
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Energy-aware Provisioning of Microservices for Serverless Edge Computing / Adeppady, Madhura; Conte, Alberto; Karl,
Holger; Giaccone, Paolo; Chiasserini, Carla Fabiana. - ELETTRONICO. - (2023), pp. 3070-3075. (Intervento presentato
al  convegno IEEE GLOBECOM 2023 tenutosi a Kuala Lumpur (Malaysia) nel 04-08 December 2023)
[10.1109/GLOBECOM54140.2023.10437798].

Original

Energy-aware Provisioning of Microservices for Serverless Edge Computing

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/GLOBECOM54140.2023.10437798

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980930 since: 2023-08-04T08:30:23Z

IEEE



Energy-aware Provisioning of Microservices
for Serverless Edge Computing

Madhura Adeppady
Politecnico di Torino

Torino, Italy

Alberto Conte
Nokia Bell Labs
Nozay, France

Holger Karl
Hasso Plattner Institute

Uni. of Potsdam, Germany

Paolo Giaccone
Politecnico di Torino

Torino, Italy

Carla Fabiana Chiasserini
Politecnico di Torino

Torino, Italy

Abstract—Serverless edge computing allows for highly efficient
resource utilization, reducing the energy footprint of edge data
centers. Indeed, the containers can be dynamically created and
destroyed, allowing to adapt the workload to the available
resources. Creating containers upon arrivals of service requests
entails, however, a high start-up latency, which may be unsuitable
for time-critical services. As alternative solution, pre-started
containers (“warm containers”) are used to decrease start-up
latency, but incurring in higher resource costs.

In this work, we minimize the energy consumption of the
active servers in the data center by optimally managing the
various container states while meeting the target delay of the
requested services. Further, in light of the problem complexity,
we investigate how a simple threshold-based algorithm performs
and show that it can closely match the optimum.

I. INTRODUCTION

Edge computing has emerged as a solution to serve a
large number of real-time computational tasks while reducing
bandwidth usage and end-to-end latency [1]. Despite enjoying
many benefits, the widespread deployment of edge computing
is still challenging [2]. From the system perspective, provision-
ing computing resources at the granularity of virtual machines,
as done in traditional cloud computing, brings in long provi-
sional delays and resource wastage, which is unacceptable for
resource-constrained edge servers and time-critical services.
Also, application developers still bear the heavy burden of
explicitly managing the resources, load balancing, and scal-
ability. Serverless computing, with its Function-as-a-Service
(FaaS) offering, redefines the way of deploying services [3],
as it enables the decomposition of their logic into stateless
microservices (MS). Such MSs are run on demand in an
event-driven manner in lightweight containers with no need
for resource pre-allocation. Using serverless edge computing
allows services to use underlying resources on demand without
the burden of load balancing, scalability, and runtime environ-
ments, thus improving resource utilization [4], [5].

Importantly, in serverless edge computing, MSs run inside
the containers only when requested. Thus, serving a request
involves creating a new container with appropriate runtime,
which may involve downloading the necessary image from
the remote repository, fetching and loading essential libraries
and dependencies before executing the actual function. This
process is known as cold start and the long delay involved
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in the initialization setup is known as start-up latency, which
is one of the main performance issues faced by serverless
computing platforms [6]–[8]. A warm container keeps instead
the MS instance alive in the memory, with a negligible start-
up latency when the warm containers is reused for serving
a later request for the same MS. However, due to limited
memory at the edge nodes, serving all the requests with warm
containers is practically impossible [4]. Further, keeping warm
containers in memory reduces resource utilization and violates
the resource elasticity promises of serverless computing, in
which resources are occupied when required.

Recently, many research efforts have been devoted to re-
ducing the cold start frequencies MSs by proposing various
strategies for managing the keep-alive time of the warm
containers [6], [7]. However, these approaches allocate the
resources to the container by largely overlooking MS-specific
QoS requirements, e.g., target delay. Unlike prior work, in this
paper, we face the above issue with the additional twofold aim
to (i) ensure the level of QoS required by the MSs offered
to the mobile users, and (ii) reduce the data centers energy
footprint. Indeed, it is well known that edge data centers
consume a significant amount of energy, which depends on
their CPU load [9]. Towards these goals, we provide the
following contributions:

1) Through a detailed, yet tractable, model of the system
(Sec. II), we formulate an optimization problem that, looking
at a finite time horizon, minimizes the servers energy con-
sumption by leveraging cold, warm, and running containers
(Sec. III). In particular, we note that, for the MSs with stringent
delay constraints, serving the requests using a cold container
requires a high CPU speed allocation. In contrast, using a
warm container is more energy efficient because it requires
low CPU speed allocation due to negligible start-up latency.
However, it may be impossible to serve all requests with warm
containers due to the limited memory of edge servers.

2) Since, in spite of the limited lookahead perspective of the
proposed formulation, the problem turns out to be NP-hard,
we investigate a simple threshold-based queueing solution
(Sec. IV), which, surprisingly, closely matches the optimum
(Sec. V). Specifically, we define a threshold on the number of
requests waiting to be served, and start new containers from
cold/warm state only when this number exceeds the threshold.
By adopting a FIFO policy for scheduling the requests and
restricting the number of waiting requests, we can reduce the



number of running containers and cold starts, hence decreasing
the overall energy consumption of the active servers.

II. SYSTEM MODEL

Let us focus on a single data center and let S be the set
of servers available therein, with s ∈ S having τ̂s bytes
of memory and µ̂s CPU capacity (in cycles/s). A service
orchestrator receive requests for any MS k ∈ K and serves
them using the serverless computing paradigm. Any request
for MS k demands certain amount of memory and workload
(in CPU cycles), denoted by τk and wk, respectively, and has
a target maximum delay Dk in terms of time lapse from when
the request arrives till the service execution is completed.

A container can be in any of the three states: running (R),
warm (W ), cold (C) or in any of these two transition states:
transiting from C to R (TC→R), or transiting from R to C
(TR→C). The transition to/from W involves negligible start-
up latency, hence we consider only TC→R and TR→C . For a
container implementing service k, let δk,C denote the start-
up latency of cold start. For simplicity, we assume that the
transition time from state R to state C is same as δk,C .

Let ck,i,R(t) be the container in state R serving the i-
th request for MS k, rk,i at time t. When starting to serve
request rk,i, the orchestrator assigns a CPU speed in cycles/s,
denoted by µck,i,R

, to container ck,i,R such that i) overall CPU
capacity at the server is not exceeded and ii) rk,i is served
within Dk. Additionally, the memory assigned to any container
implementing MS k in state R is equal to the memory demand
of an instance of MS k. We stress that a container in warm
state at time t that implements MS k, ck,W (t), consumes only
memory τk,W . When in state C, a container consumes neither
CPU nor memory. Further, let ck,i,TC→R

(t) (or, ck,i,TR→C
(t))

be the container in transition from C to R (or, from R to
C) to serve request rk,i at t. A container of MS k in any of
the above mentioned transition states consumes both memory
and CPU cycles/s, denoted by µk,T and τk,T , respectively. For
MS k, the memory and CPU consumption of all the container
transition states remain the same.

We assume that service requests arrive randomly (e.g.,
according to a Poisson process) and are enqueued on a specific
queue denoted by Qk, for each service k ∈ K. The orchestrator
takes a decision regarding MS k only when either of these
two events occur: i) a new request for MS k arrives, ii)
container ck,i,R(t) finishes serving request rk,i (at any point
in time, there could be multiple containers of service k in
state R). Another possible event is a container finishing its
transition. In this case, the orchestrator does not make any
decision. If a container finishes a transition to the cold state,
it is destroyed. Otherwise, if ck,i,TC→R

(t) finishes its transition
to become ck,i,R(t), request rk,i is removed from queue Qk

to be executed on it. Also, the orchestrator acts upon each
queue according to a FIFO policy, by serving the requests on
appropriate containers. Note however that the head-of-the-line
(HoL) request and the first request to handle in the queue may
not always be the same. If the HoL request has already been
scheduled to run on a container that is currently transitioning,

then the second request in the queue becomes the first request
to handle. Instead, if the HoL request in the queue is not
scheduled to run on any container, then it remains as the first
request to handle in the queue.

For serving the first request to handle in the queue, we
have two cases. In the first one, we consider that no warm
container is available. Hence, the orchestrator creates a new
container and, once the container reaches state R, the first
request in the queue is served on it. In the second case, we
consider that warm containers are available. In such a situation,
the orchestrator can serve the request in a warm or cold
container. In both cases, after being assigned to a warm or
cold container, the request still remains in the queue and will
be removed when the container enters state R. During this
time, the subsequent request in the queue becomes the first
request to be handled by the orchestrator. Let t be the time
at which any of the previously mentioned events (arrival of a
new request, container finishes serving a request, or container
completes the transition) occurs. At time t, we denote by
Ωs

k,W (t), Ωs
k,R(t), and Ωs

k,T (t) the set of all containers of MS
k on server s in state W , R, and TC→R or TR→C , respectively.
Let Ωk,R(t) = ∪s∈SΩ

s
k,R(t), and Ωk,T (t) = ∪s∈SΩ

s
k,T (t)

be the set of running and transiting containers across all the
servers, respectively.

Processing time Tk,i of request rk,i running on container
ck,i,R is computed by Tk,i = wk/µck,i,R

where we assume
that ck,i,R runs at rate µck,i,R

to process rk,i, and thus the
expression holds independently from the concurrent requests.
The total service time of rk,i is the sum of the queueing
delay before being served and the processing time. Note that
the queueing delay experienced by a request also includes
the start-up latency of the container on which the request is
scheduled to run once the container enters state R.

The power consumption of a server is composed of (i) a
constant Pidle representing the idle power consumption when
a server is active, and (ii) a function P of the server’s actual
CPU load. Thus, the power consumption of server s with CPU
load λs is given by Ps = Pidle + P (λs).

III. PROBLEM FORMULATION

We now describe the event-driven problem formulation
whose objective is to reduce the data center’s power consump-
tion by minimizing the CPU load on the servers while ensuring
that requests are served within the desired target delay.

Below, if the queue Qk does not contain unhandled requests,
then we denote this case by setting ϵk = 1. Otherwise, ϵk = 0.
At t, the CPU load λs,t of a server s is the sum of the CPU
load by all the running and transiting containers on s, i.e.,

λs,t=
∑
k∈K

( ∑
ck,i,R∈Ωs

k,R(t)

µck,i,R
+

∑
ck,T∈Ωs

k,T (t)

µk,T

)
. (1)

Similarly, at t, the memory consumption νs,t of server s is
the sum of memory consumed by all the running, transiting,
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and warm containers on s, i.e.,

νs,t=
∑
k∈K

( ∑
ck,i,R∈Ωs

k,R(t)

τk+
∑

ck,W∈Ωs
k,W (t)

τk,W+
∑

ck,T∈Ωs
k,T (t)

τk,T

)
. (2)

A. Problem formulation of new request arrival event

At t, upon the arrival of a new request, rk,i, the orchestrator
makes one of the decisions on MS k as listed below.
1) The orchestrator decides to queue rk,i into the queue Qk.
Let trk,i

be the queue admission time of rk,i, which is set to t.
The decision of queueing rk,i is expressed by setting qrk,i

=1.
While queueing rk,i, the orchestrator decides µrk,i

, the CPU
speed to allocate to it. After queueing rk,i, the orchestrator
has three options:

(a) To schedule the first request in the queue rk,j on an
existing warm container ck,W (t) in server s ∈ S. We denote
this decision by setting xrk,j ,ck,W

=1 (Case 1.1 of Fig. 1). The
decision variable yrk,j ,s=1 indicates that the request is served
in server s. The container ck,W (t) moves to state R (denoted
by ck,j,R(t)) with negligible start-up latency and serves rk,j .
The CPU and the memory allocated to ck,j,R are set equal to,
respectively, the CPU allocated to rk,j and to MS k’s memory
requirements. Also, the orchestrator revises the CPU speed
allocated to all the requests in the queue. For the n-th request
rk,j+n in Qk, with j corresponding to the first request, let
µrk,j+n

be the revised CPU speed allocated to it, where n ∈
{0, 1, ..., |Qk| − 1}.

(b) To schedule the first request to handle in the queue
rk,j on a cold container in server s (yrk,j ,s=1), denoted by
zrk,j ,ck,C

=1 (Case 1.2 of Fig. 1). That is, at t, a new container
is created and starts the transition to R (ck,j,TC→R

(t)). After
the start-up latency of δk,C , rk,j is run on ck,j,R(t+ δk,C). At
t, the orchestrator sets CPU speed of ck,j,R(t+δk,C) to µrk,j

,
while the memory allocated to ck,j,R(t + δk,C) is same as
the memory requirement of MS k. As before, the orchestrator
revises the CPU speed allocated to all the queued requests.

(c) Not to start a cold or warm container to serve the first
request in the queue, denoted by setting zrk,j ,ck,C

= 0 and
xrk,j ,ck,W

= 0, i.e., the first request in Qk, rk,j , remains in
the queue for the time being (Case 1.3 of Fig. 1), and the CPU
speed assigned to queued requests is not revised.
2) The orchestrator drops the new request rk,i (Case 2 of
Fig. 1). This decision is denoted by setting qrk,i

= 0.

Let mk(t) ∈ Mk(t) denote the time at which currently
running, transiting, and warm containers are available to serve
the first request to handle in the queue, relative to current time
t. For the first request to handle, rk,j , let µrk,j

and ∆tj be
its revised CPU speed allocation and the time at which an
existing container will start the execution of rk,j relative to
t. The orchestrator will run the first request rk,j waiting in
the queue on the container that can start serving the request
rk,j at the earliest, i.e., at ∆tj = min(Mk(t)). The queueing
delay experienced by rk,j so far is t−trk,j

, where trk,j
is the

queue admission time of the request rk,j . Additionally, rk,j
will stay for ∆tj amount of time in the queue before being
served. To get served within the target delay, the revised CPU
speed of rk,j is calculated by the following equation, µrk,j

=
wk/[Dk− (t− trk,j

+∆tj)]. When rk,j runs on this container,
the container’s new residual time to finish the execution will
be equal to rk,j’s processing time. Let Mk(∆tj) be the set of
updated residual times of the running and transiting containers
at ∆tj to finish their assigned tasks, which is given by

Mk(∆t1) =
{
mk(t)−∆t1,

∀mk(t) ∈ Mk(t)\min(Mk(t))
}
∪
{ wk

µrk,1

}
(3)

where mk(t) is the generic element of set Mk(t).
Similarly, with respect to the current time t, the second

request to handle rk,j+1 will be served at ∆tj+1 = ∆tj +
min(Mk(∆tj)), The revised CPU speed of rk,j+1 is given by:
µrk,j+1

= wk/[Dk − (t− trk,j+1
+∆tj+1)]. Set Mk(∆tj+1)

containing the time relative to ∆tj+1 at which the running and
transiting containers can handle the third request in Qk is,

Mk(∆tj+1) =
{
mk(∆tj)−(∆tj+1−∆tj),

∀mk(∆tj) ∈ Mk(∆tj)\min(Mk(∆tj))
}
∪
{ wk

µrk,j+1

}
.

Generalizing the above equation, the n-th request to handle
in the queue rk,j+n will be served at ∆tj+n = ∆tj+n−1 +
min(Mk(∆tj+n−1)). By revising the CPU speeds, the time at
which the running and transiting containers can handle request
n in Qk relative to ∆tj+n is given by,

Mk(∆tj+n)=
{
mk(∆tj+n−1)−(∆tj+n−∆tj+n−1),

∀mk(∆tj+n−1)∈Mk(∆tj+n−1)\min(Mk(∆tj+n−1))
}

∪
{ wk

µrk,j+n

}
. (4)

Thus, the residual queueing delay of the n-th queued request
rk,j+n is given by ∆tj+n, where n ∈ {0, 1, ..., |Qk| − 1}.

The queueing delay of the newly arrived request rk,i will
be the sum of the time at which the last request waiting in
the queue will start executing, and the updated remaining
time of the running and transiting containers at ∆tj+|Qk|−1

is computed by, which is given by,

drk,i
(Mk(t)) = ∆tj+|Qk|−1 +min(Mk(∆tj+|Qk|−1)) . (5)



We use the above estimated worst-case queueing delays in
Sec. III-C for making decisions on starting a new container
from cold/warm state, and in Secs. III-C and III-D to revise
the allocated CPU speeds.

B. Pre-computation of power consumption

Upon the arrival of a new request rk,i, the orchestrator needs
to make a decision that minimizes the power consumption
of the servers in the data center. The optimal policy for this
problem is non-trivial. Keeping the requests longer in the
queue may reduce the total number of running and transiting
containers in the system. But this policy might result in a
higher CPU speed allocation to these running containers and
hence higher overall power consumption. On the other hand,
if we keep the requests for a shorter duration in the queue, we
may have higher number of transiting and running containers
with lower CPU speed allocated, again resulting in a higher
power consumption. Moreover, this policy will reduce the
reusability of the same container to serve other requests. Thus,
in the objective function, considering just the CPU cycles
assigned to currently running and transiting containers is not
enough; we also need to account for the impact of queued
requests on the power consumption.

To account for the impact of queued requests on the power
consumption, we pre-compute the possible power consump-
tions based on the various decisions the orchestrator can
make for the first request in the queue and the newly arrived
request. At t1, the orchestrator knows the request execution
end and transition complete events for the existing transiting
and running containers. Let L = {t1, t2, ...} be the set of the
time instants at which these known events will occur, including
the current arrival at t1. Based on the decisions made for the
new request and the first request in the queue, the orchestrator
updates L to include the time of occurrences of events of
request execution end for the queued requests as well.

Let Lq be the auxilliary set containing the time at which
each of the known events will occur if the orchestrator decides
to queue the newly arrived request and not to serve the
first request in the queue (i.e., qrk,i

=1). Then the power
consumption Pq across all the servers in the data center is
Pq =

∑
ŝ∈S

∑|Lq|−1
i=1

∫ ti+1

ti
(Pidle +P (λŝ,ti,q))dt where λŝ,ti,q

is the load of server ŝ at ti if the decision is to queue the
newly arrived request and not to serve the first request in
the queue for the time being. Similarly, the orchestrator pre-
computes the power consumption for the other decisions. If
the orchestrator decides to queue the new request and start
a warm container on server s to serve the first request in
the queue, the power consumption Px,s across all the servers
in the data center is Px,s=

∑
ŝ∈S

∑|Lx,s|−1
i=1

∫ ti+1

ti
(Pidle +

P (λŝ,ti,x,s))dt, where λŝ,ti,x,s is the load of server ŝ at
ti and Lx,s is the auxilliary set containing the time of
occurrence of known events. If the decision is to use a cold
container on server s to serve the first request in the queue,
then the pre-computed power consumption is represented by
Pz,s=

∑
ŝ∈S

∑|Lz,s|−1
i=1

∫ ti+1

ti
(Pidle + P (λŝ,ti,z,s))dt. Finally

P=
∑

ŝ∈S
∑|L|−1

i=1

∫ ti+1

ti
(Pidle+P (λŝ,ti))dt represents the pre-

computed power consumption if the new request is not queued.

C. Objective function for arrival event

The objective is to minimize the power consumption across
all servers as well as the expected power consumption in
the future, based on the currently known events (i.e., request
end and transition complete) while minimizing the number
of dropped requests. Notice that the number of requests
served can be maximized by adding a high penalty F , if the
orchestrator decides to drop the newly arrived request. Thus,
upon the arrival of a new request, rk,i, the orchestrator should
solve the following problem:

min
{y,x,q,z,{µ}}

[
qrk,i

·(1−xrk,j ,ck,W
)·(1−zrk,j ,ck,C

)·Pq

+ qrk,i
·xrk,j ,ck,W

·(1−zrk,j ,ck,C
)·
∑
s∈S

yrk,j ,s·Px,s

+ qrk,i
·(1− xrk,j ,ck,W

)·zrk,j ,ck,C

∑
s∈S

yrk,j ,s·Pz,s

+ (1− qrk,i
)·P

]
+ (1− qrk,i

) · F (6)

subject to the constraints below (formal expressions can be
found in [10], and are omitted for the sake of readability):
(1) At any t, the CPU cycles used by the pre-existing running
and transiting containers as well as by the newly scheduled
container do not exceed the server capability. (2) The memory
allocated to pre-existing containers in warm, running, and
transiting states and newly scheduled container cannot exceed
the server capability. (3) If the decision is to run the first
request in the queue rk,j on a warm container, the total delay
experienced by rk,j cannot exceed the target delay of MS k.
(4) If the decision is to run the first request in the queue rk,j
on a cold container, the total delay experienced by rk,j cannot
exceed the target delay of MS k. (5) If the decision is to
queue the new request, the total delay the request is going
to experience in the worst case cannot exceed Dk. Note that
the queueing delay the new request is going to experience
depends on the decisions made on the first request in the
queue. (6) The CPU speed allocated to all queued requests
must be revised depending on the decisions made on the
first request in the queue and the MS target delay. (7) If
xrk,j ,ck,W

= 1 or zrk,j ,ck,C
= 1, we must specify on which

server the warm or cold container has started its transition.
Further, when xrk,j ,ck,W

= 1, yrk,j ,s can be set only for that
server which has a warm container; (8) rk,j is either scheduled
in a warm container or in a cold container or later.

D. Problem formulation for request execution ends

At time t, when the running container ck,i,R finishes its
current execution on server ŝ ∈ S, the orchestrator makes one
of the following decisions on MS k,
1) To schedule the first request to handle in the queue rk,j
on the container ck,i,R(t), as shown in case 1 of Fig. 2.
Note that this decision is possible since we assume that the
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transition time of a container from the state R to the state W
is negligible. This decision is denoted by setting xrk,j ,ck,i,R

=1
and eck,i,R

=2. At this stage, ck,i,R(t) is referred to as ck,j,R(t),
and CPU speed allocated to ck,j,R(t) is updated to µrk,j

.
2) Not to schedule the first request to handle in the queue rk,j
on the container ck,i,R(t) denoted by setting xrk,j ,ck,i,R

=0.
Further, to set xrk,j ,ck,i,R

=0, the orchestrator needs to revise
the CPU speed allocated to the queued requests such that they
are served within the target delay of the service k. For n-th
queued request, let µrk,j+n

be its revised CPU speed, where
n ∈ {0, 1, ..., |Qk| − 1}. Additionally, the orchestrator makes
one of the following decisions regarding ck,i,R(t):

1) To keep ck,i,R(t) in state W , denoted by eck,i,R
=1 (case

2 in Fig. 2). This is useful to reduce the start-up latency of
future requests and serve them with low CPU speed.

2) To delete the container ck,i,R(t), denoted by eck,i,R
=0,

and the container ck,i,R(t) enters state TR→C , and it will be
removed from the system once it reaches state C. This scenario
is represented in case 3 of Fig. 2. Without knowing the future
arrival pattern, deciding whether to keep the container in the
state W or C is challenging. To make this decision, we
considered probability p0 of no arrivals within t and t+ δk,C ,
and added this as a penalty in the objective function.

The orchestrator decides to set x̂rk,j ,ck,i,R
= 0, only if we

can meet the target delay of the queued requests with existing
running and transiting containers of MS k excluding ck,i,R(t).

For the request execution end event, let Px̂ be the pre-
computed power consumption if the decision is to set
x̂rk,j ,ck,i,R

=1. Let Pe1 and Pe0 be the pre-computed power
consumptions if the orchestrator decides to keep ck,i,R(t)
in warm and cold states, respectively. We follow the same
procedure described in Sec. III-B to pre-compute these power
consumptions. Then the objective function is given by

min
{x,e,{µ}}

x̂rk,j ,ck,i,R
·Px̂ + (1− x̂rk,j ,ck,i,R

)·eck,i,R
·Pe1

+ (1− x̂rk,j ,ck,i,R
)·(1− eck,i,R

)·Pe0

− (1− x̂rk,j ,ck,i,R
)·
[
eck,i,R

·(1− p0) + (1− eck,i,R
)·p0

]
(7)

subject to the following constraints (a formal expression of
the constraints can be found in [10] and is omitted for the
sake of readability). (1) The CPU cycles used by currently
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Fig. 3. NoW and AiW vs. optimal: average power consumption (left); average
number running and transiting containers (right).

running, transiting, and CPU cycles consumed by newly
scheduled container cannot exceed the server available CPU
capacity. (2) The memory allocated to pre-existing containers
in warm, running, and transiting states and newly scheduled
container cannot exceed the server memory. (3) The deadline
of queued requests must be met with revised CPU speeds, if
the orchestrator sets x̂rk,j ,ck,i,R

=0. (4) If x̂rk,j ,ck,i,R
=0, either

the container is kept in W state (eck,i,R
= 1) or it is destroyed

(eck,i,R
= 0); if x̂rk,j ,ck,i,R

= 1, the container starts serving
request rk,j once it enters state R, i.e., eck,i,R

= 2.
The optimization problem for new request arrival and re-

quest execution end events is in the form of Mixed Integer
Non-Linear Program (MINLP) and, hence, NP-hard [11].

IV. THRESHOLD-BASED ALGORITHM

The key idea is to set a threshold on the number of
unhandled requests in the queue and create a running container
from cold/warm state only when the number of unhandled
requests in the queue exceeds the defined threshold. This idea
reduces the number of running and transiting containers in the
system, thereby minimizing overall energy consumption.

Upon the arrival of a new request rk,i for MS k, the orches-
trator decides whether to start a new container based on the
number of unhandled requests in the queue Qk. Suppose the
number of unhandled requests in Qk is greater than or equal
to the threshold. In that case, the orchestrator first verifies
whether the first request to handle in the queue rk,j can be
served on an existing warm container. If so, it determines the
CPU speed to allocate to the warm container so as to meet the
target delay using the expression µrk,j

= wk/[Dk−(t−trk,j
)].

All the eligible servers having the warm containers of MS k
and enough computing resources to serve rk,j are sorted in the
increasing order of their remaining CPU speeds. The algorithm
then selects the first server from the sorted set to serve rk,j .

If instead there are no warm containers in any server, the
orchestrator determines whether the request can be served in
the cold container, as well as the CPU speed to allocate to
the container using: µrk,j

= wk/[Dk − (t− trk,j
+ δk,C)]. All

the eligible servers having enough computing and memory
resources to serve rk,j in a cold container are sorted in
the increasing order of their remaining CPU speeds. The
orchestrator selects the first server in the sorted set to serve
rk,j . The request is dropped if it cannot be served in either
warm or cold containers. Finally, after making one of the above
decisions, rk,i is enqueued.
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Fig. 4. Performance of NoW and AiW vs. optimal, as the arrival rate of service requests varies: average memory consumption (left most); average number
of warm containers (left); warm (right) and cold (right most) start probabilities

At time t, when an existing container ck,i,R(t) finishes its
current execution on server ŝ, we again follow a threshold-
based approach to make decisions on the container and first
request to handle in the queue rk,j . If the number of unhandled
requests waiting in the queue exceeds the threshold, the
orchestrator decides whether ck,i,R(t) can be reused to serve
the first request in Qk, exploiting µrk,j

= wk/[Dk−(t−trk,j
)]

to determine the CPU speed to allocate to ck,i,R(t). If the
server has enough computing and memory resources, then rk,j
is served on ck,i,R(t). Otherwise, the first request is dropped
and we have two options: i) NoW: after serving a request, if
the queue is empty, the container is always transitioned to state
C, ii) AiW: after serving a request, if the queue is empty, the
container is always kept in state W .

V. PERFORMANCE EVALUATION

Here, we evaluate the performance of the optimal solution
against the simple threshold based queueing solution. Due to
the complexity of the optimum, we focus on a small-scale
scenario and derive the optimum using Gurobi. In particular,
we consider only one type of MS, and that requests arrive
according to a Poisson process with varying rate. Further,
we consider a simple Python function as MS, and, using
OpenWhisk, we measured its start-up latency, which resulted
to be δk,C = 1.5 s. The MS workload requirement is fixed to
wk = 3G clock cycles. In the simulation setup, we set the
number of active servers in the data center to 4. Further, we
pre-create three warm containers per server at the beginning
of the simulation and the simulation is carried out for 1,000 s.
We set the target delay for the MS requests to 2 s.

Surprisingly, Fig. 3(left-center) shows that the power con-
sumption of AiW is comparable with that of the optimum.
Optimum uses significantly fewer containers to serve the
requests; however, the containers run at higher CPU speeds
due to queueing delay. Conversely, AiW uses a higher number
of containers to serve the requests, but, thanks to the threshold
on the number of requests in the queue, these containers run
at lower CPU speeds. As a result, the overall CPU load at
the data center is comparable to the optimum. In the case of
NoW, the power consumption is higher than both AiW and the
optimum because of the higher number of cold starts. Further,
Fig. 4 presents the measured average memory consumption
and the number of warm containers across all the servers
in the data center for various arrival rates. Note that warm,
running, and transiting containers contribute to the server’s

memory utilization. For lower arrival rates (< 6/s), the
memory consumption in the optimum case is higher because
the containers are kept in the warm state after serving the
requests, but, due to the low arrival rate, they are never used
again. Consequently, the memory consumption of NoW is the
lowest because it never keeps the container in the warm state.

Finally, Fig. 4(center-right) depicts the cold and warm start
probabilities for optimum, AiW, and NoW. The warm start
probabilities of AiW and optimum are close to one because the
containers are either used again to serve the requests or kept
warm to serve future requests. However, the NoW approach
has a lower warm start probability because the container is
always transitioned to the cold state if the queue is empty.

VI. CONCLUSIONS

We addressed the problem of reducing the data center’s
energy footprint in a serverless edge computing scenario. We
formulated an optimization problem aimed at minimizing the
energy consumption of active servers in the data center by
utilizing cold, warm, and running containers over a finite
time horizon. As the problem turns out to be NP-hard, we
investigated the optimum against a simple threshold based
queueing solution through a small scale simulation setup.
Our results reveal that the performance of the threshold-based
queueing solution closely matches the optimum in terms of
overall energy and memory consumption of the data center.
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