-
ence on Smart Computing (SMARTCOMP), 2022, pp. 213-218, doi:
10.1109/SMARTCOMP55677.2022.00056.

[3] F. Cosimi, F. Tronci, S. Saponara and P. Gai, ”Analysis, Design and
Synthesis of an Execution Tracing Unit (ETU) based on AUTOSAR
Run-Time Interface (ARTI)”, International Conference on Applications
in Electronics Pervading Industry, Environment and Society, 2022,
Springer, Cham

[4] ISO26262, Part-11
[5] O. Goloubeva et al. ”Improved software-based processor control-

flow errors detection technique,” Annual Reliability and Maintain-
ability Symposium, 2005. Proceedings., 2005, pp. 583-589, doi:
10.1109/RAMS.2005.1408426.

[6] Z. Alkhalifa et al. “Design and evaluation of system-level checks for
online control flow error detection,” IEEE Transactions on Parallel and
Distributed Systems, vol. 10, Issue. 6, pp. 627-641, 1999.

[7] N. Oh et al. ”Control-flow checking by software signatures,” in IEEE
Transactions on Reliability, vol. 51, no. 1, pp. 111-122, March 2002,
doi: 10.1109/24.994926.

[8] A.Li et al. Software implemented transient fault detection in space
computers. Aerospace Science and Technology 11, 2–3 (2007), 245–252

[9] B.Nicolescu et al..“SIED:Software implemented error detection,”In Pro-
ceedings 18th IEEE Symposium on Defect and Fault Tolerance in VLSI
Systems. 589–596.

[10] J. Vankeirsbilck et al. “Random Additive Control Flow Error Detection,”
in Computer Safety, Reliability and Security Procedings, Cham: Springer
International Publishing, 2018, pp. 220–234.

[11] ISO26262, Part-4
[12] J. Sini et al.“A Novel ISO 26262-Compliant Test Bench to Assess the

Diagnostic Coverage of Software Hardening Techniques Against Digital
Components Random Hardware Failures” MDPI Electronics 11, no. 6:
901.https://doi.org/10.3390/electronics11060901

