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Abstract—Lithium-ion batteries have emerged as the leading
enabling technology in developing Electric Vehicles (EVs). But,
large-scale publicly available EV data are extremely difficult
to find. Hence, investigating and distributing new techniques
to check the conditions of the EV’s battery pack becomes
challenging. In this work, we propose a Simulink-based approach
to define a virtual-EV model that simulates EV battery pack
signals starting from input driving sessions. The virtual-EV
model simulator includes the battery pack subsystem, which
has been tuned using data gathered from EV real-world data
sheet information. Moreover, the simulator’s battery pack sub-
system embeds thermal and aging models, impacting on the
output signals, considering the temperature of the surrounding
environment and the battery’s State of Health (SOH). The
simulator generates data of vehicle’s speed, and battery pack’s
voltage, current, State of Charge (SOC), and average internal
temperature measured throughout the input driving cycle. We
defined two Simulink EV models emulating two distinct real-
world-EVs. Then, we assessed the performances of the simulators
comparing the simulated data and real EV data signals collected
by the same real-world-EV models. The comparison yields, for
both simulated EV models, R2 values higher than 0.70 and an
RMSE of at most 7V and 8% for the battery pack’s voltage and
SOC, respectively.

Index Terms—Electric vehicle, Battery pack, Simulation, Mat-
lab, Simulink

I. INTRODUCTION

Mitigating climate change is considered one of the critical
challenges of our century. It is estimated that the transport
sector accounts for 27% of the global emissions of greenhouse
gases [1] and, more specifically, road travel accounts for three-
quarters of transport CO2 emissions [2]. EVs have been widely
accepted as a clean and reliable alternative to fossil fuel
vehicles, both in private and public transportation sectors, and
are expected to take over the market in the upcoming years
quickly [3]. It is, therefore, essential to investigate the leading
technologies that can enhance EV performances.

The battery pack is the core component of an EV, and it is
typically made up of many battery cells connected in parallel
and series. Nowadays, lithium-ion battery (LIB) cells are the
most important technology in battery pack design, due to many
beneficial properties [4]–[6]. LIB cells, like all batteries, are
subject to degradation phenomena with time and usage due
to various chemical and mechanical changes to the electrodes.
Monitoring the EV battery pack is essential to gain preliminary
knowledge of its conditions and longevity. In many disciplines,
data-driven methodologies, such as machine learning (ML)

approaches, can achieve state-of-the- art results, given the
capabilities of such models at solving non-linear problems.
Indeed, in recent years, academia and industry have shown
a growing interest in discovering new techniques to monitor
EVs’ performances by integrating ML algorithms, such as
LIB performances forecasting [7] or detecting symptoms of
battery failure [8]. Nonetheless, large volumes of measure-
ments are necessary to implement data-driven methods, and,
unfortunately, the available data are either scarce or difficult
to access.

Few open battery datasets are accessible to users [9] [10].
Still, they include monitoring data obtained through laboratory
experiments conducted over a single cell or small group of
cells, which cannot represent the battery pack as a whole. A
few private EV fleet management companies provide onboard
diagnostic devices collecting direct measurements from the
battery pack. However, the availability of large-scale, freely
accessible datasets of real EV monitoring data is minimal [11],
making the investigation and development of innovative solu-
tions challenging. Therefore, the definition of EV simulators
would allow synthetic data generation for the entire battery
pack, filling the data unavailability gap. In this way, we
would provide researchers with enough data to develop new
data-driven techniques for monitoring the EV’s battery pack,
allowing them to train the proposed ML models with EV-
simulated data.

In this work, we developed an EV model simulator created
using MATLAB and Simulink programming environments.
The EV model simulator is composed of several mutually
dependent subsystems, e.g., electric motor, wheels, braking
system, and battery pack, to emulate the main operational
mechanisms of a real EV. The modeling of a full EV allows
the generation of battery pack signals that integrate complex
interactions among all subsystems. The proposed methodology
foresees the employment of actual driving session monitoring
data for two distinct real-world-EV models to parameterize
and validate the battery’s simulated data. With driving session,
we refer to the user’s driving experience that will impact the
vehicle’s dynamics, including the battery pack. Hence, the
driving session data include measurements collected from the
selected real-world-EVs reflecting the driving experience of
the user.

Firstly, given the unavailability of technical specifications,



we discover the optimal parameters of the battery pack through
an iterative tool that minimizes the error between simulated
and real signals. Subsequently, the simulated output of the
parameterized battery pack is validated using real signals.
Finally, we consider the full EV simulator, embedding all
subsystems along with the tuned battery pack, and assess the
battery pack’s performances in a vehicular environment. We
repeated such a methodology for two independent Simulink
EV model simulators, emulating two distinct real-world-EVs,
given the availability of real data collected from the two
different real-world-EVs. In this way, we can demonstrate the
efficacy of the methodology generalizing over different EV
models. To avoid misunderstandings throughout the document,
from now on we refer to the developed Simulink simulators
as virtual-EVs, while everything concerning the reference data
sheet EVs as real-world-EVs.

The rest of this paper is organized as follows. Section II
provides a general outlook of the available EV simulators in
the literature and their limitations; Section III describes in
detail the structure of the proposed virtual-EV and the required
inputs and outputs. Section IV discusses the experimental
results. Finally, Section V provides our concluding remarks
and future works.

II. RELATED WORKS

In the literature, many studies aim at improving EV perfor-
mances monitoring through ML. However, large and descrip-
tive datasets are necessary to fulfill the data-driven methodolo-
gies. Therefore, through the definition of EV simulators, we
might obtain enough data to be fed as input to ML algorithms.
Much effort has been put into modeling and simulating EVs
on a large scale to monitor the load exchanged between
EVs and the power grid. Canizes et al. [12] created a travel
simulation tool to simulate a real environment, including trips
and charging stations, that considers the behavior of real users,
allowing the creation of personalized profiles, destinations,
and schedules. The presented tool focuses on the impact
of the variation of electricity prices on the behavior of EV
users, highlighting that variable-rate electricity prices are more
advantageous to the users. Rigas et al. [13] suggested a
Java-based tool, named EVLibSim, that allows to simulate
EV activities at a charging station level in a smart grid
context. EVLibSim is an event-based simulation framework
that enables the design of a charging station depending on the
user’s demands. In this way, it is possible to precisely simulate
charges, discharges, and queues of EVs.

Gaete-Morales et al. [14] created Emobpy, an open-source
Python tool that produces EV time-series sourcing from 200
input vehicle profiles in Germany. Providing empirical mo-
bility statistical and physical properties of vehicles, Emobpy
generates four output time series with a customizable length
and resolution. The output time series include vehicle mo-
bility, driving electricity consumption, grid availability, and
grid demand information. The simulation tool allows the
monitoring of large EV fleets, offering core inputs to energy,
environmental, and economic applications.

A fully customizable event-based simulator was created by
Ciabattoni et al. [15] that generates plug-in/out, charge, and
discharge events for a group of EVs or a single EV. The tool
is designed as a web simulator called ePopSimulator, as well
as a Matlab/Simulink block to expand the tool’s capabilities
and allow it to be integrated into various applications. The
simulator is ideal for investigating vehicle-to-grid solutions,
since it lets users alter the simulation scenario and receive both
aggregated and individual EV statistics. Brooker et al. [16] cre-
ated an open-source vehicle simulation tool, named FASTSim,
that designs conventional vehicles and EVs. It models vehicle
components maintaining high accuracy, ensured through the
validation of the results utilizing data from hundreds of cars.
The tool enables researchers to explore solutions to improve
EV technologies, including the estimation of energy consump-
tion.

Using Modelica packages, Simic and Bäuml [17] con-
structed a hybrid electric vehicle model. The suggested model
has an ideal battery set. Using accessible measurements and
data sheets, they parameterized the EV model and used actual
observed current as a reference signal. The observed and
simulated signals differ by 5% according to the battery voltage
validation.

In this work, we present a virtual-EV model simulator
that, given an input driving cycle, generates the current,
voltage, SOC, and average internal temperature signals for
the EV’s battery pack. In particular, we designed two virtual-
EVs, parameterized with data from actual data sheets, for
two different real-world-EVs. Bypassing the need for time-
consuming laboratory tests or expensive devices gathering data
from the EV’s battery management system, we are able to
create a synthetic and realistic dataset made up of internal
battery pack signals. By gathering such precise battery data,
data-driven ML techniques may be used to conduct in-depth
study on the battery performances and solve the problem of
data scarcity.

III. MATERIALS AND METHODOLOGY

The complete pipeline of the proposed methodology is
shown in Fig. 1 (a), which describes the three phases necessary
to develop each of the two virtual-EVs. In the following, we
report a detailed description of each phase along with the input
and output data.

A. Dataset

The employed dataset includes real time series of vehicular
speed [Km/h], battery’s current [A], voltage [V], SOC [%],
environmental and internal average temperatures [°C] relative
to four driving sessions for two distinct real-world-EVs, for
a total of eight driving sessions. The data have been used as
input to the three phases depicted in Fig. 1 (a) and validation
data for the performances’ assessment steps. At the time of the
data collection, the two real-world-EVs, here in after referred
to as real-world-EV-A and real-world-EV-B, were equipped
with a battery pack characterized by a SOH of 88% and
94%, respectively. Therefore, given the limited availability of



Fig. 1. (a) The complete pipeline of the proposed methodology, which starts with the battery pack parameterization (phase 1), followed by the validation of
the tuned battery alone (phase 2), and, lastly, the validation of the full virtual-EV (phase 3). (b) The inner structure of the virtual-EV.

real data, we cannot assess the performances of the proposed
methodology for different input SOH values. Nevertheless, the
available data are enough to fulfill all steps of the methodology
and evaluate the performances of both the battery pack and
virtual-EV, relative to both real-world-EVs A and B.

Moreover, the onboard device collecting the real signals
samples the data with different sampling frequencies. Table I
reports the original sampling frequency for all signals gathered
from the real-world-EVs A and B. The discrepancy among
sampling frequencies forces us to re-sample the data with a
common frequency of 0.1 s through linear interpolation to
ensure consistency among all signals and to validate the sim-
ulation results. The choice of the sampling rate is a trade-off
between computation time and signal fidelity; a fast sampling
rate may capture high-frequency changes in the signals more
accurately, at the cost of a higher simulation time.

B. The virtual-EV

The main focus of our work is to develop a virtual-EV
model simulator to generate accurate battery pack’s current,
voltage, average internal temperature, and SOC signals, allow-
ing the monitoring of battery conditions throughout the EV’s
operational time. Therefore, the battery pack becomes the most
critical component of the virtual-EV. Indeed, modeling an EV
battery pack is challenging due to the literature’s unavailability
of internal design specifications. Furthermore, the definition of
the battery pack as a group of interconnected cells would sig-

TABLE I
THE SAMPLING FREQUENCIES OF THE ACQUIRED REAL SIGNALS.

Input signal Sampling frequency [s]
Speed 19

Current 0.1
Voltage 0.1

SOC 11
Battery internal temperature 41

Outside temperature 110

nificantly increase the complexity of the simulation. Hence, the
solution we propose to overcome such issues is to represent the
battery pack as if it consisted of only one high-voltage cell. In
Section IV, we demonstrate that such proposed approximation
yields acceptable performances for the battery pack’s output
signals.

The battery pack has been modeled using the Generic
Battery Model block from the Simscape electrical Simulink
library [18], which implements thermal and aging models. The
former describes the battery-to-ambient thermal interactions,
specifying the environmental and average internal tempera-
tures at the beginning of the simulation; the latter affects the
discharge characteristics based on the battery pack’s SOH.
Nevertheless, the Simulink generic battery block implements
a very low-complexity thermal model, which cannot precisely
capture heat transfer phenomena at the cell and module level.
The implemented aging model allows users to specify the
starting battery age in terms of SOH, which characterizes the
battery pack throughout the simulation. The battery’s lifetime
has to be defined in Equivalent Full Cycles (EFC) rather than
a SOH percentage. An EFC is defined as a virtual cycle of the
battery’s charge and discharge at a specified depth of discharge
(typically Depth of Discharge = 100%, i.e., a full charge and
a full discharge).

We set up a battery pack model simulation imposing a
constant 1 C discharge current, starting with a SOC of 100%
until its complete discharge, i.e., SOC of 0%. Then, we
computed the actual battery’s capacity by multiplying the
magnitude of the imposed discharge current and the ending
time of the simulation in hours. Finally, we calculated the SOH
by dividing the multiplication result by the theoretical nominal
battery capacity. We repeated this experiment for EFC values
ranging from 0 to 3000 with a step of 100. We discovered
a linear relationship between EFC and SOH for Simulink’s
generic battery model, shown in Fig. 2. In this way, at the
beginning of the simulation, the user can easily specify the



initial battery SOH, which is then converted into EFC. Since
the battery pack aging model is parameterized similarly for
both virtual EVs, the EFC-to-SOH mapping is unique for the
two models.

Referring to Fig. 1 (a), phase 1 of our procedure is the iter-
ative battery pack parameterization. Due to the unavailability
of battery data sheet specifications, we employ the Simulink
Parameter Estimator app [19] to discover the best parameters.
Such an application implements an iterative procedure that,
for each iteration, executes a simulation, tuning the battery’s
parameters so that the target simulated, and real signals match
as much as possible. As shown in Fig. 1 (a), during the battery
pack parameterization, the Parameter Estimator receives the
battery pack current signal as input, extracted from an actual
driving session covering an entire discharge cycle of the
battery. In this way, we ensure the discovery of parameters
well-fitted for almost any section of the discharge curve of
the battery pack. The initial values of the battery’s SOC, SOH,
environmental and average internal temperatures are initialized
accordingly to the selected driving session. The parameters
are tuned so that the simulated voltage signal matches the
experimental one as much as possible, see next Section IV.
The iterative procedure uses the Nelder-Mead method [20]
to solve the optimization problem, minimizing the Sum of
Squared Errors (SSE) between simulated and real voltage time
series. The SSE quantifies the difference between the true and
the synthetic values, and its mathematical formulation is the
following,

SSE =
N∑

n=1

(ysim,n − yreal,n)
2 (1)

where ysim is the simulated value, yreal is the observed value,
and N is the total number of simulated values. The iterative
procedure continues until the SSE gets below a tolerance
threshold. As soon as such a condition is satisfied, the battery
pack parameterization stops, and the selected combination of
parameters is assigned to the battery pack. The iterative battery
pack parameterization is independently accomplished for the
battery pack of both real-world-EV-A and real-world-EV-B,
selecting the relative inputs and outputs.

Once the battery packs relative to both real-world-EV-A
and real-world-EV-B have been parameterized, referring to
Fig. 1 (a), we proceed to phase 2, the battery pack validation,
in which we assess the performances of the battery pack alone.
Therefore, we utilize the real driving session current time
series, initial battery SOC, SOH, environmental and average

Fig. 2. The assessed linear relationship between EFC and SOH [%].

internal temperatures, as inputs to the simulation. But, in this
case, we are also interested in monitoring the simulated output
time series of SOC and average internal temperature, along
with voltage. Therefore, after a linear interpolation with a
common time step of 0.1 seconds, the simulated output signals
of the battery pack are compared with the real ones belonging
to the same driving session. Phase 2 is repeated for both battery
packs, peculiar to both real-world-EV-A and real-world-EV-B,
and the achieved results are discussed in Section IV.

The last phase 3 of the proposed methodology is the virtual-
EV validation. In this phase, we embed the parameterized and
validated battery pack into a full virtual-EV model simulator,
which includes additional subsystems that will mimic the
complex dynamics of an EV. The developed Simulink EV
model is based on the existing model [21]. Still, we improved
and added several components to better suit our experimental
needs, most notably the battery pack and the regenerative
braking subsystem. The virtual-EV comprises many mutually
dependent subsystems connected through the signals generated
during the simulation. The subsystems are the driver, motor,
braking system, drivetrain, wheels, vehicle body, and battery
pack. A graphical representation of the inner structure of
the virtual-EV, along with inputs and outputs, is depicted in
Fig. 1 (b).

The driver block implements a discrete-time proportional-
integral controller to mimic a human driver for the vehicle. At
each time step, the controller tracks the input reference driving
cycle speed signal and the simulated vehicle speed, trying to
match them by acting on the brake and accelerator pedals. The
motor is implemented in our EV model through the Mapped
Motor block in Simulink, a mathematical model of an electric
motor operated in torque-control mode. The braking system
is based on two different contributions: friction braking and
regenerative braking. The former is the conventional braking
mechanism activated by pressing a brake pad, generating a
friction force opposing the direction of the wheel; the latter,
while slowing down the vehicle, recharges the EV battery
pack. Regenerative braking has been added to the baseline
Simulink model to mimic the dynamics of a real EV. The
drivetrain is the set of rotating shafts and gears that distributes
the mechanical power generated by the electric motor to the
wheels, and it has been modeled through proper Simulink
blocks. The wheels are modeled using the Longitudinal wheel
with disc brake Simulink block, which also models disc
brakes. The vehicle body implements a one-degree-of-freedom
rigid vehicle body with constant mass undergoing longitudinal
motion; and the previously parameterized battery pack.

The virtual-EV receives the input driving cycle as a time
series of speed measurements, the initial battery’s SOC, SOH,
environmental temperature (as a constant or time series),
and average internal temperature. In contrast, the generated
output time series for the battery pack include current, voltage,
SOC, and internal average temperature, which are calculated
and updated at each simulation time step according to the
provided inputs. Also, in this case, we re-sample through linear
interpolation the simulated and real battery’s signals with a



time step of 0.1 seconds to ensure a common time base and
fairly compare the simulated time series with the real ones.
The simulation duration is proportional to the length of the
input speed signal. During this validation phase of the virtual-
EV, we execute four simulations for both virtual-EV-A and
virtual-EV-B, matching the available real driving session data
to assess the performances of the virtual-EV as a whole.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the results achieved during
the validation phase of the parameterized battery pack alone
and the virtual-EV as a whole. We utilize the Root Mean
Square Error (RMSE) and Coefficient of determination (R2)
to measure the deviation between actual and synthetic output
signals. The RMSE measures the average difference between
simulated values and the actual values, whilst the R2 appraises
the proportion of variance in the observed values that can be
explained using the predicted values. The performance metrics
are defined as follows,

RMSE =

√∑N
n=1(ysim,n − yreal,n)2

N
(2)

R2 = 1−
∑N

n=1(yreal,n − ysim,n)
2∑N

n=1(yreal,n − yreal)
2

(3)

where ysim is the simulated value, yreal is the actual value,
yreal is the mean value of the actual values, and N is the
total number of samples. Due to page limitations, we solely
depict through Fig. 3 and Fig. 4 the performances peculiar to
the battery pack of the real-world-EV-A and the virtual-EV-
A, respectively. But, Table II and Table III provide a thorough
description of the simulation results for both battery packs and
both virtual-EVs, separately.

We assess the performances of the tuned battery pack,
for both real-world-EV-A and real-world-EV-B independently,
providing input real current signals belonging to the relative
available driving sessions. Fig. 3 shows the input current signal
and output signals along with real ones for the battery packs
of the real-world-EV-A. Observing the curves in Fig. 3, all
simulated signals follow the measured ones, and a precise
matching can be observed. The simulated voltage, SOC, and
battery temperature signals are compared with the real ones
using the RMSE and R2 performance metrics. The overall
simulation performances of the battery packs for both models,
across all input currents, are reported in Table II in terms of
RMSE and R2. All battery pack’s simulated signals achieve
an R2 well above 0.90, and an RMSE relatively low, proving
the accuracy of the proposed battery pack.

TABLE II
OVERALL PERFORMANCES OF THE BATTERY PACK FOR BOTH
REAL-WORLD-EV A AND B, AND FOR ALL OUTPUT SIGNALS.

Battery pack
real-world-EV-A

Battery pack
real-world-EV-B

Output signal RMSE R2 RMSE R2

Voltage 3.18 V 0.96 2.73 V 0.96
SOC 0.31% 0.99 1.16% 0.99

Internal average
temperature 0.71 °C 0.99 0.29 °C 0.98

Fig. 3. Comparison between real and simulated signals generated by the
real-world-EV-A battery pack simulator for one of the four input currents.

Fig. 4. Comparison between real and simulated signals generated by the
virtual-EV-A for one of the four selected input driving cycles.

Once we tuned the battery pack and assessed its accuracy,
we tested the performances of the virtual-EV as a whole,
which includes all other subsystems as shown in Fig. 1 (b).
In this case, the input signal is a time series of speeds repre-
senting the user’s driving cycle. However, we also monitor the
output current besides the battery’s voltage, SOC, and average
internal temperature. As we did for the battery pack, we assess
the performances of the whole virtual-EV-A and virtual-EV-B,
relative to the real-world-EV-A real-world-EV-B respectively,



TABLE III
OVERALL PERFORMANCES OF BOTH VIRTUAL-EVS, RELATIVE TO THE

REAL-WORLD-EV-A AND REAL-WORLD-EV-B, RESPECTIVELY.

Virtual-EV-A Virtual-EV-B
Output signal RMSE R2 RMSE R2

Current 40.22 A 0.18 17.13 A -0.01
Voltage 3.43 V 0.95 7.05 V 0.75

SOC 4.66% 0.97 8.01% 0.78
Internal temperature 0.95 °C 0.99 0.55 °C 0.94

providing four different input driving cycles specific to the
analyzed real-world-EV. In this way, we can test the virtual-
EV’s capability at generalizing over different inputs.

Fig. 4 shows one input driving cycle and the obtained
battery’s output signals, along with real ones, for the virtual-
EV-A. While, Table III reports the overall simulation perfor-
mances for all battery’s output signals generated by the two
developed virtual-EV-A and virtual-EV-B relative to the real-
world-EV-A real-world-EV-B, respectively, in terms of RMSE
and R2. Observing the simulation results, the virtual-EV as a
whole is not as accurate as the battery pack alone since we
include all other subsystems that, inevitably, add complexity
to the simulation. Indeed, considering real-world-EV-B, and
comparing Table II and Table III, the RMSE over the SOC
jumps from 1.04% to 8.01% for the battery pack alone and for
the whole virtual-EV-B, respectively. Nonetheless, the RMSE
over the voltage remains relatively low compared to the other
outputs, which is a direct consequence of having tuned the
battery pack, during phase 1, to minimize the error between
simulated and real voltages.

Also, observing Table III, for the virtual-EV-B, the RMSE
between simulated and real SOCs reaches 8.01%, while for
the virtual-EV-A, it reaches 4.66%. For both virtual-EVs,
the RMSE over the internal battery temperature does not
exceed 1 °C, and the R2 is equal to 0.99 and 0.94 for the
real-world-EV-A and real-world-EV-B, respectively. Hence,
the virtual-EVs can capture the evolution of the monitored
signals given the input driving cycle. Therefore, after the
analysis of virtual-EVs performances, we can state that the
proposed methodology achieves promising results and allows
the generation of a synthetic and realistic battery pack dataset
starting from the input driving cycle, easily customizable by
the user.

V. CONCLUSION

In this work, we proposed a virtual-EV that generates
battery signals given the input driving cycle. The embedded
aging model allows the specification of the initial battery’s
SOH that will affect the output signals. The results for both
distinct virtual-EV-A and virtual-EV-B are promising. They
prove the efficiency of the proposed methodology generalizing
over different real-world-EV models, allowing the extension of
the analysis to, potentially, any EV of interest. Nonetheless, the
virtual-EV can be improved by considering the introduction
of several enhancements. In fact, in our future works, we
will extend the virtual-EV by including: i) the effects of
auxiliary devices, e.g., air-conditioners and car lights, that
might influence the battery’s behavior; ii) external driving

conditions, e.g., changing road slope and wind direction; and
iii) the rolling resistance. We believe that the inclusion of such
internal and external factors in the virtual-EV would further
enhance its performances.

REFERENCES

[1] IEA, “Greenhouse gas emissions from energy data explorer,”
2021. [Online]. Available: https://www.iea.org/data-and-statistics/data-
tools/greenhouse-gas-emissions-from-energy-data-explorer

[2] ——, “Transport sector co2 emissions by mode
in the sustainable development scenario, 2000-2030,”
2021, licence: CC BY 4.0. [Online]. Avail-
able: https://www.iea.org/data-and-statistics/charts/transport-sector-co2-
emissions-by-mode-in-the-sustainable-development-scenario-2000-2030

[3] EEA, Decarbonising road transport : the role of vehicles, fuels and
transport demand. Publications Office of the European Union, 2022.

[4] G. dos Reis, C. Strange, M. Yadav, and S. Li, “Lithium-ion battery data
and where to find it,” Energy and AI, vol. 5, p. 100081, 2021.

[5] L. H. Saw, Y. Ye, and A. A. Tay, “Integration issues of lithium-
ion battery into electric vehicles battery pack,” Journal of Cleaner
Production, vol. 113, pp. 1032–1045, 2016.

[6] M. Ziegler and J. Trancik, “Re-examining rates of lithium-ion battery
technology improvement and cost decline,” Energy & Environmental
Science, vol. 14, Apr. 2021.

[7] P. Jones, U. Stimming, and A. Lee, “Impedance-based forecasting of
lithium-ion battery performance amid uneven usage,” Nature Communi-
cations, vol. 13, Aug. 2022.

[8] J. Zhao, H. Ling, J. Wang, A. F. Burke, and Y. Lian, “Data-driven
prediction of battery failure for electric vehicles,” iScience, vol. 25, no. 4,
p. 104172, 2022.

[9] C. Birkl, “Oxford battery degradation dataset 1,” 2017.
[10] B. Saha and K. Goebel, “Battery data set. NASA ames progn res center,”

2007.
[11] X. Yuan, C. Zhang, G. Hong, X. Huang, and L. Li, “Method for evalu-

ating the real-world driving energy consumptions of electric vehicles,”
Energy, vol. 141, pp. 1955–1968, 2017.

[12] B. Canizes, J. Soares, A. Costa, T. Pinto, F. Lezama, P. Novais, and
Z. Vale, “Electric vehicles’ user charging behaviour simulator for a smart
city,” Energies, vol. 12, no. 8, 2019.

[13] E. S. Rigas, S. Karapostolakis, N. Bassiliades, and S. D. Ramchurn,
“Evlibsim: A tool for the simulation of electric vehicles’ charging
stations using the evlib library,” Simulation Modelling Practice and
Theory, vol. 87, pp. 99–119, 2018.

[14] C. Gaete-Morales, H. Kramer, W.-P. Schill, and A. Zerrahn, “An open
tool for creating battery-electric vehicle time series from empirical data,
emobpy,” Scientific Data, vol. 8, no. 1, June 2021.

[15] L. Ciabattoni, S. Cardarelli, M. D. Somma, G. Graditi, and G. Comodi,
“A novel open-source simulator of electric vehicles in a demand-side
management scenario,” Energies, vol. 14, no. 6, 2021.

[16] C. Baker, M. Moniot, A. Brooker, L. Wang, E. Wood, and J. Gonder,
“Future automotive systems technology simulator (fastsim) validation
report - 2021,” Oct. 2021.
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