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Controllers coordination for diesel engines NOx emissions management

Loris Ventura1 and Stefano A. Malan2

Abstract— Tightened diesel pollutants emissions regulations
rendered the performance of steady-state map controls, which
are commonly used in Internal Combustion Engine (ICE)
management, unsatisfactory. To overcome these performance
constraints, control systems must deal with engine transient
operation, subsystem coupling and the trade-off between
different requirements to efficiently manage the engine. The
research demonstrates the utility of a reference generator for
coordinating the air path and combustion control systems of
a turbocharged diesel engine for heavy-duty applications. The
control system coordinator is based on neural networks and
allows following different engine-out Nitrogen Oxides (NOx)
targets while satisfying the load request. The main idea is to
generate air path targets, intake O2 concentration and Intake
MAnifold Pressure (IMAP), in accordance with the ones of the
combustion control system, engine load, in the form of Brake
Mean Effective Pressure (BMEP), and NOx. As a result, the
air path control system provides the global conditions for the
engine proper operation, while the combustion control responds
to rapid changes in the engine operating state and compensates
for any remaining deviations from load and NOx targets. The
reference generator, as well as the two controllers, are suitable
for real-time implementation on rapid-prototyping hardware.
The performance was overall good, achieving average deviations
of 0.1 bar for the BMEP and 150 ppm for the NOx.

I. INTRODUCTION

The ICE pollutants emission regulations tighten as the
transition to green and sustainable transportation systems
spreads. Recognizing this, automotive manufacturers have
introduced a wide range of technologies, particularly for diesel
engines: Exhaust Gas Recirculation (EGR) with Variable
Geometry Turbochargers (VGTs) [1], high-pressure common
rail injection systems [2], advanced combustion control
and alternative combustion concepts [3], [4], for example.
Recently, the focus of diesel engine research has shifted
toward the development of modern control strategies such
as [4], [5]. This was supported by increased computational
performance of Engine Control Units (ECUs).

The importance of an air path and combustion controllers
coordinator cannot be ignored. Targets for the two control
systems must be developed while taking into account their
different time dynamics and actual working conditions. The
main reason for the sometime poor performance of the two
control systems is the mismatch between the actual and
reference values of key variables used for the target generation.
The two control systems are independent, but the air path
and combustion subsystems are strongly coupled and, with
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this bias, the two controlled systems will work in conditions
that differ from the expected ones.

In this work, a coordinator constituted by neural networks
has been used to manage the air path and combustion
control systems through their respective target signals. The
coordinator generates a target for the air path control system
based on a desired set point, the state of the engine and
injection control system. The design choice was to use the air
path control system to provide the global conditions needed
to fulfill the performance request and the injection control
system to locally adjust the remaining part and react fast to
perturbations while guaranteeing the load.

By looking at the literature, only few examples of air
path and combustion control systems coordinators arose. In
[6] controllers were coordinated by a high level structure
that considered as states combustion halfway point, peak
pressure, combustion rate and instability and Indicated Mean
Effective Pressure (IMEP) obtained from in-cylinder pressure
measurement to generate the correct references. A dedicated
PI control loop was applied to each cylinder to manage fuel
quantity and Start Of Injection (SOI). Instead, the air path
controller targeted Air Mass Flow rate (MAF) and IMAP.

In [7] a supervisory model predictive control (MPC) is
developed for an air path system in a diesel engine; in it three
parts work together to manage the nonlinear controllers: target
coordinator, actuator nonlinear control and state detection.
By modeling the coordination dynamics as a set of first order
transfer functions, the system is more efficient and reliable.

Paper [8] regulates both air path and combustion in a
diesel engine running partially premixed combustion. In the
air path, MAF and IMAP are regulated through EGR and
VGT actuators. While the combustion is managed through
the main injection duration. The control structure featured an
MPC with a Kalman filter that compensates the model errors.
Still, the references for the target variables were coming from
maps and models obtained from a sensitivity analysis.

The control systems used on ICEs are typically feed-
forward, relying on steady-state maps, or closed-loop via
the use of PIDs [9]. These control systems are ineffective,
especially during transient operations. Nonetheless, their
advantages of simple design and implementation led to their
widespread adoption by the industry. However, the reduction
in pollutant emissions mandated by current regulations has
pushed the development of modern model-based controllers.
Several model-based controller examples have been published
in the literature, including Multiple Input Multiple Output
(MIMO) eigenvalue placement [10] and predictive control
[12]; also strategies as neural network and fuzzy control [12]
are of interest regardless their complexity and counter-intuitive



TABLE I
ENGINE MAIN SPECIFICATIONS

Engine type Euro VI diesel
Number of cylinders 4
Displacement 2998 cm3

Bore x stroke 95.8 x 104 mm
Rod length 160 mm
Compression ratio 17.5 : 1
Valves per cylinder 4
Turbocharger VGT type
Fuel injection system High Pressure Common Rail

parameter tuning.
The targeted variables, in addition to the control layout, are

critical. Instead of the fresh MAF, the intake O2 concentration
was chosen as a controlled variable in this study. This is due
to the MAF not being strictly correlated to NOx pollutants.
As a result, emission control through its use is difficult and
ineffective [10].

Still, the benefits deriving from the employment of these
control methodologies could be compromised by the lack of
coherent references that are provided to them.

In this paper, section 2, the engine together with the air
path, combustion control systems and their coordinator are
briefly described and referenced for more details. Section 3
presents the results of Model-in-the-Loop (MiL) tests with
the employment of the coordinated structure over transient
tests. Section 4 provides the conclusion of the work.

II. OVERALL CONTROL STRUCTURE

The engine considered in this work is a 3-liter EURO VI
diesel: Table I lists its key specifications. The engine layout
features a High-Pressure EGR (HP-EGR), EGR cooler, VGT,
Exhaust flap and Intercooler, Fig. 1. To perform MiL tests,
the engine has been modeled in the GT-Power environment.

In the intake manifold, a O2 concentration sensor has
been installed. Even if engine complexity grows, direct
measurement allows for more precise monitoring of intake
oxygen concentration. Furthermore, dynamic models can use
the acquired data to make more precise output predictions.

The overall control structure is depicted in Fig. 2 and the
three main blocks are briefly described in the next sections.

A. Air path control

A NonLinear Quadratic Regulator (NLQR) controls the in-
take O2 concentration and IMAP by commanding the position
of the EGR and VGT actuators. The designed control system
incorporates two Nonlinear AutoRegressive with eXogenous
input (NARX) Multiple Input Single Output (MISO) models.
One network predicts the intake O2 concentration, while the
other predicts the IMAP. Both have two hyperbolic tangent
hidden neurons and a one-neuron linear output layer. The
networks use five inputs: the actual values of the intake O2

concentration or IMAP, engine speed, engine BMEP, and the
positions of the HP-EGR and VGT valves.

Recurrent Neural Networks (RNNs) allowed to use only
a single model to identify the different I/O pairs nonlinear
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correlations over the entire engine operating range. Further-
more, their low computational time suits for real-time ECU
implementation. The details of the air path control system
and embedded networks can be found in [13] and [14].

B. Combustion control

A closed-loop combustion controller manages the diesel
engine BMEP and NOx emissions. The two target variables
are controlled by adjusting the injected main pulse fuel
quantity qmain and timing (SOI). The closed-loop controller
exploits the feedback from a predictive combustion model,
used as a virtual sensor, that has been calibrated using actual
test bench measurements. The model reconstructs a prediction
of the in-cylinder pressure trace, which is then used to
extract all the combustion metrics of interest. The model
can reconstruct the pressure trace with or without physical
sensor feedback. In the latter case, direct in-cylinder pressure
measurement is not required.

The control system consists of two independent loops with
PI and lag regulators, one to regulate engine load (BMEP),
and the other to regulate NOx. Moreover, a feedforward
term contribution enables the two command actions nominal
steady-state values to be taken into account. The structure
enables independent control of each of the four cylinders,
resulting in the employment of eight regulators, two for each
cylinder. [4] contains specifics about the feedback model,
whereas [15] provides more detail about the control system.



C. Coordinator

High level coordination of air path and fuel control
systems becomes essential when the conflicting needs of
emissions, fuel economy and driveability have to be met.
The coordinator is the fulcrum of the combined engine
air path and combustion management: it adapts control
targets harmoniously in order to meet the different conflicting
performance requirements. Model training and validation have
been performed usign the MATLAB Deep Learning Toolbox
exploiting both experimental and simulated (by the GT-Power
model) data. It is important to remark that the training is
performed offline. The coordinator viability and functioning
was assessed through software in the loop and MiL tests in
co-simulation between Simulink and GT-Power.

In the structure shown in Fig. 2, a clear separation between
the two control systems is visible. The coordinator sets
the targets (O2 concentration and IMAP) for the air path
controller, but acts in a different way on the combustion
controller. The combustion control system receives as target
the same NOx set point that the coordinator uses to generate
the O2 reference, while the BMEP is imposed by the driver
or by time varying profiles in simulation. It is important to
remark that the red arrows in Fig. 2 are bidirectional. As a
consequence, the coordinator not only sends the targets to the
control systems, but at the same time receives feedback from
them, producing targets in accordance with each other. The
coordinator is intended to make the air path control system,
the slowest, work as desired while the combustion controller
compensates for the remaining faster target deviations. This
allows the air path controller to provide the global conditions
for the engine running and allowing the combustion control
system to fulfill the requested torque. In addition, the
combustion control compensates for fast variations and offsets
in both load and NOx emitted pollutants.

In order to have complete control over the air path, a further
feature characterizes its targets generation. The primary target
is the intake O2 concentration that is strictly correlated to the
NOx pollutant emissions. The second target, the IMAP, was
chosen to be subjected to the λ (i.e., relative air-to-fuel ratio).
In this manner, complete and separate management of the
engine air path can be guaranteed and the control systems
work coherently toward the same primary goal: NOx emission
reduction. To this aim, two separate networks with runtime
of the order of microseconds were used, one for the O2 and
one for the IMAP. The first net inputs are the engine speed,
engine BMEP, SOImain, rail pressure, desired NOx and λ to
produce an oxygen target. The second one uses injected fuel
quantity, O2 and desired λ to generate an IMAP target. The
network structure for the O2 reference generator is made of
one input layer, eight hidden layers and one output layer (a
typical shallow neural network), while for the IMAP it has
one input layer, three hidden layers and one output layer. The
structure of the networks has been chosen through multiple
candidates of different complexity, i.e. number of neurons
and inputs. By plotting the relative error over key-points of
engine speed and engine load (i.e. over the engine map) the

networks performance can be evaluated over the same points
used to characterize the engine. Therefore Figs. 3 and 4 show
that the maximum relative errors for the O2 net are -2.5%,
mainly above 2500 rpm, and +2%, at low load, while for the
IMAP net they are -5.5%, at high load (above 12 bar) low
speed (1250÷2000 rpm), and +2%.
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Fig. 3. Intake O2 concentration reference generator network relative error.

500 1000 1500 2000 2500 3000 3500 4000
Engine speed [rpm]

0

5

10

15

20

B
M

E
P

 [
b

ar
]

IMAP relative error

-2

-1

 0

 0

 0

 1
 1

-3-5
-7

-7

-6

 0

 1

-2

 1

 1

 2

 2
 2 1

-2

-4
-5

-5

-3

 1

 1

-2

 1

 2

 2

 2
 2

 2
 0

-2
-3

-3

-1

 1

 2

-3

 1

 2

 2

 2
 3

 2 1
 0-1

-1

 1

 1

 2

-3

 0

 1

 2

 2 2 2 1 1 1

 1

 1

 1

 2

-4

-1

 0

 1

 1 1 2
 1 1 1

 1

 1

 0
 0

-3

-1

-1

 0

 0
 0

 0
 0

 0 0
 0

 0

 0

-1

-2

 0

 0

-1

 0

-1-1 0-1-1
-1

-1

-2

-3

 1

 2
 2

 2 1
 0 0 1 0 0-1-1

-2-3

overestimation underestimation

Fig. 4. IMAP reference generator network relative error.

Further details on the coordinator training and validation
can be found in [16], while in the next section results of
coordinated control systems are shown.

III. RESULTS

Two distinct NOx calibration maps were used to impose
two different NOx objectives in order to acquire the results
here presented. As a consequence, two distinct references for
O2 and IMAP are produced. It must be noted that the primary
benefit of the suggested coordinated structure is the ability
to define desired engine NOx and λ targets over the driving
mission, which in turn leads to the definition of O2 and
IMAP targets for the air path controller that are continuously
adjusted in real time. By acting on the onset of the main
pulse injection as well as the amount of fuel injected cycle
by cycle, the combustion controller simultaneously corrects



for rapid fluctuations and offsets in both load and NOx
released pollutants. The aim of the coordinator networks
is to provide targets that take into account the physical
dependence between the quantities which have been used
as targets for the controllers. Furthermore, the engine-out
NOx emissions, according to legislation, are considered as
a cumulative quantity. Depending on the transient and the
engine state, the instantaneous emission levels can change.
The two targets simulate the different admissible emission
levels depending on the engine working condition. Still, over
a cycle, the integral of the emitted NOx have to be within
the legislated limits. In the following figures the targets are
referred to as “target 1” and “target 2” and the corresponding
simulations are indicated through “sim 1” and “sim 2”. The
engine load, BMEP, was imposed by a single time-varying
profile, independent from NOx targets. Alike, the λ set point
was the same for both simulations and provided by a map.

For the sake of brevity, only the simulations of a load
hat ramp, Fig. 9, and a portion of the World Harmonized
Transient Cycle (WHTC), Fig. 12, are discussed.
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Fig. 5. Load ramp at 1500 rpm NOx simulation 1.
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Fig. 6. Load ramp at 1500 rpm NOx simulation 2.

Analyzing the NOx data from the first simulation, Fig. 5
illustrates how the control system follows the target with the
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Fig. 7. Load ramp at 1500 rpm O2 simulation 1.
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largest mismatches at the smallest load, in correspondence
with the ramp tails. Looking at the outcome for the second
target, Fig. 6, it is clear that the largest discrepancy from
the target occurs between time t = 38 s and time t = 46 s.
Finally, both NOx references are followed with a maximum
deviation of 100 ppm, a value comparable to sensors precision.

By looking at the intake O2 concentration, Fig. 7, it is
possible to see how the air path control system accurately
follows the first target. The simulation of the second calibra-
tion, Fig. 8, presents a major mismatch from the target from
time t = 38 s to time t = 46 s. This error is due to the air
path control system that has reached its maximum allowed
correction. Note that the portion of the ramp over which
the oxygen deviates the most from the target, is the same
where the highest NOx emissions error was recorded. This
is a direct consequence of the strong relation between intake
O2 concentration and NOx. A second noticeable behavior in
this test is the jitter at time t = 85 s during the first load
drop, Fig. 8. This is due to the air path controller that stops
correcting steady state maps, as their input produces large
deviation from the target, and switches into pure optimization,
see [13] for details.

The control system followed the load hat ramp with a
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maximum variation of ± 0.3 bar for both simulations, see
the lower half of Fig. 9. The largest deviation occurs for a
short period of time after the sharpest load variation at time
t = 85 s, corresponding to the previously stated jitter.

490 500 510 520 530 540 550 560 570
time [s]

-200

-100

0

100

200

300

400

N
O

x 
er

ro
r 

[p
p

m
]

sim 1
sim 2

Fig. 10. WHTC NOx errors.

The second test that is being shown is a section of a WHTC
that has been run twice with two different NOx objectives. The
NOx errors throughout this cycle segment, shown in Fig. 10,
are typically confined between −150 and +250 ppm for both
calibrations. In line with the sharpest load fluctuations, more
severe variances are only observed for brief periods of time.
Overall, this slight deviation from the NOx target indicates
that it is being closely observed. The total variance of the
WHTC cumulative NOx emissions is ±5%.

Both intake O2 concentration objectives resulting from the
two NOx calibrations are accurately followed, as expected
from the NOx error result, Fig. 11. Undershoots occur
only during the most aggressive transients, in an attempt
to follow the target, with the inaccuracy reaching 1.5% at
time t = 540 s. This discrepancy, however, is limited to the
first samples of the transient maneuver.

Fig. 12 shows the BMEP target, upper portion, and the
error for the two simulations, lower portion, for this section
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Fig. 12. WHTC BMEP profile and errors.

of the WHTC. The maximum error is of −0.98 bar for sim
1 occurring at time t = 543 s. Furthermore, it is visible that
the error is higher when the BMEP variation is more severe,
from time t = 540 s to time t = 555 s. An average error for
the BMEP is around 0.45 bar.

By looking at Fig. 13, where the IMAP is shown, it is
visible that the two targets imposed by the reference generator
are very sharp as a reflection of the BMEP profile of this
WHTC portion. The results of both simulations, blue and
magenta, are very similar. Nonetheless, the second calibration
shows a larger error due to the sharper target variations: in
this case the error reaches 0.45 bar.

The λ value is shown in Fig. 14. The targets are equal since
each simulation used the same steady state map where the λ
reference value is recorded. When examining Fig. 14, it is
instantly clear that there is a significant difference between the
target and the two simulations. This occurs since the greatest
λ value stored in the reference map is equal to 4. With the
advent of the fuel control system, which lowers the amount
of fuel that is injected, λ achieves values that are significantly
greater than 4 in the low load regions. The creation of smoke
is not the main issue in these circumstances, so the mismatch
is not a problem. On the other hand, regardless of how quickly
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the transient occurs, the λ objective is closely matched at a
high load.

IV. CONCLUSIONS

In this work, an air path and combustion control systems
coordinator, based on neural networks, has been tested to
manage a heavy-duty diesel engine. The coordinator sets
the targets for the two control systems, namely intake O2

concentration and IMAP for the air path and BMEP and
NOx for the combustion. The air path O2 target is generated
considering a desired NOx set point and the engine and
combustion control states through engine speed and load, rail
pressure and SOI. Instead, the IMAP target is generated given
desired λ, intake O2 and injected fuel. The same load and
NOx targets used for the air path targets generation are also
sent to the combustion control systems.

Simulated results were encouraging, with good accuracy in
tracking the NOx targets. The structure effectively enabled the
tracking of different NOx targets, with an average inaccuracy
of 0.3 bar for the BMEP and 100÷150 ppm for the NOx.
The IMAP deviations from targets were affected by the λ
regulation. Yet, during high loads, when it mattered the most,

the control was extremely accurate, never falling below λ =
1.2. In conclusion, the simulations demonstrated the viability
and excellent performance of the approach.

Future research will evaluate the approach viability by
applying the logic to a fast prototyping device and using a
NOx target that changes dynamically across the transient.
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