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Abstract—In recent times, the consistent growth of wave energy
makes it one of the most promising forms of renewable energy.
Due to the intermittency and non-stationary nature of waves,
the grid integration of these renewable energy sources involves
a series of complex power conditioning stages to deliver grid
electric power that meets the corresponding quality standards.
Furthermore, to enable optimal management and operation of a
smart grid power system, forecasting the wave power delivered
to the grid is essential. In this paper, we present a novel approach
based on Long Short-Term Memory Neural Network to forecast
the wave power delivered to the grid of a Wave Energy Converter
(WEC) - the ISWEC, which is a device able to harvest sea energy
by exploiting the inertial effect of a gyroscope - in short-time
horizons (e.g. 1min). The data for the analysis was obtained from
a simulator that combines a model of the ISWEC device and the
power conditioning grid integration for this particular WEC.
In addition, to investigate the effectiveness of downsampling,
we compared the performance behavior of the raw dataset
and downsampled versions of it. The results showed that as
the downsampling increases, so does the forecasting accuracy:
the forecasting performance of the raw dataset returned the
worst results, while the one of the dataset with the biggest
downsampling studied returned the best.

Index Terms—Renewable Energy, Wave Energy Converter,
Energy Forecast, Neural Networks

I. INTRODUCTION

The global rise in environmental issues and the draw-
backs of using fossil fuels as energy sources have led to
a significant increase in the utilization of renewable energy
sources (RES). In recent times, numerous projects have been
developed worldwide to address global warming, including
the European Green Deal Project [1], which aims to fully
replace all fossil fuels with renewable energy sources by
2050. Consequently, research on renewable energy is a rapidly
growing field nowadays. Indeed, solar and wind energy tech-
nologies have undergone significant improvements in recent
years, making them major contributors to the generation of
renewable energy [2], [3]. Within this framework, wave energy
has emerged as a serious contender in the renewable energy
field [4] due to its high power density, potential [5], and
greater predictability compared to solar and wind energy [6].
However, a Wave Energy Converter (WEC) is required to
capture the kinetic energy of ocean surface waves and convert
it, first, into mechanical energy in the Power Take Off (PTO)
and later into electrical energy [5]. WECs are typically clas-
sified based on their installation location (i.e. onshore, near-
shore, and offshore), size (i.e. point absorber, attenuator, and

terminator), and operation principle (i.e. pressure differential,
floating structures, overtopping, and impact devices) [7].

The increasing use of RES in recent years has led many
countries to develop more advanced power grids, known as
Smart Grids. Smart Grids can use network information to
improve network stability and management [8]. However, as
with other RES such as wind and solar energy, the power
generated from wave energy fluctuates due to the intermittent
and stochastic nature of waves [9]. This poses a significant
challenge for the grid integration of WECs, requiring Smart
Grids to be adjusted to overcome these fluctuations. Recent
research has suggested that the intermittency problem of RES
can be addressed by implementing smart system operating
procedures such as state estimation [10] and real-time forecast-
ing [11]. State estimation is the process of evaluating the state
of the grid by comparing system measurements and predicted
ones at a particular time step k. State estimation allows the
detection of possible system failures and measurement errors.
To estimate electric power generation - an important grid state
variable - it is essential to forecast the power delivered from
WECs.

In the wave energy field, physical models have been used
to make predictions since the late 1960s. However, to re-
duce errors, these models have become increasingly complex
over time, which has led to a significant increase in their
computational cost [12]. One of the fields that have arisen
and bloomed to make predictions in the area, with minimal
time and cost, is the use of Machine Learning (ML) and
Deep Learning (DL) algorithms [13]. These include the use of
Artificial Neural Networks (ANN), Support Vector Machines
(SVM) and Recurrent Neural Networks (RNN). Recently, the
Long Short-Term Memory (LSTM) method, which is derived
from RNN, has demonstrated the ability to tackle a variety
of sequential learning-related problems, making it one of the
most suitable methods for addressing prediction tasks [14].
Several Authors [7], [13], [15]–[17] have implemented LSTM
algorithms to forecast the generated power of WECs. In
addition, in [13], [15] the original dataset resolution is reduced
aggregating, i.e. downsampling [18], the signals in bigger time
steps (e.g. 15min). Downsampling is a technique often used
to smooth out noise and improve the quality of power signals.
Nonetheless, to the best of our knowledge, there is no previous
reference in the literature for the forecasting of the power-to-
grid delivered of a WEC. The grid integration of a WEC is a



critical step in the wave-to-grid power generation process that
present several difficulties (e.g. power conditioning processes)
and must be taken into account. Yet, real-world data that
accounts for this step is rare or does not exist.

The scientific novelty of our methodology is the use of
a model that implements the complete wave-to-grid power
generation process, capable of generating a realistic dataset
of the power delivered to the grid by the Inertial Sea Wave
Energy Converter (ISWEC), an inertial floating, offshore point
absorber [19]. This wave-to-grid model is the combination
of two previously validated models: the ISWEC model [19]–
[22], and the power conditioning stage for this device [23].
What is more, our methodology comprises the application of
LSTM algorithms to predict the delivered power to the grid
in short-term horizons (1min). We designed and optimized
LSTM neural networks by exploiting a dataset consisting of
30 hours of real-world data on the electric power delivered to
the grid, collected with our wave-to-grid model. Last but not
least, to investigate the effectiveness of the usage of downsam-
pling for wave power forecasting, we compare the prediction
performance obtained using raw data and aggregating data in
different time steps.

The rest of the paper is organized as follows. Section II
reviews the literature solution for Wave Energy Forecasting.
Section III presents the proposed methodology for power-to-
grid forecasting of the ISWEC device. Section IV discusses
the experimental results. Finally, Section V discusses the
conclusion remarks.

II. RELATED WORK

For efficient grid integration, wave energy should be esti-
mated and forecasted through proper methods. Consequently,
numerous studies were proposed in the literature. Several
authors [7], [12], [15], [16], [24]–[26] implement different su-
pervised Machine Learning techniques using input parameters
from the WEC. [12], [16], [24] used as input the position
(Latitude and Longitude) and the power outputs of an array
of WECs of 4 different wave farms to forecast the power
output. [12], [24] implemented different configurations of
a simple Multi-Layer Perceptron model for predicting the
output power of each farm separately. Different accuracies
were obtained depending on the nature of each wave regime.
In [16], a comparison between different kinds of LSTM
models (Vanilla LSTM, Stacked LSTM, Convolutional Neural
Network-LSTM, and Bi-Directional LSTM) is performed. The
Bi-Directional model showed the best accuracy.

In literature, a common practice is to try to reduce the diffi-
culty of the forecasting problem by studying the correlation be-
tween the input data employing Principal Component Analysis
(PCA). In [7], a sequence-to-sequence LSTM neural network
is implemented, using as input the feature parameters obtained
with PCA that represent 90% of the original information. The
model is then compared with other traditional ML algorithms
such as Support Vector Machine (SVM), Regression Tree
(RT), Gaussian Process Regression (GPR) and Ensembled
Trees (ET). The results showed that the developed model

outperformed the other algorithms. Moreover, [15] used the
same inputs, but implemented a sequence-to-one architecture
to predict the output power generation of a WEC. Different
models were tested (SVM, Neural Networks and LSTM),
being the LSTM neural network the most accurate. In [25],
the input dataset consists of the accelerations and angular
velocities among the 3 axes of the WEC as well as the
magnitudes. The data was then downsampled into different
window sizes. These features were input to PCA to reduce the
dimension of the dataset. Two different approaches were devel-
oped for the forecast: one implementing a classifier [27] plus a
prediction model, and the other just the prediction model. The
prediction models tested were: SVM, Random Forest (RF),
and Artificial Neural Networks (ANN). The results showed
that the models implementing a classifier combined with the
regressor outperformed the others. What is more, the model’s
accuracy varies according to the window size adopted.

In [26], a Neural Network Autoregressive with Exogenous
Input (NNARX) was implemented to predict the wave-induced
excitation torque of the ISWEC device, using as input the
angular speed of the PTO, the angular speed of the hull and
the PTO torque.

Other studies were inspired by the correlation of wave
energy power and weather conditions (e.g. wave height and
wave period), employing weather-related exogenous inputs for
their models. In [28], significant wave height is used as input
data and, after a conversion to power using a device power
matrix, employed as input to a Non-Linear Autoregressive
Recurrent Neural Network. In [13], an LSTM neural network
is developed for forecasting the power output of a WEC using
as exogenous inputs wave height and wind speed. The results
showed a clear relationship between wind speed and the output
power of the studied WEC. In [17], the input is composed of
wave height, wave direction, wave energy period and wave
energy flux. Different ML algorithms were tested, including
adaptive neuro-fuzzy inference system (ANFIS), feed-forward
neural network (FFNN), polynomial neural networks (PNN),
Vanilla LSTM, stacked LSTM, and Bi-LSTM. This last out-
performed the other algorithms. In addition, to identify the
most dominant wave parameters for predicting the energy flux,
different input combinations were tested, giving as best input
parameters the wave height and wave direction.

In literature, the proposed models considered the forecasting
problem of the instantaneous output power of the WEC PTO,
neglecting the grid integration of the device. This last is a
critical stage in the wave-to-grid power conversion process and
cannot be neglected. Nonetheless, real-world data for this case
is rare or does not exist. Our methodology presents a model
that implements the whole wave-to-grid power conversion
process of the ISWEC device and generates a realistic dataset
of the power delivered to the grid. In addition, our method-
ology comprises an LSTM neural network for forecasting the
delivered power to the grid in the short-term (1 min) to meet
the requirements of further algorithms needing these results,
such as state estimation. Lastly, to study the effectiveness of
the usage of downsampling for forecasting the wave power



delivered to the grid, we compare the prediction performance
obtained using raw data and aggregating the data in different
time steps.

III. METHODOLOGY

In this section we present our methodology, which schema
is shown in Fig. 1. To the best of our knowledge, real-
world data for the case under study is rare or does not
exist. Consequently, we simulate the behaviour of the ISWEC
and generate a realistic dataset using the ISWEC Wave-to-
Grid Simulator. This block combines two models: the ISWEC
Wave-to-PTO model [19]–[22] and the PTO-to-Grid Electric
System model [23]. The output of this block is the electric
power delivered to the grid by this particular WEC. We use
this power as input for our forecasting algorithms. Then, the
dataset is split into training and test set. The training set is
employed to train the LSTM models. To study the effectiveness
of downsampling, we implement two approaches: using the
raw data as input and downsampling the dataset in different
time steps before feeding the ML algorithms. During the test
phase, the trained LSTM models are fed with the test set
accordingly (raw or downsampled data). Lastly, the trained
LSTM models are evaluated and compared based on their
prediction performance on the test set.

A. ISWEC Wave-to-grid Simulator

ISWEC is a gyroscope-based floating WEC [19]. Externally,
it appears as a monolithic hull constrained to the seabed
by a slack (geographic) mooring. The ISWEC’s gyroscope
mechanism is its main component. A gyroscopic torque is
generated around the PTO axis due to the combination of
the flywheel’s rotational speed, and the wave-induced pitching
motion of the floating hull. The PTO can use this torque to
generate electrical power [29].

We use the ISWEC Wave-to-grid Simulator to simulate the
behaviour of the ISWEC and collect the power delivered to
the grid. This block consists of two models in literature: the
ISWEC Wave-to-PTO model [19]–[22] and the PTO-to-Grid
Electric System model [23].

The ISWEC Wave-to-PTO model comprises two main phe-
nomena: the hull hydrodynamics and the mechanics of the
gyroscope. The model’s input are wave forces, which force
the dynamics of the whole system, including the hull. The
hull kinematics combined with the gyroscopic effect known
as gyroscopic precession generates a torque in the PTO shaft
which is converted first into mechanical power and later into
electrical power (more details in [19]–[22]).

The ISWEC Wave-to-PTO model is then combined with the
PTO-to-Grid Electric System model. This system can smooth
the oscillating power coming from the PTO into a more steady
electric power flux to be later delivered to the grid (more
details in [23]). The whole system outputs the power delivered
to the grid that has been used to generate a realistic dataset
(see next Section III-B).

Fig. 1. Schema of the proposed methodology

TABLE I
TRAINING AND TEST SET SIZE OF THE DIFFERENT DATASETS

Dataset
Raw Data D-1s D-2.5s D-5s D-10s D-30s

Training Set 810000 81000 32400 16200 8100 2700
Test Set 270000 27000 10800 5400 2700 900

B. Dataset and Pre-processing

We exploit a dataset sampled every 0.1s (10 Hz) for 30 hours
of delivered power to the grid obtained with the ISWEC Wave-
to-Grid simulator. The original dataset contains measurements
of the device’s surge, sway, heave, roll, pitch and yaw position,
angular velocities and accelerations - totalling 18 variables -
and the delivered power to the grid. For the case under study,
we only consider the delivered power to the grid, resulting in
1080000 samples. This work aims to compare the forecasting
1 minute ahead of the delivered power using raw data versus
downsampled versions of the same dataset. For downsampling
the dataset, we aggregate the data in bigger time steps using the
sliding non-overlapping moving average window technique.
Regarding the window size - i.e. the time steps in which the
data is temporally aggregated - there is not a general agreement
on which one to use [30]. We downsampled the data in time
steps of 1s, 2.5s, 5s, 10s and 30s. We refer to these datasets
as D-1s, D-2.5s, D-5s, D-10s and D-30s, respectively.

Moreover, to evaluate the prediction performance of the
proposed models, we split the dataset of each case into training
(75% - first 22.5 hours) and test set (25% - last 7.5 hours).
Furthermore, we use the last 10% of the training set for
validation during the training phase. Table I shows the details
of the number of data points for the train and test phases of
the raw and the downsampled datasets. As it can be seen, for
increasing time steps the number of data points diminishes,
being the D-30s dataset the one with least amount of data
points both for training and testing. Its number of data points
is 300 times smaller than the ones of the Raw Dataset.

Last but not least, feature scaling is required for optimizing
and speeding up the training process of ML algorithms [31].
Consequently, we scaled the input dataset (power delivered
to the grid) in a range between 0 and 1 using Min-Max
normalization:

xscaled =
x−min(x)

max(x)−min(x)
(1)



TABLE II
SELECTED MODELS

Dataset Hidden
Layers

Batch
Size

Time
Lag

Neurons
Layer 1

Neurons
Layer 2

Train
Time [s]

Raw Data 2 128 60 64 64 401.45
D-1s 2 64 120 32 32 350.58

D-2.5s 2 16 48 16 16 153.24
D-5s 1 16 48 64 - 126.98
D-10s 2 32 12 64 64 18.57
D-30s 2 8 8 128 64 15.17

where x is the vector of values to be scaled, min(x) and max(x)
are the minimum and maximum values of that vector.

C. Long Short-Term Memory Neural Network

The Long Short-Term Memory Neural Network (LSTM)
is a RNN developed to solve the “vanishing gradient” prob-
lem [32]. Due to its structure, the LSTM presents a significant
well performance for time-series forecasting, since it can make
connections over 1000 time steps as well as prevent errors
from backpropagating between time and layers [33]. For the
hidden layer, we decided to use the hyperbolic tangent (tanh)
activation function because it is a popular choice and provides
good results [34]. Instead, for the output layer, we used a
linear activation function. The multi-step ahead prediction is
implemented with a multi-output approach [35], i.e. a single
network with n outputs, where n is the number of steps ahead
to predict. For the different datasets (raw and downsampled
ones), the prediction horizon is equal to one minute.

For the general architecture of the network, we considered
different configurations employing one or two hidden lay-
ers as done in the literature [7], [15], [16]. Regarding the
hyperparameters, i.e. batch size, number of regressors (time
lag), and number of LSTM units in the hidden layer, there
is no established mathematical model to determine the ideal
parameters. Therefore, we adopted a trial-and-error approach
to find the best hyperparameters. For the batch size, we
investigated values ranging from 4 to 128. Furthermore, we
studied the number of regressors from 2 to 120. Moreover,
for the number of LSTM units, we searched in the range of
2 to 192. For the cases implementing two hidden layers, we
arbitrarily decided to consider two different versions for the
second hidden layer: one implementing the same number of
units as in the first hidden layer, and the other with half the
units. The optimization algorithm used for training in all cases
is the Adaptive Moment Estimation (Adam Optimizer) [36]. In
addition, to prevent overfitting, we employed an early-stopping
strategy [37]. Early-stopping is a technique in which, during
the training phase, it interrupts the training if there is no
improvement in the validation set after a certain number of
steps. Apart from preventing overfitting, early-stopping also
reduces significantly the training time.

The hyperparameters of the selected model for each dataset
are reported in Table II. As presented, all the models employ
two hidden layers except for the D-5s model. For this reason,
this model only implements neurons in the first layer. Except
for the D-10s, it can be seen a decreasing trend in the batch

size for the selected models as the downsampling increases,
which can be related to the decreasing size of the datasets.

IV. RESULTS AND DISCUSSION

In this section, we present the results obtained with the
proposed methodology. Firstly, we explain the statistical indi-
cators used to analyze and compare the different models. Then
we describe the results obtained for the different datasets. To
train and validate the models, we run our simulations in a PC
equipped with a CPU Intel I3-9100F 4x3.60GHz, GPU Nvidia
Quadro P2200 and 32 GB of RAM.

A. Performance Metrics

To evaluate the performances of the different implemented
models, we employed three metrics commonly used in lit-
erature to measure the similarities between predicted and
observed time series [38]: i) Mean Absolute Difference (MAD)
between predicted and observed values; ii) Root Mean Square
Deviation (RMSD) measures the standard deviation of the
difference between the predicted and the observed values;
iii) Coefficient of determination (R2) determines the percentage
of the variance in the observed values that is explained by the
predicted ones.

The three metrics mathematical expressions are described
by the following equations:

MAD =
100

ytest

∑n
i=1 |ypred,i − ytest,i|

n
(2)

RMSD =
100

ytest

√∑n
i=1(ypred,i − ytest,i)

2

n
(3)

R2 = 1−
∑n

i=1(ytest,i − ypred,i)
2∑n

i=1(ytest,i − ytest)
2

(4)

where ypred are the predicted values, ytest are the observed
values, n is the number of predictions, and y indicates the
mean value. RMSD and MAD are expressed in percentage.
A lower value for RMSD and MAD indicates a lower error,
and thus, better performance. Instead, R2 determines the
correlation between observed and predicted values, where a
value of 1 denotes a complete correlation, whereas smaller
values indicates a weaker correlation.

B. Model Evaluation

For the LSTM neural network of each dataset - i.e. raw
and downsampled in different time steps - we chose the
model showing the best performance. Then, we compared the
model of each dataset with the other models according to their
prediction performance in the test set.

The prediction errors, based on the metrics previously
introduced, are visually compared in Fig. 2 and reported in
Table III. As expected, the three metrics present a growing
trend in the model’s forecasting errors, i.e. the prediction
errors grow together with the forecasting horizon. The D-30s
model outperforms the other models for the three metrics. It is
important to highlight that, for this model, it was only possible
to compare the results for a prediction horizon of 30s and 60s
due to the time step size (30s).



TABLE III
MODELS PERFORMANCE BASED ON MAD[%], RMSD[%] AND R2

Metric Dataset Prediction Horizon [s]
10 20 30 40 50 60

MAD

Raw Data 5.82 11.07 14.73 16.82 18.86 21.24
D-1s 5.34 11.08 15.03 17.11 18.27 18.81

D-2.5s 5.02 11.46 13.88 15.45 15.87 16.97
D-5s 4.86 9.61 12.84 14.60 15.81 16.56

D-10s 4.86 9.84 13.37 15.00 15.46 15.45
D-30s - - 10.54 - - 13.87

RMSD

Raw Data 7.69 14.47 18.54 20.76 22.86 25.33
D-1s 7.60 14.33 18.82 21.13 22.41 23.10

D-2.5s 7.04 14.49 17.74 19.52 20.24 21.33
D-5s 6.96 13.42 16.94 18.81 20.08 20.90

D-10s 6.90 13.35 17.12 18.93 19.64 20.03
D-30s - - 14.17 - - 18.20

R2

Raw Data 0.94 0.79 0.66 0.58 0.49 0.37
D-1s 0.94 0.80 0.65 0.56 0.51 0.48

D-2.5s 0.95 0.79 0.69 0.63 0.60 0.55
D-5s 0.95 0.82 0.72 0.65 0.60 0.57

D-10s 0.95 0.82 0.71 0.65 0.62 0.60
D-30s - - 0.79 - - 0.66

In the very short term (10s), the prediction errors of the
models are similar, particularly for the R2 metric, where the
results are around 0.94-0.95. The performance of the Raw
Data and the D-1s models in terms of the three metrics
are quite similar for short prediction horizons (10s and 20s).
As the prediction horizon increases, the performance of the
Raw Data and the D-1s models decreases considerably. The
Raw Data model performance degradation above the 50s
prediction horizon is notorious in terms of the three metrics,
presenting the worst performance for the largest prediction
horizon studied (60s): MAD - 21.24%, R2 - 0.37 and RMSD -
25.33%. The D-2.5s model presents the worst performance
degradation among all models between the 10s and 20s
forecasting horizon, being the worst performing model for
a forecasting horizon of 20s according to the three metrics
(clearly depicted in the MAD plot in Fig. 2): MAD - 11.46%,
R2 - 0.79 and RMSD - 14.49%. Although its performance
decreases for larger prediction horizons, it closes the error gap
with the other datasets models. For the 50s prediction horizon,
the performance of the D-2.5s model in terms of R2 is the
same compared to the D-5s with a value of 0.6. Moreover, the
D-5s model error in terms of RMSD and R2 is almost equal
to the D-10s model until a prediction horizon of 40s. Instead,
in terms of MAD, the D-5s model slightly outperformed the
D-10s model until the prediction horizon of 40s. For larger
prediction horizons (50s and 60s), the performance of the D-
10s model in terms of the three metrics is better than the D-5s
model. However, the significantly less training time of the D-
10s model (18.57s) versus the D-5s model (126.98s) makes
the first a good alternative.

Last but not least, as the downsampling increases, so the
performance of the models does. This difference is more
evident for larger prediction horizons (50s - 60s). In addition,
the training time also decreases for higher downsampling rates
(see Table III): there is a significant improvement for the D-
10s and D-30s models compared to the others.

Fig. 2. Comparison of models based on MAD, RMSD and R2

V. CONCLUSIONS

In this work, we presented a novel methodology capable
of generating a realistic dataset of the power delivered to the
grid of the ISWEC device. In addition, it predicts this quantity
in short-time horizons up to 1 minute using an LSTM neural
network. Furthermore, we investigated the effectiveness of the
downsampling technique for forecasting the power delivered
to the grid. To this end, we compared the performance of an
LSTM model employing the raw dataset as input, and others
using downsampled versions of it. For each model, we search
for the best hyperparameters. The results highlighted that the



forecasting performance increases for bigger downsamplings.
In addition, the biggest downsampling tested (D-30s) signif-
icantly outperformed the other models. On the other hand,
the Raw dataset model showed similar results compared to
the other models for very short-term prediction horizons (10s
and 20s). However, its performance decreased considerably for
bigger horizons, especially above 50s where its performance
degradation was notorious.

For wave energy to consolidate as a reliable contender in the
RES field, the prediction of the power delivered to the grid is
an important aspect. Our work presented the first step in this
area. Further works may include the study and comparison
of the results obtained with other downsampling techniques
(e.g. exponential weighting) as well as the implementation of
bigger time steps aggregations for longer forecasting horizons.
What is more, we aim to identify other relevant input variables
that may enhance the forecast. In addition, once real-world
data become available, we plan to replace the simulated data
and, by exploiting also transfer learning techniques, make the
forecasting. To this end, we plan to use the models pre-trained
with the simulated dataset, decreasing the amount of real-
world data required.
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istero dell’Università e della Ricerca (MUR - Grant number
PE0000021)

REFERENCES

[1] “A european green deal.” [Online]. Available: https://commission.europa.
eu/strategy-and-policy/priorities-2019-2024/european-green-deal en

[2] A. Clement et al., “Wave energy in europe: current status and perspec-
tives,” Renewable and Sustainable Energy Reviews, vol. 6, no. 5, pp.
405–431, 2002.

[3] I. Lopez et al., “Review of wave energy technologies and the necessary
power-equipment,” Renewable and Sustainable Energy Reviews, vol. 27,
pp. 413–434, 2013.

[4] P. A. Østergaard et al., “Sustainable development using renewable
energy technology,” Renewable Energy, vol. 146, pp. 2430–2437, 2020.

[5] B. Jiang et al., “Performance analysis and tank test validation of a
hybrid ocean wave-current energy converter with a single power takeoff,”
Energy Conversion and Management, vol. 224, p. 113268, 2020.

[6] G. Reikard, B. Robertson, and J. R. Bidlot, “Combining wave energy
with wind and solar: Short-term forecasting,” Renewable Energy, vol. 81,
pp. 442–456, 2015.

[7] C. Ni, X. Ma, and J. Wang, “Integrated deep learning model for
predicting electrical power generation from wave energy converter,” in
Proc. of ICAC 2019. IEEE, 2019, pp. 1–6.

[8] L. T. Berger and K. Iniewski, Smart grid applications, communications,
and security. John Wiley & Sons, 2012.

[9] G. Reikard, “Integrating wave energy into the power grid: Simulation
and forecasting,” Ocean Engineering, vol. 73, pp. 168–178, 2013.

[10] A. Fiaz et al., “Distribution system state estimation-a step towards smart
grid,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 2659–
2671, 2018.

[11] H. Sugihara, T. Funaki, and N. Yamaguchi, “Evaluation method for
real-time dynamic line ratings based on line current variation model
for representing forecast error of intermittent renewable generation,”
Energies, vol. 10, no. 4, 2017.

[12] D. Nalamati, “Forecasting power output of wave farm using machine
learning: Multilayer perceptron.”

[13] S. M. Mousavi, M. Ghasemi, M. D. Manshadi, and A. Mosavi, “Deep
learning for wave energy converter modeling using long short-term
memory,” Mathematics, vol. 9, no. 8, p. 871, 2021.

[14] S. Srivastava and S. Lessmann, “A comparative study of lstm neural
networks in forecasting day-ahead global horizontal irradiance with
satellite data,” Solar Energy, vol. 162, pp. 232–247, 2018.

[15] C. Ni, “Data-driven models for short-term ocean wave power forecast-
ing,” IET Renewable Power Generation, vol. 15, no. 10, pp. 2228–2236,
2021.

[16] D. Nalamati, “Forecasting power output of wave farm using machine
learning: Lstm model,” 2021.

[17] M. Neshat et al., “Wave power forecasting using an effective
decomposition-based convolutional bi-directional model with equilib-
rium nelder-mead optimiser,” Energy, vol. 256, p. 124623, 2022.

[18] K. Hatalis, P. Pradhan, S. Kishore, R. S. Blum, and A. J. Lamadrid,
“Multi-step forecasting of wave power using a nonlinear recurrent
neural network,” in 2014 IEEE PES General Meeting— Conference &
Exposition. IEEE, 2014, pp. 1–5.

[19] G. Bracco, E. Giorcelli, and G. Mattiazzo, “Iswec: A gyroscopic
mechanism for wave power exploitation,” Mechanism and Machine
Theory, vol. 46, no. 10, pp. 1411–1424, 2011.

[20] G. Bracco et al., “Experimental validation of the iswec wave to pto
model,” Ocean Engineering, vol. 120, pp. 40–51, 2016.

[21] A. Battezzato, G. Bracco, E. Giorcelli, and G. Mattiazzo, “Performance
assessment of a 2 dof gyroscopic wave energy converter,” Journal of
Theoretical and Applied Mechanics, vol. 53, no. 1, pp. 195–207, 2015.

[22] G. Vissio et al., “Iswec linear quadratic regulator oscillating control,”
Renewable Energy, vol. 103, pp. 372–382, 2017.

[23] G. Vissio, “Iswec toward the sea,” Ph.D. dissertation, PhD thesis,
Politecnico di Torino, 2017.

[24] B. Burramukku, “Estimator model for prediction of power output
of wave farms using machine learning methods,” arXiv preprint
arXiv:2011.13130, 2020.

[25] H. M. Deberneh and I. Kim, “Predicting output power for nearshore
wave energy harvesting,” Applied Sciences, vol. 8, no. 4, p. 566, 2018.
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