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Abstract—Quantum Kernel Estimation (QKE) is a technique
based on leveraging a quantum computer to estimate a kernel
function that is classically difficult to calculate, which is then used
by a classical computer for training a Support Vector Machine
(SVM). Given the high number of 2-local operators necessary for
realizing a feature mapping hard to simulate classically, a high
qubit connectivity is needed, which is not currently possible on
superconducting devices. For this reason, neutral atom quantum
computers can be used, since they allow to arrange the atoms
with more freedom. Examples of neutral-atom-based QKE can
be found in the literature, but they are focused on graph learning
and use the analogue approach. In this paper, a general method
based on the gate model is presented. After deriving 1-qubit
and 2-qubit gates starting from laser pulses, a parameterized
sequence for feature mapping on 3 qubits is realized. This
sequence is then used to empirically compute the kernel matrix
starting from a dataset, which is finally used to train the SVM. It
is also shown that this process can be generalized up to N qubits
taking advantage of the more flexible arrangement of atoms that
this technology allows. The accuracy is shown to be high despite
the small dataset and the low separation. This is the first paper
that not only proposes an algorithm for explicitly deriving a
universal set of gates but also presents a method of estimating
quantum kernels on neutral atom devices for general problems
using the gate model.

Index Terms—Quantum Computing, Quantum Machine
Learning, Neutral Atoms, Support Vector Machine, Quantum
Feature Space, Quantum Kernel Estimation, Pasqal

I. INTRODUCTION

Quantum machine learning is an emerging field that has
the purpose of exploiting the nature of quantum comput-
ing to achieve an advantage over classical machine learning
algorithms. In the last years, a lot of research has been
done in this sense, of which a theoretical reference can be
extensively be found in [1], with contributions also from [2]
and [3]. Given the low number of qubits available as of today
in any technology, benchmarks of actual interest cannot be
performed and the experiments are limited to problems of very

© 2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

small size, hence making the comparison with the classical
counterparts meaningless. Furthermore, the very meaning of
quantum advantage itself is questioned, and it is rightfully
proposed in [4] that research be not only focused on beating
classical algorithms, but also on finding the differences and
similarities between the two counterparts and what each one
is better at, thus expanding the theory, which is indeed the
optimal goal given this early technological stage.
Nonetheless, it makes sense to build a foundation that, despite
being of little use today, can be the basis of future works.
Among the machine learning algorithms that can benefit the
most from quantum computing there is the Support Vector
Machine algorithm (SVM), of which the most important and
expensive step is the computation of a kernel function related
to a specific feature map of data into a high-dimensional
feature space. When the dimension of the feature space is par-
ticularly high, the mapping becomes classically intractable and
a quantum computer can be used instead, given the exponential
nature of its state space on the number of qubits (the tensor
product of N 2-dimensional complex Hilbert spaces H = C2

is a 2N -dimensional complex Hilbert space HN = (C2)N ).
The advantage lies particularly in the fact that the quantum
computer can be used directly for obtaining the inner products
that make up the kernel, with no need to give the entire
high-dimensional state to the training algorithm (performed
on a classical computer), but rather the inner products that are
priorly calculated on the quantum computer. Naturally, this is
only useful when the data themselves actually require being
mapped on such a large space to be separated, so this is the
scenario considered in this paper.
When designing a quantum feature map, it is important to
observe that, if the unitary evolution in a quantum circuit could
be decomposed as a tensor product of 1-local (single-qubit)
unitary operations, then it would be easy to simulate it on a
classical computer, since there would be no need to store the
entire statevector |Ψ⟩ but rather the state of each single qubit
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Fig. 1. Layout of various superconducting quantum processors (source: [6])

|qi⟩, since |Ψ⟩ would be simply equal to

|Ψ⟩ =
1⊗

i=N

|qi⟩ .

What would force to store the whole statevector, thus making
the classical simulation intractable at a high number of qubits,
are 2-local operations, i.e. entangling gates, of which the
CX gate is the most frequently used. Indeed, it is easy to
show that entangled states cannot be expressed as a tensor
product of single-qubit states, taking any Bell state as a simple
example, such as |Φ+⟩ = 1

2 (|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩), for which
∄ α, β, γ, δ ∈ C : |Φ+⟩ = (α |0⟩ + β |1⟩) ⊗ (γ |0⟩ + β |1⟩).
In [5], a method for generating a dataset separable in a high-
dimensional space and a circuit for implementing the feature
map is proposed, using the gate model which is native of IBM
superconducting quantum computers, considering data with 2
features, thus needing only 2 qubits. In this case, the qubit
layout of the quantum processor is not a problem, because
any layout has at least 2 qubits that can be directly entangled.
However, as the number of features grows and consequently
the number of qubits too, the necessity to implement 2-qubit
gates on all pairs of qubits becomes a problem, since the lay-
outs of superconducting processors do not allow such a direct
connection between qubits because of hardware compatibility
issues (see Fig. 1). This translates into the necessity to use
many swap gates to indirectly make the entanglement between
any two qubits possible, which highly increases the depth of
the circuit, exposing the circuit more to decoherence.

This problem is much more solvable on neutral atom quan-
tum computers, where the fundamental elements are Rubidium
atoms and the position of qubits is not fixed but can be
arbitrary, subject to constraints that will be explored in the
following sections, and also discussed in the literature (an in-
troduction to neutral atom devices can be found in [7], whereas
a further analysis of the arrangement constraints, applied to

Quadratic Unconstrained Binary Optimization problems, can
be found in [8]). It is therefore natural to see neutral atom
devices as an ideal alternative to superconducting ones, given
the possibility to arrange the qubits with more freedom and,
therefore, allowing for more direct connections, reducing the
depth of the circuit.

In the literature there is a single example of using this
technology for computing quantum kernels (see [9]), but
it considers graph-structured data and it uses an analogue
approach, where the multi-qubit Hamiltonian acting on the
entire register is obtained as a result of an optimization process
depending on the training set, and the gate model is not used.
In this paper, a different and universal paradigm is presented,
where the gate model is used to directly implement the circuits
proposed in [5] on neutral atom devices instead, taking advan-
tage of their arbitrary connectivity. Pasqal quantum computers
will be taken as a reference without loss of generality, with
a notable alternative being QuEra. An introduction to Pasqal
devices can be [10], whereas [11] can be consulted as a first
read about QuEra. A number equal to 3 features will be
considered, because of the computational effort that would
be required for simulating circuits with more qubits since the
Pasqal simulator is based on QuTiP (see [12]); however, the
process can be generalized to any number of qubits.
The rest of the paper is organized as follows. In subsection
II.A, it is first shown how to obtain the main 1-qubit and
1-qubit gates starting from low-level pulses and generalizing
the method presented in [13], that only implements the Ry

and CZ gates. The general algorithms proposed in this paper
allow to obtain a layer of abstraction where the process of
designing a sequence of pulses is replaced by the direct
realization of a parameterized gate circuit. In subsection II.B it
is discussed how to exploit the arrangement possibilities given
by neutral atom devices in a general framework, even though
only 3 qubits are considered in this work. In subsections II.C
and II.D, then, the formalisms of SVM and Quantum Kernel
Estimation (QKE) are briefly introduced. In subsection II.E
the experimental setup is presented in detail. In section IV
the results are shown, and in section V they are discussed to
provide the basis for future works.

II. METHODOLOGY

A. Quantum gate design in neutral atom quantum computers

In this subsection, since there are currently no functions
that implement gates on Pasqal quantum computers, a general
method for deriving 1-qubit and 2-qubit gates from pulses
is shown, and the algorithms corresponding to the primitives
for obtaining each gate are illustrated. The algorithms shown
in this section will be used in this paper for converting a
gate circuit into a sequence of pulses, as in Fig. 2. When
calling a function, if the name of the parameter is not clear
from context it is indicated with the notation parameter ←
parameterV alue.

1) Single-qubit gates: It is first shown how to obtain single-
qubit gates and then it is derived how to obtain the CZ and the
CX gates, allowing to achieve a universal gate-based toolset.



Fig. 2. The process of converting a gate circuit into a sequence of pulses
for a neutral atom device is achieved using the algorithms presented in this
work, used for the specific case of Quantum Kernel Estimation.

An arbitrary single-qubit unitary rotation can be expressed as
a Z-X-Z rotation by means of Euler angles. This makes it
possible to represent the rotation as

U (γ, θ, ϕ) = Rz(γ)Rx(θ)Rz(ϕ), (1)

and the reason for using a Z-X-Z rotation will be evident later,
following the approach presented in [13].
Since

Rz(ϕ) =

[
e−iϕ

2 0

0 ei
ϕ
2

]
(2)

and

Rx(θ) =

[
cos θ

2 −i sin θ
2

i sin θ
2 cos θ

2

]
, (3)

then U is equal to

U (γ, θ, ϕ) =

[
e−iϕ+γ

2 cos θ
2 −iei

ϕ−γ
2 sin θ

2

−iei
γ−ϕ

2 sin θ
2 ei

ϕ+γ
2 cos θ

2

]
. (4)

Up to global phase, i.e. up to a multiplication by a scalar
eiλ, λ ∈ R that doesn’t make any actual difference on the
representation of a quantum state, these equalities hold:

Rz(ϕ) = U

(
ϕ

2
, 0,

ϕ

2

)
, (5)

Rx(θ) = U (0, θ, 0) . (6)

The Hadamard gate, represented by its matrix

H =
1√
2

[
1 1
1 −1

]
,

can be obtained from U as

H = U
(π
2
,
π

2
,
π

2

)
.

Similarly, the Z gate and the X gate, respectively represented
by their Pauli matrices

σZ =

[
1 0
0 −1

]
,

σX =

[
0 1
1 0

]
,

can both be obtained from U , using Eq. 5 and 6, as

σZ = Rz(π) = U
(π
2
, 0,

π

2

)
,

σX = Rx(π) = U (0, π, 0) .

Focusing on Pasqal neutral atom quantum computers, where
Rubidium atoms are used, in [13] it is shown that there are
generally two different channels, the Rydberg channel and the
Raman channel. The Raman channel, also referred to as the
digital channel, allows for the discrete manipulation of single
qubits, allowing to realize single-qubit gates. There are two
possible states, the ground state |g⟩ and the hyperfine state
|h⟩, respectively corresponding to |0⟩ and |1⟩. A pulse can
drive the transition between these two levels of a qubit by
means of the drive Hamiltonian

HD(t) =
ℏ
2
(Ω(t) cos(ϕ),−Ω(t) sin(ϕ),−δ(t)) · (σX , σY , σZ)

(7)
or, more compactly,

HD(t) =
ℏ
2
Ω(t) · σ, (8)

where Ω(t) is the Rabi frequency, i.e. the amplitude of the
signal measured in rad µs−1, ϕ is the phase of the pulse and
δ(t) = ω(t)− |Ea−Eb|

ℏ , being ω(t) is the frequency of the sig-
nal and Ea, Eb the two energy levels of the qubit. In this paper
only resonant pulses (δ = 0) of duration T and phase ϕ will
be considered, so that Ω(t) = (Ω(t) cos(ϕ),−Ω(t) sin(ϕ), 0),
generating a rotation along the axis û(ϕ) = (cosϕ,− sinϕ, 0)
of the Bloch sphere, by an angle equal to

θ =

∫ T

0

Ω(t)dt, (9)

which corresponds to the following unitary

Rûϕ
(θ) = cos

(
θ

2

)
I− i sin

(
θ

2

)
(û · σ), (10)

and this corresponds to

Rûϕ
(θ) = Rz(−ϕ)Rx(θ)Rz(ϕ). (11)

The difference between Eq. 11 and Eq. 1 lies in the fact
that the leftmost operation in the former is Rz(−ϕ), whereas
in the latter it is Rz(γ). This is irrelevant if this rotation
is performed right before measurement, whereas, if other
rotations are performed later, a phase shift equal to γ+ϕ has
to be added to the channel, so that the next rotation Rûϕ2

(θ2)
will consider the phase shift, i.e.

Rûϕ2
(θ2) = Rz(−ϕ2 − γ − ϕ)Rx(θ2)Rz(ϕ2 + γ + ϕ),

which, after the first rotation, corresponds to

[Rz(−ϕ2 − γ − ϕ)Rx(θ2)Rz(ϕ2)][Rz(γ)Rx(θ)Rz(ϕ)],

and this process can be reiterated.



As for the amplitude of the pulse Ω(t), the Blackman
window function is chosen so that the spectral leakage is min-
imized. This function, with maximum amplitude A [rad/µs]
and in discrete time, is defined as

Ω(t) = A

(
0.42− 0.5 cos

(
2πt

T

)
+ 0.08 cos

(
4πt

T

))
,

(12)
where t = n∆t, T = N∆t and ∆t is the time step. As
∆t → 0, the area under Ω(t), which in turn is the rotation
angle θ, can be calculated as

θ =

∫ T

0

Ω(t)dt = 0.42AT,

which means that, to get an angle θ out of a pulse with
maximum amplitude A, T must be equal to

T =
θ

0.42A
. (13)

The maximum amplitude A is the maximum output of the
driving channel and it depends both on the chosen device and
channel; in this paper, the Chadoq2 device was used, with
A = 62.83 rad µs−1. A plot of T depending on θ is shown
in Fig. 3, with this value of A.

Fig. 3. A plot showing the duration T of a pulse corresponding to a
single-qubit rotation U(γ, θ, ϕ) depending on θ on the Chadoq2 device
(A = 62.83 rad µs−1).

The other gates can be obtained subsequently, as shown in
the various algorithms in this paper.

2) Two-qubit gates: In neutral atom devices, what allows
entanglement and, in turn, two-qubit gates, is the Rydberg
blockade, which is not possible considering only the |g⟩ and
|h⟩ states; hence, the Raman channel cannot be used for
this purpose. Using the Rydberg channel, instead, a transition
between the ground state |g⟩ and the Rydberg state |r⟩ can
be driven, in addition to the hyperfine state |h⟩, obtaining a

Algorithm 1: UZXZ

Parameters: γ, θ, ϕ, max, sequence, channel, qubit
channel.target ← qubit
γ ← γ mod 2π
θ ← θ mod 2π
ϕ← ϕ mod 2π
if θ ̸= 0 then

blackman ← Blackman(
max amplitude ← max,
area ← θ)

pulse ← Pulse(
waveform ← blackman,
detuning ← 0,
phase ← ϕ,
post phase shift ← (γ + ϕ) mod (2π))

sequence.add(pulse, channel)
else

sequence.phase shift(shift ← γ+ϕ, channel, qubit)
end if
return sequence

Algorithm 2: RX

Parameters: θ, max, sequence, channel, qubit
return UZXZ(0, θ, 0, max, sequence, channel, qubit)

3-level system. In this configuration, the global Hamiltonian
becomes

H(t) =
∑
i

HD
i (t) +

∑
j<i

C6

R6
ij

n̂in̂j

 , (14)

where to the drive Hamiltonian of each qubit is added a term
that accounts for the van der Waals forces between each pair
of atoms. For the device Chadoq2, C6ℏ−1 = 5008 GHz µm6.

Furthermore, Rij is the distance between the i-th and the
j-th atoms, and n̂i is the projector |r⟩ ⟨r|i acting on the i-
th atom. When a pulse with δ = 0 and maximum amplitude
Ωmax is driven through the Rydberg channel, the entanglement
between two atoms at distance R can happen only if

R≪ Rb =

(
C6

ℏΩmax

) 1
6

, (15)

Algorithm 3: RZ

Parameters: ϕ, sequence, channel, qubit
sequence.phase shift(shift ← ϕ, channel, qubit)
return sequence

Algorithm 4: X
Parameters: max, sequence, channel, qubit
return RX (π, max, sequence, channel, qubit)



Algorithm 5: H
Parameters: sequence, channel, qubit
return UZXZ(π2 ,π2 ,π2 , max, sequence, channel, qubit)

Fig. 4. A plot showing the log10 of the value of Ωmax with respect to the
atom distance R for making the Rydberg blockade possible.

being Rb the Rydberg blockade radius, which corresponds to
a constraint on Ωmax given R. The π − 2π − π sequence
proposed in [13] can be used for obtaining a CZ gate with
global phase −1, where the considered states are still |g⟩ = |0⟩
and |h⟩ = |1⟩, while |r⟩ is used only for implementing the CZ.
However, since the CX gate is needed too, the sequence must
be modified. By observing that X = HZH , i.e. Z ∼ X with
respect to the Hadamard basis {|+⟩ , |−⟩}, it is sufficient to add
a pulse corresponding to the H gate on the target qubit right
before and after the 2π pulse, using the Raman channel. On the
Rydberg channel, the constraint on the maximum Ω depending
on R is only applied for the 2π pulse. In Fig. 4, a plot of the
logarithm base 10 of Ωmax depending on R for obtaining
the Rydberg blockade is shown. A detailed explanation of the
Blockade effect can be found in the literature (see [14], [15],
[16]).

B. Arrangement of neutral atoms

If the chosen device allows to position the atoms in three-
dimensional space and not just on a plane, a lattice could be
ideally created where the innermost atoms are arranged as in
Fig. 5.

In particular, assuming that a fixed distance d between
atoms is wanted, it is clear that, considering a cube of length
2d and an atom placed at its center, all of the atoms that
are at the center of each of the 6 faces of the cube will
be at distance d from it. This pattern can be repeated in
space, hence creating a lattice of atoms where, inside of it,
each atom is at distance d from its 6 neighbors. If it is
not important that the distance be constant, it can be seen
that, building a lattice following the pattern in Fig. 6, the

Algorithm 6: CX
Parameters: sequence, rydbergChannel,

ramanChannel, max, maxRyd,
controlQubit, targetQubit

π wave ← Blackman(
max amplitude ← max,
area ← π)

2π wave ← Blackman(
max amplitude ← maxRyd,
area ← 2π)

π pulse ← Pulse(
waveform ← π wave,
detuning ← 0,
phase ← 0)

2π pulse ← Pulse(
waveform ← 2π wave,
detuning ← 0,
phase ← 0)

rydbergChannel.target ← controlQubit
sequence.add(π pulse,rydbergChannel)
ramanChannel.target ← targetQubit
sequence ← H(sequence,rydbergChannel,targetQubit)
rydbergChannel.target ← controlQubit
sequence.add(2π pulse,rydbergChannel)
sequence ← H(sequence,rydbergChannel,targetQubit)
rydbergChannel.target ← controlQubit
sequence.add(π pulse,rydbergChannel)
return sequence

Fig. 5. A possible pattern of arranging the neighbors of each atom, if a fixed
distance d is wanted. In 3D space, only 6 neighbors are possible with this
constraint.



central atom (white) will have a minimum distance of d and
a maximum distance of d

√
3 from its neighbors, with the

advantage that now it has 26 neighbors instead of just 6,
which allows for direct entanglement between the central qubit
and all the other qubits in that neighborhood without using
swap gates, which is a noticeable reduction considering the
fact that, with superconducting devices, a qubit can generally
be put in direct entanglement with at most 2 other qubits.
Naturally, the minimum distance requirement of the device
and the maximum distance according to the Rydberg blockade
radius must be respected. In this paper, however, a device that
only allows planar arrangement is considered, because as of
today there is no possibility to simulate a device with spatial
arrangement, but the same arguments hold for either scenarios.

Fig. 6. Another possible pattern of arranging the neighbors of each atom. A
cube of length 2d is considered, and the top face, the bottom face and the
face resulting from a central cut are expanded on the right to show the atom
arrangements. The central atom (in white) is at a minimum distance d and
at a maximum distance d

√
3 from all its neighbors. With this pattern, it is

possible to have a total of 26 neighbors for each atom.

C. Support Vector Machines

In supervised binary classification, the objective is to de-
termine whether a given sample belongs to one class or the
other. SVM is a machine learning technique that consists in
finding a separating hyperplane between the samples of the
two distributions.
Formally, each sample with f features can be seen as a vector
x ∈ X ⊂ Rf , paired with a label y ∈ Y = {+1,−1}. The
training set is therefore the set of all points 1

M = {ωM,i = (xM,i, yM,i) ∈ Ω = X × Y}i∈[m],

used in the training phase, whereas the test set is

S = {ωS,i ∈ Ω}i∈[s],

used in the testing phase.

1[n] = {1, . . . , n}

The training step consists in solving the following optimiza-
tion problem,

min
w,b

(
λ||w||2 + Lhinge

S ((w, b))
)
, (16)

where Lhinge
S ((w, b)) is the average of the hinge loss

lhinge((w, b), (x, y)) over all the samples (xM , yM ) of the
training set, and the hinge loss is defined as

lhinge((w, b), (x, y)) = max (0, 1− y(⟨w,x⟩+ b)) (17)

so that the resulting parameters define the linearly separating
hyperplane (see [17] for an in-depth derivation). After this
step, a classifier f can be derived such that f : Rf → Y∪{0},
where the value 0 can be associated with the label +1.
However, since data is frequently non-linearly separable, a
nonlinear function is applied to data in order to account for
nonlinearities, which results in an increased number of dimen-
sions. This is allowed by means of a mapping Φ : X → F ,
where F is a Hilbert space called the feature space. Since the
mapping can be computationally hard to calculate for each
sample if F has a high dimension, the kernel trick is used.
Defining the kernel as a function K : X × X → R, where

K(xa,xb) = ⟨Φ(xa),Φ(xb)⟩, (18)

it is often the case that, given two points, their kernel, i.e.
the scalar product of their feature maps, is much easier to
calculate than their respective feature maps separately. Due to
the representer theorem (see [17]), there exists an α such that
the optimal solution of the problem can be written as

w∗ =

M∑
i=1

αiΦ(xM,i) (19)

and, introducing KM ∈ Rm,m as the training kernel matrix
defined as

(KM )i,j = K(xM,i,xM,j), (20)

it can be derived that

⟨w, ψ(xM,i)⟩ = (KMα)i (21)

and

∥w∥2 = αTKMα, (22)

so that the optimization problem is now expressed as

min
α,b

(
λαTKMα+

1

m

m∑
i=1

max (0, 1− yi(KMα)i + b)

)
.

(23)
At this point, to classify an instance xS belonging to the

test set, it is sufficient to calculate the quantity

ŷS = sign

(
m∑
i=1

yM,iαiK(xS ,xM,i) + b

)
. (24)

It is therefore natural to calculate the test kernel matrix KS ∈
Rs,m, defined as

(KS)i,j = K(xS,i,xM,j), (25)

to speed up the evaluation of the accuracy on the test set.



D. Quantum Kernel Estimation

When the kernel is hard to compute classically, a quantum
computer can be used instead, leaving the training part to the
classical computer once the kernel is calculated. In particular, a
unitary UΦ(x) can be realized such that, starting from the state
|0⟩ = |0 . . . 0⟩, it performs the feature mapping of x directly
on the quantum computer, obtaining UΦ(x) |0⟩. Following the
method presented in [5], given a state ψ, the density matrices
|ψ⟩ ⟨ψ| are considered instead of their statevector |ψ⟩, so that
inner products of two different states do not depend on the
global phase of their representation. This is why the kernel
is calculated as K(x1,x2) = | ⟨Φ(x2)|Φ(x1)⟩ |2. This is
equivalent to

K(x1,x2) = | ⟨0|U†
Φ(x2)UΦ(x1) |0⟩ |2, (26)

which is the square of the probability of measuring all 0 in
the Pauli-Z base after performing U†

Φ(x2)UΦ(x1) |0⟩. In other
words, the kernel matrix (KM )i,j = K(xM,i,xM,j)
can be estimated by performing many times each
U†
Φ(xM,j)UΦ(xM,i) |0⟩ and calculating the square of

the counts of 0 measurements. In the same way, KS can be
estimated. Naturally, the higher the number of runs for each
(i, j) couple, the higher the accuracy of the estimation.
In summary, the optimization problem is finally expressed by
substituing in Eq. 23 the KM that is estimated.

As shown in the previously cited paper, considering the
training step and being |M | the cardinality of the training set,
a total number of executions equal to O(δ−2|M |4) allows to
obtain a training kernel matrix K̂M that differs in operator
norm from the true KM by at most ∥KM − K̂M∥2 ≤ δ.
Finally, the training and the testing steps of the SVM are
performed on a classical computer by using the kernel matrices
calculated in the previous step.

E. Experimental setup

Fig. 7. Arrangement of the atoms in this experiment with the Chadoq2 device.
The distance |q0 − q1| is 4 µm, while the distance |q0 − q2| and |q1 − q2|
is 4.47 µm

The experiment is performed simulating the Pasqal Chadoq2
device. According to [18], only planar arrangement of atoms is
possible, with a maximum of 100 atoms, a minimum distance

of 4µm between each pair and a maximum distance from the
origin equal to 50µm. Both the local Rydberg channel and the
local Raman channel share the specifications listed in Table I.

TABLE I
CHADOQ2 LOCAL CHANNELS SPECIFICATIONS

Quantity Value
Maximum Ω 62.83 rad µs−1

Maximum |δ| 125.7 rad µs−1

Minimum time between retargets 220 ns

Since only resonant pulses will be used, i.e. with δ = 0,
the constraint about the maximum |δ| does not interfere with
the experiment. It is however worth to notice that every time
a channel changes the target qubit there is a loss of at least
0.22 µs. A register of N = 3 qubits is prepared as in Fig. 7,
with a minimum distance of 4µm and a maximum distance of
4.47 µm between atoms.

Fig. 8. The ground truth regions are shown for the frontier of the (0, 2π]3

volume. The blue regions are the points x such that ⟨Φ(x)|V †fV |Φ(x)⟩ ≥
∆, whereas the red regions are such that ⟨Φ(x)|V †fV |Φ(x)⟩ ≤ −∆. The
separation gap is in white. The function ad_hoc_data was modified to
return a 100× 100× 100 uniform grid instead of a 20× 20× 20 one when
n = 3, to obtain a clearer visualization. Inside the volume, the regions of
each section change with continuity.

The dataset is generated using Qiskit’s
function ad_hoc_data inside the package
qiskit_machine_learning.datasets, with a
seed equal to 10000, and with a training set size equal to
20, a test set size equal to 10, 3 features and a gap equal to
∆ = 0.1. Since there are two possible classes, the function
actually generates a dataset with m = |M | = 40 training
samples and s = |S| = 20 test samples, where half samples
are of one class and half samples are of the other one.



Fig. 9. The gate circuit that implements the feature map Uϕ(x) with 1 repetition. The actual circuit uses a Uϕ(x) with 2 repetitions, followed by a U†
ϕ(x).

Fig. 10. The resulting sequence of pulses corresponding to the QKE circuit (Uϕ(xU
†
ϕ(x)). The channel at the top is the local Raman channel, whereas the

channel at the bottom is the local Rydberg channel. The highlighted numbers indicate the target qubit of each pulse, that changes at each transition.

More formally, the dataset is prepared by choosing a unitary
V ∈ SU(23) and f = Z1Z2Z3, so that the ground truth
labels of each sample are assigned in such a way that, given
a randomly generated sample x ∈ (0, 2π]3, its label is 1 if
⟨Φ(x)|V †fV |Φ(x)⟩ ≥ ∆, while if ⟨Φ(x)|V †fV |Φ(x)⟩ ≤
−∆ the label −1 is assigned (the unitary Φ(x) is the same
used in the QKE circuit for performing the feature mapping).
To give and idea of the complexity of the separation of the
classes, in Fig. 8 the ground truth regions are shown for the
frontier of the (0, 2π]3 volume, where red corresponds to label
−1, blue to +1 and white to the separation gap.

To perform the feature mapping on the neutral atom device,
the circuit generated by the instruction ZZFeatureMap in-
side the package qiskit.circuit.library, with N =
3 features is taken as a reference. In Fig. 9 the feature map
circuit with 1 repetition is shown.

This circuit is parameterized on each possible x.

The actual UΦ(x) is obtained with 2 repetitions of the
feature map circuit. Furthermore, the circuit needed for per-
forming the QKE is obtained by concatenating U†

Φ(x) to
UΦ(x).

By using the methods explained in Section II, a sequence
is built for each xi with Pulser, where each pulse corresponds
to a gate. For the estimation of the training kernel matrix, a
total of m2 sequences that represent the evolutions ξM (i, j)

are obtained, where

∀(i ∈ [m], j ∈ [m]), ξM |0⟩ : (i, j) 7→ U†
Φ(xM,i)UΦ(xM,j) |0⟩ .

For the estimation of the test kernel matrix, instead, a total
of sm sequences representing ξS(i, j) are obtained, where

∀(i ∈ [s], j ∈ [m]), ξS |0⟩ : (i, j) 7→ U†
Φ(xS,i)UΦ(xM,j) |0⟩ .

As an example, the sequence corresponding to ξM (1, 1) is
shown in Fig. 10.

The training kernel matrix entries (KM )i,j are estimated
by sampling 1000 times from the Z measurement distribution
out of each sequence ξM (i, j) and taking the square of the
frequency of the 0 outcome. Similarly, the testing kernel matrix
entries (KS)i,j are estimated by sampling 1000 times from
the Z measurements distribution out of each sequence ξS(i, j)
and taking the square of the frequency of the 0 outcome.
KM ∈ [0, 1]m,m and KS ∈ [0, 1]s,m are then used by a
classical computer for training and testing the SVM algorithm
on the dataset, using the Scikit-Learn SVC function with
default parameters and the precomputed kernel matrices. The
performance is compared with the one obtained with a radial
basis function kernel as a classical counterpart.

III. RESULTS

The Hadamard, Phase (Rz) and CX gates are obtained with
pulses using the methods shown previously. Given Eq. 13 with



A = Ωmax = 62.83 rad µs−1 and θ ∈ (0, 2π], then, growing
linearly with the desired θ, it holds T ∈ (0, 0.238] µs, which is
the interval of the possible duration of a pulse for single-qubit
gates. For the Rydberg 2π pulse, since a conservative blockade
radius equal to 10 µm is considered, the corresponding
maximum Rabi frequency is Ωmax = 5.42 rad µs−1 (only
for the 2π pulse), corresponding to a duration T2π = 2.76 µs.
It was seen that reducing the considered blockade radius made
the CZ pulse more imprecise. The average QKE sequence on
each pair of samples lasts approximately 75µs.

After running each sequence ξM (i, j) and ξS(i, j), the
matrices KM and KS are estimated as shown in the previous
sections. A heatmap of the estimated matrix KM is shown in
Fig. 11 to illustrate the values that are obtained. The closer
two samples i and j are in the feature space, the closer the
corresponding KM (i, j) is to 1. Naturally, (KM )i,i = 1 since

ξM (i, i) |0⟩ = U†
Φ(xM,i)UΦ(xM,i) |0⟩ = |0⟩ ,

and | ⟨0|0⟩ |2 = 1. After training, all of the training samples
become support vectors. The accuracy on the test set is evalu-
ated and a mean accuracy of 75% is obtained, calculated using
the test kernel matrix previously estimated. For comparison
with a fully classical approach, another SVC was trained
using a radial basis function kernel instead of a quantum one,
obtaining a mean accuracy of 65%, which is sensibly lower
than the one obtained with the quantum approach.

IV. DISCUSSION

Despite the very low separation (∆ = 0.1) on the dataset
and the small number of samples, a high accuracy is reached.
The accuracy is higher than the one obtained with the radial
basis function kernel, but the main advantage is the fact that,
for a high number of features, the classical approach would
not only be less accurate, at least for this particular problem,
but also unfeasible, whereas the quantum one does not have
this critical issue. Due to the impossibility of running the
sequences on a real hardware, the simulation was restricted to
the case of only N = 3 features because of the computational
effort required by QuTip when the number of qubits increases.
The method presented in this paper can be used for any number
of features, if the chosen technology allows it, especially
if spatial arrangement is permitted so that it can be fully
exploited. Clearly, as the number of qubits increases, the
advantage brought by the neutral atom technology is more
evident, given the fact that much more 1-to-many connections
among qubits are needed. It is worth to notice that the
purpose of quantum feature kernels makes sense for dataset
such as the one used in this experiment, i.e. for data that
needs to be brought in a high-dimensional feature space to be
actually separable. Regarding the specific dataset used in this
experiment, it is evident that it was designed to make a high
classification accuracy possible using the classification method
illustrated in this paper and in [5], and it is evident that it is
just an artificial example for theoretical purposes. However, it
can still be the case that in a real scenario a high-dimensional
feature space could be needed, in which case quantum feature

kernels present an exponential computational advantage over
classical kernel computation methods. Future research should
focus on the study of which real scenarios are actually of this
kind, since as of today it is not clear, making quantum feature
kernels only potentially advantageous in purely theoretical
cases. On a final note, while it is true that neutral atom devices
allow for a better connectivity, a pulse corresponding to a gate
usually takes some microseconds, whereas on superconducting
devices a gate takes a few nanoseconds. Since the duration T
of a pulse is inversely proportional to the maximum channel
output of the device, improving the latter can drastically reduce
T . Furthermore, a sequence such as the one used in this paper
(Fig. 10) takes almost 80µs to run, while, as of today, Pasqal
devices only support sequences that last up to 10µs due to
decoherence.

Fig. 11. A heatmap of the estimated training kernel matrix, where at row i
and column j the color corresponding to the value KM (i, j) is found. The
diagonal elements are all equal to 1.

V. CONCLUSION

In this paper it was shown that, using neutral atom devices,
it is not only possible to work completely with the gate
model, but the advantage given by the arbitrary arrangement
of atoms in space can be exploited for optimizing highly
entangling circuits, showing this advantage on the Quantum
Kernel Estimation technique that is traditionally implemented
on superconducting devices. A general method for obtaining
single-qubit and multi-qubit gates was formalized, generaliz-
ing the technique proposed in [13], and it was then used for
implementing the QKE algorithm on a neutral atom device.
An accuracy of 75% with 3 features was reached despite the
small dimension of the dataset and the low separation ∆. It



was also shown how to geometrically exploit the possibility
to arbitrarily arrange the atoms in space when the number
of qubits is high, in order to maximally reduce the SWAP
gates needed for allowing entanglement. This work aims to
serve as a reference for future works that either wish to
use the gate model on neutral atom quantum computers for
any kind of problem or to further explore the possibilities
that this technology allows in the field of quantum machine
learning, and to provide an object of discussion and further
exploration on the possible utility of quantum computing for
real classification problems.
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