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ARTICLE INFO ABSTRACT

Keywords: Recently, deep reinforcement learning has emerged as a popular approach for enhancing thermal energy man-
Deep reinforcement learning agement in buildings due to its flexibility and model-free nature. However, the time-consuming convergence
LSTM neural network of deep reinforcement learning poses a challenge. To address this, offline pre-training of deep reinforcement

Data-driven building modelling
Real-time deployment

Heating system

Energy management

learning controllers using physics-based simulation environments has been commonly employed. However,
developing these models requires significant effort and expertise. Alternatively, data-driven models offer a
promising solution by emulating building dynamics, but they struggle to predict previously unseen patterns.
Therefore, this paper introduces a strategy to effectively train and deploy a deep reinforcement learning
controller by means of long short-term memory neural networks. The experiments were carried out using
an EnergyPlus simulation environment as a proxy of a real building. An automatic and recursive procedure is
designed to determine the minimum amount of historical data required to train a robust data-driven model
which mimics building dynamics. The trained deep reinforcement learning agent meets safety requirements in
the simulation environment after two and a half months of training. Additionally, it reduces indoor temperature
violations by 80% while consuming the same amount of energy as a baseline rule-based controller.

1. Introduction handled through controllers based on rules exploiting pre-determined

schedules based on Proportional-Integrative-Derivative (PID) or ON—
OFF logic to track the desired setpoints [5].

In this context, the increasing penetration of Internet of Things
(IoT) devices and Information and Communication Technologies (ICT)
has opened the door to a great availability of building-related data.
The information and knowledge stored on building historical data
can be leveraged by advanced control strategies based on Artificial
Intelligence (AI) [9] to characterise the present and expected future
states of buildings and their energy systems [10,11].

Among advanced control strategies, Model Predictive Control (MPC)
has gained wide attention in the building industry for its capability
to optimise the operation of energy systems over a certain receding
time horizon, accounting for current system behaviour as well as its
possible evolution [12,13]. The current state of the art concerning MPC
applications in literature proves its excellent capabilities in optimising
the operation of Integrated Energy Systems (IES) to reduce building
energy consumption [14,15] and enhance the efficiency of energy sys-
tems [16]. MPC controllers have demonstrated their ability to handle
PV electricity generation predictions as well as the energy exchange
with the electrical grid according to price signals [17,18]. Moreover,

The building sector is responsible for approximately 40% of total en-
ergy consumption worldwide [1]. In this framework, Renewable Energy
Sources (RES) are globally experiencing a significant penetration, in
particular solar Photovoltaic (PV) [2] and wind energy [3]. At building
level, the introduction of various incentive programs has supported the
penetration of PV systems, Thermal Energy Storage (TES) and batteries
in integrated Heating, Ventilation and Air Conditioning (HVAC) sys-
tems. As a result, building energy management has been recognised as
a crucial factor to optimise the operation of energy systems [4] but it
has become a challenging task as energy systems in buildings are more
complex and integrated [5]. Considering that HVAC systems represent
the most energy-intensive building use, significant improvements have
been implemented to enhance their energy efficiency through better
energy management [6] and to reduce the energy cost associated
with its operation, in particular during the current period where price
volatility for raw materials involved in electricity production led to an
increase in the average electricity price [7].

Nowadays, building energy systems are typically managed through
sub-optimal strategies which are not the result of optimisation pro-
cesses [8]. In particular, the control of HVAC systems is typically
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Nomenclature

a Boltzmann temperature coefficient

p Temperature-term weight of reward func-
tion

5 Power term-weight of reward function

y Discount factor

u DRL controller learning rate

0 Temperature-term prize of reward function

EpRriweek Weekly DRL energy consumption [kWh]

ERBC, o gupdaily Daily RBC predicted energy consumption
[kWh]

ERBC, 0. t0eck Weekly RBC predicted energy consumption
[kWh]

Pax heating Maximum supplied heating power [kW]

r Reward function

SPint Indoor air temperature setpoint [°C]

SPropp Supply water temperature setpoint [°C]

TrnT Indoor air temperature [°C]

Trow Lower threshold limit of temperature com-
fort range [°C]

TRET Return water temperature [°C]

Typp Upper threshold limit of temperature com-
fort range [°C]

Tyiol Cumulated sum of temperature violations
[°C]

X power() Fraction of the nominal heating power

Acronyms

AHUs Air Handling Units

Al Artificial Intelligence

BESS Battery Energy Storage System

BCVTB Building Control Virtual Test Bed

DDPG Deep Deterministic Policy Gradient

DNNs Deep Neural Networks

DOQN Deep Q-Network

DRL Deep Reinforcement Learning

HVAC Heating, Ventilation and Air Conditioning

ICT Information and Communication Technolo-
gies

IES Integrated Energy Systems

IoT Internet of Things

LSTM Long Short-Term Memory

MAPE Mean Absolute Percentage Error

MPC Model Predictive Control

PID Proportional-Integrative-Derivative

PPD Predicted Percentage of Dissatisfied

PV Photovoltaic

RBC Rule-Based Controller

RES Renewable Energy Sources

RL Reinforcement Learning

RMSE Root Mean Squared Error

SAC Soft Actor-Critic

TES Thermal Energy Storage

TL Transfer Learning

TPE Tree-structured Parzen Estimator

the implementation of MPC proved to be effective in enabling the
sharing of energy in a community of buildings [19]. However, the real-
world deployment of MPC is limited by its model-based nature, since it
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requires an accurate characterisation of the building and energy system
to be optimised [20,21]. This modelling effort could be challenging
since each building represents a singular entity requiring the definition
of a proper description to be employed during the control strategy
optimisation [18]. Consequently, MPC controllers have not been widely
adopted in the building industry despite promising results [6,22].

In this context, Reinforcement Learning (RL) has emerged as an
alternative approach to MPC to revolutionise the implementation of
advanced controllers in buildings [23]. The interest in RL-based control
strategies has increased especially because it follows a model-free
approach, where an agent directly learns the optimal control policy by
interacting with the system through a trial-and-error approach [24].

Among the RL-based control strategies, the most frequently im-
plemented refers to the Q-Learning algorithm [25]. However, control
applications in buildings are characterised by a high number of states
and actions together with a high complexity inherent to the exploration
of non-linear relationships in buildings [26]. Therefore, to make the
application of advanced controllers in buildings effective, a variant of
RL is introduced, named Deep Reinforcement Learning (DRL), in which
the control policy is approximated employing Deep Neural Networks
(DNNs) [27]. In the next subsection, relevant applications of DRL
controllers are discussed before defining the motivation and novelties
of this paper.

1.1. Related works on reinforcement learning control strategies implemented
in buildings

In the context of building energy management, DRL controllers
have been adopted to manage the supply water temperature of gen-
eration systems [28,29], supply water mass flow rate [30], thermal
storage temperature setpoint [31,32], chiller operation [33], thermal
storage charging and discharging [18,34], Battery Energy Storage Sys-
tem (BESS) operation [35], indoor temperature setpoint [36,37], fan
speed [38], valve position [30] and lighting devices [39].

In [6,28] a DRL control agent was trained and deployed on an
EnergyPlus model, to optimise the supply water temperature of a heat-
ing system for an office building. The results showed energy savings
ranging between 5 and 12% with respect to a Rule-Based Controller
(RBC), with enhanced performance in indoor temperature control.

Schreiber et al. [30] developed a Modelica environment to train
and compare two RL algorithms, a Deep Q-Network (DQN) agent and a
Deep Deterministic Policy Gradient (DDPG) agent, to control the supply
water temperature and the mass flow rate of a chiller plant, as well
as valve positions. Both algorithms showed better performances when
compared to a demand-oriented baseline controller.

The same strategies based on DRL were compared in [40] for
managing the indoor temperature setpoint in a multi-zone residential
HVAC system. The authors demonstrated that the control agent based
on DDPG in a simulated building environment can reduce energy
consumption by 15% compared to DQN and ensure 79% and 98%
reduction in temperature violations when compared respectively to
DQN and RBC.

In [31,41] the authors achieved an energy saving between 4 and
10% while maintaining desired indoor temperature conditions by man-
aging the TES water temperature with a DRL controller during the
cooling season.

Brandi et al. [18] compared the performance of DRL and MPC
controllers in managing the charging/discharging process of a TES in a
cooling system serving an office building to minimise electricity cost.
In particular, two different DRL training strategies were implemented,
named online DRL and offline DRL. The online DRL control strategy
achieved similar performance compared to MPC after approximately
4 weeks, representing a possible solution to enhance the scalability
of advanced controllers as the model-based or the offline DRL, since
it requires the definition of a surrogate model of the building to be
controlled.
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Moreover, DRL control agents have shown excellent capabilities
in providing services to the grid (i.e., peak shaving and load shift-
ing) by optimising the operation of energy systems in a district of
buildings [42,43] or the operation of integrated electricity and natural
gas systems [44]. Zhang et al. [44] effectively implemented DRL to
coordinate the operation of a power-to-gas unit and generators in an
integrated electricity and natural gas system to increase economic profit
while shaving electricity peaks in the net load demand curve. The
implementation of a DRL control agent allowed the adaptive determi-
nation of the conversion ratio of wind power, power-to-gas and gas
turbine operations adjusting the energy system operation according to
dynamic factors such as wind power production, wholesale gas price
and power demand uncertainties.

The analysis of the current scientific literature suggests that DRL is
a promising technique since it employs a trial-and-error approach while
interacting with the energy system to learn an optimal control policy.
Moreover, DRL implementation constitutes a valuable asset to optimise
the operation of IES addressing a number of objectives while handling
high-dimensional control problems (e.g., real-world problems) also
characterised by stochastic behaviour.

Despite its proven effectiveness, some limitations related to the
scalability of DRL agents in real-world implementations emerge from
the literature. In addition, DRL controllers require a considerable
amount of time to converge to near-optimal solutions which stability
is not always guaranteed. In ideal conditions, a model-free DRL agent
should be directly implemented in a real building gradually learning
the optimal control policy through a trial and error approach [18].
However, the convergence process requires several interactions and
may lead to the exploration of extreme conditions of the controlled
environment resulting in poor control performance, especially during
the first period of deployment [45]. As a consequence, the direct
deployment of a DRL agent in a real building is unfeasible due to
economic and safety reasons. To overcome this limitation, a common
approach explored in literature leverages surrogate models of building
and energy systems to offline pre-train the DRL controller. In this
context, the majority of researchers developed detailed engineering
models employing software such as Modelica [46] and EnergyPlus [47].
However, the definition of a building surrogate engineering model
represents a time-consuming task that also requires expert knowledge
and detailed information.

A different approach involves the use of data-driven architectures
trained on historical monitoring data as surrogate models of building
and system dynamics. Following this approach, Zou et al. [38] demon-
strated how a DRL agent could learn an optimal control policy by
interacting with Long Short-Term Memory (LSTM) models that emulate
the building dynamics. The authors implemented this approach for a
building served by a HVAC system which consists of three Air Handling
Units (AHUs), achieving a 30% energy saving and maintaining the
Predicted Percentage of Dissatisfied (PPD) at 10% when compared to a
baseline controller. Although the authors in [38] effectively managed
to employ a data-driven model to perform offline the training of a
DRL controller, the proposed approach can be further extended. One
limitation of this study was the use of a LSTM model for both training
and testing the DRL agent. While the authors employed as first LSTM
models trained on real building data to train DRL algorithms, the
generalisability of the approach proposed is limited by the fact that
the trained agent was only evaluated on a LSTM model. In the present
paper, the performance of the DRL trained on LSTM is tested on an
EnergyPlus simulation environment conceived as a proxy of a real
building to fully understand the potential benefits and limitations of
using data-driven models to train DRL agents for building control.

1.2. Novelty and contributions of the paper
The development of data-driven models of building dynamics is a

topic widely explored in the current scientific literature [48,49]. How-
ever, models specifically built for training offline DRL agents present
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particular challenges worth to be investigated. In fact, the values of the
output variable of data-driven models of building dynamics are strongly
dependent on the control action being implemented [50].

Since during training DRL agents explore different control trajecto-
ries, the data-driven model should be capable to provide a physically
robust emulation of the behaviour of the building system in different
conditions. However, one of the major drawbacks of data-driven models
is their inability to correctly represent patterns that are not present in
the training data. For example, a model trained on data collected in
a building where traditional logic is implemented may no longer be
effective in properly emulating building dynamics when an advanced
control strategy such as DRL is implemented. Consequently, the control
policy learned by the DRL agent may be sub-optimal. However, to
effectively verify the performance of a control policy learned through a
data-driven model, it is fundamental to implement the DRL controller
on the original system from which the data-driven model was built.
Despite its limitation, it is possible to determine if through this ap-
proach the data-driven model is effective in emulating the behaviour
of the physical system enabling the DRL to converge to a near-optimal
solution.

A further key aspect to consider in the development of data-driven
model for the estimation of building dynamics is the amount of histor-
ical data to build a robust model. The amount of data in terms of both
number of variables and time period necessary to build data-driven
model of building dynamics can affect the scalability of DRL agents
trained through this approach.

The present paper introduces a novel approach to pre-train a DRL
agent for building energy management by means of data-driven models
of building dynamics. The proposed approach is conceived considering
the requirements and limitations of a real-world context such as the
necessity to rapidly deploy advanced control strategies in buildings
with limited availability of historical data.

The proposed approach leverages a LSTM neural network-based
model as a surrogate for the building dynamics to pre-train in an
offline fashion a DRL agent based on Soft Actor-Critic (SAC) algorithm.
Conceptual details for LSTM can be found in [51,52], while theoretical
foundation regarding advanced controller can be found in [24,53] for
DRL controller and in [42,54] for SAC algorithm. The data employed to
train this surrogate model are synthetically generated from a building
model implementing first a traditional control logic and then directly
the DRL-based control strategy. The proposed approach includes peri-
odic re-training of both the surrogate model and the DRL agent, coupled
with a safety control strategy to evaluate whether the implemented DRL
logic is able to achieve acceptable performance. The model of building
dynamics and the DRL controller are trained to gradually converge
as long as new data are made available. Eventually, hyperparameters
optimisation routines are included at different steps of the proposed
approach in order to ensure adequate performances of the machine
learning model implemented.

Thus, the present paper aims to demonstrate how LSTM models can
be exploited in an effective way to train and deploy DRL agents for
building energy management. In this context, the comparison of the
selected DRL controller with other advanced control strategies is not
performed since it deviates from the scope of the present work.

Despite the proposed approach is evaluated in a simulation envi-
ronment, the experiments are carried out to effectively emulate the
implementation within a physical system. In this framework, the main
barriers related to the implementation of the proposed approach in a
real-world system are identified and potentially addressed.

2. Method of the proposed approach

The core of the proposed controller relies not on its formulation but
rather on the approach applied to perform its training and deployment.
The approach introduced in the present paper aims to investigate the
applicability of data-driven models to perform offline training of the
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Fig. 1. Framework of the proposed approach for DRL training and deployment.

DRL agent. In a real-world context, the data-driven model should be
trained on existing historical data collected in-field. However, since
in a real-world context access to historical data may be limited, the
proposed approach is conceived to be effective even when a limited
amount of data is initially available.

The experiments are carried out in a simulation environment, com-
posed of three main elements. The first element is represented by a
simulation environment (identified as EnergyPlus environment) based
on OpenAl Gym [55] combining EnergyPlus [47] and Python through
Building Control Virtual Test Bed (BCVTB) [56]. Python and Ener-
gyPlus dynamically exchange information considering a simulation
timestep of 15 min. The EnergyPlus environment is conceived as a
proxy of a real building managed through a traditional rule-based
control strategy and equipped with a monitoring infrastructure collect-
ing energy-related data. As a consequence, differently from traditional
application of DRL controllers in simulation environments [9], the
EnergyPlus environment is not employed to perform multiple episodes
to train the DRL agent while the simulation outputs, resulting from
the implementation of a control action, are treated as monitoring data
collected in real field. The second element is a different simulation
environment (identified as LSTM environment) based on OpenAl Gym
including a LSTM model developed with the PyTorch library [57].
LSTM is employed as data-driven model to emulate the dynamics of the
building simulated in EnergyPlus in the first environment. The third
element is a control interface that interacts with the two previously
described environments. The interface is developed in Python and
includes the implemented baseline RBC and DRL control strategy. The
proposed DRL control agent is developed employing TensorFlow [58]
and Stable Baselines libraries [59].

The proposed approach for DRL training and deployment unfolds
through three main steps as shown in Fig. 1: (i) LSTM neural net-
work training, (ii) DRL controller training and (iii) DRL controller
deployment.

The first step of the proposed approach involves the training of
the data-driven model of the building dynamics based on LSTM ar-
chitecture. In a real-world context, the data required to perform this
step would be collected from available measurements. However, since
the present experiment is carried out exclusively in a simulation en-
vironment, those data are generated by simulating the behaviour of

the building in the EnergyPlus environment while implementing the
baseline rule-based control strategy for a period of one month. The
baseline RBC strategy is chosen since it represents the most common
control approach implemented in real buildings and that can be up-
graded through the introduction of advanced strategies like DRL. This
procedure can be considered a preliminary step and in the next sections
it is identified as Historical data generation process.

The trained model is then used in the second step to train of-
fline the DRL agent for multiple episodes in the LSTM environment.
In the third step, the controller is deployed for a specific period of
time defined as deployment period in the EnergyPlus environment
to emulate the implementation of the DRL agent in a real building.
During the deployment period, safety checks are implemented to ensure
that the performance of the controller is satisfactory. A deployment
period is set with a length of 15 days and starts at the end of the
training period. At the end of the deployment period, the data collected
from the proxy of the real building (i.e., EnergyPlus environment)
with the DRL are added to those obtained during the first month of
RBC implementation to re-train the data-driven model. This updating
process (except for Historical data generation) is repeated recursively
after each deployment period (i.e., 15 days) until the end of the heating
season. Thanks to this approach the data-driven model of the building
dynamics is constantly updated to better emulate the behaviour of the
controlled building. Section 3 describes in detail the different steps of
the proposed approach. Eventually, a simulation of the whole heating
season is carried out in the EnergyPlus environment implementing only
the baseline RBC strategy. These results are employed to demonstrate
the improvement achievable by implementing an advanced controller
trained and deployed according to the proposed framework. A compar-
ison with other advanced control strategies is not performed since it
deviates from the scope of the present experiment.

The proposed approach is implemented for an office building lo-
cated in Torino, Italy. The building consists of five heated floors with
a net building heated surface of about 9300m?. The average trans-
mittance values for the opaque and transparent components of the
envelope are 1.084 W/(m?K) and 2.921 W/(m? K) respectively. The as-
pect ratio (i.e., the ratio between the heat transfer surface to gross
volume) is 0.25 m~'. The occupancy schedule is defined based on
the actual office opening and closing times. Every weekday, except
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Fig. 2. Schematic of the heating system analysed.

Table 1
Start time window and indoor temperature conditions employed to switch ON the
heating system.

Combination Time period Indoor temperature
1 0:00<tr<1:00 Tiny —Typp 28 °C
2 1:00<r<2:00 Tyny = Typp 26 °C
3 2:00<7<3:00 Tiny = Typp 25 °C
4 3:00<1<4:00 Tiny —Typp 23 °C
5 4:00<1<5:00 Tyt = Typp 22 °C
6 £>5:00 Tyny —Typp >0 °C

Sundays, the office is occupied from 7:00 to 19:00. Fig. 2 introduces a
simplified scheme of the analysed heating system. The heating system
consists of a single hot water loop that includes a 470 kW nominal
power gas-fired boiler. The indoor environment is heated through
radiators.

The controllers have the ability to manipulate the supply water
temperature setpoint while maintaining a constant hot-water mass flow
rate. The objective of the implemented DRL controller is to minimise
the amount of thermal energy supplied to the water while ensuring
that the indoor air temperature remains within the desired acceptability
range during occupancy periods. The acceptability range is defined as
[-1, +1] °C from the indoor temperature setpoint of 21 °C.

The RBC strategy combining rule-based and climatic-based logic
for the modulation of the supply water temperature is employed as
baseline. The supply water temperature can vary linearly from 40 °C to
70 °C with outdoor temperature ranging between 12 °C and -5 °C. This
strategy is employed until one hour before occupants leave the building
when the heating system is turned off to exploit the heat stored in the
thermal mass of the building. The starting time of the heating system
is determined according to the indoor air temperature value and the
time period. Table 1 reports the time periods with the corresponding
conditions on indoor temperature related to this control logic. The six
combinations of start time window and indoor temperature conditions
are determined through a sensitivity analysis to reduce the temperature
violations during the early stages of the occupancy period. Additionally,
during occupancy periods the heating system is turned off when the
indoor temperature reaches the upper threshold of the acceptability
range Ty pp (i.e., 22°C) and is turned on if the temperature falls below
the lower threshold T oy, (i.e., 20 °C). The heating system is turned off
on Sundays.

3. Implementation of the method
This section describes in detail the steps of the proposed approach

characterising the training and deployment of a DRL agent by means
of data-driven models of building dynamics. Experiments are carried

out for a heating season lasting 5 months (i.e., from November to
March) considering the reference weather data available in EnergyPlus
for Torino, Italy.

The preliminary step to the application of the proposed approach is
defined Historical data generation. According to this procedure, a simu-
lation is carried out in the EnergyPlus environment for the first month
of the heating season (i.e., November) implementing the baseline RBC
strategy. This step is conceived to emulate the collection of a limited
amount of monitored data from a real-world building.

3.1. Long short-term memory neural network training

The first step of the proposed approach aims to perform the training
of the LSTM model of building dynamics. LSTM networks employ mem-
ory blocks that substitute conventional hidden layer neurons enhancing
their capability to handle long-term and short-term dependency prob-
lems [60] while detecting hidden features and invariant structures [61].
The goal of the present LSTM model is to estimate the evolution of
indoor air temperature between two successive control steps given
a set of influencing variables and the implemented control action
(i.e., supply heating power), as shown in Fig. 3.

The input variables are arranged within 48 lookback sequences.
Fig. 3 and Table 2 list the variables included in each sequence. These
variables are selected considering their ease of being monitored and
collected in field. Time-related variables, such as the Hour of the day
and Day of the week, are required to inform the model about the usage
profiles of the building, governing endogenous loads. Outdoor air tem-
perature and Direct solar radiation are included as the major influencing
meteorological factors influencing exogenous loads. Previous Indoor air
temperature values are given as input to ensure that the data-driven
model receives information concerning the indoor conditions of the
controlled environment. Eventually, Supplied heating power provides
key information about the operation of the heating system. The direct
metering of the heating power supplied to a thermal zone is a non-
trivial task in a real building. However, for the present application,
this variable can be derived by the water mass flow rate delivered to
zone terminals and supply and return water temperatures of the heating
loop. Time variables are encoded using sine and cosine transforma-
tion while the other input variables are re-scaled through a min-max
normalisation.

After the training process, the performance of the model is tested
in a closed-loop configuration as shown in Fig. 3. According to this
procedure, the LSTM is tested receiving as input the estimated pre-
vious temperature and the other input variables reported in Fig. 3
(e.g., weather and supplied heating power). Through this approach it is
possible to effectively evaluate the capability of the model in simulating
the behaviour of the analysed system.
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Fig. 3. Development of the LSTM model and details about the selected input variables.

Table 2

Variables included in input sequences of the LSTM model.
Variable Min value Max value Unit
Outdoor air temperature -10.4 17.6 °C
Direct solar radiation 0 714 W/m?
Hour of the day 0 23 h
Day of the week 1 7 -
Supplied heating power 0 470 kW
Indoor air temperature 13.0 25.0 °C

Table 3

Values and range of fixed/optimised LSTM model hyperparameters.
LSTM hyperparameter Value Step
Batch size [80, 120] 1
Learning rate [0.0001, 0.01] 0.0001
Number of hidden layers [2, 4] 1
Number of neurons per layer [16, 32] 1
Lookback 48 -
Training epochs 30 -
Optimiser Adam -

LSTM models are characterised by several hyperparameters which
require appropriate tuning. Therefore, during the LSTM training phase
the values of the most important hyperparameters have been opti-
mised through an automated procedure by employing the Optuna li-
brary [62]. Optuna is an open-source Python library that automates the
search for optimal hyperparameters configuration in machine learning-
based models. In particular, Optuna requires in input the set of hyper-
parameters to be optimised and their acceptability ranges, the objective
function to be minimised or maximised and the sampling algorithm
employed in the optimisation process.

The optimisation of LSTM hyperparameters is carried out on batch
size, LSTM learning rate, number of hidden layers, and number of
neurons per hidden layer. Table 3 reports for each hyperparameter
the range and the incremental step employed in the optimisation
process. Moreover, Table 3 shows the values of the hyperparameters
not involved in the optimisation. The hyperparameter optimisation is
carried out to minimise the Root Mean Squared Error (RMSE) and em-
ploys the Tree-structured Parzen Estimator (TPE) as Optuna sampling
algorithm [63].

The best hyperparameters configuration of the LSTM is determined
by evaluating the objective function in a closed-loop configuration.
According to the closed-loop strategy, the LSTM model is tested em-
ploying its own predictions of indoor air temperature value as inputs

for subsequent timesteps. The values of the other variables provided as
inputs to the LSTM model are taken from the original training dataset.
As a consequence, the weather and the control action are exactly the
same as observed by the network during training, while the indoor
air temperature values evolves according to network predictions. This
approach allows for the evaluation of potential deviations in the model
estimations by comparing the predictions made by the model and the
actual data considering the same boundary conditions.

According to the proposed approach, the LSTM training is per-
formed multiple times. Initially, the model is trained only considering
the data collected through the Historical data generation process. Succes-
sively, the training size of the training dataset is constantly increased to
include data generated during DRL deployment periods. One hundred
different sets of LSTM hyperparameters are compared to determine
the best configuration by means of an automated hyperparameter
optimisation procedure that is carried out each time the LSTM model
is re-trained.

3.2. Deep reinforcement learning controller training

The second step of the proposed approach aims at training the DRL
controller by employing the trained LSTM model, as shown in Fig. 4.

The training process of DRL agent is implemented offline in the
LSTM environment by repeating a training episode multiple times
to promote control policy refinement. In the present application, a
training episode does not have a fixed length. According to the pro-
posed approach, the DRL training process is performed multiple times.
Initially, it is performed after the Historical data generation process.
Successively, it is performed after each deployment period. At each re-
training the length of a training episode is increased to include the new
information collected during a deployment period in the EnergyPlus
environment which is treated as a real-world building in this study. As
a consequence, a new training episode is defined at each re-training to
include an increasing period of the heating season being considered.

The proposed DRL controller can be defined through its main fea-
tures namely action-space, state-space and reward function. The action
space includes the set of possible control actions that can be performed
by the agent. In this work, the action picked by the agent consists in
the percentage fraction of the nominal heating power (i.e., 470 kW)
supplied to the building between two control timesteps. This action is
selected instead of supply water temperature setpoint since the LSTM
model developed in the previous step employed the supplied heating
power to predict the evolution of indoor air temperature. Since SAC is
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Fig. 4. DRL training process exploiting LSTM model of the building dynamics.

Table 4

Variables included in the DRL state-space.
Variable Min value  Max value  Unit Timestep
Outdoor air temperature -10.4 17.6 °C t
Direct solar radiation 0 714 W/m? t
SP vy —Tinr -5 3 °C t, t-1, t=2, t=3
Time to occupancy start 0 144 - t
Time to occupancy end 0 48 - t

selected as DRL algorithm, the action space is continuous and limited
between 0 (i.e., 0% of the nominal heating power) and 1 (i.e., 100% of
the nominal heating power). Moreover, a filter is applied to the action
picked by the DRL agent to enforce 0% of the nominal heating power
for each action lower than a minimum threshold.

The state-space comprises a series of observations provided as inputs
to the agent. In this work, the DRL state-space includes eight features,
reported in Table 4, together with their lower and upper bounds used
to re-scale the state space through a min-max normalisation before
providing the variables to DNNs.

Outdoor Air Temperature and Direct Solar Radiation are included in
the state-space, as they are the most influencing ambient variables
affecting building heating energy consumption and indoor temperature.
The information related to the Indoor temperature is linked with the
formulation of the reward function since it is expressed as the differ-
ence between the indoor temperature setpoint S Py, and real indoor
temperature 7; 7. These values are included in the state-space at the
current control time step t and for 3 lagged values in the past (15, 30
and 45-min lag respectively). Moreover, information on the presence of
occupants in the building is provided through two different variables,
Time to occupancy start and Time to occupancy end. These two variables
define the time left for the subsequent change in the occupancy pattern.
When the building is not occupied, Time to occupancy start represents
the number of timesteps left before occupants’ arrival time. During
occupancy periods, the value of this variable is zero. Conversely, when
the building is occupied, Time to occupancy end represents the number
of timesteps to occupants’ leaving time. During off-occupancy periods
this variable is equal to zero.

The reward function measures the performance of the controller
after selecting an action at each time step. In this case, the reward

includes two terms, a power-related term and a temperature-related
term, since the agent aims to minimise energy consumption while
maintaining the indoor temperature within the comfort range. Two
coefficients (5 and B, respectively) have been introduced to weigh the
importance of the two terms of the reward function.

R=—=5%P(t)+p = rp (@)

The first term is proportional to the heating power P(r) supplied
to the building and it is introduced to minimise energy consumption.
On the other hand, the temperature term is introduced to maintain the
indoor air temperature within an acceptability range of +1 °C from the
desired setpoint of 21 °C during occupancy periods. The temperature
term is evaluated only when the building is occupied and has three
different formulations depending on the indoor temperature values, as
reported in Eq. (2).

~(1SPinr = Tinrl)? if Tyny < Trow or Tyny > Typp
rr =1—Tint — SPinT) if SPiny <Tynt <Typp 2
0 if Tpow <Tint < SPint

The temperature term is conceived to encourage the controller to
maintain indoor temperature values as close as possible to the lower
band of the acceptability range to reduce heating energy consumption.
The reward function has a positive value (i.e., temperature-term prize,
indicated as #) when the temperature value falls in the range [20,
21] °C to promote the exploration of this condition. The values of 0
and of the two reward weights are obtained from the hyperparameters
optimisation procedure.

DRL controller performances are influenced by numerous hyper-
parameters (e.g., DRL learning rate u, discount factor y) that require
adequate tuning. For this reason, the automated hyperparameter op-
timisation procedure is carried out by means of the Optuna library
similarly to the LSTM training phase. During the DRL training phase,
the optimisation of the following hyperparameters is performed: re-
ward weights (5, f, 6), DRL learning rate () and discount factor
(7). The hyperparameters optimisation is carried out to identify the
best configuration leading to an agent capable to identify the best
trade-off between energy consumption E,,,,, measured in MWh, and
the cumulated sum of temperature violation T,;,, measured in °C. In
particular, a temperature violation is determined by calculating the
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Table 5

Values and range of fixed/optimised DRL controller hyperparameters.
DRL hyperparameter Value Step
5 [0.002, 0.01] 0.0005
8 [2, 8] 0.5
0 [0.01, 0.05] 0.005
Discount factor y [0.9, 0.95, 0.99] -
Learning rate u [0.001, 0.005] 0.001
Boltzmann temperature coefficient a 0.1 -
Batch size 128 -
Number of hidden layers 4 -
Number of neurons per hidden layer 64 -
Training episodes 20 -

absolute difference between the indoor temperature T, y, and the lower
T ow or upper limit Ty, pp of the acceptable temperature range [20, 22]
°C when the indoor air temperature exceeded these boundaries during
the occupancy period.

Since the hyperparameter optimisation is multi-objective, it results
in Pareto-optimal solutions [64]. As a consequence, it is necessary to
establish a criterion to choose the best solution among the optimal
ones. The criterion of the minimum distance from the so-called ideal
point [65] (i.e., the point whose coordinates correspond to the mini-
mum of both objective function terms) is adopted. In this framework,
the Euclidean distance between points corresponding to Pareto front
solutions and the ideal point is computed in the plane with coordinates
[Econs’ Tuiol]'

The first five rows of Table 5 reports the hyperparameters subjected
to optimisation with the relative range of variation and the incremen-
tal step. Other hyperparameters are kept fixed due to computational
constraints. The last five rows of Table 5 include the values of these
latter hyperparameters (i.e., Boltzmann temperature coefficient a, Batch
size, Number of hidden layers, Number of neurons per hidden layer and
Training episodes).

As mentioned in Section 3.2, the initial training period includes the
month of November, then it is gradually extended to include every
two weeks the data resulting from the deployment period of the agent
for the subsequent re-training of the LSTM model and DRL controller.
Twenty different sets of hyperparameters are considered during the au-
tomated optimisation procedure carried out during the DRL controller
training phase. The best DRL control agent is chosen by considering (1)
the Euclidean distance between the ideal point and the performance
achieved for each DRL controller, and (2) the performance of the RBC
implemented during the same period on the EnergyPlus environment in
terms of total energy consumption and cumulated sum of temperature
violations. Therefore, the best DRL solution is the one with the smallest
Euclidean distance and the greatest performance improvement over the
RBC.

3.3. Deep reinforcement learning controller deployment

In the last step of the proposed approach, the best DRL agent result-
ing from the previous step is deployed for a deployment period (i.e., 15
days) in the EnergyPlus environment as shown in Fig. 5. The goal of
this step is to assess if the DRL agent trained on a surrogate data-driven
model is capable to control effectively the original system implemented
in the EnergyPlus environment with whom it has never interacted
before. The DRL controller is deployed statically, as the control policy
is not updated. Since the action selected by the DRL controller is the
heating power supplied to the building, a supply water temperature
calculator is developed to define the supply water temperature setpoint
to be implemented in the EnergyPlus environment. The calculator is
defined as a piecewise function of the fraction of nominal heating
power. In detail, the supply water temperature setpoint is defined in
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Eq. (3) as follows:

20 if X per(1) < 0.3
X power ()* Prax. heating
SP, nrc= ¢ 3)
Tsuer HFTrpr(—1) i 0.3 < X,y () < 0.95
70 if X poer(1) > 0.95
where P,y heaing [KW] is the maximum supplied heating power to the

building (equal to 470 kW) and C is a constant that depends on the
value of the control action and it is expressed in [kW/°C]. Tgpr(t — 1)
[°C] stands as the return water from the thermal zone at the previous
time-step. As defined in Section 2, the water mass flow rate in the
heating loop is constant.

Throughout the deployment period, safety checks are defined on
energy consumption and temperature violations. During the deploy-
ment of the DRL, as per Fig. 5, the safety constraints are checked to
determine which controller is implemented according to the prescribed
requirements. Non-compliance with safety checks results in the switch-
ing from DRL to RBC strategy until the end of the deployment period.
Fig. 6 depicts an overview of the deployment strategy and outlines the
requirements for the operation of the DRL controller and any potential
switch to the RBC strategy.

Safety checks are conceived to ensure that the DRL controller per-
formances during building operation are at least comparable with that
of the RBC. In fact, during first periods of deployment, the DRL could
exhibit poor performance considering the limited amount of data on
which the LSTM model is trained and consequently considering the
limited length of a training episode. The safety checks are defined on
both temperature violations and energy consumption and are employed
to determine whether or not to switch back to the RBC baseline
strategy.

The safety check on energy consumption is performed weekly. To
this scope, a multivariate regression model is developed to estimate the
energy consumption of the RBC under the same boundary conditions
occurring during the DRL deployment. The DRL control policy has to
achieve an energy demand (Epg;, ,ec) Which does not exceed the 5% of
the energy demand that the RBC would have achieved (Eggc,,,,
if implemented considering the same boundary conditions. To this
purpose, the weekly RBC energy consumption Egpc, . weer 1S calcu-
lated as the sum of the daily consumption Eggc, ,,.dairy ©btained from
multivariate regression considering outdoor air temperature and solar
radiation as input variables.

/,week)

* Qsol,rad (4)

with co, ¢y, and¢g . coefficients of the multivariate regression. The
multivariate regression is updated each time the RBC is implemented
during the experiment as a consequence of a low-performing DRL
agent. Moreover, this model can be employed as a baseline for energy
consumption in order to estimate during operation potential savings
achieved by DRL agent implemented in the building with respect to
the RBC strategy.

The safety check on indoor temperature control is performed daily.
The average daily cumulated sum of temperature violations obtained
by the RBC strategy while implemented in the building is employed as
threshold to determine the goodness of the implemented DRL control
policy. This threshold is calculated by averaging the cumulated sum of
temperature violations obtained by RBC during its deployment. More-
over, the threshold is evaluated separately for Mondays and the rest of
the days of the week (i.e., Tuesday-Saturday) since during Sundays the
building is not occupied. This approach is deemed appropriate due to
the likelihood of higher deviations occurring at the beginning of the
week since it is more probable that the heating system is inactive on
Sundays. If the cumulated sum of temperature violations is greater than
the threshold the check is considered not passed and the deployed con-
troller is switched back to the RBC strategy. The temperature violation
threshold value, as well as the coefficients of the multivariate regression

ERBCmodelvd"”y =¢+ cTexr * Tex’ + CQ:nl.rad
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Fig. 6. Flowchart of the deployment strategy of the DRL controller on the EnergyPlus environment with details on the daily and weekly safety checks to be respected.

for the daily energy consumption prediction, are updated whenever one
of these safety checks fails and the control agent switched from DRL to
RBC.

4. Results

This section presents the results obtained by implementing the
proposed approach. The outcomes of the LSTM model of building
dynamics and the DRL controller training phases are firstly introduced
in Section 4.1. Successively, the results of the DRL deployment in the
EnergyPlus environment are summarised in Section 4.2.

4.1. Training of long short-term memory neural network and deep reinforce-
ment learning controller

An automated optimisation procedure was carried out using Optuna
to identify the best configurations of LSTM hyperparameters which

minimised the indoor air temperature RMSE in closed-loop configura-
tion. Table 6 shows the best configurations of LSTM hyperparameters
identified during each training phase performed at the beginning of the
deployment and after each deployment period.

The Mean Absolute Percentage Error (MAPE) and RMSE values
obtained in the closed-loop configuration for all trained LSTM models
indicate excellent predictive capability for indoor temperature. No-
tably, the shortest training period exhibits the lowest values, while the
longest training period showed the highest values among the analysed
metrics. Additionally, both MAPE and RMSE increase proportionally
with the volume of data utilised for LSTM training and testing.

Two subplots in Fig. 7 illustrate the distributions of prediction errors
respectively for (a) open-loop and (b) closed-loop configurations. This
comparison was conducted to demonstrate the impact of input on the
performance of the LSTM model in predicting indoor temperature. The
input considered in this comparison includes actual indoor temperature
data from the training dataset (i.e., open-loop) and indoor temperature
data predicted at the previous time step by the LSTM model itself
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Table 6
LSTM models performance in closed loop testing resulting from optimisation procedure during the incremental training period.
Training period Batch size Learning rate # Hidden layers # Neurons MAPE [%] RMSE [°C]
1/11-30/11 107 2.35e-3 4 19 0.955 0.2194
1/11-15/12 98 1.04e-3 4 26 1.159 0.2672
1/11-31/12 80 2.37e-3 3 18 1.282 0.2889
1/11-15/01 115 4.0le-3 3 24 1.394 0.3077
1/11-31/01 104 7.43e-4 3 31 1.406 0.3120
1/11-14/02 94 5.52e-4 4 21 1.378 0.3116
1/11-28/02 113 3.41e-3 3 18 1.441 0.3233
1/11-15/03 84 1.12e-3 3 28 1.46 0.3301
Distribution of prediction errors
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Fig. 7. Error distribution of the LSTM network trained for 1.5 months and implementing the best configuration of hyperparameters for (a) open-loop and (b) closed-loop conditions.

(i.e., closed-loop). The errors were computed based on the comparison
between the LSTM predictions and the indoor air temperature values
in the training dataset.

Fig. 7 shows that the error distribution in the open-loop case is
more confined than in the closed-loop case. In absolute terms, the open-
loop led to an error distribution with a peak value around 0.75 °C, in
contrast to the closed-loop whose peak value was around 1.5 °C. This
outcome was expected since in closed-loop the LSTM model used its
own predictions to estimate subsequent values potentially propagating
errors. However, as reported in Table 6, MAPE values below 1.5%
and RMSE values between 0.2 and 0.35 °C with respect to the training
dataset proved the robustness of the training process.

Similarly, the optimisation procedure was conducted during the
training phase of DRL using Optuna. However, as the optimisation
task involved two conflicting objectives (i.e., minimisation of energy
consumption and temperature violations), multiple optimal solutions
were identified among the twenty configurations analysed by Optuna
in each training period. These solutions are reported in a Pareto front,
showcasing the trade-off between energy consumption and temperature
violations. In detail, Fig. 8 represents the Pareto front in which each
point corresponds to the performance in terms of energy consumption
E.,,, and cumulated sum of temperature violations 7, obtained per
each of the twenty sets of hyperparameters explored. This Pareto front
refers to the hyperparameters optimisation procedure carried out dur-
ing the DRL controller training lasting two months (i.e., 1 November-31
December).

The best configuration of hyperparameters was identified in the
Pareto front employing the criterion of the minimum distance from
the ideal point, whose coordinates correspond to the minimum energy
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consumption E,,,, and cumulated sum of temperature violations T,
among the analysed solutions.

Table 7 shows the optimised hyperparameter configurations for
each training period and the respective performances in terms of energy
consumption and cumulated sum of temperature violations. These con-
figurations were chosen based on the performance of the DRL control
agent when it was tested in the environment exploiting the LSTM
network as a model of the building dynamics. All configurations were
trained for 20 episodes with a Boltzmann temperature coefficient a of
0.1. Differently from that observed in most DRL applications in the
literature, the optimal discount factor « was found to be 0.95 instead
of 0.99 for all training periods evaluated in this application (except for
the first one in which 0.9 was selected as best value). One potential
explanation for this could be that the LSTM model of the building
dynamics used to train the DRL agent was less accurate compared
to engineering models typically used for this purpose. As a result, it
was effective to prioritise more immediate rewards (i.e., decreasing
the discount factor) because they can be more accurately estimated.
Furthermore, the results in terms of cumulated sum of temperature
violations in all training periods demonstrate how the DRL controller
was able to refine the optimal control policy as the duration of the
training period increased.

When the DRL controller was trained for a period longer than three
months (indicated by the last three rows in Table 7), it was able to
improve the indoor temperature conditions by reducing the cumulated
sum of temperature violations compared to when it was trained over
shorter periods (e.g., 1 November 1 to 31 January). There are two
reasons that might justify this behaviour. First, the DRL controller has a
larger amount of data available for training. Second, the LSTM model
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Fig. 8. Pareto-front plot from Optuna of DRL configurations explored during optimisation procedure over 2 training months.

Table 7

DRL controller performances resulting from optimisation procedure during the incremental training period.
Training period ) p 0 Discount factor y Learning rate u E.,,, [MWh] T,io [°C]
1/11-30/11 0.0085 5 0.05 0.9 0.001 59.0 2.50
1/11-15/12 0.0045 4.5 0.03 0.95 0.001 91.1 2.05
1/11-31/12 0.006 4.5 0.045 0.95 0.003 176.4 18.3
1/11-15/01 0.005 6.5 0.04 0.95 0.005 276.7 54.0
1/11-31/01 0.006 6 0.045 0.95 0.001 376.0 79.6
1/11-14/02 0.0055 7 0.01 0.95 0.003 435.4 27.9
1/11-28/02 0.0065 3 0.04 0.95 0.005 451.5 34.8
1/11-15/03 0.009 6.5 0.05 0.95 0.001 464.8 35.1

Table 8
Cumulated sum of temperature violations and total energy consumption resulting from
the proposed approach.

Deployment period Implemented controller E,,,, [MWh] T,u [°C]
1/11-30/11 RBC 96.0 50.1
1/12 DRL 3.1 2.7
2/12-15/12 RBC 53.0 29.9
16/12-18/12 DRL 13.4 37.4
19/12-31/12 RBC 71.2 79.8
1/01 DRL 6.9 14.2
2/01-15/01 RBC 78.6 175.8
16/01-31/01 DRL 82.5 11.7
1/02-14/02 DRL 77.9 5.5
15/02-28/02 DRL 52.9 10.4
1/03-15/03 DRL 36.4 2.2
16/03-31/03 DRL 36.4 5.0
TOTAL - 608.4 424.7

of the building dynamics becomes more precise in predicting indoor
temperature as the size of the training dataset increases.

4.2. Deployment of deep reinforcement learning controller

The deployment phase represents the core of the proposed approach
determining whether the DRL control agent resulting from the training
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process can be effectively implemented in the building to optimise the
management during operation. Moreover, according to the proposed
approach the results of this phase can suggest the minimum amount of
data required for the present case study to train a data-driven model
of building dynamics which can be effectively employed to train a DRL
agent.

Table 8 summarises the performances achieved in terms of energy
consumption and cumulated sum of temperature violations during the
implementation of the developed deployment strategy on the Energy-
Plus environment. Furthermore, details about the type of controller
implemented in each deployment period are provided to give indica-
tions regarding any switches from DRL to RBC related to the non-
satisfaction with safety checks. As can be seen from Table 8, during the
analysed heating season there were three switches (i.e., 1 December,
18 December and 1 January) from DRL controller to RBC since the
daily safety check related to temperature violations was not satisfied.
However, after a period of two and a half months (i.e., 76 days)
the DRL control agent met the daily and weekly safety checks on
temperature violations and energy consumption. Therefore, from 16
January to 31 March the DRL controller was successfully deployed
during the whole deployment period. Overall, the proposed deployment
strategy resulted in total energy consumption of 608.4 MWh and a
cumulated sum of temperature violations of 424.7°C. As previously
stated in Section 3.3, safety checks were updated whenever the RBC
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Values of cumulated sum of temperature violations thresholds, coefficients and performance metrics of the multivariate regression during

different deployment periods.

Deployment period T, thresholds [°C]

Multivariate regression

Mon Tue-Sat ¢ er. o R® [%] MAPE [%] RMSE [kW]
01/12-15/12 3.61 1.41 237.2 -14.6 -0.02 80.9 6.5 9.6
16/12-31/12 4.78 1.61 232.9 -13.6 0.02 83.6 5.2 8.4
01/01-15/01 7.33 2.59 245.9 -15.4 -0.06 86.2 4.6 7.9
16/01-31/03 12.66 4.27 243.3 -14.7 -0.05 90.7 43 7.2
was implemented. RBC was implemented during the first month of Table 10
the heating season (i.e., November) or whenever the deployed DRL Results for DRL deployment periods meeting safety checks.
controller failed a safety check. Deployment period Econs [MWh] Toig °C]

Table 9 displays the daily threshold employed for the cumulated RBC, 5501 RBC DRL RBC DRL
sum of temperature violations in each deployment period. This thresh- 16/01-31/01 75.2 79.2 82.5 65.3 11.7
old was set separately for Mondays and the other weekdays. In fact, 1/02-14/02 72.1 72.2 77.9 81.1 5.5
Mondays were the most critical day since, at the beginning of the 15/02-28/02 53.4 55.2 52.9 40.8 10.4
day, the indoor temperature was generally lower than the average of 1/03-15/03 43.2 39.7 364 69 22

Y perat 8 y erag 16/03-31/03 46.0 415 36.4 5.9 5.0
the other weekdays leading to more frequent temperature violations
TOTAL 289.9 287.8 286.2 200.0 34.8

of higher magnitude. This behaviour can be attributed to the heating
system being inactive on Sundays, corresponding to days without the
presence of occupants.

The threshold values employed for the daily check on temperature
violations increased over the heating season (e.g., from 1.41°C in the
first deployment period to 4.27 °C in the last period for weekdays from
Tuesday to Saturday). This result could be attributed to the increasing
reduction of outdoor temperature from November to January, which
results in a higher magnitude of temperature violations. Moreover,
Table 9 provides details regarding the coefficients and metrics of the
multivariate regression model used to estimate the daily RBC energy
consumption (i.e., RBC,, ;). This information was employed to com-
pute the weekly threshold for energy consumption. The performance
metrics reported in the table for the multivariate regression model
(i.e., R?, MAPE, and RMSE) indicate that the robustness of the model
increased as it proceeds through the indicated deployment periods. In
fact, the RBC was implemented following the switch from the DRL
during the first three deployment periods, and both the intercept ¢, and
the coefficients ¢y, and ¢y~ were updated, improving the accuracy
of the regression model which was trained on a larger dataset. As a
result, the R? value increased from 80.9% to 90.7% while MAPE and
RMSE decreased respectively from 6.5% and 9.6 kW to 4.3% and 7.2
kW.

Fig. 9 reports the indoor temperature profile over the 16-31 Decem-
ber deployment period, after a training phase of 1.5 months (i.e., from
1 November to 15 December). Here, the DRL control agent was im-
plemented for only 3 days, since on the third day (i.e., Monday)
the safety check imposed on temperature violations was not met
((Tyior,pRL) Monigpec = 36.0 °C vs. (Tyi RBC) Mon = 478 °C). In that case,
the RBC threshold for Monday was exceeded. Therefore, as indicated
in Fig. 9, after the black dashed line the controller automatically
switched to the RBC algorithm until the end of the deployment period
(i.e., 31 December) to effectively manage the system. This result could
be explained considering the limited information included in a DRL
training episode until that moment. Since the DRL was not trained on
episodes ranging for a whole heating season it was probable that it had
not the chance to learn a control policy behaving optimally for each
condition of the controlled environment. For example, in this case the
agent could not have the chance to learn how to optimally behave in
colder climate conditions with respect to the training episode (such as
the ones present in the weather between December and January). The
DRL control policy was unable to adequately map the control action
with the current and past indoor temperature condition of the building
and its current and future occupancy status (i.e., time to occupancy
start/end).

Table 10 summarises the results obtained in terms of cumulated sum
of temperature violations and total energy consumption over each de-
ployment period where both safety checks were met. The performance
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achieved by the DRL controller in terms of total energy consumption
was compared to both the output of the multivariate regression model
(RBC,,,,.;) expressed according to Eq. (4) and to the results obtained by
implementing the RBC strategy (RBC) in the EnergyPlus environment
for the same period. This latter scenario cannot be obtained in a real-
world experiment. However, it was included to better justify the quality
of the results obtained by both the proposed DRL controller and the
multivariate regression model. The results obtained by the proposed
DRL controller in terms of cumulated sum temperature violations were
compared to those obtained by the baseline RBC strategy implemented
in the EnergyPlus environment for the same simulation period.

Over the entire period (i.e., 2.5 months, from 16 January to 31
March) the energy consumption achieved by the DRL (E.,,; pr; = 286.2
MWh) was slightly lower than both the energy consumption achieved
by the RBC (i.e., 1.6 MWh less, E_,  rpc = 287.8 MWh) and the
energy consumption estimated by the multivariate regression model
RBC,pq (i€, 3.7 MWh less, E,, rpc,, ., = 289-9 MWh). Moreover,
the energy consumption prediction model developed for the baseline
RBC demonstrated robustness, with a difference of approximately 0.8%
between the total predicted energy consumption and the hypotheti-
cal consumption if the baseline RBC had been implemented in the
EnergyPlus environment.

Simultaneously, the developed training and deployment strategy for
the DRL controller achieved better indoor temperature control. Despite
being trained on a data-driven model of the building, the DRL controller
was capable to reduce the cumulated sum of temperature violations
during the 16 January-31 March period by more than 80% compared
to the RBC (T, prr = 34.8 °C Vs. T,y gpc = 200.0 °C).

To conclude, Fig. 10 shows the indoor temperature and supply water
temperature profiles during the fifth deployment period (i.e., 1-14
February), with a focus on the occupancy period (i.e., 7:00-19:00) of
the last day of the represented period, showing in detail the values of
the indoor temperature setpoint as well as the lower and upper bound
temperatures of the acceptability range.

Through the accurate management of the pre-heating phase, the
DRL control agent successfully preheated the building prior to the
arrival of occupants (i.e., 7:00). Moreover, thanks to the definition
given for the temperature term of the reward function, considering the
introduction of the temperature-term prize (0) as shown in Eq. (2),
the DRL controller kept the indoor temperature profile during the
occupancy period near the lower limit of the temperature band, also
exploiting higher heat gains during the day to decrease the supply
water temperature and saving heating energy. During occupancy pe-
riods when DRL operates according to safety constraints, only for 3%
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Fig. 10. Indoor temperature profile during the fifth deployment period of the DRL controller (after 3 training months).

of occurrences the indoor temperature was lower than the lower limit
of the acceptability range (i.e., 20 °C) with an average value of devia-
tion of 0.15°C. This outcome can be considered more than acceptable
considering both the size of the thermal zone and the type of terminal
units (i.e., radiators). As a result, the learned control policy was able
to effectively control the energy system implemented in the EnergyPlus
environment under a range of weather conditions.

5. Discussion

The present paper focuses on developing an effective approach to
offline pre-train a DRL control agent exploiting data-driven models of
the building dynamics, aiming to address one of the main limitations
to adopting DRL-based controllers in the building industry. Although
the approach of exploiting engineering models is commonly employed
to pre-train offline DRL agents before their effective deployment in a
real-world context, it lacks of scalability considering that it is unfeasible
to build a detailed model of each building before implementing an
advanced control strategy. On the other hand, data-driven models are
simpler to formalise compared to engineering models and require fewer
input data. However, they have limited generalisation capabilities and
their response from a physical perspective is heavily influenced by the
quantity and quality of the data on which they are trained. Despite
this limitation, data-driven models of building dynamics can represent
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an essential tool for increasing the scalability of DRL-based control
strategies in buildings if correctly trained and tuned. In this context, the
availability of historical data in terms of both volume and variety plays
a key role for building robust data-driven models. As a wide availability
of monitoring data in buildings is not always guaranteed, it is crucial
to develop methodologies capable to handle a limited amount of data
and being rapidly effective when implemented in a real building. In
the present paper, differently from other applications reported in the
literature, one of the key questions addressed is not to develop the most
accurate data-driven model of the building dynamics but to propose
an approach where data-driven models, despite their limitations, could
provide a sufficiently robust representation of the control problem to
enable a DRL agent to learn an effective control policy in an offline
setting.

To this purpose, the proposed approach involves a recursive process
based on frequent updates of both the data-driven model of building
dynamics and the control policy learned by the agent. This training
structure based on frequent updates allowed for the pre-training of
the DRL controller in a data-efficient manner, making it possible to
effectively map the building dynamics even when a limited amount of
data are initially available. Moreover, daily and weekly safety checks
are included to constantly verify that the performances of the DRL
agent deployed on the systems are not diverging. If one of these rules
is violated the controller switches to RBC mode until the next update.
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The entire process is conceived to propose a scalable approach for
the implementation of DRL based control strategies leveraging the
potentialities of data-driven models of building dynamics.

The results show that the proposed approach can indeed provide
a sufficiently robust representation of the control problem to enable
a DRL agent to learn an effective control policy. By leveraging the
potentialities of data-driven models of building dynamics, this approach
offers a scalable solution for the implementation of DRL-based control
strategies in buildings.

In this context, remarks for readers and future practitioners can be
defined from the application of the proposed approach. Hyperparam-
eters optimisation plays a fundamental role in the definition of deep
learning architectures. In the proposed approach, automated hyper-
parameters optimisation routines are introduced due to offline train-
ing configuration. Moreover, data-driven model of building dynamics
should not be only evaluated in terms of accuracy but also in terms
of generalisation capabilities when employed to emulate building be-
haviour. Eventually, in the context of building energy management, the
introduction of innovative approaches aims at increasing the scalability
of existing DRL control algorithms considering real-world limitations
can represent a promising research field.

In conclusion, this paper demonstrates that the proposed approach
can effectively overcome the limitations of traditional approaches to
pre-training DRL controllers in buildings. The results obtained validate
the potential of data-driven models of building dynamics as a powerful
tool for increasing the scalability of DRL-based control strategies, even
when faced with an initial limited data availability.

6. Conclusion

The present paper proposes a pre-training strategy for enhancing the
scalability of a DRL agent by means of a data-driven model of building
dynamics. The proposed approach is tested for a controller managing
supply water temperature setpoint of the heating system of an office
building equipped with radiators. The goal of the controller is to min-
imise energy consumption while maintaining indoor air temperature
values within an acceptability range.

In this application, an EnergyPlus environment is employed as a
proxy of the real building and a RBC is chosen as a baseline. The
experiment is carried out to emulate the deployment of a DRL control
agent during a single heating season making the hypothesis of limited
amount of monitored data to initially train the data-driven model.

A recursive approach alternating DRL agent training and deploy-
ment is conceived and tested. In this perspective, daily and weekly
safety checks on temperature violations and energy consumption are
implemented to determine in an automatic way the minimum training
period required for the DRL controller to ensure acceptable perfor-
mances. The results obtained shows that after 76 days the controller
trained through the proposed approach is capable to converge to ac-
ceptable performance. In particular, the DRL agent is able to improve
the indoor temperature control performances by 80% if compared
to the baseline RBC strategy while consuming the same amount of
energy. The obtained results suggest that if adequately trained, data-
driven models of building dynamics can be effectively employed for the
training of DRL control agents and considerably reduce the modelling
effort with respect to detailed engineering models.

Future works will focus on extending the proposed approach in the
following directions:

+ Evaluation of the proposed approach on more complex case stud-
ies with different HVAC systems configurations considering re-
newable energy sources (i.e., PV system) and energy storage
(i.e., batteries or TES).
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» Development of a more detailed building simulation by exploit-
ing Spawn of EnergyPlus [66], which enables the integration
of the energy system modelled in Modelica with the building
energy model developed in EnergyPlus. As a result, performances
achieved by applying the proposed approach would be more
similar to those obtained in real building operations.
Implementation of Transfer Learning (TL) to share the data-
driven model emulating the building dynamics and the DRL
control policy between buildings with similar or different features
(e.g., energy systems or building thermophysical properties) to
enhance the scalability of the proposed approach.

Real-world deployment of the DRL agent pre-trained on the LSTM
model of the building dynamics, by developing an infrastructure
to enable the correct implementation.
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