
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Load Profiling via In-Band Flow Classification and P4 With Howdah / Angi, Antonino; Sacco, Alessio; Esposito, Flavio;
Marchetto, Guido; Clemm, Alexander. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. -
ISSN 1932-4537. - ELETTRONICO. - 21:1(2024), pp. 295-309. [10.1109/TNSM.2023.3299729]

Original

Load Profiling via In-Band Flow Classification and P4 With Howdah

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2023.3299729

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2980823 since: 2024-02-12T13:17:46Z

IEEE

1

Load Profiling via In-Band Flow Classification and
P4 with Howdah

Antonino Angi, Student Member, IEEE, Alessio Sacco, Member, IEEE, Flavio Esposito, Member, IEEE,
Guido Marchetto, Senior Member, IEEE, and Alexander Clemm, Member, IEEE

Abstract—Data center traffic management challenges increase
with the complexity and variety of new Internet and Web
applications. Efficient network management systems are often
needed to thwart delays and minimize failures. In this regard, it
seems helpful to identify in advance the different classes of flows
that (co)exist in the network, characterizing them into different
types based on different latency/bandwidth requirements. In
this paper, we propose Howdah, a traffic identification and
profiling mechanism that uses Machine Learning and a load-
aware forwarding strategy to offer adaptation to different classes
of traffic with the support of programmable data planes. With
Howdah, the sender and gateway elements inject in-band traffic
information obtained by a supervised learning algorithm. When
a switch or router receives a packet, it exploits this host-based
traffic classification to adapt to a desirable traffic profile, for
example, to balance the traffic load. We compare our solution
against recent traffic engineering proposals and demonstrate the
effectiveness of the cooperation between host traffic classifica-
tion and P4-based switch forwarding policies, reducing packet
transmission time in data center scenarios.

Index Terms—load profiling, machine learning, traffic classifi-
cation

I. INTRODUCTION

In the last two decades, data centers have changed their
topology in response to the increasing demands of networked
applications that continue to require more data at a faster speed
while requiring lower latency. Because of these requirements,
new data center architectures have been proposed, focusing
on ingress and egress traffic optimizations but also on better
orchestration of data center internal traffic. Data center topolo-
gies have also evolved to represent multi-rooted leaf-spine or,
more often, fat-trees. Such topologies have in common the
presence of multiple source-destination paths to handle the
high traffic volume, which can lead to the necessity of having
routing strategies that deal with different traffic loads in the
network, aimed at avoiding congestion, lowering delays, and
still high performance.

One problem concerns ensuring that traffic is properly
balanced, meaning that traffic is evenly distributed so that the
maximum link utilization of any links is minimized. This way,

This paper is an extended version of [1].
This work has been partially supported by NSF awards #1908574 and

#2201536.
Antonino Angi, Alessio Sacco and Guido Marchetto are with DAUIN,

Politecnico di Torino, 10129 Turin, Italy (e-mail: antonino.angi@polito.it,
alessio sacco@polito.it, guido.marchetto@polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

Alexander Clemm is with the Futurewei Technologies Inc, Santa Clara, CA,
95050-2516 USA (e-mail: alex@clemm.org).

problems such as congestion and resulting sudden packet loss
or delay variations can be avoided. However, compounding the
problem are aspects such as uneven link bandwidth and the
differing quality of service requirements and traffic priorities
across flows. In these cases, it is desirable to have routing
algorithms that deal with different classes of traffic, character-
ized by different priorities and demands. These solutions are
referred to as load-profiling routing algorithms [2], [3].

One of the most common strategies is still Equal-Cost
Multi-Path (ECMP), a routing algorithm that statically hashes
flows for path assignment. This algorithm is known to forward
flows randomly to a path and does not consider potential
congestion or link failure in the network. For this reason,
ECMP might lead to uneven flow distribution and, conse-
quently, poor performances [4]. Recent solutions attempted to
overcome such ECMP limitations, and while they are all sound
solutions, they either introduced additional overhead, e.g., [5],
[6] or failed to apply efficient logic per-packet, e.g., [7], [8].
On the one hand, centralized schemes, such as Hedera [7],
B4 [8], FastPass [9] and SWAN [10], can perform congestion-
aware decisions, but demand considerable control traffic and
react too slowly for volatile (data center) traffic. On the other
hand, recent distributed approaches, such as CONGA [5] and
HULA [6], introduce periodic network feedback that might
lead to excessive overhead traffic and contribute to congestion.
In line with these efforts, the research question we are address-
ing in this paper is: “Can we profile the network traffic’s load
over uncongested paths without the need to define elaborate
protocols for exchanging information amongst the switches or
between the switches and a centralized controller?”

In this paper, we answer this question with Howdah, a data-
plane programmable architecture that enables load profiling by
taking forwarding decisions via a distributed and (partially)
congestion-aware logic. The idea behind Howdah is a joint
optimization: minimization of collisions between flows and
maintenance of high utilization inside the datacenter network.1

In Howdah, network switches are instructed with P4 programs
to run a data-driven load profiling that, rather than flows,
operates over flowlets: bursts of packets in a flow, split by
a sufficiently large time gap. Approaches based on flowlets
have been shown [11] to be preferred as there are no packet
reordering problems (since packets of the same flowlet are

1An howdah, derived from the Arabic word hawdaj, which means “bed
carried by a camel”, is a carriage positioned on the back of an animal, typically
an elephant or occasionally a camel. We called our solution Howdah since,
as in the real howdah, it is a tiny overhead that can serve several applications
and can be carried over elephant (or other) flows.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

2

forwarded along the same path) and no modifications to the
TCP stack are needed.

To further optimize path selection, forwarding actions are
differentiated according to the type of traffic carried in the
packets. Howdah’s sending hosts internal to the data center and
peripheral gateways run a supervised Machine Learning (ML)
model to predict if each flow entails a large amount of data,
elephant flow, or a small amount, mouse flow, and this traffic
knowledge is transferred directly to the intermediate switches
and inserted into the packet in an in-band fashion. Because
elephant flows are mostly responsible for network congestion,
they are routed over the fastest paths by considering the
least utilized path from the switch perspective; mice, less
likely to overload network nodes, are just forwarded with a
weighted version of the ECMP algorithm in combination with
the flowlet-based grouping.

An ML classifier can help generalize over diverse traffic
patterns while reducing the classification time compared to
other statistical traffic classifiers. For this reason, in Howdah
we looked for a ML model that could give us the smallest
overhead in terms of training and classification time, RAM
and CPU percentile usage, and could also generate fewer
carbon emission when compared to other tested ML models
(i.e., Support Vector Machine, k-means, Random Forest, and
Neural Network). After analyzing the accuracy of each model
on real-world traffic, in our architecture we decided to rely on
an easily explainable and decision-maker transparent model as
a Decision Tree.

Then, we studied how Howdah’s performance changes when
different protocols are used to carry the in-band traffic infor-
mation.Among different tested protocols (e.g., MPLS, New
IP, IPv6), we found how IP type-of-service fields provide
negligible overhead and represent the first implementation of
our proposed architecture in transferring information on traffic
classes. We tested such implementation in data center network
scenarios and compared it to recently proposed benchmarks.
Our results validate how our solution can reduce both Round-
Trip-Time (RTT) and Flow Completion Time (FCT) compared
to other load-profiling routing algorithms, especially for ele-
phant flows and congested networks.

The rest of the paper is organized as follows. Section II
describes the state-of-art methodologies that also focus on
variations of load profiling techniques. Section III shows the
considered scenario, giving a general overview of our solution
design. In Section IV we focus on different methods to
carry the in-band information using already defined protocols.
Section V describes the traffic classification method chosen
for our solution. Finally, results are shown in Section VI, and
the conclusion in Section VII.

II. RELATED WORK

Efficient balancing/profiling of traffic load among available
paths is a critical issue, especially in highly stressed net-
works such as data centers. Many recent studies addressed
this problem, proposing solutions that fully use available
bandwidth resources. Although traditional and local routing
strategies (e.g., the standard ECMP) are widely used in prac-
tice, their performance is suboptimal for data centers due to

local, trivial, and stateless decisions that lead to split traffic
without knowledge of potential congestion on the network [7],
[12], [13]. Recent local approaches, such as DRILL [14],
Clove [15], and PRESTO [16], attempt to solve ECMP’s
shortcomings while confining decisions within each switch and
ignoring global information. For example, DRILL forwarding
decisions are load-aware and based on the local queue occu-
pancy, enabling operating on microsecond (packet-by-packet)
timescales. PRESTO [16] instead is based on the insight that
ECMP provides near-optimal load balance in a symmetric Clos
where all flows are small. As such, it divides flows into “mice”
that are source-routed, so they are striped across all paths
without demanding load awareness. However, both solutions
have to deal with the performance impact and computational
bottleneck of TCP reordering, which problem is exacerbated
in asymmetric topologies.

A common approach to taking more appropriate actions
is to delegate forwarding logic to centralized controllers and
make congestion-aware decisions, as in B4 [8], F10 [17],
Mahout [18], MicroTE [19], and Hedera [7], which are based
on the assumption that global congestion information is helpful
to balance the load evenly. However, despite having shown
near-optimal traffic engineering for inter-data center WANs,
these solutions were not designed to depart from balanced
loads and for highly volatile data center networks due to
the coarse time scale of their control operations. A recent
centralized yet performant solution is Tiara [20], a three-
tier architecture composed of a programmable switch that
encapsulates/decapsulates the packet, an FPGA that handles
the match-action tables, and an x86 server that stores the load
balancing software for the slow paths. Despite the efficiency
and scalability brought by this architecture, this solution is
strictly dependent on specific hardware operations, which
could increase the deployment cost.

To achieve microsecond performance while still using
global information, CONGA [5] operates in the data plane
and makes globally optimal allocations using a distributed
approach, allowing a faster reaction in the presence of asym-
metries. Using a leaf-to-leaf mechanism, in which switches at
the edge (leaves in Clos networks) gather and analyze conges-
tion feedback from remote switches to estimate congestion on
fabric paths in real-time, CONGA combines this mechanism
with the flowlet switching strategy. This study confirms the
effectiveness and efficient utilization of network resources
of flowlet-based forwarding, especially when applied in data
centers. It has, however, two main limitations: first, the global
congestion state at the edge switches can increase dramatically
and exceed the switch memory; second, its implementation is
designed for custom hardware. These limitations are explicitly
addressed by HULA [6], a data-plane load balancing algorithm
applied to P4-based programmable switches, in which leaf
switches track congestion for the best path to a destination
through a neighboring switch rather than for all paths, without
requiring specifically designed hardware. Specifically, HULA
uses probes to obtain network status information (i.e., link
failure, topology change) and update the switches’ internal
tables. In a similar way, our solution uses the same principles
for a data-plane load profiling strategy. However, instead of

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

3

using Top of Rack (ToR) switches to send probes, we send
additional information in each packet so that each switch
can better handle traffic congestion, which positively impacts
performance.

A recent solution as CONTRA [21] provides a performance-
aware routing that can adapt to traffic changes at hardware
speed, allowing the users to specify network policies to rank
network paths given their current performance. After a verifi-
cation process, the CONTRA compiler decomposes these non-
arbitrary policies into P4 switch local programs opportunely
adapted to the topology. Nevertheless, HULA’s policy is the
default and best-performing setting.

Inspired by the idea of customizing forwarding decisions,
we also provide some out-of-the-box load profiling actions that
can be extended and adapted by the users to achieve specific
performance goals. Unlike these load profiling solutions, how-
ever, in our local congestion-aware routing solution, switches
are not the only ones doing all the work, but they are assisted
by the host machines for the traffic type identification. This
host-based traffic classification is inserted in-band and then
used for the switches’ forwarding decisions in the network.

Other recent proposals as Application Aware Networking
(APN) [22] allow senders to convey information about specific
flows for fine-granularity traffic steering and network resource
adjustment. However, this framework requires multiple addi-
tional entities involved in the process, e.g., controller, edge
node, head-end, and mid-point, which hinder deployment.
In addition, they allow any client to convey metadata about
traffic, assuming that senders act in good faith and are truthful.
In contrast, our approach makes no such assumptions. For
external traffic, the metadata insertion is performed by nodes
of the network provider, while internal machines are under
control.

III. ARCHITECTURE AND PROTOCOL DESIGN

Howdah is an architecture for data-plane programmability
customized for load profiling. In particular, the switch attempts
to maximize network resources using a load profiling approach
combined with a classifier to label the flow and properly
differentiate forwarding actions according to it. Such a traffic
classifier can be deployed at the ingress of the network
provider or at the local sender. Either way, in the context of
our solution, we refer to this element as Howdah host.

Our Howdah algorithm is composed of two steps and two
main architectural components: one running on local machines
or gateways, and one running on P4-enabled switches (Fig. 1).
As shown in the figure, the host classifies the traffic before
sending it out throughout the network using a decision tree
(D-Tree) model and injects the classification label into an
appropriate field of the packet header (details in Section IV).
Such a classification can be applied to both unencrypted and
encrypted packets, i.e., flows whose payload is encrypted.
When an intermediate switch receives a packet, it examines
the output of the classification and differentiates its forwarding
actions accordingly. While mouse flows are forwarded based
only on the information in the packet header, without the
need to update each switch’s statistics, this is not true for

load profiler (flowlet) table

Flow Id Next-hop
10 1
327 2

Traffic
classification

data

D-Tree
Model

Data center

Fig. 1: Howdah overview. The system is based on the coop-
eration of hosts that help network nodes by inserting traffic
classification information, which is then processed by the P4
switches. The switches run the load profiling algorithm that is
differentiated by traffic type.

elephants, since they have a more considerable impact on
network congestion. For this latter type, the switches forward
the packet to the next hop port according to the least recently
used (LRU) strategy. In the remainder of this section, we
motivate this design choice and describe the algorithms of
both Howdah host and P4-enabled switches.

A. Host-based Traffic Classification within Howdah Hosts

While switches implement load profiling and traffic en-
gineering decisions, senders and gateways are designed to
contain the traffic classification logic used, in turn, during
the forwarding process of the switches. Since our network
scenario consists of a data center topology, we assume that
for East-West (internal) traffic, the sending hosts can be easily
instructed to classify traffic via an ML model and insert this
information into the packet header itself (see Section V for
more details). Conversely, we assume external hosts may not
implement any ML classification logic for the North-South
traffic (to/from outside). Most importantly, external traffic
classification could not be trusted. For this reason, when a
packet is originated outside and arrives at our network, our
gateway applies the same traffic classification algorithm before
letting packets into the data center network, along with other
packet filtering operations that are common in a data center.
For traffic directed outside, instead, the classification data is
stripped away before it leaves the data center.
Howdah for traffic classification. Data centers typically
face a variety of traffic classes since they host multiple
services. Among them, we can cite on-demand video delivery,
storage and file sharing, web search, social networks, cloud
computing, financial services, recommendation systems, and
interactive online tools [23], [24]. These applications present
different traffic characteristics and distribution of flow arrivals,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

4

flow sizes, and flow duration [25]. For one, the data streams
generated by web search queries are usually much smaller
and shorter than the flows generated by batch computing
jobs. Instead, high-performance computing (HPC) jobs, e.g.,
Hadoop, may transfer petabytes of data during the shuffle
MapReduce phase [26]. Moreover, recently there has been a
rapid increment of latency-sensitive and interactive applica-
tions, such as video and voice applications.

Such various applications lead to the emergence of both
long-lived connections and short microbursts in the same
network [27], [28]. As typical in the network management
literature [18], [29], we refer to long-lived flows as “elephants”
and short microbursts as “mice.”

The common goal of a load profiling solution is to provide
high bisection bandwidth for throughput-sensitive and latency-
sensitive flows without unduly delaying remaining flows by
distributing “available” bandwidth across a set of candidate
routes to match the characteristics of incoming QoS requests.
In line with recent studies [30], [31] that have pointed out the
importance of classifying traffic into “elephants” and “mice”,
we also argue that long-lived flows must be identified to take
appropriate actions and better orchestrate traffic. Not only the
application treatment can be differentiated, but the network
congestion can be alleviated if the load is properly balanced
among the available (and redundant) links. Recent studies
have pointed out how East-West traffic of a data center is
responsible for traffic volume that is one order of magnitude
larger than North-South traffic [32]. Avoiding bottlenecks is
thus extremely important for all the traffic flowing in the
topology.

It can be noted that, although we consider only two different
types in this paper, the Howdah architecture, together with
the P4 language, provides the flexibility to generalize on
multiple types of differentiated traffic, e.g., bandwidth vs.
delay-sensitive applications, or web vs. database vs. HPC
traffic.
Why host-based classification. A possible place for classify-
ing packets would be the switch itself. However, the hardware
characteristics of the network nodes are a poor fit for the
learning procedure of an ML model, resulting in poor per-
formance. Furthermore, given the strict packet scheduling of
switches in data centers, the application of ML models would
either negatively impact the packet forwarding process or
necessitate a specific software and hardware design. To ensure
fast forwarding of packets, the literature has presented valuable
examples of switches that collect flow metrics but delegate
the ML learning phase to a centralized controller [7], [8],
[33]–[35]. However, both a per-flow statistic and a sampling
mechanism do not scale: the bandwidth between the switches
and the controller is limited, making the statistics transmission
a bottleneck in this traffic management scheme. Moreover,
collecting per-flow statistics would consume significant switch
resources, while sampling detection, i.e., sampling only a
small fraction of incoming packets, would result in accurate
detection of elephant flows only after 10K packets [36]. In
light of this, we argue that the host and the gateway are the
optimal places for elephant flow detection in data centers. The
application layer of data center programs can be augmented

with our Howdah layer, and this option is favored by the single
administrative domain and software uniformity of common
data centers. In addition, there are likely GPUs or general-
purpose CPUs on the hosts that are better suited for the ML
classification process than the processing resources of typical
network nodes. Lastly, hosts and gateways have good visibility
into the patterns of application traffic being generated.
Why ML-based classification. While traditionally elephant
and mouse classification was performed by means of statistics,
we argue that an ML-based classification is faster and more
accurate. As mentioned earlier, traffic classification can occur
either at the host or on the network side. In the first case,
as in Mahout [18], the metrics considered during the decision
process are the buffer occupancy. This means that any packet
has to wait before being sent in order to check the buffer.
However, as demonstrated in Section VI-H, our classification
lasts µs, as opposed to the ms of Mahout. Other host-
based detection methods may still need to wait until the
communication has started before deciding the flow size. On
the other hand, for a network decision, for example inside an
SDN controller as in ZOOM [37], the decision can consider
the number and the size of flows currently in the network.
Although in this case the classification is based on current
data and thus accurate, this process requires a statistics polling
interval and transients in the order of seconds. The usage of
new data-driven algorithms, as in Howdah, allows reducing the
overall process (classification + label stack) while achieving
notable accuracy as demonstrated in Section VI-B.

B. P4-compatible Switches

The main task of the switch is to profile flowlets – bursts of
packets belonging to the same flow separated by a significant
time interval – to avoid possible side effects at the destination.
It has been shown how forwarding flowlets over the same
path avoids the possibility of later packets arriving at their
destination sooner than others, which might result in a need
for additional buffering and a negative impact on Quality
of Experience [11]. Moreover, flowlet-based decisions (rather
than flow-based) allow higher granularity while providing
better performance [5].

To make our switches programmable and easily extended to
any possible protocol used (Section IV), we instruct them with
P4, a programming language for protocol-independent packet
processes [38]. Such a language enables the programming of
packet processing pipelines in packet forwarding ASICs and
allows the definition of custom parsing rules and new protocol
logic. P4’s control model follows the SDN architecture and
involves a separate control plane to deploy commands directly
on networking devices. This approach offers many advantages
over a hardware implementation: the user can modify the
size of all variables and registers according to the topology
of interest and the workload demands. For example, since
Howdah can work with different packet header formats (see
Section IV), the packet parsing can be smoothly adapted to
meet the desired header policy. In addition, P4 provides a
switch abstraction that is independent of the actual hardware:
P4 programs are compiled into a target-independent repre-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

5

sentation (front-end) and then recompiled to different specific
platforms, e.g., NetFPGA [39].
Howdah switch forwarding. In our solution, we redefine
P4 tables to apply match-action entries to implement our
load-profiling actions. In general, P4 tables can be used by
switches to specify behaviors such as preliminary next-hops,
multicast groups, and ISO-OSI level-2 forwarding using MAC
addresses. With Howdah, once the hosts have inserted the
information about the traffic type, our P4 switches forward
the packets based on port utilization and the included traffic
type information. In particular, we make use of a table stored
inside the P4 switch registers that contains the hash of the
incoming flowlet and that records the output port and the
last time a flowlet belonging to a certain flow was seen.
This value is helpful in computing the difference between the
stored timestamp and the new flow’s arrival time. If such a
difference is below T, whose value is chosen according to
other state-of-the-art techniques [6], then the switch forwards
the flowlet to the stored best-hop. Otherwise, the switch detects
a new flowlet, computes the hash of the 5-tuple composed of
the protocol, IP source & destination address, TCP source &
destination port, and finally selects the best next-hop for the
current 5-tuple. It is worth noting that the 5-tuple hashing
is performed directly inside the switch, and there are no
controllers involved. This approach allows a reduction of
possible delays that might occur when interacting with a
controller [40].

We recall the concept of load profile as the desired load
on an outgoing link of the switch, which allows the user to
specify how to split traffic over these links [2]. A common
scenario is to load the switch’s links (load balancing) evenly,
but other circumstances may demand unequal distribution if
links have different characteristics (e.g., link capacity) or the
traffic has different priorities. Our P4-enabled switches can
be effortlessly customized to implement the desired profiling
policy.

More formally, consider a system with N different paths
between a particular source and destination, and let W denote
the overall load of the system. A load-balanced system would
tend to distribute its load equally amongst all paths, making the
actual bandwidth on each path as close as possible to W/N .
A load-profiled system would tend to distribute its load so that
the probability of satisfying the QoS requirements of incoming
flow requests is maximized. This goal can be achieved by
having differently loaded paths that maximize the likelihood of
satisfying the bandwidth requirements. One simple algorithm
for load profiling is based on assigning a weight qi to any
switch’s port i, representing the probability of choosing the
path. The switch, then, performs a weighted choice when
selecting the output links so as to match the traffic profile
chosen by the user [41]. Ports with a higher weight are chosen
with a higher probability and hence more frequently than ports
with a lower weight.

In our solution, forwarding rules are applied on top of
a flowlet-based version of ECMP packet forwarding with
weights. Like traditional ECMP, the next-hop selection is
based on hashing the 5-tuple, but instead of per flow, decisions
are made per flowlet. In the case of mice, the switch simply

forwards the packet to the best next-hop according to the
weighted flowlet-based version of ECMP, i.e., it chooses a
path with a weighted probability to avoid congesting a path
quickly. Otherwise, in the case of elephants, the next-hop
selection also considers the least recently used (LRU) port.
Since ports with higher utilization are more prone to cause
congestion in the network, we also consider the frequency with
which paths of a given port are selected. To do so, we need
to update also the statistics about the network in each switch.
Aside from calculating the hash function, the switch updates
this utilization metric for each incoming packet. Despite being
simple, this LRU criterion effectively avoids congestion – and
reduces delay – because the flowlet is sent over different
ports where it is less likely to share the bandwidth with other
ongoing (large) flows.

IV. IN-BAND TRAFFIC KNOWLEDGE POLICY

Recent studies have pointed out that additional network
information can reach a significant amount of bytes and some
of the heaviest packets on the network [42]–[44]. Although
their main purpose is to check if the network is congested or
if requirements are being met, telemetry metrics can not exces-
sively harm application data. One important countermeasure
is provided by the In-band network measurement, which is
increasingly used in various network management applications
to insert network information directly as part of packet data,
either as payload or header.

For this reason, in our solution we use in-band network
management and configure the switch to forward the packet
to the next hop by taking into account the additional data
contained in the packet itself. By combining in-band flow
information with P4, we reduce the control traffic of tradi-
tional SDN architectures, e.g., OpenFlow, where the switches
communicate with the controller to decide flow rules (see
Section VI-F for a numerical comparison). As explained in
Fig. 1, the control traffic is now carried in the header of
the packets. In what follows, we describe three possible
algorithms to prove this architecture’s viability and show that
the network programming framework can indeed be used to
support applications with real-time networking requirements
without the need for custom hardware in networking devices
or even controllers. Specifically, we examine the following
alternatives and identify the advantages and disadvantages of
each of them.
IP Type of Service. The Type of Service (ToS) field of IPv4
has been designed to indicate the priority of a datagram and
request a route for a low-latency, high-throughput, or highly-
reliable service. These 8-bits have been split to perform the
Differentiated Services Code Point (DSCP) function with 6
bits, and Explicit Congestion Notification (ECN) with 2 bits.
Although the router’s behavior in response to these values is
not specifically defined, IP ToS definitions are widely found
in Unix implementations. For this reason, they appear to be
the most viable approach to introduce our traffic classification
data in combination with our programmable switches. Results
in Section VI confirm the low overhead introduced by this
solution. However, the limited bits available also limit the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

6

Layer 2
Header IP Metadata Transport Layer

ToSLayer 2
Header

IPv4

Transport Layer

Layer 2
Header IPTraffic

Class Transport Layer

DSCPLayer 2
Header Transport Layer

MPLS

New IP

IPv6

Fig. 2: Possible protocols for Howdah’s packet header. Traffic
classification information is inserted directly into the packet
(in red), with little impact on the switch-forwarding process.

scalability and generability of the solution, which is unable
to accommodate a broader range of application requirements
and the switch’s actions specification.
MPLS. Multiprotocol Label Switching (MPLS) works by
prefixing packets with an MPLS header that contains one or
more labels, forming a label stack. Each entry in the label stack
contains four fields, including the 3-bit for Traffic Class field,
typically used for QoS. An MPLS-compatible version of How-
dah would use this field to carry the traffic flow information.
Possibly, paths per flow are reserved in advance by means
of the Label Distribution Protocol (LDP), and also profile
information can be easily carried. This approach provides
remarkable flexibility with more thorough traffic engineering
decisions, but at the cost of an additional packet header and an
additional protocol, such as LDP, for label distribution, or the
administrator effort to set up the paths on each network device.
Moreover, there are also new proposed variants of MPLS that
would allow for the encoding and processing of metadata as
part of a label stack [45].
New IP. Other possible protocol candidates that support
ancillary data, which can be used to carry classification infor-
mation (and more), include New IP [46], encoding ancillary
data in a so-called flexible packet contract, and its precursor
Big Packet Protocol (BPP) [47]. They provide an extendable
approach to adapting packet-based networking behavior based
on the introduction of the concept of a ”contract”: a block of
data (metadata and forwarding instructions) carried with the
header and user payload that can be used to inject ancillary
information that provides guidance to intermediate switches on
how to process these packets. In the context of our solution,
traffic classification data and other data that may be useful to
determine the proper treatment of a flow (such as information
about service level guarantees) are included in the metadata
field. In addition, the ancillary data can further be augmented
to provide simultaneous support for additional functions, such
as telemetry collection that can be used to refine traffic
profiling further.
IPv6. IPv6, the most recent version of IP, includes an 8-

bit field in its header called Traffic Class. In turn, this field
is divided into two sub-fields used respectively for traffic
classification and congestion management: Differentiated Ser-
vices Code Point (DSCP) with 6 bits, and Explicit Congestion
Notification (ECN) with 2 bits. In the IPv6-compliant version
of Howdah, we consider adding the traffic information in the
DSCP field, given its designed scope similar to the ToS of
IPv4. The total IPv6 header occupies 320 bits, twice the size of
the IPv4 header, since IPv6 addresses are 128 bits each. While
the IPv6 adoption is increasing year by year and almost 50% of
connections to Google happen over IPv6 [48], only 29.2% of
all networks in the global BGP routing table support the IPv6
protocol [49]. Our idea of inserting traffic information in the
IPv6 header can be used in conjunction with Segment Routing
over IPv6 (SRv6), which allows routers to use parameters
encoded using IPv6 extension headers [50] to perform special
operations. Since Segment Routing Headers (SRH) [51], a
well-known example of such an extension header, allows in
principle also other parameters to be conveyed and processed,
it is conceivable that it is compatible with our architecture.
Howdah essentials. Given the building blocks of Howdah
presented earlier, we envisioned that our solution can work
with multiple protocols carrying the traffic information. In
this paper, we limit our attention to a few options that can
be used to inform the switches about the type of traffic,
as shown in Fig. 2. In detail, the figure shows, colored
in red, where Howdah can insert the classification label on
different protocols (IPv4, MPLS, New IP, IPv6), while all
the other protocols’ fields are intentionally not mentioned.
However, we argue that given the programmability of our
P4 switches, other possible protocols, such as VXLAN, can
also be used. The essential idea of our solution does not
change regardless of which protocol carries the classification
result, and our solution involves hosts-switches cooperation
towards optimized forwarding decisions: When the packet is
ready to be sent, the host adds a flow type bit that helps the
switches distinguish between an elephant flow and a mouse
flow and react accordingly. The switch uses the header of
Howdah in this binary differentiation of flows: “0” if mouse,
“1” if elephant. In summary, this header field is used to inject
meta-information directly into the packet to provide guidance
through the network, where our Howdah’s switches perform
load profiling at the granularity of flowlets based on this value.

V. HOWDAH TRAFFIC CLASSIFICATION

One important aspect at our system’s core is traffic clas-
sification, as it impacts how packets are forwarded. This
section describes the process that runs on the host machines
responsible for accomplishing such classification task.

A. Decision Tree Model

In Howdah, we classify each flow using a decision tree, a
predictive ML model that uses a tree-like structure to make
decisions based on various input variables [52]. The main
goal of a decision tree classifier is to predict the class of an
input by building a tree-like structure where each internal node
represents a feature and each leaf node represents a class, using

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

7

logical tests to identify relevant features and make accurate
predictions based on trained data. Decision trees can be used
for classification and regression tasks, especially when there
are many possible values for each variable.

One key parameter in decision trees, often shortened as D-
Tree, is the depth of the tree. A reasonable value of depth can
help prevent overfitting, which occurs when the decision tree
has too many branches and leaves [53]. Overfitting can result
in poor performance on new data, as the decision tree may not
generalize well to unseen data. By finding the optimal value
for tree growth, we can ensure that the decision tree is neither
too complex nor too simple and that it has the ability to predict
the outcome of new situations accurately. For this reason,
in Howdah we used a k-fold Cross-Validation procedure, an
evaluation technique useful to find the optimal maximum depth
for our trained dataset. In detail, this technique splits the
dataset into k equal-sized subsets and iterates over each fold
as the validation set while training the model on the remaining
k-1 folds. This process allows us to evaluate the performance
of the decision tree model on different subsets of the data,
which contributes on reducing the bias and variance of the
trained model.

B. Howdah Classifier Methodology
As mentioned, we used a decision tree to classify the traffic

type for three main reasons. First, the structure of a D-tree
resembles the decisions made by many networking systems,
such as flow scheduling [54] and ABR algorithms [55],
which make decisions based on rules. Second, they are
lightweight for networking systems, bringing further benefits
to resource consumption and decision latency. As detailed in
Section VI-H, our decision tree classifier enables an accurate
traffic classification while not incurring an excessive burden
for the host machine. Third, decision trees have properties
of expressiveness and high faithfulness because they are non-
parametric and can represent very complex policies. Model
interpretation is an important part of an ML process, as it can
help understand the inner workings of the chosen model and
ensure that it makes accurate and fair predictions. Therefore,
using such an interpretable model can facilitate the monitoring
and debugging of network operations (see Section VI-C for
further details).

Howdah’s hosts classify the type of traffic before transmis-
sion and inject the classification label directly inside the packet
using a decision tree algorithm. Our supervised classifier acts
over an input space of 1×N , where 1 refers to the fact that
it just considers a single packet, and N is the cardinality of
features considered. In particular, our decision tree model is
trained on a features list composed of five elements: source and
destination IP address, source and destination port number, and
transport protocol (i.e., TCP or UDP). Our packet interceptor
can easily obtain this list and can work even with encrypted
data, which frequently happens in data center applications.
The output of this classification process is a binary label, 0
or 1, indicating whether it is a “mouse” or an “elephant”,
respectively.

Any host in our data center, as well as the gateway, should
run a modified instance of either kernel-level network services

or application-level socket instances. Since the literature has
shown profitable usage of a shim layer on the end hosts [18],
[25], in our prototype we considered the same option, and
our results validate the efficacy, as shown in Section VI. To
further simplify the operations over the host machines, we
apply the classification process only if necessary. In detail,
protocols known to contribute little to network congestion,
such as ICMP, are automatically labeled as mouse flows. On
the other hand, for unknown protocols and transport protocols
that may be heavy (i.e., TCP and UDP), Howdah’s classifier
runs before the sending, and the output label is set in the
packet header. It must be noted that even though forwarding
is flowlet-based, the classification is per flow, thus reducing the
number of times classification is executed. The traffic class is
thus included in each packet of the flow, but the classification
process is done only once.
Clarifying example. When a connection is established, before
sending the flow, the host classifies it using the pre-trained D-
Tree model. Assuming we are relying on the IPv4 version
of Howdah, we encapsulate this information inside the ToS
field of the header. It is important to notice that while the
classification is flow-based, the forwarding is flowlet-based,
reducing the amount of time the classifier has to be called.
The receiving switch then computes the hash of the flowlet,
taking into account the 5-tuple (protocol, IP source & desti-
nation address, TCP source & destination port), stores into
its registers a flowlet table with the hash and the current
timestamp, and chooses the output port according to the flow
type. If mice, just using the weighted version of the ECMP
algorithm for the flowlets; if elephants, via the least recently
used (LRU) strategy. When another flowlet arrives, which
belongs to a previously observed flow, the switch calculates
the time difference between the current timestamp and the
one stored in the table. If the difference is less than or equal
to a specified value, denoted as T , the switch forwards the
flowlet to the next hop indicated in the table. However, if
the difference exceeds T , the switch recalculates the hash
of the 5-tuple, updates the timestamp to the current value,
and selects a new output port based on the LRU strategy.
This concept is particularly important for latency-sensitive
applications, where being routed over the less congested path
is crucial. Short-lived applications, sometimes encapsulated in
protocols diverse from TCP/UDP, are thus used to balance the
overall network congestion.

VI. EVALUATION

In this section, we illustrate the evaluation results that
helped us develop our solution confirming Howdah’s benefits.
First, we summarize the experimental settings of our cam-
paign. Then, we discuss the performance of our classifier and
explain its behavior. We then evaluate the performance of our
solution and compare it to a centralized version. Finally, we
measure the resources consumed when running our proposed
ML model.

A. Evaluation Settings
To validate our solution over a data center-like network, we

deploy Howdah over Mininet, a network emulator that allows

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

8

Fig. 3: Network topology used throughout the experimental
evaluation. Blu links have 100 Mbps, and orange ones have
150 Mbps of bandwidth.

reproducing arbitrary virtual networks for fast simulations. De-
signed for SDN networks, Mininet can be used in combination
with the behavioral model version 2 (bmv2) to configure P4-
programmable switches in a simulated environment. To do so,
Mininet compiles a P4 program into packet-processing actions
of C++11 software switches, allowing network programmers
to test and debug their code before deploying it on actual
hardware. In Howdah, we focus on a load profiling problem.
To set up our simulation environment, we build a leaf-spine
topology composed of 10 server racks connected to their
related switches, and each of these connected to other four
switches, as shown in Fig. 3. In this load profiling scenario,
to the orange links (150 Mbps), we assign a weight of 2 and
to the blu links (100 Mbps) a weight of 1, to favor faster links.
We use the iperf3 tool to reproduce different traffic workloads
and to induce congestion in the network so that we can verify
how the network behaves at different network loads.

We then tested the traffic classifiers when the input is
composed of three realistic workloads, taken from publicly
available datasets [56]. We extracted three different datasets
and stored them in a .pcap file, corresponding to three captures
obtained during the same day in the same data center but
at diverse time instants. We mentioned them: “US-UNV-1”
with 887, 647 items, “US-UNV-2” with 913, 026 items, and
“US-UNV-3” with 887, 647 items. By scanning these files, we
extracted the necessary features for each flow, and the flow
label is assigned based on the total bytes exchanged by the
flow: if this number is greater than D or the connection lasts
more than L seconds, it is an elephant; otherwise, it is a mouse.
As in [6], the threshold D is set to 1700 bytes while L is 10
seconds since we experienced these values are realistic, and
the label assignment is not strongly imbalanced. Additionally,
as in [5], [6], we set the flowlet gap to 100µs since we realized
it is a reasonable value to identify flowlets belonging to the
same flow when evaluating the workload datasets. In this set
of experiments, hosts H1 and H4 sent background traffic using
the iperf3 tool and regularly adjusted the bandwidth to increase
the network load and, thus, generate congestion. At the same
time, H1 sends these trace-driven packets to all the other hosts
(H2 - H10) and modifies the packet size according to the flows
of interest (elephants or mice) while collecting and showing
all the relevant metrics, such as FCT and RTT.
Traffic classifier benchmarks. We compare our Howdah clas-
sifier against four well-known and widely used ML models.

First, a Support Vector Machine (SVM) model technique as
in our previous work [1], where we had it combined with a
stochastic gradient descent (SGD) technique to deal with large
datasets while also reducing the computation time. Second,
we considered a Neural Network (NN) classifier, composed
of three fully connected layers where the first two hidden
ones were made of 12 and 8 nodes and used the rectified
linear unit activation function; the third layer, the output one,
was composed of one node and used the sigmoid activation
function. We tested different numbers of layers and nodes for
our NN classifier to finally find the optimal combination that
maximizes the performance metrics of our classification prob-
lem. Thirdly, a relevant study [31] investigates both supervised
and unsupervised ML methods to identify flow types based on
traffic characteristics. Its prediction proposes an unsupervised
ML solution that uses a clustering technique as k − means,
to predict classes, labeling each flow “elephant” or “mouse”.
Finally, a Random Forest (RF) model-based technique as
in [30], where the solution of this study classifies flows
intending to optimize the incast completion time on different
buffered switches using elephant-based traffic.
Load profiler benchmarks. We compare our approach against
two of the most recent solutions: CONGA [5] and HULA [6].
Note that even a more recent solution, CONTRA [21],
employs HULA as its default approach. Differently from
them, we do not use out-of-band probes because it is overhead
traffic, but we inject network information directly inside the
packet. Finally, ECMP is used as a baseline.

B. Traffic Classification Accuracy
To estimate the performance of our model, we use the

standard notation TP for true positive, TN for true negative,
FP for false positive, and FN for false negative. In particular,
we pair TP and TN as the numbers of elephants correctly
predicted (TP) or mice correctly predicted (TN); and FP and
FN as the numbers of elephants erroneously predicted (FP)
or mice erroneously predicted (FN). As mentioned before, in
Howdah we have a binary classification – elephants and mice –
that simplifies the definition of positive and negative classes.
To compare different ML methods, we computed the most
relevant performance metrics for these algorithms: accuracy,
precision, recall, and f1-score, according to the definitions: (i)
Accuracy: the ratio on which the model provides a correct
prediction: accuracy = TP+TN

TP+TN+FP+FN . (ii) Precision: the
fraction of true positives that are effectively and correctly
classified as positives on the total of positives: precision =

TP
TP+FP . (iii) Recall: the fraction of positives on the total
of the real positives: recall = TP

TP+FN . Finally, (iv) F1-score
combines both precisions and recall measures and it is defined
as their harmonic average: F1-score = 2∗TP

2∗TP+FP+FN .
After having trained all the considered classifiers over the

80% of samples in US − UNV − 1, we computed the
performance metrics over the remaining 20% of it and over
the other two datasets. Table I shows the results of the
performance comparisons. To obtain these metrics even in the
case of unsupervised learning, i.e., k − means, we combine
it with SVM, to fall in the classification task and convert the
unsupervised results into classification performance metrics.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

9

TABLE I: Performance comparison of data center traffic classification for different ML models. Tests are performed over three
datasets

US-UNV-1 US-UNV-2 US-UNV-3

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

SVM 0.94 0.96 0.94 0.97 0.94 0.96 0.94 0.96 0.99 0.99 0.99 0.99
NN 0.93 0.92 0.99 0.96 0.93 0.93 0.99 0.95 0.99 0.99 0.99 0.99
k-means 0.83 0.99 0.83 0.91 0.84 0.99 0.84 0.91 0.97 0.99 0.98 0.99
RF 0.99 0.99 0.99 0.99 0.93 0.93 0.93 0.93 0.97 0.97 0.97 0.97
D-Tree 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.98

srcPort <= 60
gini = 0.279

samples = 710117

Protocol <= 0.5
gini = 0.13

samples = 94836

dstPort <= 60
gini = 0.095

samples = 615281

.

Fig. 4: First levels in the depth of our trained decision tree.
Source and destination ports, along with the protocol used, are
the principal features used during classification. More in detail,
“gini” is a parameter assessing the quality of the decision tree
branch, and “samples” is the number of items in the branch.

Despite providing high precision, we can observe how this
unsupervised approach performs poorly compared to other
supervised alternatives. Moreover, both RF and NN perform
well over the three datasets but provide lower accuracy and F1-
score than our D-Tree. Focusing on the RF classifier, we can
notice good accuracy when tested on the same dataset in which
it is trained. However, this model does not perform comparably
to the other datasets. On the other hand, our enhanced D-Tree
model provides more intriguing performance metrics and more
generability: its performance is satisfactory even when applied
to other data center workloads.

C. Interpreting classification with a decision tree

One reason behind our choice of D-Tree for traffic clas-
sification is the rich expressiveness of such models that al-
lows their interpretation [57]. Interpretation for classification
techniques refers to understanding and explaining how the
classification model makes predictions. Also, it can make the
user understand the factors that are most leading in making a
prediction, help identify biases in the model, and explain the
model’s predictions. There are different ways to interpret a
classification model, depending on the type of model and the
specific techniques used. Focusing on D-Tree models, they can
be interpreted by following the path that an input takes through
the tree to arrive at a prediction. We report our D-tree’s first
levels of depth after having trained it over the training set
(80%) of US−UNV −1 in Fig. 4. The figure shows that the
root node, i.e., the node that starts the tree, splits the tree into
two descending branches according to the transport protocol
source port. This first branch, along with the second level,
is an indicator of the principal features used in the decision.

This splitting criterion is done according to the Gini index, a
value used to evaluate the quality of a split along a particular
attribute. In detail, the Gini index is computed by subtracting
1 at the sum of the squares of the probability of each class
belonging to each node, and it is used to determine which
attribute to split on at each step in the learning process [58].
A low value of the Gini index means a relatively pure subset
of the data, whereas a high value indicates a mix of different
classes. The goal of a decision tree is to split the data according
to the lowest obtained Gini index, which will lead to a more
accurate and interpretable model. The figure also shows the
samples that are contained in each node. The root node, for
example, contains 710, 117 samples since we considered the
80% of US − UNV − 1 dataset, which comprises 887, 647
items in total. More in detail, all name fields were encoded
into numerical values, as seen in the first level of depth, where
the transport protocol (i.e., TCP, UDP) was converted into
numerical values (i.e., 0, 1) for being manipulated by the
machine learning algorithms. We can observe how the source
and destination ports, as well as the protocol, are the major
factors that dictate the decision process. This outcome is in
line with the rule-based decision as in [18]; however, data-
driven learning allows us to adapt and generalize over diverse
traffic patterns.

D. Packet Header Impact

As explained in Section III, Howdah can work when com-
bined with multiple protocols responsible for adding extra
information directly in the packet header. Among them, in
this paper, we specifically focus on IP, New IP, MPLS, and
IPv6, although more options are available. In Fig. 5a, we study
the diverse header format’s impact on flow completion time
(FCT) for different network loads. FCT is defined as the time
when the first packet is sent until the last one is received
and represents a key performance metric when speaking about
network congestion [59]. The error bars in the graph refer to
the 95% confidence intervals.

The first noticeable advantage of a load profiling technique
can be observed when the network load is at 20%. While
at 10%, the link congestion is not detected and considered
not relevant, for an increment in the traffic, our strategy can
effectively split the multiple flows over the available paths.
Later, when the congestion is reduced and the traffic load is
less than 50%, we can see that the advantages of having no
overhead as in IPv4 are minimal and all options show similar
FCTs. This suggests that the burden introduced by additional
bytes in the packet header is minimal. However, it can be seen

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

10

10 20 30 40 50 60 70 80 90
Load (%)

0

2

4

FC
T

[s
]

New IP
IPv4
MPLS
IPv6

(a)

10 20 30 40 50 60 70 80 90
Network Load (%)

0.0

0.5

1.0

1.5

FC
T

(n
or

m
.t

o
E

C
M

P)

Howdah
ECMP
Conga
Hula

(b)

0.00 0.05 0.10 0.15 0.20
RTT (s)

0.0

0.5

1.0

C
D

F

Howdah
HULA
CONGA
ECMP

(c)

Fig. 5: (a) Flow Completion Time (FCT) performance for different packet headers, measuring their impact. (b) FCT comparison
for benchmark load profiling solutions. (c) CDF for RTT of benchmark solution when the network load is at 70%.

10 20 30 40 50 60 70 80 90
Network Load (%)

0.0

0.5

1.0

1.5

R
T

T
(n

or
m

.t
o

E
C

M
P)

Howdah
ECMP
Conga
Hula

(a) Elephants

10 20 30 40 50 60 70 80 90
Network Load (%)

0.0

0.5

1.0

1.5

R
T

T
(n

or
m

.t
o

E
C

M
P)

Howdah
ECMP
Conga
Hula

(b) Mice

10 20 30 40 50 60 70 80 90
Network Load (%)

0.0

0.5

1.0

1.5

R
T

T
(n

or
m

.t
o

E
C

M
P)

Howdah
ECMP
Conga
Hula

(c) Average

Fig. 6: RTT evolution at varying network load, for (a) elephant flows, (b) mouse flows, and (c) on average. Differentiating
action per traffic type leads Howdah to attain the lowest RTT overall.

that when the traffic load is high, more than 70%, the benefits
of no additional bytes as in IPv4 are evident and result in
the lowest FCT. Although all of these alternatives are valid
and provide even more flexibility, we use the IP header as
the default option in the following tests, given the minimal
intervention required on the host side.

E. Load Profiling Effectiveness

After evaluating our predictive model and the impact of
different packet header formats, we studied the load-profiling
effectiveness in a data center scenario by comparing Howdah
against the other benchmark solutions. The 10 servers in Fig. 3
are used to send packets so that traffic replicates the data
center workload described in [12]. This allows us to consider
an increasing network load by varying the number of receiving
servers (from 1 to 9). First, we compare the FCT obtained by
Howdah and the other benchmark solutions for load-profiling,
normalizing all values obtained to a baseline algorithm as
ECMP. As shown in Fig. 5b, Howdah can stably minimize the
FCT for all network loads considered. While HULA performs
well at high network load, CONGA provides the best results
at low load. Our solution, instead, attains the lowest FCT
for any type of traffic in the data center, assuring a less
congested network configuration. We then focus on another
key metric, the RTT, and consider a specific network load,
70%, to evaluate the RTT’s cumulative distribution function
(CDF) for sending traffic. By plotting the CDF, we can study
the distribution of RTT values with a particular focus on tails.
As visible in Fig. 5c, our solution not only diminishes the

RTT on average compared to state-of-the-art but also lowers
the RTT of the transmission of the most long-lived packets.
In particular, all responses are received by 0.12 seconds after
the request is sent, representing the minimum among all the
alternatives considered.

Moreover, to generalize our findings and study the behavior
at different network loads, we also report the RTT evolution
in Fig. 6. Our comparison differentiates the “elephant” from
the “mouse” flows to better analyze the behavior. Starting
from elephant traffic, Fig. 6a shows the RTT normalized
to ECMP and demonstrates that the more network loads,
the more notable improvements are brought by our solution.
Although for a load ranging from 50% to 60%, we can notice
CONGA slightly outperforming Howdah, we can also observe
how CONGA cannot react to higher loads. If we compare
the RTT when sending mice traffic (Fig. 6b), this CONGA’s
behavior is even more visible and occasionally performs worse
than ECMP. On the other hand, Howdah achieves better
performance, and the advantages for mouse flows are the most
prominent. Averaging the results for the two types of traffic
in Fig. 6c, we observe that when the load is low (10% to
40%), the network is not considerably congested, and Howdah,
CONGA, and HULA achieve almost the same RTTs. However,
when the load increases, Howdah increases its advantage.
This enforces what was already shown in FCT behavior and
demonstrates how our traffic classification, combined with
differentiated actions from switches, enables achieving better
results overall.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

11

10 20 30 40 50 60 70 80 90
Load (%)

0

5

10

FC
T

[s
]

Distributed version
Centralized version

(a) Elephants

10 20 30 40 50 60 70 80 90
Load (%)

0.04

0.06

0.08

FC
T

[s
]

Distributed version
Centralized version

(b) Mice

10 20 30 40 50 60 70 80 90
Load (%)

0

2

4

6

FC
T

[s
]

Distributed version
Centralized version

(c) Average

Fig. 7: FCT evolution at varying network load when compared to a centralized version in OpenFlow, for (a) elephant flows,
(b) mouse flows, and (c) on average.

10 20 30 40 50 60 70 80 90
Load (%)

2

4

FC
T

[s
]

Howdah
Howdah+DCTCP

(a) Elephants

10 20 30 40 50 60 70 80 90
Load (%)

0.02

0.03

0.04
FC

T
[s

]

Howdah
Howdah+DCTCP

(b) Mice

10 20 30 40 50 60 70 80 90
Load (%)

1

2

FC
T

[s
]

Howdah
Howdah+DCTCP

(c) Average

Fig. 8: FCT evolution at different network loads when the DCTCP control congestion algorithm coexists compared to a Howdah
only implementation, for (a) elephant flows, (b) mouse flows, and (c) on average.

F. Centralized Approach

To validate our distributed schema, we compare it against a
centralized approach in which forwarding decisions are taken
by an SDN controller. Although a centralized solution comes
with a slow control loop due to the controller interaction, it
can perform more sophisticated decisions. We developed a
centralized version of Howdah where switches are instructed
with OpenFlow [60], one of the most known and deployed
protocols in the SDN area. In this setting, all the packets that
do not have a predefined route will automatically be forwarded
to the controller, which handles them according to the rules
added in the controller. These rules might depend on many
factors, such as source/destination addresses, transport proto-
col source, flags inside the packet, or even network conditions.
Since we compared against different parameters to consider in
packet forwarding in previous sections, herein, we study how
a centralized version of Howdah would perform. We deployed
such a version, simply called Howdah-centralized, in which
the SDN controller is implemented in Ryu framework [61]
and, just as the distributed one described throughout the paper,
runs in the Mininet simulation environment. Since OpenFlow
switches cannot support hash-based routing [62], [63], the hash
is computed and stored on a controller table. In particular, the
controller, running the ML model, classifies the incoming flow.
When elephant flows are recognized, it checks on the flowlet
hash table if the hash is present. If so, it simply installs the
rule on the switch using as matching the IP destination and
port destination. If not, it computes the hash, adds a new entry
in the table, and then installs the rule on the switch. When the
prefixed timeout expires, it removes installed flow routes.

Fig. 7 shows the comparison results between the two How-
dah versions: the distributed version, written with P4, and the

centralized one, written with OpenFlow. We focus in particular
on the type of flows sent (elephants, mice), but also on the
average between these two classifications in the same network
conditions as before. In particular, we computed the FCT for
all flows in terms of seconds at a varying network load and
level of network congestion induced with the iperf3 tool. We
can observe how our distributed version performs better than
the distributed one in all flow types. If we look at the elephant
flows in Fig. 7a, where even when the network is not much
congested (from 10% to 50% of network load), the controller
interaction in OpenFlow leads to a bigger FCT. When the
network starts to get congested, and the load is greater than
50%, we can see that both versions start to perform similarly,
and with a congested network (90%), even a distributed
solution achieves almost the same FCT as the centralized one.
This behavior is even more visible in the mice flows (Fig. 7b)
where just as for the elephant flows, when the network is
not congested, the interaction with the controller leads to
a slower forwarding time and, consequently, a greater FCT.
Meanwhile, both versions achieve almost the same FCT when
the network becomes more congested. However, if we consider
the average FCT of all flows in Fig. 7c, we can conclude that
the distributed setting can drastically reduce the FCT and the
overhead. This outcome finally validates our approach and the
importance of having host-based classification and a data-plane
forwarding process.

G. Howdah in Conjunction with CC algorithms

In evaluating Howdah, we also considered how it behaves
when an in-network congestion control (CC) algorithm is
present, taking for this experiment the well-known data-center
TCP (DCTCP) [12]. With DCTCP, switches mark packets’

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

12

TABLE II: Overhead of the considered ML models both during training (T) and classification (C) in terms of time spent, RAM
and CPU consumption, and CO2 emission. The D-Tree model appears as a lightweight model.

Tr. time [s] Class. time [µs] CO2 (T) [mg] CO2 (C) [mg] RAM (T) [%] RAM (C) [%] CPU (T) [%] CPU (C) [%]

SVM 0.927 0.0264 1.933 0.0417 2.013 2.022 15.554 14.523
NN 170.869 4.081 416.6 1.8391 2.766 2.758 18.328 18.207
k-means 0.647 0.07974 2.013 0.0728 1.959 1.954 16.621 15.583
RF 83.439 10.562 192.4 3.1312 1.872 1.851 16.58 16.983
D-Tree 1.0202 0.107 1.733 0.0481 2.969 2.93 16.619 16.506

0 50 100 150 200
Time (s)

1.75

2.00

2.25

2.50

2.75

3.00

R
A

M
(%

)

K-means
SVM
NN
RF
D-Tree

(a)

0 50 100 150 200
Time (s)

15.0

17.5

20.0

22.5

25.0
C

PU
(%

)
K-means
SVM
NN
RF
D-Tree

(b)

Fig. 9: (a) RAM and (b) CPU consumption of the considered
classifiers during the execution at the host side.

Explicit Congestion Notification (ECN) field to notify the
sender that there is congestion in the network, i.e., the buffer
occupancy of the switch exceeds a fixed small threshold. The
sending host reacts by reducing the sending rate, using the
fraction of marked packets as a factor: the larger the fraction,
the bigger the decrease factor. Fig. 8 compares the FCT
evolution of two implementations: one using only Howdah and
the other using both Howdah and the DCTCP algorithm under
different network loads. In Fig. 8a, we observe that despite the
large size of the elephant flows, both implementations achieve
the same performance at all network loads. This suggests that
the load profiling mechanism that Howdah adopts is effec-
tive enough and able to collaborate with other mechanisms.
Similarly, in Fig. 8b, both implementations achieve the same
FCT for the mouse flows. Although there is a slight difference
between 50% and 80% of network load where the solution
Howdah + DCTCP performs better than Howdah alone, the
difference is only 2.106ms. Overall, as shown in Fig. 8c, both
implementations perform similarly on average, demonstrating
that Howdah performs as a good profiler both alone and in
combination with other mechanisms.

H. Resource Consumption

Finally, we consider the impact of the traffic classifier
on the host machines. One of the challenges faced by the
design and implementation of Howdah is the efficiency in
terms of processing time, especially onboard host machines,
which are typically running resource-consuming processes. A
lightweight yet accurate classifier is thus essential. To this end,
we study the memory and CPU consumption of different ML
models during the training learning phase and execution phase,
reporting results in Fig. 9. The considered machine consists of
a 2.6 GHz 6-core CPU and 16GB RAM. We can observe how,
although our D-tree classifier consumes the highest amount
of RAM (Fig. 9a), this quantity is negligible and can be

found in any device, even on the resource-constrained ones.
The CPU consumption (Fig. 9b), however, is similar to other
algorithms and less than the Neural Network model. Even
when no specific hardware is utilized, the reduced computing
resources required by D-Tree validate our design and motivate
our assumption to run the learning process on host machines.

In addition to memory footprint and computation resources,
we also evaluated the overhead of training and running the
ML models (Table II). We report the time, CO2, RAM, and
CPU for both training and classification processes, where the
training occurs over 80% of the US−UNV −1 dataset and the
classification over the remaining 20% of it. The classification
time is the time to classify an unknown flow when it must
be sent. As shown in Table II, the Decision Tree, similarly
to k-means and SVM, requires a limited training time, while
neural networks and RF demands more time to converge.
The classification time of the D-Tree is also minimal and
negligible. This result is extremely important as it validates our
hypothesis to run the classification before sending any packet.
On the contrary, despite being very accurate, RF is slower in
its operations. Concerning the energy efficiency of the models,
different studies [64], [65] have proven that training ML
models are highly polluting, especially when there are many
parameters and massive datasets. For this reason, we estimated
the environmental footprint that our code left, in terms of mg
of CO2 emissions, measured with the CodeCarbon python
library [66]. This library uses two main factors to compute
the CO2 emission: the carbon intensity per kWh of electricity
needed for the computation (in gCO2/kWh), and the power
consumed by the infrastructure where the code is running (in
kWh). The multiplication of these two factors gives the overall
carbon emission of the running code. It is important to notice
that the computation is made by the library itself, considering
values such as different carbon intensities of electricity per
country. We can observe from the table how the training time
also impacts the carbon emission with supervised models such
as NN and RF that, by needing more time to train, also have
a more considerable energy impact, emitting more CO2. On
the contrary, our D-tree model is shown to be one of the
greenest options for the classification, with similar emissions
to SVM. Quite surprisingly, the CO2 emissions of RF during
classification are the highest, even more than deep learning
models. This result is possibly due to the complexity raised by
the presence of multiple trees and will be analyzed in depth in
the future. Lastly, averaging the RAM and CPU consumptions
of the models, we have confirmation of results in Fig. 9, where
the RAM usage of D-tree is the highest among alternatives but
still limited, and the CPU is comparable to benchmarks.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

13

VII. CONCLUSION

This paper presented Howdah, an in-band load profiling
solution, whose pillar is the cooperation host-switch: the host
classifies sending traffic using a specifically trained ML model,
i.e., Decision Tree, and inserts it directly into the packet; the
switch, programmed using P4 language, takes packet forward-
ing decisions based on the information of the flow type and on
the status of the network itself. By letting each switch locally
decide the best next-hop per packet, our solution assures link
failure resistance and the ability to adapt to topology changes.
Throughout the paper, we also explored possible protocols that
can be used to include in-band information about the ongoing
traffic type. Results demonstrate that overall, and especially
at high network loads, our solution reduces RTT and FCT
more than the state-of-the-art techniques. Moreover, the model
chosen introduces little overhead to the system, validating our
design of delegating the classification task to the host process.
In the future, in order to improve load profiling, traffic classi-
fication, and forwarding decisions further, we plan to explore
new strategies that use a more fine-grained classification for
a multi-class classification that identifies more applications
(e.g., video streaming, interactive call) or insert additional data
beyond the classification itself.

REFERENCES

[1] A. Angi, A. Sacco, F. Esposito, G. Marchetto, and A. Clemm, “Howdah:
Load profiling via in-band flow classification and p4,” in 2022 18th
International Conference on Network and Service Management (CNSM).
IEEE, 2022, pp. 46–54.

[2] I. Matta and A. Bestavros, “A load profiling approach to routing
guaranteed bandwidth flows,” in Proceedings. IEEE INFOCOM ’98, the
Conference on Computer Communications, vol. 3, 1998, pp. 1014–1021.

[3] A. V. Ventrella, F. Esposito, and L. A. Grieco, “Load profiling and mi-
gration for effective cyber foraging in disaster scenarios with formica,”
in 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), 2018, pp. 80–87.

[4] S. Sen, D. Shue, S. Ihm, and M. J. Freedman, “Scalable, optimal
flow routing in datacenters via local link balancing,” in Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies, 2013, pp. 151–162.

[5] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan et al.,
“CONGA: Distributed Congestion-Aware Load Balancing for Datacen-
ters,” in Proceedings of the Annual conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’14). New York,
NY, USA: ACM, 2014, p. 503–514.

[6] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research (SOSR ’16). Association for
Computing Machinery, 2016, pp. 1–12.

[7] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat
et al., “Hedera: dynamic flow scheduling for data center networks,”
in Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’10), vol. 10, no. 8. USENIX
Association, 2010, pp. 89–92.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4, pp. 3–14, 2013.

[9] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fast-
pass: A centralized” zero-queue” datacenter network,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’14). ACM New York, NY, USA, 2014,
pp. 307–318.

[10] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’13). ACM New York,
NY, USA, 2013, pp. 15–26.

[11] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic Load
Balancing without Packet Reordering,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 2, p. 51–62, Mar. 2007.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),”
in Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’10). ACM New York,
NY, USA, 2010, pp. 63–74.

[13] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu,
Y. Xiong, and D. Maltz, “Per-packet load-balanced, low-latency routing
for clos-based data center networks,” in Proceedings of the ninth
ACM conference on Emerging networking experiments and technologies
(CoNEXT ’13), 2013, pp. 49–60.

[14] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro Load Balancing for Low-Latency Data Center Net-
works,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’17). New York, NY,
USA: Association for Computing Machinery, 2017, p. 225–238.

[15] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and
J. Rexford, “Clove: Congestion-aware load balancing at the virtual
edge,” in Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT ’17), 2017, pp.
323–335.

[16] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 465–
478, 2015.

[17] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson, “F10: A fault-
tolerant engineered network,” in 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’13), 2013, pp. 399–412.

[18] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in Proceedings of the IEEE International Conference on Computer
Communications (INFOCOM ’11). IEEE, 2011, pp. 1629–1637.

[19] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in Proceedings of the seventh con-
ference on emerging networking experiments and technologies (CoNEXT
’11), 2011, pp. 1–12.

[20] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen, L. Wan,
L. Liu, Z. Ding et al., “Tiara: A scalable and efficient hardware
acceleration architecture for stateful layer-4 load balancing,” in 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), 2022, pp. 1345–1358.

[21] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra: A
programmable system for performance-aware routing,” in 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’20). USENIX Association, 2020, pp. 701–721.

[22] Z. Li, S. Peng, D. Voyer, C. Li, P. Liu, C. Cao, and
G. Mishra, “Application-aware Networking (APN) Framework,”
Internet Engineering Task Force, Internet-Draft draft-li-apn-
framework-06, Sep. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-li-apn-framework/06/

[23] A. Sacco, F. Esposito, G. Marchetto, G. Kolar, and K. Schwetye, “On
Edge Computing for Remote Pathology Consultations and Computa-
tions,” IEEE Journal of Biomedical and Health Informatics, vol. 24,
no. 9, pp. 2523–2534, 2020.

[24] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), 2020, pp. 495–511.

[25] M. Noormohammadpour and C. S. Raghavendra, “Datacenter traffic
control: Understanding techniques and tradeoffs,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1492–1525, 2017.

[26] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[27] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim et al.,
“VL2: A Scalable and Flexible Data Center Network,” in Proceedings
of the ACM Conference on Data communication (SIGCOMM ’09).
Association for Computing Machinery, 2009, pp. 51–62.

[28] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement (IMC
’09), 2009, pp. 202–208.

[29] Y. Li, H. Liu, W. Yang, D. Hu, X. Wang, and W. Xu, “Predicting inter-
data-center network traffic using elephant flow and sublink information,”

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

14

IEEE Transactions on Network and Service Management, vol. 13, no. 4,
pp. 782–792, 2016.

[30] K. B. Nougnanke, Y. Labit, and M. Bruyere, “ML-based Incast Perfor-
mance Optimization in Software-Defined Data Centers,” in 2021 IEEE
22nd International Conference on High Performance Switching and
Routing (HPSR). IEEE, 2021, pp. 1–6.

[31] A. Chhabra and M. Kiran, “Classifying elephant and mice flows in
high-speed scientific networks,” Proc. of the International Workshop on
Innovating the Network for Data Intensive Science (INDIS ’17), pp. 1–8,
2017.

[32] C. S. Inc., “Cisco global cloud index: Forecast
and methodology, 2016–2021,” 2021. [Online]. Avail-
able: https://virtualization.network/Resources/Whitepapers/0b75cf2e-
0c53-4891-918e-b542a5d364c5 white-paper-c11-738085.pdf

[33] A. Sacco, F. Esposito, and G. Marchetto, “RoPE: An Architecture for
Adaptive Data-Driven Routing Prediction at the Edge,” IEEE Transac-
tions on Network and Service Management, vol. 17, no. 2, pp. 986–999,
2020.

[34] N. Farrington, G. Porter, S. Radhakrishnan et al., “Helios: a hybrid
electrical/optical switch architecture for modular data centers,” in Pro-
ceedings of the ACM Conference on Data communication (SIGCOMM
’10). Association for Computing Machinery, 2010, pp. 339–350.

[35] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Supporting Sus-
tainable Virtual Network Mutations with Mystique,” IEEE Transactions
on Network and Service Management, vol. 18, no. 3, pp. 2714–2727,
2021.

[36] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
elephant flows through periodically sampled packets,” in Proceedings
of the 4th ACM SIGCOMM conference on Internet measurement (IMC
’04). Association for Computing Machinery, 2004, pp. 115–120.

[37] S. Gebert, S. Geissler, T. Zinner, A. Nguyen-Ngoc, S. Lange, and
P. Tran-Gia, “Zoom: Lightweight sdn-based elephant detection,” in 28th
International Teletraffic Congress (ITC 28), vol. 2. IEEE, 2016, pp.
1–6.

[38] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[39] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The
P4− >NetFPGA Workflow for Line-Rate Packet Processing,” in Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2019, pp. 1–9.

[40] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan, “Measuring control plane latency in sdn-
enabled switches,” in Proceedings of the 1st ACM SIGCOMM sympo-
sium on software defined networking research, 2015, pp. 1–6.

[41] I. Matta, A. Bestavros, and M. Krunz, “Load profiling based routing for
guaranteed bandwidth flows,” European Transactions on Telecommuni-
cations, vol. 10, no. 2, pp. 165–181, 1999.

[42] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-
macher, “Pint: Probabilistic In-Band Network Telemetry,” in Proceed-
ings of the Annual conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’20). ACM New York, NY, USA,
2020, pp. 662–680.

[43] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Partially Oblivious
Congestion Control for the Internet via Reinforcement Learning,” IEEE
Transactions on Network and Service Management, vol. 20, no. 2, pp.
1644–1659, 2022.

[44] M. Baldi, G. Marchetto, and Y. Ofek, “A Scalable Solution for Engi-
neering Streaming Traffic in the Future Internet,” Computer Networks,
vol. 51, no. 14, pp. 4092 –4111, 2007.

[45] S. Bryant and A. Clemm, “Token cell routing: A new sub-ip layer
protocol,” in 2021 17th International Conference on Network and
Service Management (CNSM). IEEE, 2021, pp. 153–159.

[46] R. Li, K. Makhijani, and L. Dong, “New IP: A Data Packet Framework
to Evolve the Internet,” in 2020 IEEE 21st International Conference on
High Performance Switching and Routing (HPSR). IEEE, 2020, pp.
1–8.

[47] R. Li, A. Clemm, U. Chunduri, L. Dong, and K. Makhijani, “A
New Framework and Protocol for Future Networking Applications,”
in Proceedings of the 2018 Workshop on Networking for Emerging
Applications and Technologies, ser. NEAT ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 21–26.

[48] Ipv6 statistics. Accessed: 2023-1-7. [Online]. Available:
https://www.google.com/intl/it/ipv6/statistics.html

[49] Ipv6 usage. Accessed: 2023-1-7. [Online]. Available:
http://v6asns.ripe.net/v/6?s=+ALL

[50] S. Deering and R. Hinden, “RFC8200: Internet protocol, version 6 (IPv6)
specification,” 2017.

[51] C. Filsfils, D. Dukes, S. Previdi, J. Leddy, S. Matsushima, and D. Voyer,
“IPv6 segment routing header (SRH): RFC8754,” 2020.

[52] S. B. Kotsiantis, “Decision trees: a recent overview,” Artificial Intelli-
gence Review, vol. 39, no. 4, pp. 261–283, 2013.

[53] M. Bramer, “Avoiding overfitting of decision trees,” Principles of data
mining, pp. 119–134, 2007.

[54] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Information-
Agnostic flow scheduling for commodity data centers,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’15). USENIX Association, 2015, pp. 455–468.

[55] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal
bitrate adaptation for online videos,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 4, pp. 1698–1711, 2020.

[56] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement (IMC ’10), 2010, pp. 267–280.

[57] H. Blockeel and L. De Raedt, “Top-down induction of first-order logical
decision trees,” Artificial intelligence, vol. 101, no. 1-2, pp. 285–297,
1998.

[58] S. Tangirala, “Evaluating the impact of gini index and information gain
on classification using decision tree classifier algorithm,” International
Journal of Advanced Computer Science and Applications, vol. 11, no. 2,
pp. 612–619, 2020.

[59] N. Dukkipati and N. McKeown, “Why flow-completion time is the right
metric for congestion control,” ACM SIGCOMM Computer Communi-
cation Review, vol. 36, no. 1, pp. 59–62, 2006.

[60] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
vol. 38, no. 2, pp. 69–74, 2008.

[61] Ryu controller. Accessed: 2022-12-7. [Online]. Available: https://ryu-
sdn.org/

[62] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based server load
balancing gone wild,” in Workshop on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and Services (Hot-ICE 11),
2011.

[63] M. Schlansker, Y. Turner, J. Tourrilhes, and A. Karp, “Ensemble routing
for datacenter networks,” in 2010 ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS). IEEE,
2010, pp. 1–12.

[64] J. Cowls, A. Tsamados, M. Taddeo, and L. Floridi, “The ai gambit: lever-
aging artificial intelligence to combat climate change—opportunities,
challenges, and recommendations,” Ai & Society, pp. 1–25, 2021.

[65] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau,
“Towards the systematic reporting of the energy and carbon footprints
of machine learning,” Journal of Machine Learning Research, vol. 21,
no. 248, pp. 1–43, 2020.

[66] V. Schmidt, K. Goyal, A. Joshi, B. Feld, L. Conell, N. Laskaris,
D. Blank, J. Wilson, S. Friedler, and S. Luccioni, “Codecarbon: estimate
and track carbon emissions from machine learning computing,” 2021.

Antonino Angi received his M.Sc. degree in Com-
puter Engineering (major in Data Science) from Po-
litecnico di Torino, Italy in 2020, and he is currently
enrolled in a Ph.D. program at the same university.
His research interests include protocols for network
architecture and management; applying Natural Lan-
guage Processing (NLP) and Machine Learning al-
gorithms to Software Defined Networks (SDN) and
Intent-based Networks (IBN), used in conjunction
with data-plane programming languages.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

15

Alessio Sacco is an Assistant Professor at Po-
litecnico di Torino. He received the M.Sc. degree
(summa cum laude) and the Ph.D. degree (summa
cum laude) in computer engineering from the Po-
litecnico di Torino, Torino, Italy, in 2018 and 2022,
respectively. His research interests include architec-
ture and protocols for network management; im-
plementation and design of cloud computing appli-
cations; algorithms and protocols for service-based
architecture, such as Software Defined Networks
(SDN), used in conjunction with Machine Learning

algorithms.

Flavio Esposito is an Associate Professor with the
Department of Computer Science at Saint Louis
University (SLU). He received a M.Sc. degree in
Telecommunication Engineering from the University
of Florence, Italy, and a Ph.D. in computer science
from Boston University in 2013. Flavio’s main re-
search interests include network management, net-
work virtualization, and distributed systems. Flavio
is the recipient of several awards, including several
National Science Foundation awards and the Com-
cast Innovation Award in 2021.

Guido Marchetto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Associate Profes-
sor with the Department of Control and Computer
Engineering. His research topics cover distributed
systems and formal verification of systems and pro-
tocols. His interests also include network protocols
and network architectures.

Alexander Clemm is a Distinguished Engineer in
Futurewei’s Future Networks and Innovation Group
in Santa Clara, California. He has been involved
in networking software and management technology
throughout his career, most recently in the areas of
high-precision networks and future networking ser-
vices. He has served on the Organizing Committees
of many management and network softwarization
conferences. He has around 50 publications, 50
issued patents, and several books and RFCs. He
holds an M.S. in computer science from Stanford

University and a Ph.D. from the University of Munich, Germany.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3299729

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Politecnico di Torino. Downloaded on August 01,2023 at 07:42:11 UTC from IEEE Xplore. Restrictions apply.

