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A Framework for Risk-Aware Routing of Connected Vehicles via
Artificial Intelligence

Matteo Cardellini1 and Carmine Dodaro2 and Marco Maratea2 and Mauro Vallati3

Abstract— The advent of Connected Autonomous Vehicles
can enable the use of Artificial Intelligence (AI) techniques
to support urban traffic controllers in extending their control
capabilities with the ability to distribute vehicles in a urban
region. Vehicles can communicate their destination, and receive
an optimised route by traffic controllers. While the benefits of
traffic routing are clear, it is also clear that re-routing has the
potential to increase risks for vehicles’ and passengers’ safety
due to environmental or urban factors. There is however a lack
of work in the area of risk-aware routing.

To fill the above-mentioned gap, we introduce a framework
to incorporate risk-awareness in the vehicle routing process.
The proposed framework provides a principled structure to
define and characterise different classes of risk that can arise
in a region, allowing to take them into account when generating
routes. We show how this framework can be implemented, and
we provide an empirical analysis of its performance on two
European urban areas.

I. INTRODUCTION

The advent of Connected Autonomous Vehicles (CAVs)
provides a fertile ground for a fundamental transformation in
urban mobility and traffic control [1], [2]. The integration of
connectivity and autonomous driving capabilities in vehicles
is expected to yield significant benefits, such as reducing
the occurrence of accidents, curbing carbon emissions, and
enhancing time savings [3], [4], [5], [6].

A critical aspect of CAVs is their ability to communi-
cate through dedicated protocols and networks, known as
Vehicular Ad Hoc Networks (VANETs). This communication
capacity unleashes the use of Artificial Intelligence (AI)
techniques for supporting urban traffic controllers in inno-
vative ways. In particular, Vehicle to Infrastructure (V2I)
communication permits traffic controllers to collect real-time
traffic information from CAVs operating in the area, thus
providing a real-time overview of traffic conditions. In turns,
this allows traffic controllers to directly influence traffic by
instructing vehicles on the best route to follow to reach their
destination [7], [8].

While the benefits of traffic routing are clear and well
investigated, there has been limited focus on the analysis
of risks that this approach can bring to vehicles and to
the controlled network. There has been some interest in
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understanding features and aspects that increase the likeliness
of accidents in general urban traffic conditions [9], [10],
but there is a range of factors such as weather, inadequate
lighting condition, time of the day, characteristics of roads
and junctions, etc. that can increase the risk of accidents or
compromise the safety of passengers, particularly if a path is
assigned to a potentially large number of vehicles. To ensure
a beneficial exploitation of this class of approaches, it is
crucial to take risk into account when routing vehicles in a
urban network.

Considering the wider field of mobility and traffic control,
most of the existing body of works focuses on risk-aware
road movement and path planning to avoid collisions with
infrastructure, other vehicles, or pedestrians [11], [12]. Ad-
ditional examples include [13], that describes an architecture
for supporting the risk-aware operation of autonomous vehi-
cles; [14] defines safe and hazardous states for autonomous
vehicles in an urban area, and [15] introduces an approach
for minimising the possibility of collisions with pedestrians.
Finally, [16] investigates how risk measures can affect the
behaviours and trajectories of autonomous vehicles in an
urban environment. A different line of works focus instead
on risk related to the management of traffic signalised
junctions. For instance, [17] defines pedestrian-safety-aware
approaches for optimising traffic signals.

In this paper, we introduce a framework to deal with risk-
aware vehicle routing by means of AI, more specifically An-
swer Set Programming (ASP) [18], [19], [20]. In particular,
the proposed framework provides a structure to define and
characterise the different classes of risk that can arise in the
considered region, and to take them into account when routes
are generated. We demonstrate in simulation, using real-
world historical data, the improvements that can be achieved
by using traffic routing in two very different urban areas, and
we take the opportunity to discuss the benefits of embedding
risk-awareness in the optimisation framework.

When it comes to generating routes and optimising traffic
movements, here we focus on ASP for a number of reasons.
ASP is a declarative programming paradigm that provides a
flexible and intuitive way to model and solve complex com-
binatorial problems, as optimal vehicle routing. Compared to
traditional imperative programming, which relies on step-by-
step instructions, ASP allows users to specify the rules and
constraints of a problem in a logical and intuitive way. ASP is
particularly useful for solving problems involving incomplete
or uncertain information, or those with a large number of
possible solutions. As a matter of fact, ASP has been applied
in various domains including traffic control, scheduling,
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Fig. 1. The proposed framework to deal with risk and optimisation in
traffic distribution.

diagnosis, and knowledge representation [21], [22], making
it a valuable tool for researchers and practitioners in many
fields. Moreover, ASP has several advantages over other
solving paradigms. Firstly, ASP specifications are often more
readable even to non-experts, which is essential when the
solution has to be explained to sceptical users. Secondly,
there are free and open-source systems like Clingo [23],
whose performance is often comparable to that of industrial
tools like CPLEX or Gurobi, or SAT solvers. Thirdly, if
the performance of plain ASP is not satisfactory, there are
several extensions available. Regarding Clingo and CPLEX,
both are software tools used in optimisation, with different
features and target users. Clingo is generally more user-
friendly, with a simpler syntax, a semantics based on logic,
and an intuitive modelling approach, while CPLEX requires
a deeper understanding of mathematical programming, linear
algebra and optimisation theory, and is typically used by
experienced professionals. Moreover, Clingo is open-source
and freely available, while CPLEX is a commercial product
that requires a license to be used.

The remainder of this paper is organised as follows. First,
we introduce and describe the proposed framework and the
implemented components. Second, we present the results
of the performed empirical analysis, followed by a detailed
discussion. Finally, conclusions are given.

II. PROPOSED FRAMEWORK AND IMPLEMENTATION

To address risk-aware vehicles routing by means of AI we
defined a framework, shown in Figure 1, composed by four
phases. In the remainder of this section, we describe each of
them in detail, as well as the required input and the expected
mode of operation. We also describe the type and kind of
risks that each step of our implementation can consider. On
this regard, it is worth noting that the system will be tested
using a traffic simulator, hence environmental information
such as poor lighting or poor road surfaces are not available
and can not be considered. However, it is straightforward to
extend the proposed techniques if the corresponding data are
available.

A. Preprocessing
The role of the Preprocessing step is to reduce the

complexity of the problem by simplifying the considered
network. This can include actions such as abstracting away
parts of the network that are not viable to route vehicles
or merging short subsequent links together, etc. It takes in
input (as an XML) the network structure, the list of incoming
new vehicles and the position of all the vehicles which
have already a route inside the network. The preprocessor
then outputs a simplified logical representation describing
the network, modelling the search space in which viable
solutions can be found.

When dealing with risk, in the preprocessing phase it is
possible to exclude solutions which should not be taken into
account due to an increased risk of accidents or gridlocks.
For example, we remove

• paths including sequences of very short links separated
by junctions or traffic lights. These are traditionally used
for minor traffic flows and, if used by large volumes of
vehicles, can dramatically increase the probability of
traffic accidents and gridlocks;

• paths including narrow streets, where the probability
of accidents, pedestrians crossings, or vehicles leaving
parking slots is very high and can have a significant
impact if traffic flows are suddenly increased.

It is worth highlighting that preprocessing is a common
feature of combinatorial search approaches, and is generally
needed for search-based methods to ensure that the complex-
ity of the problem to be solved is manageable. For different
classes of techniques, preprocessing may not be needed for
performance-related reasons, but it should be implemented to
address the corresponding risks, including those listed above.

B. Search
This phase focuses on, given a simplified representation of

the network (provided by the Preprocessing) and the current
traffic conditions (via monitoring), identifying suitable routes
for every vehicle and computing time ranges in which the
vehicles will enter or exit each link of the considered path.

The origin and destination of each vehicle that approaches
the network is known when it enters the region, as it can
be communicated via a VANET, and it is the purpose of
the framework to generate a route for each vehicle. In the
developed approach, for all the incoming vehicles, the search
process computes all the possible (acyclic) paths in the
graph network which connect their source and target streets.
This results in an exponentially large number of routes,
particularly critical in the case of large urban networks.
To reduce complexity, the developed Search phase takes an
additional step by grouping similar routes together and then
taking a subset from each group (according to a heuristic,
which states how to order each solution and how many
solutions to bring to the next phase). This will allow the
Optimisation step to consider a diversified portfolio routes
to better distribute traffic.

The identification of routes also involves the assessment
of corresponding time windows, i.e. the expected time at



which vehicles will enter and exit a given link on the path.
While an accurate computation is expensive, an approximate
time window can be calculated via relaxation. Intuitively, the
minimum time in which a vehicle enters and exits a street
in a route can be computed as if all traffic were removed,
meaning the vehicle is not slowed down and the streets
are run at maximum speed. A maximum exit time, instead,
can be computed by analysing how many vehicles would
be expected at the street at its minimum entry time, and
then reduce the expected vehicle’s speed accordingly. This
is a gross approximation, of course, but can still provide
some information on the expected time in which a vehicle
will reach a link, hence supporting the simulation of traffic
evolution in the network.

It is worth reminding that the search step does not select
the best route to assign to a considered vehicle, but instead
provides a list of promising routes to the optimiser, that will
then be in charge of performing the selection and assignment
process.

In terms of risk, the Search can take into account the
following:

• Minimising the risk of accidents by avoiding routes that
are already congested. Congestion is a well-known key
risk indicator for traffic accidents.

• Reducing the risk of vehicles not following the given in-
structions, leading to potential hazards in the controlled
urban region due to unexpected traffic movements, by
avoiding the generation of routes that are not within a
given bound from the shortest path.

C. Optimisation

Given the portfolio of routes generated by the search step,
the Optimisation module is in charge of selecting the best
one to be assigned to each vehicle. In principle, this step can
either focus on the optimisation of the route for a (set of)
vehicle, or can take a network controller perspective and aims
at optimising the overall behaviour of traffic. In this work
we consider the latter, hence our approach aims at reducing
overall congestion while taking risks into account.

After finding the most different viable shortest routes in
the previous phase, it is now time to search for the best
possible solution, whose purpose is optimising the flow
of traffic and reducing risk inside a road network, thus
subjecting the optimisation to the whole network and finding
the best combination (schedule) of routes for all the vehicles
in the network, and not, we remind, in finding the best
possible route for every single vehicle.

Here, for optimisation we use ASP [24], that is a well-
known declarative programming language. The unfamiliar
reader is referred to [25] for a more comprehensive descrip-
tion of the approach and its capabilities. In the rest of this
section we will introduce only a few concepts for the sake of
describing the designed encoding. Solving complex problems
using ASP requires to write a set of logical rules in the
ASP syntax and often involves a methodology called Guess,
Check, and Optimise consisting of four steps:

• Identifying how the domain model can be expressed in
terms of ASP, including input and output of the ASP
encoding. ASP typically follows a relational notation,
meaning that a one-to-one mapping between database
tables and ASP input/output is common. For example,
a vehicle can be modelled as

vehicle(·,·)

where the first parameter is its ID and the second
parameter is the type of vehicle. A possible route for
the vehicle can be modelled as

possibleRouteOfVehicle(·,·)

where the first parameter is the ID of the vehicle and the
second parameter is the ID of the route. Note that, for
each vehicle, there might be multiple possible routes.

• Defining the rules encoding to generate
candidate solutions, i.e., the search space of
the problem (Guess). For example, a rule
of the form {solutionRoute(V,R):
possibleRouteOfVehicle(V,R)} = 1 :-
vehicle(V,1) generates a set of candidate solutions
where, for each vehicle of type 1, exactly one route
among the possible routes that can be followed by the
vehicle is selected and stored in the relation expressed
by solutionRoute(V,R), indicating that the
vehicle V follows the route R.

• Checking whether candidate solutions satisfy
the requirements of the problem. For example,
a rule of the form :- enter(V,S,T),
vehicle(V,1), capacity(S,MAX),
nVehicleOnStreet(S,T,N), N > MAX is
used to discard the solutions where the maximum
capacity of the street is exceeded at a given time point
T.

• Selecting the solutions that optimise some objective
function. Such preferences can be expressed by means
of rules of the form :∼ solutionRoute(V,R),
vehicle(V,1), cost(V,R,N). [N@2]. In par-
ticular, this rule states that the overall sum of the routes
selected for the vehicles must be minimised.

The detailed description of the encoding falls beyond the
scope of this paper. Therefore, we direct the interested reader
to a dedicated repository1 for the full version of the encoding,
and some examples of solutions.

D. Monitoring and Execution

This module is in charge of implementing the route(s) se-
lected by the optimiser, and monitoring the traffic conditions
of the controlled network. In this work, to test and assess
the framework and the proposed implementation, we rely
on SUMO [26], which is a state-of-the-art Urban Mobility
Simulator.

This module is a crucial element of the architecture, as
the routes have been selected using a high-level abstraction

1https://github.com/matteocarde/ai-traffic



of the considered network. For example, we leave to this
component the job of simulating the flow of traffic light
at intersections, cadenced by the switching phases of traffic
lights. The overtakes among vehicles, the use of lanes, and
the order in which vehicles are queued in traffic is another
aspect overlooked in the previous phases. All these aspects
can lead to discrepancies between expected and actual traffic
conditions: They are provided as feedback to the search mod-
ule, that takes them into account to define the current state
of the network. Further, there may be significant disruptions
that are modifying the viability of part of the network. For
instance, a car accident can happen (they can be simulated
in SUMO by modifying the behavior of drivers): This kind
of events can reduce the capacity of roads, or completely
block portions of the network, according to severity. This
information is fed back to the Preprocessing, that needs to
update its internal representation of the network and of the
links.

In a sense, this module covers the more traditional roles of
traffic authorities, enhanced with the ability to communicate
with CAVs navigating the region.

III. EXPERIMENTAL ANALYSIS

We assess the proposed approach using SUMO and by
considering two scenarios: Bologna and Milton Keynes. The
well-known Bologna [27] scenario considers the 7th city
in Italy by population (400, 000 approx.). The considered
area was constructed around the “Andrea Costa” road in
Bologna, in which the football stadium is located. The
network, represented in Fig. 2 (top), includes more than
110 junctions and more than 170 links. The total length of
the modelled links is more than 33 kilometres. The scenario
includes the demand for Bologna’s peak hour (8am – 9am)
in which 8, 620 vehicles roam the network. The interested
reader is referred to [27] for a detailed description of how
the network was constructed.

The Milton Keynes scenario considers the largest town
in Buckinghamshire, United Kingdom, with a population
of approximately 230, 000 inhabitants. A diagram of the
considered network is shown in Fig. 2 (bottom): it covers an
area of approximately 2.9 square kilometres. The network
includes more than 25 junctions and more than 50 links.
The total length of the modelled links is more than 45
kilometres. The model simulates the morning rush hour, and
has been built by considering historical traffic data collected
between 8am and 9am on non-holiday weekdays. Data has
been provided by the Milton Keynes Council, and gathered
by sensors distributed in the region between December 2015
and December 2016. Traffic signal control information has
been provided by the Council. The model has been calibrated
and validated. During the morning rush hour, 1, 900 vehicles
are entering the controlled region, and the main traffic flows
are from North to South-East, and from West to East. This is
because large residential areas are located at the North and
West of the modelled region.

Our approach uses the TraCI interface2 [28] to interact

2https://sumo.dlr.de/docs/TraCI.html

Fig. 2. The networks of the considered urban areas: Bologna, Italy (top)
and Milton Keynes, United Kingdom (bottom).

with the SUMO simulation environment, in order to get
the current network status, communicate with approaching
vehicles, and inform vehicles of re-routing. In both scenarios,
the simulation is run until all the vehicles left the network.
For each set of experiments, the simulation is run five times
and results are averaged. All the experiments were run on a
MacBook Pro with a 2.5 GHz Intel Core i7 quad-core, with
16 GB of RAM.

To empirically assess the performance of the proposed
framework, in this paragraph, we compare real traffic data
of the Milton Keynes and Bologna urban areas with a
simulation in which the same vehicles are routed using our
proposed approach. Table I shows a comparison between
the two approaches in terms of a number of traditionally
considered KPIs, that focus on delay, waiting time, speed
and path duration. As it can be seen from the comparison, in
the Milton Keynes urban area, the proposed approach is able



TABLE I
PERFORMANCE OBSERVED WHEN THE PROPOSED APPROACH IS USED

(OPTIMISED) OR NOT (ORIGINAL) IN SIMULATION WITH REAL-WORLD

HISTORICAL TRAFFIC DATA FROM THE MILTON KEYNES AND

BOLOGNA’S URBAN AREA.

Milton Keynes Bologna
Original Optimised Original Optimised

Total Duration [s] 15.729 5.065 5.692 5.647
Avg. Distance [m] 2,465 2,107 1,636 1,678
Avg. Speed [m/s] 2.49 5.28 6.37 6.58
Avg. Duration [s] 3,718.95 515.82 283.93 281.13
Avg. Wait Time [s] 3,132.36 259.39 97.96 95.33
Avg. Dep Delay [s] 791.78 55.69 192.23 188.33

to greatly increase the overall performance of the network,
spreading traffic and reducing congestion, increasing the
average speed of vehicles and allowing the network to
free faster. In Bologna, instead, the KPIs are only slightly
increased with respect to the ones compute on real traffic
data, but still showing how our proposed approach is able to
capture all the nuances of urban traffic control and to deal
with the risk of congesting the network. The high differences
in improvement which can be seen in Milton Keys with
respect to Bologna can be explained by the two very different
topologies of the networks. As it can be easily seen, in
Milton Keynes the streets form a sort of Manhattan Grid
in which parallel streets are more or less equal in terms of
number of lanes, length and intersections. For this reason, a
car entering the network has a plethora of possible routes to
choose, which are more or less of the same length, giving
the possibility to better spread the traffic through the whole
map. In Bologna, instead, it can be noted how streets in
the outer ring are more structured to deal with traffic (with
a high number of lanes and roundabouts to reduce traffic),
while streets at the centre of the map (which constitute the
residential area) have mostly one lane and a high number of
intersections. For this reason, vehicles have a smaller number
of promising routes to chose from since residential area’s
streets tend to be filled early, leaving no choice to the planner
to let vehicles move through the streets of the outer ring.

IV. DISCUSSION

It is worth discussing some potential additional risks that
could be taken into account by the instantiated framework,
but were not included due to the lack of information in the
considered scenarios. A number of different types of risks
can potentially be dealt with in the Preprocessing step, by
updating the structure and the information of the network
accordingly. These include:

• Roads that cannot be considered during certain time
frames (e.g., streets near an elementary school which
becomes a no-traffic zone when children are entering
or leaving the school, or in streets nearby a politi-
cal/social/sport event which must be freed for security
reasons).

• Streets that are not suitable to some kind of vehicles,
such as streets in the city centre in which the circula-

tion of polluting vehicles is forbidden, or bridges and
underpasses which have a limitation on weight, height
and width of vehicles.

• Paths that are not viable due to the hazardous nature
of goods in vehicles, e.g., vehicles which contain in-
flammable liquids should avoid entering highly popu-
lated areas due to the risk of accidental explosions.

Additionally, the search phase could also be extended con-
sidering risks related to

• sequence of streets that can result in a significant
increase in accidents potential (e.g, routes in which
trucks or long vehicles perform tight turns which have a
limited visibility and could risk injuring pedestrians or
smaller vehicles). This can be done by modifying the
heuristic function guiding the search, or by including
hard constraints to be satisfied for a plan to be consid-
ered valid;

• paths in which a particular street is not present (e.g.,
routes which do not include a petrol pump for vehicles
which have a small amount of fuel left). This can be
suitable to be addressed also by tweaking the heuristic
function accordingly.

Finally, the optimisation metric right now is mainly fo-
cused on the distribution of vehicles to avoid congested
roads. It can be extended by considering also pollution,
which is an important element of mobility in urban regions.
Plans that allow to distribute pollutants away from residential
areas can be preferred under some environmental circum-
stances, such as non-windy or non-rainy days. However,
pollutants dispersion and emission models at the state of
the art are computationally expensive, as they need to take
into account a variety of chemicals, and cannot be easily
incorporated in a system that aims at being deployed for real-
time traffic control [29]. In a straightforward implementation,
a pollution value can be assigned to each vehicle, and the
emissions depend on such pollution value and on the distance
travelled by the corresponding vehicle. This information can
be taken into account by the search and the Clingo optimiser
to, respectively, generate solutions by extending the heuristic
search to take pollution into account, and by adding and/or
updating rules accordingly in the respective Optimize step
of the ASP encoding.

V. CONCLUSION

In this paper, we presented a framework for performing
optimal and risk-aware vehicle routing in urban areas, based
on Answer Set Programming. The proposed framework is
capable of generating routing plans that account for various
types of risks that may be present in an urban area, such as
restricted areas, streets with limited capacity, and junctions
with limited turning capabilities. We also discussed some
potential additional risks that could be taken into account by
the instantiated framework, such as restricted streets during
certain time frames and unsuitable streets for certain types
of vehicles.

The performed empirical analysis indicates that the frame-
work, while being able of considering risks during routes



generation, can significantly increase the overall performance
of the network according to a range of considered KPIs. The
obtained improvement on KPIs is of course a function of the
structure of the network and of the potential risks that it may
induce on traffic navigating through it.

We see several avenues for future work. First, we are
interested in testing the framework on areas where more
risk-related data are available. Second, we plan to enhance
the framework to better consider the possibility of vehicles
not following the provided instructions, hence improving the
overall security of the approach. Finally, we are interested in
incorporating traffic light optimisation into the framework,
for instance by leveraging on existing AI-based work [30],
to provide a more complete approach to urban traffic man-
agement and control.
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[28] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer,
and J.-P. Hubaux, “Traci: an interface for coupling road traffic and
network simulators,” in Proceedings of the 11th communications and
networking simulation symposium, 2008, pp. 155–163.

[29] H. Forehead and N. Huynh, “Review of modelling air pollution
from traffic at street-level - the state of the science,” Environmental
Pollution, vol. 241, pp. 775–786, 2018.

[30] T. L. McCluskey and M. Vallati, “Embedding automated planning
within urban traffic management operations,” in Proceedings of ICAPS,
2017, pp. 391–399.


