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Rémi Jaboeuf, Tosco Paolo
Edison S.p.A., Milano, Italy

name.surname@edison.it

Abstract—Electric vehicles (EVs) have been globally recognized
as a reliable alternative to fossil fuel vehicles. The core component
of an electric vehicle is its rechargeable battery pack. However,
there still needs to be large-scale publicly available EV data
to investigate and distribute effective solutions to monitor the
conditions of the EV’s battery pack. Hence, we propose an EV
simulator that generates EV battery pack internal signals starting
from the input driving cycle. The simulated data resemble
the behavior of a multi-cell EV battery pack undergoing the
user’s utilization of the EV. The simulated data include vehicle
speed, voltage, current, State of Charge (SOC), and internal
temperature of the battery pack. The virtual-EV model simulator,
including the battery pack subsystem, has been tuned using
real-world EV data-sheet information. The battery pack embeds
thermal and aging models for further realism, influencing the
output signals given the environmental temperature and the
battery’s State of Health (SOH). The data generated by the
virtual EV simulator have been validated with real EV data
signals sampled by an equivalent real-world EV. The data
comparison yields a minimum R2 value of 0.94 and a Root Mean
Squared Error not higher than 2.74V for the battery pack’s
voltage and SOC, respectively.

Index Terms—EV, Simulation, Battery, SOH

I. INTRODUCTION

Climate change is gaining more concern as one of the
critical worldwide challenges. The road transport sector is
estimated to account for three-quarters of transport CO2 emis-
sions [1]. Electric vehicles (EVs) are considered a cleaner and
more sustainable technology than fossil fuel vehicles, reducing
air pollution, especially in urban settings. Therefore, as EVs
become the leading road transportation means, improving their
technologies becomes paramount to offer a better driving
experience to the users.

The core component of an EV is its rechargeable battery
pack which is hierarchically structured into three levels: cell,
module, and pack. Multiple battery cells are connected in
series and parallel to form a battery module, and then a
certain number of modules are assembled to form a battery
pack. Lithium-ion battery (LIB) cells are the dominating
technology for the battery pack design, thanks to a broad
set of properties [2]. LIB cells experience degradation due
to time and usage, decreasing capacity, and increased inter-

nal resistance. Therefore, monitoring the EV battery pack
conditions is essential to determine the efficiency of the EV
and, consequently, the driver’s safety. For instance, the State
of Health (SOH) indicates capacity loss due to degradation,
expressed as the ratio of the battery’s actual capacity to its
nominal capacity. The SOH’s supervision is critical since it
identifies when an EV must retire. A brand new EV battery
pack will have a SOH equal to 100%, but with the vehicle’s
utilization, the SOH will eventually decrease to 80%, reaching
the battery’s end-of-life [3].

The discovery of a new and reliable solution to monitor the
EV battery conditions will require vast datasets, especially for
machine learning data-driven approaches. But, unfortunately,
only a few open datasets, including internal battery signals,
are nowadays available [4] [5], which are not representative of
an EV battery pack. Private EV fleet management companies
could provide such data at a very high price, inaccessible to
many researchers. Therefore, the necessity of richer and more
valuable datasets pushes towards alternative and affordable
solutions to gather such data.

Hence, in this work, we propose an EV model simulator
defined using MATLAB/Simulink programming environment.
The simulator is built as an assembly of several constituents
and mutually dependent EV subsystems, modeling the main
operational mechanisms of a general EV — for instance, the
electric motor, wheels, braking system, and battery pack. The
definition of a full EV simulator allows the generation of
battery pack signals that embed complex interactions among
all subsystems.

The simulator receives an input speed time series, resem-
bling the user’s driving cycle, which induces a change in the
building blocks accordingly. Moreover, we configured thermal
and aging models of the battery pack subsystem to describe its
conditions at the beginning of the simulation adequately. For
the sake of our study, we solely monitor the simulated output
signals of the battery pack, including current, voltage, State of
Charge (SOC), and internal temperature. Finally, we employed
actual driving session monitoring data for a real-world EV
acquired from a private EV fleet management company to
assess the performances of the simulator.



We organized the paper as follows. Section II presents an
overview of the available EVs simulators and their limitations;
Section III describes in detail the structure of the simulator, its
inputs and outputs, and the chosen aging and thermal models
of the battery pack. In Section IV, we thoroughly discuss
the performances of the simulator. Finally, in Section V, we
make our final considerations over the developed simulator
and provide an overview of the possible future works.

II. RELATED WORKS

In the literature, different simulation approaches are avail-
able. Regarding load exchange, it is possible to encounter
simulators that model the impact of EVs over the power grid.
Conversely, other simulators model the inner dynamics of an
EV, monitoring its performance. The availability of EV simu-
lators enables the development of data-driven methodologies,
i.e., machine learning, to improve EV technologies under both
the manufacturing and use perspectives.

For instance, Canizes et al. [6] developed a travel simulation
tool to simulate a real environment, enabling the creation of
personalized profiles, schedules, and destinations. The tool
allows the inclusion of trips and charging stations, taking
into account the behavior of real users. The presented tool
highlights the variable-rate electricity prices that are more
advantageous to the users, considering the impact of electricity
price variation on the behavior of EV drivers. Rigas et al. [7]
proposed EVLibSim, a Java event-based simulator to model
EV activities inside the power grid at a charging station
level. Considering the user’s demands, the simulator allows
the configuration of a charging station, enabling an accurate
simulation of charges, discharges, and queues.

Gaete-Morales et al. [8] developed an open-source Python
tool, Emobpy, that generates EV time series ranging from
the vehicle’s mobility and energy consumption to the grid’s
availability and demand information. The tool exploits empir-
ical mobility statistical and physical properties data from 200
input vehicle profiles from Germany to extensively personalize
and characterize the simulation scenarios. Emobpy allows the
customization of the length and temporal granularity of the
output time series enabling the monitoring of large EV fleets.

Ciabattoni et al. [9] proposed an event-based web sim-
ulator called ePopSimulator, which allows the creation of
customizable individual and aggregated charge, discharge, and
plugin/out events for an EV fleet. Moreover, the tool includes
a Matlab/Simulink block to extend its possibilities, enabling
integration into different applications. The simulator is well
suited for investigating vehicle-to-grid technologies by cus-
tomizing the simulation scenarios. Successively, Ciabattoni et
al. [10] extended the capabilities of ePopSimulator, including
an aging model to include degradation mechanisms on battery
performances. The aging behavior expresses the degradation
in terms of residual capacity that allows the estimation of the
battery’s SOH.

Simic and Bäuml [11] exploited Modelica packages to
develop a hybrid EV model which includes an idealized
battery pack. They parameterized the EV model employing

available measurements and data-sheet information, select-
ing real measured current as a reference signal. The model
achieves good performances for the battery voltage yielding a
deviation of 5% between the measured and simulated signals.
Finally, Baker et al. [12] defined FASTSim, as an open-source
vehicle simulation tool that analyzes and designs EVs and
conventional vehicles. The tool models car components at the
highest level while maintaining accuracy, ensured through the
validation of the results employing data from hundreds of
cars. The potentialities offered by the tool allow researchers to
explore numerous solutions to improve EV technologies, such
as estimating energy consumption.

The solutions available in the literature generally focus
on monitoring the impact of a fleet of EVs over the power
grid, neglecting information on the inner battery pack. In
contrast, it is essential to simulate the battery pack within the
vehicular environment to analyze the operation of a single
EV. Therefore, in this work, we propose a virtual-EV model
simulator, developed with MATLAB/Simulink, focused on
generating internal battery pack signals, given a few inputs
fully customizable by the user. Moreover, concerning the many
solutions in the literature, the MATLAB/Simulink environ-
ment allows the export of the EV simulator to a standalone
functional mock-up interface file. Such a possibility enables
researchers to integrate the developed EV simulator into a
broader co-simulation environment, extending the analysis to
a wide-range set of applications.

The proposed EV simulator is equipped with a multi-
cell battery model that generates the battery pack’s current,
voltage, State of Charge (SOC), and internal temperature
time series given the input driving cycle (i.e., a time series
of speeds). The selection of a multi-cell structure for the
battery pack allows us to mimic the actual inner structure
of an EV battery pack, with the cells organized in modules
and connected in series and parallel. The realistic battery
pack generates the output current, voltage, SOC, and internal
temperature considering the contribution of all and each cell.
In this way, we can generate precise and realistic internal
battery pack signals. Furthermore, the battery pack embeds
aging and thermal models; the former permits the customiza-
tion of the initial degradation conditions of the battery pack
at the beginning of the simulation; the latter manages the
heat exchanges between the battery pack and the external
environment to keep the internal temperature between 30 ◦C
and 40 ◦C.

We parameterized the EV simulator solely using data-sheet
information publicly accessible online to replicate the target
real-world EV model, the Volkswagen e-Golf. Each building
block of the EV simulator can be extensively modified to
match a target real-world EV model, changing the inner
parameters. Hence, the user might define an EV simulator
representing any real-world EV model whenever technical
data-sheet information is available. Using the proposed EV
simulator, we can generate a synthetic and realistic dataset
including internal battery pack signals, which might be only
accessible through either costly and time-consuming labora-



tory experiments or devices directly connected to the EV’s bat-
tery management system. The generation of realistic internal
battery data enables thorough research exploiting data-driven
methodologies to improve EV technologies, overcoming the
issue of data unavailability.

III. DATA AND METHODOLOGY

This section describes the employed dataset and how we
defined the EV simulator. We thoroughly discuss the design
choices of the simulator’s subsystems, the required inputs, and
generated outputs.

A. Dataset

The utilized dataset, acquired from a private company,
consists of actual EV battery pack measurements relative to
an individual real-world EV model, a Volkswagen e-Golf.
The dataset comprises five driving session data from the
same vehicle but characterized by a different mileage, hence
with other battery pack conditions, i.e., SOH. The data were
collected through a device connected to the battery manage-
ment system of the EV, which gathered environmental and
internal information concerning the monitored EV. The dataset
includes measurements of environmental temperature [◦C],
EV speed [kmh−1], current [A], voltage [V], SOC [%], and
internal temperature [◦C] of the whole battery pack. Each of
the observed properties is sampled with a different frequency.
Indeed, the device sampled current and voltage with a higher
frequency since these physical quantities tend to vary more
rapidly over time with respect to the listed others. We report
the employed frequencies to sample the data for the real-
world EV in Table I. We used the available real EV data to
validate the simulated signals generated by the EV simulator.
We report in Table II an overview of the available driving
sessions belonging to the dataset.

B. The EV simulator

The EV simulator has been developed using MAT-
LAB/Simulink [13], a simulation environment that defines
complex systems using modular components. Indeed, we
determined the proposed EV simulator as an assembly of

TABLE I
THE SAMPLING FREQUENCIES OF THE ACQUIRED REAL SIGNALS.

Input signal Sampling frequency [s]
Speed 19

Current 0.1
Voltage 0.1

SOC 11
Battery internal temperature 41

Outside temperature 110

TABLE II
GENERAL INFORMATION OF THE AVAILABLE DRIVING CYCLES (DC).

Driving
cycles

Duration
[s]

Avg. speed
[kmh−1]

Avg. Environmental
temperature [◦C]

Avg. SOC
[%]

Battery pack’s
SOH [%]

DC1 7777 38.50 21.32 78, 20 99
DC2 3749 81.85 30.08 50.74 98
DC3 3039 58.04 17.60 84.19 95
DC4 4584 60.59 19.74 78.11 94
DC5 6089 67.02 20.04 73.71 93

Fig. 1. The inner structure of the EV simulator with the subsystem interactions
and relative inputs and outputs.

individual blocks, each modeling a specific EV subsystem.
To correctly represent a fully operational EV, we included
the following blocks: driver, motor, braking system, drivetrain,
wheels, vehicle body, vehicle dynamics, and battery pack. We
thoroughly describe the building blocks of the simulator later
in the manuscript, while Figure 1 shows the schematic diagram
of the simulator’s inner structure. For the sake of this study,
we tuned the simulator’s parameters to match a specific real-
world EV, a Volkswagen e-Golf, for which we own actual
battery pack measurements. In this way, we can correctly
assess the performance of the simulator. The main parameters
of the simulator’s blocks have been retrieved from online
sources and technical data-sheets. Hence, with this approach,
we could model numerous real-world EV models by changing
the parameters following the technical specifications of the
target EV model.

The EV simulator receives a driving cycle as input, ex-
pressed as a time series of speeds representing the user’s
driving routine. Hence, according to the driving cycle, the
EV simulator generates accurate internal battery pack signals,
including current, voltage, internal temperature, and SOC. We
added thermal and aging models to the battery pack to further
improve the quality of the synthetic output signals. Therefore,
besides the input driving cycle, the user can specify the envi-
ronmental temperature and battery pack’s degradation status in
terms of SOH. In such a way, it becomes possible to customize
the conditions of the simulated EV model to match the
researcher’s needs. As previously mentioned, the EV simulator
comprises mutually dependent subsystems, Driver, Motor,
Wheels & Brakes, Drivetrain, Vehicle dynamics, and Multi-cell
battery pack. The modules are connected through the signals
generated during the simulation. Referring to Figure 1, the
Driver block implements a discrete-time proportional-integral
controller that mimics the vehicle’s human driver. At each time
step, the controller tracks the given input driving cycle and the
simulated vehicle speed, attempting to line them up by acting
on the brake and accelerator pedals. The Motor block, taken
from the Simscape library [14], implements a mathematical
model of an electric motor operated in torque-control mode.



The Drivetrain in Figure 1 is the set of rotating shafts and
gears that distributes the mechanical power generated by the
electric motor to the wheels. The vehicle body implements
a three-degree-of-freedom rigid vehicle body with constant
mass. The three degrees of freedom are the pitch, yaw, and roll,
allowing the correct suspension system implementation. The
Wheels and Brakes are modeled using the Longitudinal wheel
with disc brake Simulink block. The braking system is based
on two contributions: friction and regenerative braking. The
former is the conventional braking mechanism activated by
pressing a brake pedal, generating a friction force opposing the
direction of the wheel; the latter recharges the EV battery pack
while slowing down the vehicle. Hence, we added regenerative
braking in the baseline block since it was not implemented to
mimic the dynamics of a real EV. The Vehicle dynamics block
handles the forces acting on the vehicle body, and it enables
the definition of the wind resistance and slope of the road.

Finally, as shown in Figure 1, the Multi-cell battery pack
subsystem, taken from the Simscape library, is modeled as a
multi-cell battery pack. The cells are individually organized in
modules and connected in series and parallel, mimicking the
actual inner structure of an EV battery pack. The chosen multi-
cell battery pack module provides data on each cell’s current,
voltage, SOC, and internal temperature. But, for the sake of
our study, we consider their aggregate outputs computed as
average values for current, SOC, and internal temperature.
At the same time, for the voltage, we calculate the sum
of the individual cell voltages. We consider the aggregate
values of the battery pack’s signals to properly compare them
with the real available Volkswagen e-Golf’s battery signals.
The number of cells, their configuration data, and all the
other subsystems’ main parameters have been chosen based
on publicly available technical data-sheets. In this way, we
configure the EV simulator to represent the target real EV
model we intend to replicate as much as possible.

The EV simulator does not consider the impact of auxiliary
devices within the vehicle, such as air-conditioning units,
headlights, radio, power steering, etc. Therefore, to contem-
plate the effect of such devices over the battery’s SOC, we
include an offset to be added to the generated current equal
to 5.5A. Moreover, we added a minimal wind resistance
component of 4m s−1 to the opposing forces acting against
the vehicle during the driving. In this way, we define an
EV simulator that emulates more realistic driving conditions
the vehicle experiences. Unfortunately, we cannot assess the
goodness of such values since the available dataset does not
include environmental information besides external tempera-
ture, which is prone to their validation.

C. Thermal and aging models

As introduced in the previous Section III-B, we added
thermal and aging models to the battery pack to further
improve the quality of the synthetic output signals. We defined
the thermal model as a state flow chart, depicted in Figure 2,
that receives each battery pack cell’s variation of temperature,
voltage, and current to compute the percentage of generated

power to be exchanged as the heat between the battery pack
and the external environment. The state flow chart ensures
that the overall battery pack temperature stays between 30 ◦C
and 40 ◦C to guarantee the correct battery pack functioning.
Referring to Figure 2, each block identifies a state. At the

Fig. 2. The inner structure of the thermal model state flow chart.

same time, heat is the heat to be exchanged, i, volt, and Temp
are the aggregated current, voltage, and internal temperature
of the battery pack, respectively.

On the other hand, through the aging model, we can modify
the initial health conditions of the battery pack. The input to
the aging model is the desired SOH, expressed as a percentage,
which is generally defined through the following relation,

SOH =
Cactual

Cnominal
(1)

where Cactual and Cnominal are the current and nominal
capacities of the battery pack, respectively. Given the battery
pack’s desired initial SOH and its nominal capacity (retrieved
from technical data-sheets of the EV model), we can compute
the Cactual. Indeed, using Equation (1), a 1% decrease of SOH
corresponds to a 1% reduction of the battery pack’s nominal
capacity. Through such a relation, we compute the actual
capacity, which is then assigned to the battery pack subsystem
of the EV simulator at the beginning of the simulation,
affecting the initial battery’s aging conditions.

IV. EXPERIMENTAL RESULTS

In this section, we present the performances of the EV
simulator, comparing the simulated battery pack signals with
the real ones, given the same input driving cycle, environ-
mental conditions and battery pack’s initial state. We use
the Volkswagen e-Golf’s real battery pack signals as our
benchmark. The performance metrics used to quantify the error
between actual and simulated output signals are the Root Mean
Square Error (RMSE) and Coefficient of determination (R2).
The RMSE quantifies the standard deviation of the residuals
and prediction errors, while the R2 measures the variability in
the observed values that can be explained using the predicted
values. The mathematical formulation of the selected metrics
is the following,

RMSE =

√∑N
n=1(ysim,n − yreal,n)2

N
(2)

R2 = 1−
∑N

n=1(yreal,n − ysim,n)
2∑N

n=1(yreal,n − yreal)
2

(3)



where ysim is the simulated value, yreal is the observed
value, yreal is the mean value of the observed values, and
N is the total number of simulated values. As mentioned,
the EV simulator generates internal battery signals according
to the input driving cycle, the desired battery pack’s aging
status, and environmental conditions. We individually measure
the performances of the generated synthetic data for each
input driving cycle and output signal using the performance
indicators introduced above. The simulator generates all output
battery signals with a sampling frequency of 0.1 s to correctly
capture the sub-second evolution of signals, especially for cur-
rent and voltage. Therefore, the real signals are down-sampled
with the same frequency for correct results validation using
linear interpolation. The simulation duration is proportional to
the input driving cycle length.

We provide a complete overview of the simulator’s perfor-
mances in Table III, for all the individual input driving cycles.
We report the RMSE and R2 assessed by comparing each
output simulated battery signal with its corresponding real
signal. The chosen input driving cycles are characterized by
different environmental conditions and, most importantly, dis-
tinct battery aging statuses. Nevertheless, observing Table III,
the errors between actual and simulated battery signals are all
approximately of the same magnitude over the different driving
cycles. Indeed, for the voltage, the RMSE ranges between
2.14V and 2.74V for DC 3 and DC 1, in that order. Or,
for the SOC, the R2 lies between 0.94 and 1.00 for DC 3
and DC 5, respectively. Such performances prove the thermal
and aging model’s capability to correctly describe the battery
pack’s degradation. Indeed, for all tested driving cycles, and
their relative scenarios, the R2 for the SOC is well above 0.90,
reaching 1.0 for DC 5. In contrast, the RMSE for the internal
temperature is approximately 1 ◦C except for DC 1. Also, for
the simulated voltage, the RMSE does not exceed 3V, and
the minimum R2 equals 0.89 for DC 2 and DC 3.

However, the real driving cycle included in the dataset,
utilized as the primary input to the simulator, has been
collected by the device on board the monitored EV with a
much higher sampling frequency than the current or voltage.
We have no information about the driver’s velocity between
two speed sampled measurements. This inevitably leads to an
approximation of the input driving cycle, which results in less
detailed simulated output signals, especially of current, com-
pared to the real ones. This limitation explains the performance
drop for the simulated current, which is highly correlated to the
pilot’s driving behavior. Indeed, for the current, the minimum
RMSE is 29.92A for DC 5, while the maximum R2 is 0.40 for
DC 4. Still, considering this limitation, the simulator provides
accurate battery pack signals.

Moreover, we do not have any information related to the
road traits traveled by the driver but the speed, e.g., slope
and wind resistance, which highly influence the behavior of
the EV. All these contributions are embedded into the real
dataset signals and unknown to us, making perfect alignment
between simulated and actual battery pack signals impossible.
Despite this limit for the performance assessment validation,

the EV simulator demonstrates surprising accuracy in simulat-
ing battery pack data, given the heterogeneous driving cycle
and battery degradation condition.

Figure 3 and Figure 4 show the simulator’s output signals
for two distinct driving cycles, DC 5 and DC 2, compared
to the real ones, providing the reader a clearer insight into
the results. The EV simulator catches the correct evolution
of the signals, proving its accuracy. Indeed, looking at the

Fig. 3. The comparison between real and simulated battery pack signals
generated that uses the input DC 5.

simulation results in the mentioned images, we can observe
a decrease in SOC and the rising of internal temperature as
the vehicle’s mileage and utilization increase. Moreover, with
the reduction of SOC, we can observe a gradual decline in
the battery pack’s voltage, a consequence of the electrical
potential reduction, as expected. We can also notice negative
current spikes in conformity with the vehicle’s accelerations;
conversely, positive current spikes correspond with sudden
braking. In addition, observing Figure 3 and Figure 4, it is
possible to demonstrate the relatively low R2 for the internal
temperature. Indeed, the actual internal temperature signal is
sampled once every 41 s (see Table I), resulting in a stepped
curve over time. In comparison, its simulated version changes
smoothly with the other outputs making the real and simulated



TABLE III
THE PERFORMANCES OF THE EV SIMULATOR IN TERMS OF RMSE AND R2 FOR EACH OUTPUT BATTERY PACK SIGNAL AND INPUT DRIVING CYCLE.

DC 1 DC 2 DC 3 DC 4 DC 5
Battery signal RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Current 51.65A 0.19 38.09A 0.27 33.77A 0.39 40.00A 0.40 29.92A 0.35
Voltage 2.74V 0.92 2.42V 0.89 2.14V 0.89 2.33V 0.94 2.26V 0.94

SOC 1.95% 0.97 2.54% 0.96 1.56% 0.94 1.06% 0.99 0.62% 1.00
Internal temp. 5.04 ◦C −0.74 0.59 ◦C 0.76 1.07 ◦C −0.27 1.31 ◦C 0.48 1.14 ◦C 0.15

Fig. 4. The comparison between real and simulated battery pack signals
generated that uses the input DC 2.

temperature signals quite different. The different curve shapes
produce a low R2, although the RMSE remains small.

V. CONCLUSIONS

In this work, we proposed an EV simulator developed in
MATLAB/Simulink environment that, starting from an input
driving cycle, generates internal battery pack signals, namely,
current, voltage, SOC, and internal temperature. The simulator
includes the multi-cell battery pack subsystem equipped with
an aging model that allows us to specify its degradation
conditions at the beginning of the simulation. Moreover, we
defined the thermal model, which accurately describes the heat
exchanges between the battery subsystem and the external
environment. The simulator proves accuracy in generating
output signals given different driving cycles and battery aging

statuses. The user could generate a vast and realistic dataset of
internal battery pack signals of current, defining any custom
driving cycle and operating scenario. Moreover, we selected
the parameters for the EV simulator’s subsystems exclusively
from freely accessible technical data-sheets related to the
target real-world EV model. In this way, the user can define an
EV simulator mimicking any EV model of interest whenever
its data-sheet information is available.

For future works, we plan to include a detailed contribution
of all the auxiliary devices onboard the EV, affecting the
outcome of the simulation, into the EV simulator. Finally,
we will generate a synthetic and realistic dataset allowing the
development of applications to improve the monitoring of the
battery pack.
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